SlideShare a Scribd company logo
Electronic Codebook Book (ECB)
• message is broken into independent
  blocks which are encrypted
• each block is a value which is substituted,
  like a codebook, hence name
• each block is encoded independently of
  the other blocks
  Ci = DESK1 (Pi)
• uses: secure transmission of single values
Electronic Codebook Book (ECB)
Advantages and Limitations of ECB
• repetitions in message may show in
  ciphertext
  – if aligned with message block
  – particularly with data such graphics
  – or with messages that change very little,
    which become a code-book analysis problem
• weakness due to encrypted message
  blocks being independent
• main use is sending a few blocks of data
Cipher Block Chaining (CBC)
• message is broken into blocks
• but these are linked together in the
  encryption operation
• each previous cipher blocks is chained
  with current plaintext block, hence name
• use Initial Vector (IV) to start process
  Ci = DESK1(Pi XOR Ci-1)
  C-1 = IV
• uses: bulk data encryption, authentication
Cipher Block Chaining (CBC)
Advantages and Limitations of CBC
• each ciphertext block depends on all message blocks
• thus a change in the message affects all ciphertext
  blocks after the change as well as the original block
• need Initial Value (IV) known to sender & receiver
   – however if IV is sent in the clear, an attacker can change bits of
     the first block, and change IV to compensate
   – hence either IV must be a fixed value (as in EFTPOS) or it must
     be sent encrypted in ECB mode before rest of message
• at end of message, handle possible last short block
   – by padding either with known non-data value (eg nulls)
   – or pad last block with count of pad size
       • eg. [ b1 b2 b3 0 0 0 0 5] <- 3 data bytes, then 5 bytes pad+count
Cipher FeedBack (CFB)
•   message is treated as a stream of bits
•   added to the output of the block cipher
•   result is feed back for next stage (hence name)
•   standard allows any number of bit (1,8 or 64 or
    whatever) to be feed back
    – denoted CFB-1, CFB-8, CFB-64 etc
• is most efficient to use all 64 bits (CFB-64)
    Ci = Pi XOR DESK1(Ci-1)
    C-1 = IV
• uses: stream data encryption, authentication
Advantages and Limitations of CFB
• appropriate when data arrives in bits/bytes
• most common stream mode
• limitation is need to stall while do block
  encryption after every n-bits
• note that the block cipher is used in
  encryption mode at both ends
• errors propogate for several blocks after
  the error
Output FeedBack (OFB)
•   message is treated as a stream of bits
•   output of cipher is added to message
•   output is then feed back (hence name)
•   feedback is independent of message
•   can be computed in advance
    Ci = Pi XOR Oi
    Oi = DESK1(Oi-1)
    O-1 = IV
• uses: stream encryption over noisy channels
Output FeedBack (OFB)
Advantages and Limitations of OFB
• used when error feedback a problem or where need to
  encryptions before message is available
• superficially similar to CFB
• but feedback is from the output of cipher and is
  independent of message
• a variation of a Vernam cipher
   – hence must never reuse the same sequence (key+IV)
• sender and receiver must remain in sync, and some
  recovery method is needed to ensure this occurs
• originally specified with m-bit feedback in the standards
• subsequent research has shown that only OFB-64
  should ever be used
Counter (CTR)
• a “new” mode, though proposed early on
• similar to OFB but encrypts counter value
  rather than any feedback value
• must have a different key & counter value
  for every plaintext block (never reused)
  Ci = Pi XOR Oi
  Oi = DESK1(i)
• uses: high-speed network encryptions
Counter (CTR)
Advantages and Limitations of CTR
• efficiency
  – can do parallel encryptions
  – in advance of need
  – good for bursty high speed links
• random access to encrypted data blocks
• provable security (good as other modes)
• but must ensure never reuse key/counter
  values, otherwise could break (cf OFB)
Summary
•   block cipher design principles
•   DES
•   Differential & Linear Cryptanalysis
•   Modes of Operation
    – ECB, CBC, CFB, OFB, CTR
Finite Fields
• Important in cryptography
  – AES, Elliptic Curve, IDEA, Public Key


