SlideShare a Scribd company logo
Majorana Representation in Quantum Optics
SU(2) Interferometry and Uncertainty Relations
SAROOSH SHABBIR
QEO
Supervisors:
Prof. Gunnar Björk
Dr. Marcin Swillo
May 12, 2017
1/73
2/73
The Birth of Experimental Quantum Optics
Hanbury Brown and Twiss stellar interferometer
3/73
The Birth of Experimental Quantum Optics
Hanbury Brown and Twiss stellar interferometer
Detector
cable
control building
tower
garage
Intensity-intensity correlation
4/73
The Birth of Experimental Quantum Optics
Hanbury Brown and Twiss stellar interferometer
Detector
cable
control building
tower
garage
Intensity-intensity correlation
5/73
The Birth of Experimental Quantum Optics
Glauber's theory of optical coherence
Higher order correlation measurements necessary to
discriminate between classical and quantum states
6/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
7/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
Quantum to Classical Transitions?
NON-MONOTONIC PROJECTION PROBABILITIES - PAPER III & IV
8/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
Quantum to Classical Transitions?
NON-MONOTONIC PROJECTION PROBABILITIES - PAPER III & IV
9/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
Geometry of Two-Mode States
MAJORANA REPRESENTATION - PAPER V
10/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
Geometry of Two-Mode States
MAJORANA REPRESENTATION - PAPER V
Uncertainty Relations of Angular Momentum Operators
11/73
Outline
Higher Order Measurements - Interferometry
ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
Geometry of Two-Mode States
MAJORANA REPRESENTATION - PAPER V
Uncertainty Relations of Angular Momentum Operators
SU(2) UNCERTAINTY LIMITS - PAPER V
12/73
Interferometry
Beam splitter Phase-shifter
Mirror
Detector
Measurement
Observable
i
i
i
i
i
Mach-Zehnder Interferometer
13/73
Interferometry
14/73
Interferometry
01-1
20
phase shi� (radians)
15/73
Interferometry
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
16/73
Interferometry
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
17/73
Interferometry
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
18/73
Metrology
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
19/73
Metrology
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
Beyond Rayleigh diffraction limit
resolved Rayleigh limit unresolved
20/73
Metrology
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
Beyond Rayleigh diffraction limit
resolved Rayleigh limit unresolved
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
20
phase shi� (radians)
N(no.ofquanta)
21/73
Metrology
01‐1
20
phase	shi�	 (radians)
01‐1
20
phase	shi�	 (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
Beyond Rayleigh diffraction limit
resolved Rayleigh limit unresolved
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
20
phase	shi�	 (radians)
N	(no.	of	quanta)
super-resolution
microscopy
22/73
Metrology
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
20
phase shi� (radians)
N(no.ofquanta)
phase super-resolution
microscopy
Heisenberg limitUncertainty in phase measurement
Phase super-sensitivity
Heisenberg Limit
?
23/73
Metrology
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
20
phase shi� (radians)
N(no.ofquanta)
phase super-resolution
microscopy
Heisenberg limitUncertainty in phase measurement
Phase super-sensitivity
Heisenberg Limit
?
Quantum Metrology
24/73
Issues in Metrology
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
Beyond Rayleigh diffraction limit
resolved Rayleigh limit unresolved
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
2
0
phase shi� (radians)
N(no.ofquanta)
phase super-resolution
microscopy
Heisenberg limitUncertainty in phase measurement
Phase super-sensitivity
Heisenberg Limit
?
Quantum Metrology
Difficult!
Requires :
- Single Photon Sources
- Photon no. resolving detectors etc
25/73
Issues in Metrology - Approaches
01-1
20
phase shi� (radians)
01-1
20
phase shi� (radians)
2 oscillations where we
would classically expect 1!
N oscillations where we
would classically expect 1!
?
Limits in Metrology
Resolve features times smaller
than with ordinary light
Phase super-resolution
Beyond Rayleigh diffraction limit
resolved Rayleigh limit unresolved
Standard Quantum Limit (SQL)
Phase sensitivity
Uncertainty in phase measurement
2
0
phase shi� (radians)
N(no.ofquanta)
phase super-resolution
microscopy
Heisenberg limitUncertainty in phase measurement
Phase super-sensitivity
Heisenberg Limit
?
Quantum Metrology
Difficult!
Requires :
- Single Photon Sources
- Photon no. resolving detectors etc
Sol: Clever measurement scheme
26/73
Projection Measurement
27/73
Projection Measurement
28/73
Projection Measurement
D A L R
29/73
Projection Measurement
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
30/73
Projection Measurement
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
31/73
Projection Measurement
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
32/73
Projection Measurement
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
33/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
01
20
phase	shi�	 (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
34/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
35/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
36/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Recipe!
