SlideShare a Scribd company logo
Data Cube Computation and Data Generalization
What is Data generalization? Data generalization is a process that abstracts a large set of task-relevant data in a database from a relatively low conceptual level to higher conceptual levels.
What are efficient methods for Data Cube Computation? Different Data cube materialization include  Full Cube Iceberg Cube Closed Cube Shell Cube
General Strategies for Cube Computation     1: Sorting, hashing, and grouping.2: Simultaneous aggregation and caching intermediate results.3: Aggregation from the smallest child, when there exist multiple child cuboids.4: The Apriori pruning method can be explored to compute iceberg cubes efficiently
What is Apriori Property? The Apriori property, in the context of data cubes, states as follows: If a given cell does not satisfy minimum support, then no descendant (i.e., more specialized or detailed version) of the cell will satisfy minimum support either. This property can be used to substantially reduce the computation of iceberg cubes.
The Full Cube    The Multi way Array Aggregation (or simply Multi Way) method computes a full data cube by using a multidimensional array as its basic data structure Partition the array into chunks Compute aggregates by visiting (i.e., accessing the values at) cube cells
BUC: Computing Iceberg Cubes from the Apex Cuboid’s Downward BUC stands for “Bottom-Up Construction" , BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike Multi Way, BUC constructs the cube from the apex cuboids' toward the base cuboids'. This allows BUC to share data partitioning costs. This order of processing also allows BUC to prune during construction, using the Apriori property. (for algorithm refer wiki)
Development of Data Cube and OLAP Technology Discovery-Driven Exploration of Data Cubes Tools need to be developed to assist users in intelligently exploring the huge aggregated space of a data cube. Discovery-driven exploration is such a cube exploration approach. Complex Aggregation at Multiple Granularity: Multi feature Cubes Data cubes facilitate the answering of data mining queries as they allow the computation of aggregate data at multiple levels of granularity
Constrained Gradient Analysis in Data Cubes Constrained multidimensional gradient analysis reduces the search space and derives interesting results. It incorporates the following types of constraints: Significance constraint Probe constraint Gradient constraint
Alternative Method for Data Generalization Attribute-Oriented Induction for Data CharacterizationThe attribute-oriented induction approach is basically a query-oriented, generalization-based, on-line data analysis technique The general idea of attribute-oriented induction is to first collect the task-relevant data using a database query and then perform generalization based on the examination of the number of distinct values of each attribute in the relevant set of data
Cont.. Attribute generalization is based on the following rule: If there is a large set of distinct values for an attribute in the initial working relation, and there exists a set of generalization operators on the attribute, then a generalization operator should be selected and applied to the attribute.
Different ways to control a generalization process    The control of how high an attribute should be generalized is typically quite subjective. The control of this process is called attribute generalization control. Attribute generalization threshold control Generalized relation threshold control
Mining Classes Data collection Dimension relevance analysis Synchronous generalization Presentation of the derived comparison
Visit more self help tutorials Pick a tutorial of your choice and browse through it at your own pace. The tutorials section is free, self-guiding and will not involve any additional support. Visit us at www.dataminingtools.net

More Related Content

What's hot

Frequent itemset mining methods
Frequent itemset mining methodsFrequent itemset mining methods
Frequent itemset mining methods
Prof.Nilesh Magar
 
Data Mining: clustering and analysis
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysis
DataminingTools Inc
 
Distributed DBMS - Unit 6 - Query Processing
Distributed DBMS - Unit 6 - Query ProcessingDistributed DBMS - Unit 6 - Query Processing
Distributed DBMS - Unit 6 - Query Processing
Gyanmanjari Institute Of Technology
 
Concurrency Control in Distributed Database.
Concurrency Control in Distributed Database.Concurrency Control in Distributed Database.
Concurrency Control in Distributed Database.
Meghaj Mallick
 
04 Classification in Data Mining
04 Classification in Data Mining04 Classification in Data Mining
04 Classification in Data Mining
Valerii Klymchuk
 