• Groups, rings, fields from abstract algebra
Group
• a set of elements or “numbers”
• with some operation whose result is also
  in the set (closure)
• obeys:
  – associative law: (a.b).c = a.(b.c)
  – has identity e:   e.a = a.e = a
  – has inverses a-1: a.a-1 = e
• if commutative    a.b = b.a
  – then forms an abelian group
Cyclic Group
• define exponentiation as repeated
  application of operator
  – example:     a-3 = a.a.a
• and let identity be: e=a0
• a group is cyclic if every element is a
  power of some fixed element
  – ie b = ak    for some a and every b in group
• a is said to be a generator of the group
Ring
• a set of “numbers” with two operations (addition
  and multiplication) which are:
• an abelian group with addition operation
• multiplication:
  – has closure
  – is associative
  – distributive over addition:   a(b+c) = ab + ac
• if multiplication operation is commutative, it
  forms a commutative ring
• if multiplication operation has inverses and no
  zero divisors, it forms an integral domain
Field
• a set of numbers with two operations:
  – abelian group for addition
  – abelian group for multiplication (ignoring 0)
  – ring
Modular Arithmetic
• define modulo operator a mod n to be
  remainder when a is divided by n
• use the term congruence for: a ≡ b mod n
  – when divided by n, a & b have same remainder
  – eg. 100 = 34 mod 11
• b is called the residue of a mod n
  – since with integers can always write: a = qn + b
• usually have 0 <= b <= n-1
   -12 mod 7 ≡ -5 mod 7 ≡ 2 mod 7 ≡ 9 mod 7
Modulo 7 Example
...
-21 -20 -19 -18 -17 -16 -15
-14 -13 -12 -11 -10 -9 -8
 -7 -6 -5 -4 -3 -2 -1
  0   1   2   3   4   5   6
  7   8   9 10 11 12 13
 14 15 16 17 18 19 20
 21 22 23 24 25 26 27
 28 29 30 31 32 33 34
...
Divisors
• say a non-zero number b divides a if for
  some m have a=mb (a,b,m all integers)
• that is b divides into a with no remainder
• denote this b|a
• and say that b is a divisor of a
• eg. all of 1,2,3,4,6,8,12,24 divide 24
Modular Arithmetic Operations
• is 'clock arithmetic'
• uses a finite number of values, and loops
  back from either end
• modular arithmetic is when do addition &
  multiplication and modulo reduce answer
• can do reduction at any point, ie
  – a+b mod n = [a mod n + b mod n] mod n
Modular Arithmetic
• can do modular arithmetic with any group
  of integers: Zn = {0, 1, … , n-1}
• form a commutative ring for addition
• with a multiplicative identity
• note some peculiarities
  – if (a+b)≡(a+c) mod n then b≡c mod n
  – but (ab)≡(ac) mod n then b≡c mod n
    only if a is relatively prime to n
Modulo 8 Example
Greatest Common Divisor (GCD)
• a common problem in number theory
• GCD (a,b) of a and b is the largest number
  that divides evenly into both a and b
  – eg GCD(60,24) = 12
• often want no common factors (except 1)
  and hence numbers are relatively prime
  – eg GCD(8,15) = 1
  – hence 8 & 15 are relatively prime
Euclid's GCD Algorithm
• an efficient way to find the GCD(a,b)
• uses theorem that:
  – GCD(a,b) = GCD(b, a mod b)
• Euclid's Algorithm to compute GCD(a,b):
  – A=a, B=b
  – while B>0
     • R = A mod B
     • A = B, B = R
  – return A
Example GCD(1970,1066)
1970 = 1 x 1066 + 904   gcd(1066, 904)
1066 = 1 x 904 + 162    gcd(904, 162)
904 = 5 x 162 + 94      gcd(162, 94)
162 = 1 x 94 + 68       gcd(94, 68)
94 = 1 x 68 + 26        gcd(68, 26)
68 = 2 x 26 + 16        gcd(26, 16)
26 = 1 x 16 + 10        gcd(16, 10)
16 = 1 x 10 + 6         gcd(10, 6)
10 = 1 x 6 + 4          gcd(6, 4)
6 = 1 x 4 + 2           gcd(4, 2)
4 = 2 x 2 + 0           gcd(2, 0)
Galois Fields
• finite fields play a key role in cryptography
• can show number of elements in a finite
  field must be a power of a prime pn
• known as Galois fields
• denoted GF(pn)
• in particular often use the fields:
  – GF(p)
  – GF(2n)
Galois Fields GF(p)
• GF(p) is the set of integers {0,1, … , p-1}
  with arithmetic operations modulo prime p
• these form a finite field
  – since have multiplicative inverses
• hence arithmetic is “well-behaved” and
  can do addition, subtraction, multiplication,
  and division without leaving the field GF(p)
Example GF(7)
Finding Inverses
•   can extend Euclid’s algorithm:
    EXTENDED EUCLID(m, b)
    1. (A1, A2, A3)=(1, 0, m);
       (B1, B2, B3)=(0, 1, b)
    2. if B3 = 0
       return A3 = gcd(m, b); no inverse
    3. if B3 = 1
       return B3 = gcd(m, b); B2 = b–1 mod m
    4. Q = A3 div B3
    5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3)
    6. (A1, A2, A3)=(B1, B2, B3)
    7. (B1, B2, B3)=(T1, T2, T3)
    8. goto 2
Inverse of 550 in GF(1759)
Polynomial Arithmetic
• can compute using polynomials


