The	interferometric	signatures	of
quantum	and	classical	states	of	light
Saroosh	Shabbir
Quantum	Electronics	&	Quantum	Op�cs
KTH	Royal	Ins�tute	of	Technology,	Stockholm
Interferometric signatures of quantum and classical states
Do	interferometric	signals	of	quantum	states	differ	fundam-
entally	from	classical	states,	in	terms	of	shape	and	visibility?
How	do	the	interferometric	signals	vary	as	states	are	trans-
formed	from	quantum	to	classical?		
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 1 / 38
Outline
Interference	-	From	Huygens	&	Young	to	Hanbury	Brown	&	Twiss
Higher	order	interference
Two-mode	projec�on	measurements
Quantum	interference	from	semi-classical	states
Engineered	interference
Projec�on	measurements	of	increasingly	dis�nguishable	states
Summary	and	Conclusions
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 2 / 38
Classical Interference - First order
Unfiltered 605	nm,	FWHM	5	nm HeNe	laser
Chris�an	Huygens
(1629-1659)
Thomas	Young
(1773-1829)
All	single	mode	states	display	first	order	interference.
First	order	interference	does	not	discriminate	between	states.
It	thus	does	not	separate	classical	from	quantum.
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 3 / 38
Second order interference
Robert	Hanbury	Brown
(1916-2002)
Richard	Twiss
(1920-2005)
Intensi�es	can	also	be	correlated	and	have	a	coherence	length
associated	to	the	emi�ng	light	source.
R.	Hanbury	Brown	&	R.	Twiss,	Nature	178,	1046-1048	(1956)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 4 / 38
Quantum Interference - Hong-Ou-Mandel effect
2,0 1,1 0,2
25% 50% 25%
Classically	we	would	get:
2,0 1,1 0,2
50% 0% 50%
When	wave	packets	overlap:
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 5 / 38
Quantum Interference - Hong-Ou-Mandel effect
2,0 1,1 0,2
25% 50% 25%
Classically	we	would	get:
2,0 1,1 0,2
50% 0% 50%
When	wave	packets	overlap:
Hong	et	al.,	PRL	(1987)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 6 / 38
Higher order (multiphoton) quantum interference
Y.-S	Kim	et	al.,	Opt.	Express	19,	24956	(2011)
Both	the	genera�on	and	the	det-
ec�on	of	mul�-photon	states	is
complicated.
Non-linear	op�cs	is	required	to
generate	states.
Polarisa�on	op�cs	and	coincide-
nce	detec�on	is	required	to
detect	states.
The	measurement	is	probabilis�c.
Only	when	N	photodetectors	click	
in	coincidence	the	result	is	rec-
orded.
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 7 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
1 2 3 4 5 6
0.2
0.4
0.6
0.8
1.0
phase	shi�	
No.	of	counts
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 8 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
phase	shi�	
No.	of	counts
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
Phase difference
Countrate
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 9 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
2 oscillations where we
would classically expect 1!
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 10 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
N oscillations where we
would classically expect 1!
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 11 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
N oscillations where we
would classically expect 1!
Phase	super-resolu�on	:	Resolve	features	
								�mes	smaller	than	with	ordinary	light	
Beyond Rayleigh diffraction limit
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 12 / 38
N00N states, de Broglie waves and quantum phase
super-resolution
N oscillations where we
would classically expect 1!
Phase	super-sensi�vity	:	Uncertainty	
in		phase	measurement	
Phase	super-resolu�on	:	Resolve	features	
								�mes	smaller	than	with	ordinary	light	
Beyond Rayleigh diffraction limit
Heisenberg limit
J.	Jacobson,	G.	Björk,	I.	Chuang,	and	Y.	Yamamoto,	PRL	74,	4835-4838	(1995)Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 13 / 38
Measurement post-selection of N00N states
given	that	we	have	only	 available.
Suppose	we	want	to	project	out	the	state	
Write	the	wanted	state	as
Form	the	polynomial	and	factorise	over	complex	numbers		
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 14 / 38
Measurement post-selection of N00N states
given	that	we	have	only	 available.
Suppose	we	want	to	project	out	the	state	
Write	the	wanted	state	as
Form	the	polynomial	and	factorise	over	complex	numbers		
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 15 / 38
Measurement post-selection of N00N states
given	that	we	have	only	 available.