Distributed DBMS - Unit 5 - Semantic Data Control
Distributed DBMS - Unit 5 - Semantic Data ControlDistributed DBMS - Unit 5 - Semantic Data Control
Distributed DBMS - Unit 5 - Semantic Data Control
Gyanmanjari Institute Of Technology
 
Spatial data mining
Spatial data miningSpatial data mining
Spatial data mining
MITS Gwalior
 
OLAP operations
OLAP operationsOLAP operations
OLAP operations
kunj desai
 
Chapter 4 Classification
Chapter 4 ClassificationChapter 4 Classification
Chapter 4 Classification
Khalid Elshafie
 
Clustering in Data Mining
Clustering in Data MiningClustering in Data Mining
Clustering in Data Mining
Archana Swaminathan
 
Data mining Measuring similarity and desimilarity
Data mining Measuring similarity and desimilarityData mining Measuring similarity and desimilarity
Data mining Measuring similarity and desimilarity
Rushali Deshmukh
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
Student
 
Distributed design alternatives
Distributed design alternativesDistributed design alternatives
Distributed design alternatives
Pooja Dixit
 
Tree pruning
 Tree pruning Tree pruning
Tree pruning
Shivangi Gupta
 
Query processing
Query processingQuery processing
Query processing
Dr. C.V. Suresh Babu
 
Decision trees in Machine Learning
Decision trees in Machine Learning Decision trees in Machine Learning
Decision trees in Machine Learning
Mohammad Junaid Khan
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
File system vs DBMS
File system vs DBMSFile system vs DBMS
File system vs DBMS
BHARATH KUMAR
 

What's hot (20)

Frequent itemset mining methods
Frequent itemset mining methodsFrequent itemset mining methods
Frequent itemset mining methods
 
Data Mining: clustering and analysis
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysis
 
Decision tree
Decision treeDecision tree
Decision tree
 
Distributed DBMS - Unit 6 - Query Processing
Distributed DBMS - Unit 6 - Query ProcessingDistributed DBMS - Unit 6 - Query Processing
Distributed DBMS - Unit 6 - Query Processing
 
Concurrency Control in Distributed Database.
Concurrency Control in Distributed Database.Concurrency Control in Distributed Database.
Concurrency Control in Distributed Database.
 
04 Classification in Data Mining
04 Classification in Data Mining04 Classification in Data Mining
04 Classification in Data Mining
 
3. mining frequent patterns
3. mining frequent patterns3. mining frequent patterns
3. mining frequent patterns
 
Distributed DBMS - Unit 5 - Semantic Data Control
Distributed DBMS - Unit 5 - Semantic Data ControlDistributed DBMS - Unit 5 - Semantic Data Control
Distributed DBMS - Unit 5 - Semantic Data Control
 
Spatial data mining
Spatial data miningSpatial data mining
Spatial data mining
 
OLAP operations
OLAP operationsOLAP operations
OLAP operations
 
Chapter 4 Classification
Chapter 4 ClassificationChapter 4 Classification
Chapter 4 Classification
 
Clustering in Data Mining
Clustering in Data MiningClustering in Data Mining
Clustering in Data Mining
 
Data mining Measuring similarity and desimilarity
Data mining Measuring similarity and desimilarityData mining Measuring similarity and desimilarity
Data mining Measuring similarity and desimilarity
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
 
Distributed design alternatives
Distributed design alternativesDistributed design alternatives
Distributed design alternatives
 
Tree pruning
 Tree pruning Tree pruning
Tree pruning
 
Query processing
Query processingQuery processing
Query processing
 
Decision trees in Machine Learning
Decision trees in Machine Learning Decision trees in Machine Learning
Decision trees in Machine Learning
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
 
File system vs DBMS
File system vs DBMSFile system vs DBMS
File system vs DBMS
 

Viewers also liked

Olap Cube Design
Olap Cube DesignOlap Cube Design
Olap Cube Design
h1m
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER: Olap cubes and data miningMS SQL SERVER: Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
DataminingTools Inc
 