• several alternatives available
  – ordinary polynomial arithmetic
  – poly arithmetic with coords mod p
  – poly arithmetic with coords mod p and
    polynomials mod M(x)
Ordinary Polynomial Arithmetic
• add or subtract corresponding coefficients
• multiply all terms by each other
• eg
  – let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1
  f(x) + g(x) = x3 + 2x2 – x + 3
  f(x) – g(x) = x3 + x + 1
  f(x) x g(x) = x5 + 3x2 – 2x + 2
Polynomial Arithmetic with Modulo
          Coefficients
• when computing value of each coefficient
  do calculation modulo some value
• could be modulo any prime
• but we are most interested in mod 2
  – ie all coefficients are 0 or 1
  – eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1
  f(x) + g(x) = x3 + x + 1
  f(x) x g(x) = x5 + x2
Modular Polynomial Arithmetic
• can write any polynomial in the form:
  – f(x) = q(x) g(x) + r(x)
  – can interpret r(x) as being a remainder
  – r(x) = f(x) mod g(x)
• if have no remainder say g(x) divides f(x)
• if g(x) has no divisors other than itself & 1
  say it is irreducible (or prime) polynomial
• arithmetic modulo an irreducible
  polynomial forms a field
Polynomial GCD
•   can find greatest common divisor for polys
    – c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest
        degree which divides both a(x), b(x)
    – can adapt Euclid’s Algorithm to find it:
    – EUCLID[a(x), b(x)]
    1. A(x) = a(x); B(x) = b(x)
    2. 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]
    3. R(x) = A(x) mod B(x)
    4. A(x) ¨ B(x)
    5. B(x) ¨ R(x)
    6. goto 2
Modular Polynomial Arithmetic
• can compute in field GF(2n)
  – polynomials with coefficients modulo 2
  – whose degree is less than n
  – hence must reduce modulo an irreducible poly
    of degree n (for multiplication only)
• form a finite field
• can always find an inverse
  – can extend Euclid’s Inverse algorithm to find
Example GF(23)
Computational Considerations
• since coefficients are 0 or 1, can represent
  any such polynomial as a bit string
• addition becomes XOR of these bit strings
• multiplication is shift & XOR
  – cf long-hand multiplication
• modulo reduction done by repeatedly
  substituting highest power with remainder
  of irreducible poly (also shift & XOR)

More Related Content

What's hot

Elliptical curve cryptography
Elliptical curve cryptographyElliptical curve cryptography
Elliptical curve cryptographyBarani Tharan
 