Suppose	we	want	to	project	out	the	state	
Write	the	wanted	state	as
Form	the	polynomial	and	factorise	over	complex	numbers		
D A R L
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 16 / 38
Measurement post-selection of N00N states
given	that	we	have	only	 available.
Suppose	we	want	to	project	out	the	state	
Write	the	wanted	state	as
Form	the	polynomial	and	factorise	over	complex	numbers		
D A R L
A	beam	spli�er	has	the	transforma�on	law
and	addi�onal	phase-shi�	gives	the	transforma�on	
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 17 / 38
Measurement post-selection of N00N states
D A R L
A	beam	spli�er	has	the	transforma�on	law
and	addi�onal	phase-shi�	gives	the	transforma�on	
Coincident detection in all 4 SPDs
projects outs the NOON4 state
from the input!
R
L
A
D
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 18 / 38
Post-selection using coherent state input
A linearly polarised coherent state
also has a non-zero overlap with
NOON4 state!
R
L
A
D
With	very	weak	excita�on,	probability	of	having	5	or	more	photons	<<	probability	
of	having	exactly	4	photons		
If	4	detectors	click	in	coincidence,	we	are	pre�y	sure	we've	detected	NOON4	state!
K.	J.	Resch	et	al.,	Phys.	Rev.	Le�.	98,	223601	(2007)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 19 / 38
Quantum optics from semi-classical states
A linearly polarised coherent state
also has a non-zero overlap with
NOON4 state!
R
L
A
D
With	very	weak	excita�on,	probability	of	having	5	or	more	photons	<<	probability	
of	having	exactly	4	photons		
If	4	detectors	click	in	coincidence,	we	are	pre�y	sure	we've	detected	NOON4	state!
K.	J.	Resch	et	al.,	Phys.	Rev.	Le�.	98,	223601	(2007)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 20 / 38
Generalising the projection measurement method
Any	complex	polynomial	can	be	factored	over	the	field	of	complex	numbers.	
Mathematical Theorem:
Implication:
The	corresponding	projector	to	any	N-photon,	two-mode	state	can	be	implemented
through	a	series	of	beam-spli�ers,	polarising	op�cs,	and	signle	photon	coincidence	
measurements!
Example:
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 21 / 38
Coherent state - temporal instead of spatial splitting
Uncorrelated (product state)!
R.	J.	Glauber,	Phys.	Rev.	131,	2766	(1963)
where
Laser
Laser
Laser
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 22 / 38
Coherent state - temporal instead of spatial splitting
Uncorrelated (product state)!
R.	J.	Glauber,	Phys.	Rev.	131,	2766	(1963)
where
Laser
Laser
Laser
Switch	spa�al	spli�ng	for	temporal	spli�ng!
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 23 / 38
Coherent state - temporal instead of spatial splitting
R
L
A
D
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 24 / 38
N00N states projected from a coherent state
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
N=30
N=60
Countrate(arb.units) 0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0 N=15
Phase difference (π radians)
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
0.6 0.7 0.8 0.9 1.0
1.6
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
1.7 1.8 1.9 2.0
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■■
■
■
■
■
■
■ ■
■
■
■
■
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■
■
■ ■
■
■
■
0.6 0.7 0.8 0.9 1.0
Visibility
Max 88 %
Min 57.5 %
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
N=30
N=60
Countrate(arb.units)
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0 N=15
Phase difference (π radians)
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
0.6 0.7 0.8 0.9 1.0
1.6
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
1.7 1.8 1.9 2.0
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■■
■
■
■
■
■
■ ■
■
■
■
■
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
■
■
■ ■
■
■
■
0.6 0.7 0.8 0.9 1.0
Visibility
Max 88 %
Min 57.5 %
phase	shi� radians)	(
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 25 / 38
Arbitrary interference a using coherent state
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Birefringence
N-photon
coincident
detec�on
General two-mode state:
Overlap with phase-shifted coherent state:
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 26 / 38
Arbitrary interference a using coherent state
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Fourier series
Birefringence
N-photon
coincident
detec�on
General two-mode state:
Overlap with phase-shifted coherent state:
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 27 / 38
Arbitrary interference a using coherent state
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Fourier series
Birefringence
N-photon
coincident
detec�on
General two-mode state:
Overlap with phase-shifted coherent state:
Engineer	any	interference	pa�ern!