Data Mining: Data cube computation and data generalization
Data Mining: Data cube computation and data generalizationData Mining: Data cube computation and data generalization
Data Mining: Data cube computation and data generalization
Datamining Tools
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
Data cubes
Data cubesData cubes
Data cubes
Mohammed
 
Dimensionality reduction
Dimensionality reductionDimensionality reduction
Dimensionality reduction
Shatakirti Er
 
Different type of databases
Different type of databasesDifferent type of databases
Different type of databases
Shwe Yee
 
Concept description characterization and comparison
Concept description characterization and comparisonConcept description characterization and comparison
Concept description characterization and comparisonric_biet
 
1.7 data reduction
1.7 data reduction1.7 data reduction
1.7 data reduction
Krish_ver2
 
1.8 discretization
1.8 discretization1.8 discretization
1.8 discretization
Krish_ver2
 
Apriori Algorithm
Apriori AlgorithmApriori Algorithm
Substitution Cipher
Substitution CipherSubstitution Cipher
Substitution Cipher
Agung Julisman
 
Data Mining: Association Rules Basics
Data Mining: Association Rules BasicsData Mining: Association Rules Basics
Data Mining: Association Rules Basics
Benazir Income Support Program (BISP)
 
Data mining (lecture 1 & 2) conecpts and techniques
Data mining (lecture 1 & 2) conecpts and techniquesData mining (lecture 1 & 2) conecpts and techniques
Data mining (lecture 1 & 2) conecpts and techniquesSaif Ullah
 
Data mining slides
Data mining slidesData mining slides
Data mining slidessmj
 
Data mining
Data miningData mining
Data mining
Akannsha Totewar
 

Viewers also liked (18)

Olap Cube Design
Olap Cube DesignOlap Cube Design
Olap Cube Design
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER: Olap cubes and data miningMS SQL SERVER: Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
 
Data mining notes
Data mining notesData mining notes
Data mining notes
 
Data Mining: Data cube computation and data generalization
Data Mining: Data cube computation and data generalizationData Mining: Data cube computation and data generalization
Data Mining: Data cube computation and data generalization
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
 
Data cubes
Data cubesData cubes
Data cubes
 
Datacube
DatacubeDatacube
Datacube
 
Dimensionality reduction
Dimensionality reductionDimensionality reduction
Dimensionality reduction
 
Different type of databases
Different type of databasesDifferent type of databases
Different type of databases
 
Concept description characterization and comparison
Concept description characterization and comparisonConcept description characterization and comparison
Concept description characterization and comparison
 
1.7 data reduction
1.7 data reduction1.7 data reduction
1.7 data reduction
 
1.8 discretization
1.8 discretization1.8 discretization
1.8 discretization
 
Apriori Algorithm
Apriori AlgorithmApriori Algorithm
Apriori Algorithm
 
Substitution Cipher
Substitution CipherSubstitution Cipher
Substitution Cipher
 
Data Mining: Association Rules Basics
Data Mining: Association Rules BasicsData Mining: Association Rules Basics
Data Mining: Association Rules Basics
 
Data mining (lecture 1 & 2) conecpts and techniques
Data mining (lecture 1 & 2) conecpts and techniquesData mining (lecture 1 & 2) conecpts and techniques
Data mining (lecture 1 & 2) conecpts and techniques
 
Data mining slides
Data mining slidesData mining slides
Data mining slides
 
Data mining
Data miningData mining
Data mining
 

Similar to Data Mining: Data cube computation and data generalization

K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
SaiPragnaKancheti
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
SaiPragnaKancheti
 
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
IOSR Journals
 
Chapter 5.pdf
Chapter 5.pdfChapter 5.pdf
Chapter 5.pdf
DrGnaneswariG
 
Cb pattern trees identifying
Cb pattern trees  identifyingCb pattern trees  identifying
Cb pattern trees identifying
IJDKP
 