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...IOSR Journals
 
Elliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge ProofElliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge ProofArunanand Ta
 
Ch01 basic concepts_nosoluiton
Ch01 basic concepts_nosoluitonCh01 basic concepts_nosoluiton
Ch01 basic concepts_nosoluitonshin
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersKimikazu Kato
 
Error control coding using bose chaudhuri hocquenghem bch codes
Error control coding using bose chaudhuri hocquenghem bch codesError control coding using bose chaudhuri hocquenghem bch codes
Error control coding using bose chaudhuri hocquenghem bch codesIAEME Publication
 
Justesen codes alternant codes goppa codes
Justesen codes alternant codes goppa codesJustesen codes alternant codes goppa codes
Justesen codes alternant codes goppa codesMadhumita Tamhane
 
Chap7 2 Ecc Intro
Chap7 2 Ecc IntroChap7 2 Ecc Intro
Chap7 2 Ecc IntroEdora Aziz
 
Introduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyIntroduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyDavid Evans
 
Multiplier and Accumulator Using Csla
Multiplier and Accumulator Using CslaMultiplier and Accumulator Using Csla
Multiplier and Accumulator Using CslaIOSR Journals
 
Design and Implementation of High Speed Area Efficient Double Precision Float...
Design and Implementation of High Speed Area Efficient Double Precision Float...Design and Implementation of High Speed Area Efficient Double Precision Float...
Design and Implementation of High Speed Area Efficient Double Precision Float...IOSR Journals
 
Data Security Using Elliptic Curve Cryptography
Data Security Using Elliptic Curve CryptographyData Security Using Elliptic Curve Cryptography
Data Security Using Elliptic Curve CryptographyIJCERT
 
Basic arithmetic, instruction execution and program
Basic arithmetic, instruction execution and programBasic arithmetic, instruction execution and program
Basic arithmetic, instruction execution and programJyotiprakashMishra18
 

What's hot (16)

1524 elliptic curve cryptography
1524 elliptic curve cryptography1524 elliptic curve cryptography
1524 elliptic curve cryptography
 
Elliptical curve cryptography
Elliptical curve cryptographyElliptical curve cryptography
Elliptical curve cryptography
 
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
 
Ecc2
Ecc2Ecc2
Ecc2
 
Elliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge ProofElliptic Curve Cryptography and Zero Knowledge Proof
Elliptic Curve Cryptography and Zero Knowledge Proof
 
Ch01 basic concepts_nosoluiton
Ch01 basic concepts_nosoluitonCh01 basic concepts_nosoluiton
Ch01 basic concepts_nosoluiton
 
Elliptic curvecryptography Shane Almeida Saqib Awan Dan Palacio
Elliptic curvecryptography Shane Almeida Saqib Awan Dan PalacioElliptic curvecryptography Shane Almeida Saqib Awan Dan Palacio
Elliptic curvecryptography Shane Almeida Saqib Awan Dan Palacio
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
 
Error control coding using bose chaudhuri hocquenghem bch codes
Error control coding using bose chaudhuri hocquenghem bch codesError control coding using bose chaudhuri hocquenghem bch codes
Error control coding using bose chaudhuri hocquenghem bch codes
 
Justesen codes alternant codes goppa codes
Justesen codes alternant codes goppa codesJustesen codes alternant codes goppa codes
Justesen codes alternant codes goppa codes
 
Chap7 2 Ecc Intro
Chap7 2 Ecc IntroChap7 2 Ecc Intro
Chap7 2 Ecc Intro
 
Introduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve CryptographyIntroduction to Elliptic Curve Cryptography
Introduction to Elliptic Curve Cryptography
 
Multiplier and Accumulator Using Csla
Multiplier and Accumulator Using CslaMultiplier and Accumulator Using Csla
Multiplier and Accumulator Using Csla
 
Design and Implementation of High Speed Area Efficient Double Precision Float...
Design and Implementation of High Speed Area Efficient Double Precision Float...Design and Implementation of High Speed Area Efficient Double Precision Float...
Design and Implementation of High Speed Area Efficient Double Precision Float...
 