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 28 / 38
Engineered interference
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Fourier series
Birefringence
N-photon
coincident
detec�on
General two-mode state:
Overlap with phase-shifted coherent state:
Engineer	any	interference	pa�ern!
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
31 term Fourier expansion
of Saw function
Raw data
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 29 / 38
Engineered interference
S.	Shabbir,	M.	Swillo,	G.	Björk,	Phys.	Rev.	A	87,	053821	
Fourier series
Birefringence
N-photon
coincident
detec�on
General two-mode state:
Overlap with phase-shifted coherent state:
Engineer	any	interference	pa�ern!
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
31 term Fourier expansion
of Saw function
Raw data 31 term Fourier expansion
of Rectangular function
Raw data
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 30 / 38
Distinguishability transitions
Normalized	counts
Path	delay
Completely
indistinguishable
Completely
distinguishable
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 31 / 38
Distinguishability transitions
Normalized	counts
Completely
indistinguishable
Completely
distinguishable
Normalized	counts
Path	delay	(					)	
Path	delay	(					)	
Y-S.	Ra	et	al.,	PNAS	110,	1227	(2013)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 32 / 38
Distinguishability transitions
Normalized	counts
Completely
indistinguishable
Completely
distinguishable
Normalized	counts
Path	delay	(					)	
Path	delay	(					)	
Y-S.	Ra	et	al.,	PNAS	110,	1227	(2013)
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 33 / 38
Distinguishability transitions
Normalized	counts
Completely
indistinguishable
Completely
distinguishable
Normalized	counts
Path	delay	(					)	
Path	delay	(					)	
Y-S.	Ra	et	al.,	PNAS	110,	1227	(2013)
Non-monotonic	quantum	to	classical	transi�on?
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 34 / 38
Distinguishability transitions
Normalized	counts
Completely
indistinguishable
Completely
distinguishable
Path	delay	(					)	
G.	Björk,	S.	Shabbir,	New	J.	Phys.	16,	013006	(2014)
Coincidence	detec�on	window	projects	the
output	onto	
In	fact,	one	could	write	projectors	for	single	photon
and	classical	states	that	also	show	non-monotonic
behaviour.
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 35 / 38
Distinguishability transitions
Normalized	counts
Completely
indistinguishable
Completely
distinguishable
Path	delay	(					)	
G.	Björk,	S.	Shabbir,	New	J.	Phys.	16,	013006	(2014)
Coincidence	detec�on	window	projects	the
output	onto	
In	fact,	one	could	write	projectors	for	single	photon
and	classical	states	that	also	show	non-monotonic
behaviour.
Non-monotonic	projec�on	probabili�es	as	a	func�on	of	dis�nguishability
do	not	signal	quantum	to	classical	transi�on.
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 36 / 38
Summary & Conclusions
It	is	possible	to	demonstrate	highly	"non-classical"	interference	effects	using	coherent	state	input.	
The	special	character	of	the	coherent	state	allows	the	measurement	to	be	done	"in	series"	rather	
than	"in	parallel",	saving	�me	and	material	resources.
The	measurement	non-linearity	creates	the	desired	"non-classical"	interference.
Mul�-photon	interference	can	give	highly	unusual	interference	effects/pa�erns.
Using	linear	op�cs	and	single	photon	counters	one	can	synthesize	any	two-mode	projec�on
measurement.
It	is	also	possible	to	implement	engineered	interference.	Any	"Fourier	spectrum"	can	be	obtained.
However,	the	measurement	is	probabilis�c,	which	means	that	it's	not	an	efficient	method	in	terms	
of	input	photons.	Photon	number	resolving	detectors	would	improve	the	detec�on	efficiency.
In	general,	neither	the	shape	of	the	interference	pa�ern	nor	the	visibility	are	signatures	of	
quantum	states.	
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 37 / 38
Acknowledgements
Gunnar	Björk Marcin	Swillo
Thank	you!
Saroosh Shabbir, Gunnar Bj¨ork Interferometric signatures June 3, 2014 38 / 38

Classical and Quantum Interference