Query optimization
Query optimizationQuery optimization
Query optimization
Pooja Dixit
 
mod 2.pdf
mod 2.pdfmod 2.pdf
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data SetsHortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
IJMER
 
How Partitioning Clustering Technique For Implementing...
How Partitioning Clustering Technique For Implementing...How Partitioning Clustering Technique For Implementing...
How Partitioning Clustering Technique For Implementing...
Nicolle Dammann
 
Introduction to data mining
Introduction to data miningIntroduction to data mining
Introduction to data mining
Ujjawal
 
Recent Trends in Incremental Clustering: A Review
Recent Trends in Incremental Clustering: A ReviewRecent Trends in Incremental Clustering: A Review
Recent Trends in Incremental Clustering: A Review
IOSRjournaljce
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
Pushkar Mishra
 
Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)
Mustafa Sherazi
 
UNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data MiningUNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data Mining
Nandakumar P
 
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
ijcsit
 
Navigation Cost Modeling Based On Ontology
Navigation Cost Modeling Based On OntologyNavigation Cost Modeling Based On Ontology
Navigation Cost Modeling Based On Ontology
IOSR Journals
 
DS9 - Clustering.pptx
DS9 - Clustering.pptxDS9 - Clustering.pptx
DS9 - Clustering.pptx
JK970901
 
Lecture 8 is for best and you should read
Lecture 8 is for best and you should readLecture 8 is for best and you should read
Lecture 8 is for best and you should read
centralcollegepkr
 
Additional themes of data mining for Msc CS
Additional themes of data mining for Msc CSAdditional themes of data mining for Msc CS
Additional themes of data mining for Msc CS
Thanveen
 

Similar to Data Mining: Data cube computation and data generalization (20)

K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
 
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
K Means Clustering Algorithm for Partitioning Data Sets Evaluated From Horizo...
 
Chapter 5.pdf
Chapter 5.pdfChapter 5.pdf
Chapter 5.pdf
 
Cb pattern trees identifying
Cb pattern trees  identifyingCb pattern trees  identifying
Cb pattern trees identifying
 
Query optimization
Query optimizationQuery optimization
Query optimization
 
mod 2.pdf
mod 2.pdfmod 2.pdf
mod 2.pdf
 
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data SetsHortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
Hortizontal Aggregation in SQL for Data Mining Analysis to Prepare Data Sets
 
How Partitioning Clustering Technique For Implementing...
How Partitioning Clustering Technique For Implementing...How Partitioning Clustering Technique For Implementing...
How Partitioning Clustering Technique For Implementing...
 
Introduction to data mining
Introduction to data miningIntroduction to data mining
Introduction to data mining
 
Recent Trends in Incremental Clustering: A Review
Recent Trends in Incremental Clustering: A ReviewRecent Trends in Incremental Clustering: A Review
Recent Trends in Incremental Clustering: A Review
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
 
Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)
 
UNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data MiningUNIT - 4: Data Warehousing and Data Mining
UNIT - 4: Data Warehousing and Data Mining
 
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
CONTENT BASED VIDEO CATEGORIZATION USING RELATIONAL CLUSTERING WITH LOCAL SCA...
 
F0433439
F0433439F0433439
F0433439
 
Navigation Cost Modeling Based On Ontology
Navigation Cost Modeling Based On OntologyNavigation Cost Modeling Based On Ontology
Navigation Cost Modeling Based On Ontology
 
DS9 - Clustering.pptx
DS9 - Clustering.pptxDS9 - Clustering.pptx
DS9 - Clustering.pptx
 
Lecture 8 is for best and you should read
Lecture 8 is for best and you should readLecture 8 is for best and you should read
Lecture 8 is for best and you should read
 
Additional themes of data mining for Msc CS
Additional themes of data mining for Msc CSAdditional themes of data mining for Msc CS
Additional themes of data mining for Msc CS
 