Data Security Using Elliptic Curve Cryptography
Data Security Using Elliptic Curve CryptographyData Security Using Elliptic Curve Cryptography
Data Security Using Elliptic Curve Cryptography
 
Basic arithmetic, instruction execution and program
Basic arithmetic, instruction execution and programBasic arithmetic, instruction execution and program
Basic arithmetic, instruction execution and program
 

Viewers also liked

Advanced encryption standard (aes) epul
Advanced encryption standard (aes)   epulAdvanced encryption standard (aes)   epul
Advanced encryption standard (aes) epulAgate Studio
 
ASIC Implementation of Triple Data Encryption Algorithm (3DES)
ASIC Implementation of Triple Data Encryption Algorithm (3DES)ASIC Implementation of Triple Data Encryption Algorithm (3DES)
ASIC Implementation of Triple Data Encryption Algorithm (3DES)Kevin Xiao Xiao
 
Data Encryption Standard (DES)
Data Encryption Standard (DES)Data Encryption Standard (DES)
Data Encryption Standard (DES)Haris Ahmed
 
AES-Advanced Encryption Standard
AES-Advanced Encryption StandardAES-Advanced Encryption Standard
AES-Advanced Encryption StandardPrince Rachit
 

Viewers also liked (7)

Ch03
Ch03Ch03
Ch03
 
Advanced encryption standard (aes) epul
Advanced encryption standard (aes)   epulAdvanced encryption standard (aes)   epul
Advanced encryption standard (aes) epul
 
ASIC Implementation of Triple Data Encryption Algorithm (3DES)
ASIC Implementation of Triple Data Encryption Algorithm (3DES)ASIC Implementation of Triple Data Encryption Algorithm (3DES)
ASIC Implementation of Triple Data Encryption Algorithm (3DES)
 
Network Security
Network SecurityNetwork Security
Network Security
 
Data Encryption Standard (DES)
Data Encryption Standard (DES)Data Encryption Standard (DES)
Data Encryption Standard (DES)
 
AES-Advanced Encryption Standard
AES-Advanced Encryption StandardAES-Advanced Encryption Standard
AES-Advanced Encryption Standard
 
Cryptography
CryptographyCryptography
Cryptography
 

Similar to Cryptography

Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesSreedhar Chowdam
 
815.07 machine learning using python.pdf
815.07 machine learning using python.pdf815.07 machine learning using python.pdf
815.07 machine learning using python.pdfSairaAtta5
 
unit-4-dynamic programming
unit-4-dynamic programmingunit-4-dynamic programming
unit-4-dynamic programminghodcsencet
 
ellipticcurvecryptography.pptx
ellipticcurvecryptography.pptxellipticcurvecryptography.pptx
ellipticcurvecryptography.pptxAYUSHJAIN152065
 
Code generation in Compiler Design
Code generation in Compiler DesignCode generation in Compiler Design
Code generation in Compiler DesignKuppusamy P
 
super vector machines algorithms using deep
super vector machines algorithms using deepsuper vector machines algorithms using deep
super vector machines algorithms using deepKNaveenKumarECE
 
introduction to data structures and types
introduction to data structures and typesintroduction to data structures and types
introduction to data structures and typesankita946617
 

Similar to Cryptography (20)

2.ppt
2.ppt2.ppt
2.ppt
 
Bch codes
Bch codesBch codes
Bch codes
 
Finite fields
Finite fields Finite fields
Finite fields
 
new 2.ppt
new 2.pptnew 2.ppt
new 2.ppt
 
Graph partition 2
Graph partition 2Graph partition 2
Graph partition 2
 
Mmclass3
Mmclass3Mmclass3
Mmclass3
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
UNIT V.pptx
UNIT V.pptxUNIT V.pptx
UNIT V.pptx
 
815.07 machine learning using python.pdf
815.07 machine learning using python.pdf815.07 machine learning using python.pdf
815.07 machine learning using python.pdf
 
