This document summarizes a survey on data mining. It discusses how data mining helps extract useful business information from large databases and build predictive models. Commonly used data mining techniques are discussed, including artificial neural networks, decision trees, genetic algorithms, and nearest neighbor methods. An ideal data mining architecture is proposed that fully integrates data mining tools with a data warehouse and OLAP server. Examples of profitable data mining applications are provided in industries such as pharmaceuticals, credit cards, transportation, and consumer goods. The document concludes that while data mining is still developing, it has wide applications across domains to leverage knowledge in data warehouses and improve customer relationships.