More from DataminingTools Inc

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
DataminingTools Inc
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
DataminingTools Inc
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
DataminingTools Inc
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
DataminingTools Inc
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
DataminingTools Inc
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
DataminingTools Inc
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
DataminingTools Inc
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
DataminingTools Inc
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
DataminingTools Inc
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
DataminingTools Inc
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
DataminingTools Inc
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
DataminingTools Inc
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
DataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
DataminingTools Inc
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
DataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
DataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
DataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
DataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
DataminingTools Inc
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
DataminingTools Inc
 

More from DataminingTools Inc (20)

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
 
AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
 

Recently uploaded

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 

Recently uploaded (20)

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 

Data Mining: Data cube computation and data generalization

  • 1. Data Cube Computation and Data Generalization
  • 2. What is Data generalization? Data generalization is a process that abstracts a large set of task-relevant data in a database from a relatively low conceptual level to higher conceptual levels.
  • 3. What are efficient methods for Data Cube Computation? Different Data cube materialization include  Full Cube Iceberg Cube Closed Cube Shell Cube
  • 4. General Strategies for Cube Computation 1: Sorting, hashing, and grouping.2: Simultaneous aggregation and caching intermediate results.3: Aggregation from the smallest child, when there exist multiple child cuboids.4: The Apriori pruning method can be explored to compute iceberg cubes efficiently
  • 5. What is Apriori Property? The Apriori property, in the context of data cubes, states as follows: If a given cell does not satisfy minimum support, then no descendant (i.e., more specialized or detailed version) of the cell will satisfy minimum support either. This property can be used to substantially reduce the computation of iceberg cubes.
  • 6. The Full Cube The Multi way Array Aggregation (or simply Multi Way) method computes a full data cube by using a multidimensional array as its basic data structure Partition the array into chunks Compute aggregates by visiting (i.e., accessing the values at) cube cells
  • 7. BUC: Computing Iceberg Cubes from the Apex Cuboid’s Downward BUC stands for “Bottom-Up Construction" , BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike Multi Way, BUC constructs the cube from the apex cuboids' toward the base cuboids'. This allows BUC to share data partitioning costs. This order of processing also allows BUC to prune during construction, using the Apriori property. (for algorithm refer wiki)
  • 8. Development of Data Cube and OLAP Technology Discovery-Driven Exploration of Data Cubes Tools need to be developed to assist users in intelligently exploring the huge aggregated space of a data cube. Discovery-driven exploration is such a cube exploration approach. Complex Aggregation at Multiple Granularity: Multi feature Cubes Data cubes facilitate the answering of data mining queries as they allow the computation of aggregate data at multiple levels of granularity
  • 9. Constrained Gradient Analysis in Data Cubes Constrained multidimensional gradient analysis reduces the search space and derives interesting results. It incorporates the following types of constraints: Significance constraint Probe constraint Gradient constraint
  • 10. Alternative Method for Data Generalization Attribute-Oriented Induction for Data CharacterizationThe attribute-oriented induction approach is basically a query-oriented, generalization-based, on-line data analysis technique The general idea of attribute-oriented induction is to first collect the task-relevant data using a database query and then perform generalization based on the examination of the number of distinct values of each attribute in the relevant set of data
  • 11. Cont.. Attribute generalization is based on the following rule: If there is a large set of distinct values for an attribute in the initial working relation, and there exists a set of generalization operators on the attribute, then a generalization operator should be selected and applied to the attribute.
  • 12. Different ways to control a generalization process The control of how high an attribute should be generalized is typically quite subjective. The control of this process is called attribute generalization control. Attribute generalization threshold control Generalized relation threshold control
  • 13. Mining Classes Data collection Dimension relevance analysis Synchronous generalization Presentation of the derived comparison
  • 14. Visit more self help tutorials Pick a tutorial of your choice and browse through it at your own pace. The tutorials section is free, self-guiding and will not involve any additional support. Visit us at www.dataminingtools.net