Information security Seminar #3
Information security Seminar #3 Information security Seminar #3
Information security Seminar #3
 
unit-4-dynamic programming
unit-4-dynamic programmingunit-4-dynamic programming
unit-4-dynamic programming
 
ellipticcurvecryptography.pptx
ellipticcurvecryptography.pptxellipticcurvecryptography.pptx
ellipticcurvecryptography.pptx
 
Code generation in Compiler Design
Code generation in Compiler DesignCode generation in Compiler Design
Code generation in Compiler Design
 
super vector machines algorithms using deep
super vector machines algorithms using deepsuper vector machines algorithms using deep
super vector machines algorithms using deep
 
introduction to data structures and types
introduction to data structures and typesintroduction to data structures and types
introduction to data structures and types
 
Class3
Class3Class3
Class3
 
sheet6.pdf
sheet6.pdfsheet6.pdf
sheet6.pdf
 
doc6.pdf
doc6.pdfdoc6.pdf
doc6.pdf
 
paper6.pdf
paper6.pdfpaper6.pdf
paper6.pdf
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
 

Recently uploaded

From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...Product School
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Product School
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomCzechDreamin
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Julian Hyde
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...CzechDreamin
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...Product School
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationZilliz
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersSafe Software
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Thierry Lestable
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...Product School
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsExpeed Software
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxDavid Michel
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...Sri Ambati
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekCzechDreamin
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...Product School
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlPeter Udo Diehl
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityScyllaDB
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Tobias Schneck
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeCzechDreamin
 

Recently uploaded (20)

From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG Evaluation
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT Professionals
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 

Cryptography

  • 1. Electronic Codebook Book (ECB) • message is broken into independent blocks which are encrypted • each block is a value which is substituted, like a codebook, hence name • each block is encoded independently of the other blocks Ci = DESK1 (Pi) • uses: secure transmission of single values
  • 3. Advantages and Limitations of ECB • repetitions in message may show in ciphertext – if aligned with message block – particularly with data such graphics – or with messages that change very little, which become a code-book analysis problem • weakness due to encrypted message blocks being independent • main use is sending a few blocks of data
  • 4. Cipher Block Chaining (CBC) • message is broken into blocks • but these are linked together in the encryption operation • each previous cipher blocks is chained with current plaintext block, hence name • use Initial Vector (IV) to start process Ci = DESK1(Pi XOR Ci-1) C-1 = IV • uses: bulk data encryption, authentication
  • 6. Advantages and Limitations of CBC • each ciphertext block depends on all message blocks • thus a change in the message affects all ciphertext blocks after the change as well as the original block • need Initial Value (IV) known to sender & receiver – however if IV is sent in the clear, an attacker can change bits of the first block, and change IV to compensate – hence either IV must be a fixed value (as in EFTPOS) or it must be sent encrypted in ECB mode before rest of message • at end of message, handle possible last short block – by padding either with known non-data value (eg nulls) – or pad last block with count of pad size • eg. [ b1 b2 b3 0 0 0 0 5] <- 3 data bytes, then 5 bytes pad+count
  • 7. Cipher FeedBack (CFB) • message is treated as a stream of bits • added to the output of the block cipher • result is feed back for next stage (hence name) • standard allows any number of bit (1,8 or 64 or whatever) to be feed back – denoted CFB-1, CFB-8, CFB-64 etc • is most efficient to use all 64 bits (CFB-64) Ci = Pi XOR DESK1(Ci-1) C-1 = IV • uses: stream data encryption, authentication
  • 8.
  • 9. Advantages and Limitations of CFB • appropriate when data arrives in bits/bytes • most common stream mode • limitation is need to stall while do block encryption after every n-bits • note that the block cipher is used in encryption mode at both ends • errors propogate for several blocks after the error
  • 10. Output FeedBack (OFB) • message is treated as a stream of bits • output of cipher is added to message • output is then feed back (hence name) • feedback is independent of message • can be computed in advance Ci = Pi XOR Oi Oi = DESK1(Oi-1) O-1 = IV • uses: stream encryption over noisy channels
  • 12. Advantages and Limitations of OFB • used when error feedback a problem or where need to encryptions before message is available • superficially similar to CFB • but feedback is from the output of cipher and is independent of message • a variation of a Vernam cipher – hence must never reuse the same sequence (key+IV) • sender and receiver must remain in sync, and some recovery method is needed to ensure this occurs • originally specified with m-bit feedback in the standards • subsequent research has shown that only OFB-64 should ever be used
  • 13. Counter (CTR) • a “new” mode, though proposed early on • similar to OFB but encrypts counter value rather than any feedback value • must have a different key & counter value for every plaintext block (never reused) Ci = Pi XOR Oi Oi = DESK1(i) • uses: high-speed network encryptions
  • 15. Advantages and Limitations of CTR • efficiency – can do parallel encryptions – in advance of need – good for bursty high speed links • random access to encrypted data blocks • provable security (good as other modes) • but must ensure never reuse key/counter values, otherwise could break (cf OFB)
  • 16. Summary • block cipher design principles • DES • Differential & Linear Cryptanalysis • Modes of Operation – ECB, CBC, CFB, OFB, CTR
  • 17. Finite Fields • Important in cryptography – AES, Elliptic Curve, IDEA, Public Key • Groups, rings, fields from abstract algebra
  • 18. Group • a set of elements or “numbers” • with some operation whose result is also in the set (closure) • obeys: – associative law: (a.b).c = a.(b.c) – has identity e: e.a = a.e = a – has inverses a-1: a.a-1 = e • if commutative a.b = b.a – then forms an abelian group
  • 19. Cyclic Group • define exponentiation as repeated application of operator – example: a-3 = a.a.a • and let identity be: e=a0 • a group is cyclic if every element is a power of some fixed element – ie b = ak for some a and every b in group • a is said to be a generator of the group
  • 20. Ring • a set of “numbers” with two operations (addition and multiplication) which are: • an abelian group with addition operation • multiplication: – has closure – is associative – distributive over addition: a(b+c) = ab + ac • if multiplication operation is commutative, it forms a commutative ring • if multiplication operation has inverses and no zero divisors, it forms an integral domain
  • 21. Field • a set of numbers with two operations: – abelian group for addition – abelian group for multiplication (ignoring 0) – ring
  • 22. Modular Arithmetic • define modulo operator a mod n to be remainder when a is divided by n • use the term congruence for: a ≡ b mod n – when divided by n, a & b have same remainder – eg. 100 = 34 mod 11 • b is called the residue of a mod n – since with integers can always write: a = qn + b • usually have 0 <= b <= n-1 -12 mod 7 ≡ -5 mod 7 ≡ 2 mod 7 ≡ 9 mod 7
  • 23. Modulo 7 Example ... -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ...
  • 24. Divisors • say a non-zero number b divides a if for some m have a=mb (a,b,m all integers) • that is b divides into a with no remainder • denote this b|a • and say that b is a divisor of a • eg. all of 1,2,3,4,6,8,12,24 divide 24
  • 25. Modular Arithmetic Operations • is 'clock arithmetic' • uses a finite number of values, and loops back from either end • modular arithmetic is when do addition & multiplication and modulo reduce answer • can do reduction at any point, ie – a+b mod n = [a mod n + b mod n] mod n
  • 26. Modular Arithmetic • can do modular arithmetic with any group of integers: Zn = {0, 1, … , n-1} • form a commutative ring for addition • with a multiplicative identity • note some peculiarities – if (a+b)≡(a+c) mod n then b≡c mod n – but (ab)≡(ac) mod n then b≡c mod n only if a is relatively prime to n
  • 28. Greatest Common Divisor (GCD) • a common problem in number theory • GCD (a,b) of a and b is the largest number that divides evenly into both a and b – eg GCD(60,24) = 12 • often want no common factors (except 1) and hence numbers are relatively prime – eg GCD(8,15) = 1 – hence 8 & 15 are relatively prime
  • 29. Euclid's GCD Algorithm • an efficient way to find the GCD(a,b) • uses theorem that: – GCD(a,b) = GCD(b, a mod b) • Euclid's Algorithm to compute GCD(a,b): – A=a, B=b – while B>0 • R = A mod B • A = B, B = R – return A
  • 30. Example GCD(1970,1066) 1970 = 1 x 1066 + 904 gcd(1066, 904) 1066 = 1 x 904 + 162 gcd(904, 162) 904 = 5 x 162 + 94 gcd(162, 94) 162 = 1 x 94 + 68 gcd(94, 68) 94 = 1 x 68 + 26 gcd(68, 26) 68 = 2 x 26 + 16 gcd(26, 16) 26 = 1 x 16 + 10 gcd(16, 10) 16 = 1 x 10 + 6 gcd(10, 6) 10 = 1 x 6 + 4 gcd(6, 4) 6 = 1 x 4 + 2 gcd(4, 2) 4 = 2 x 2 + 0 gcd(2, 0)
  • 31. Galois Fields • finite fields play a key role in cryptography • can show number of elements in a finite field must be a power of a prime pn • known as Galois fields • denoted GF(pn) • in particular often use the fields: – GF(p) – GF(2n)
  • 32. Galois Fields GF(p) • GF(p) is the set of integers {0,1, … , p-1} with arithmetic operations modulo prime p • these form a finite field – since have multiplicative inverses • hence arithmetic is “well-behaved” and can do addition, subtraction, multiplication, and division without leaving the field GF(p)
  • 34. Finding Inverses • can extend Euclid’s algorithm: EXTENDED EUCLID(m, b) 1. (A1, A2, A3)=(1, 0, m); (B1, B2, B3)=(0, 1, b) 2. if B3 = 0 return A3 = gcd(m, b); no inverse 3. if B3 = 1 return B3 = gcd(m, b); B2 = b–1 mod m 4. Q = A3 div B3 5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3) 6. (A1, A2, A3)=(B1, B2, B3) 7. (B1, B2, B3)=(T1, T2, T3) 8. goto 2
  • 35. Inverse of 550 in GF(1759)
  • 36. Polynomial Arithmetic • can compute using polynomials • several alternatives available – ordinary polynomial arithmetic – poly arithmetic with coords mod p – poly arithmetic with coords mod p and polynomials mod M(x)
  • 37. Ordinary Polynomial Arithmetic • add or subtract corresponding coefficients • multiply all terms by each other • eg – let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1 f(x) + g(x) = x3 + 2x2 – x + 3 f(x) – g(x) = x3 + x + 1 f(x) x g(x) = x5 + 3x2 – 2x + 2
  • 38. Polynomial Arithmetic with Modulo Coefficients • when computing value of each coefficient do calculation modulo some value • could be modulo any prime • but we are most interested in mod 2 – ie all coefficients are 0 or 1 – eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1 f(x) + g(x) = x3 + x + 1 f(x) x g(x) = x5 + x2
  • 39. Modular Polynomial Arithmetic • can write any polynomial in the form: – f(x) = q(x) g(x) + r(x) – can interpret r(x) as being a remainder – r(x) = f(x) mod g(x) • if have no remainder say g(x) divides f(x) • if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial • arithmetic modulo an irreducible polynomial forms a field
  • 40. Polynomial GCD • can find greatest common divisor for polys – c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x) – can adapt Euclid’s Algorithm to find it: – EUCLID[a(x), b(x)] 1. A(x) = a(x); B(x) = b(x) 2. 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)] 3. R(x) = A(x) mod B(x) 4. A(x) ¨ B(x) 5. B(x) ¨ R(x) 6. goto 2
  • 41. Modular Polynomial Arithmetic • can compute in field GF(2n) – polynomials with coefficients modulo 2 – whose degree is less than n – hence must reduce modulo an irreducible poly of degree n (for multiplication only) • form a finite field • can always find an inverse – can extend Euclid’s Inverse algorithm to find
  • 43. Computational Considerations • since coefficients are 0 or 1, can represent any such polynomial as a bit string • addition becomes XOR of these bit strings • multiplication is shift & XOR – cf long-hand multiplication • modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)