- Impelement only one arm
- Adjust polariser and phase-shifter setting
- Record projection probabilities
- Repeat
37/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Recipe!
- Impelement only one arm
- Adjust polariser and phase-shifter setting
- Record projection probabilities
- Repeat
Overlap with phase-shifted coherent state
38/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Recipe!
- Impelement only one arm
- Adjust polariser and phase-shifter setting
- Record projection probabilities
- Repeat
Overlap with phase-shifted coherent state
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
N=30
N=60
Countrate(arb.units)
0.0 0.5 1.0 1.5 2.0
0.0
0.5
Phase difference (π radians)
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
0.6 0.7 0.8 0.9 1.0
1.6
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
1.7 1.8 1.9 2.0
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
0.6 0.7 0.8 0.9 1.0
Visibility
Max 88 %
Min 57.5 %
NOON 60
PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
31 term Fourier expansion
of Saw function
Raw data
31 term Fourier expansion
of Rectangular function
Raw data
39/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Recipe!
- Impelement only one arm
- Adjust polariser and phase-shifter setting
- Record projection probabilities
- Repeat
Overlap with phase-shifted coherent state
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
N=30
N=60
Countrate(arb.units)
0.0 0.5 1.0 1.5 2.0
0.0
0.5
Phase difference (π radians)
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
0.6 0.7 0.8 0.9 1.0
1.6
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
1.7 1.8 1.9 2.0
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
0.6 0.7 0.8 0.9 1.0
Visibility
Max 88 %
Min 57.5 %
NOON 60
PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821
40/73
Arbitrary Interference
D A L R
Coincident detection in all detectors
Projects out the NOON4 state!
(provided weak coherent state)
D
L
R
A
Overlap with phase-shifted coherent state
01
20
phase shi� (radians)
Generalisation FUndamental theorem of Algebra
complex number
i
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Laser
Laser
Laser
A B
C
Coherent state remains a cohrerent state
whether split in space or time!
polariser
polariser polariser polariser
Quartz wedge Quartz wedge
i
i
i
Recipe!
- Impelement only one arm
- Adjust polariser and phase-shifter setting
- Record projection probabilities
- Repeat
Overlap with phase-shifted coherent state
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
N=30
N=60
Countrate(arb.units)
0.0 0.5 1.0 1.5 2.0
0.0
0.5
Phase difference (π radians)
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
0.6 0.7 0.8 0.9 1.0
1.6
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
1.7 1.8 1.9 2.0
■ ■
■
■
■
■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■ ■
■
■
■
0.6 0.7 0.8 0.9 1.0
Visibility
Max 88 %
Min 57.5 %
NOON 60
PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
■
■ ■
■
■
■
■
■
■
■
■
■
■
■
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
Phase difference (π radians)
Countrate(arb.units)
31 term Fourier expansion
of Saw function
Raw data
31 term Fourier expansion
of Rectangular function
Raw data
N.B.
- Can be implemented for any two-mode pure state
- Any arbitrary interference pattern can be constructed with unit visibility
- Neither visibility nor the shape of the pattern a good indicator of quantumness
- Completely extendible to the classical regime
PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821
PAPER II - S. Shabbir, M. Swillo, G. Björk, JOSA A 30, 1921
41/73
Majorana Representation
Two-mode state
42/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
43/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
44/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
45/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
46/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
47/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
SU(2) coherent state
NOON state
48/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
SU(2) coherent state
NOON state
Heuristic no. 1:
The more symmetric a Majorana Representation, the more metrologically useful a state
49/73
Majorana Representation
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
SU(2) coherent state
NOON state
Heuristic no. 1:
The more symmetric a Majorana Representation, the more metrologically useful a state
AbraCaDabra!
(post-selection)
50/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
Recall!
Angular momentum operators
generate rotations
51/73
Majorana Representation
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
Recall!
Angular momentum operators
generate rotations
Schwinger boson representation
52/73
Uncertainty Relations
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
Recall!
Angular momentum operators
generate rotations
Schwinger boson representation
53/73
Uncertainty Relations
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
Recall!
Angular momentum operators
generate rotations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
54/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
55/73
Uncertainty Relations
Two-mode state
Geometric representation
N points on the surface of the Bloch sphere
N-level system on the same geometry as a 2-level system
Example - NOON 4 state
Geometric representation
4 points distributed symmetrically along the equator
Linear optical elements perform
rotations along the axes
Phase-shifter
Beam-splitter
Points rotate rigidly!
Recall!
Angular momentum operators
generate rotations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Involves only 2 of 3 operators
Trivial bounds
Not SU(2) invariant
Covariance matrix approach
56/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
57/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
58/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
59/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
60/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
61/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
62/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
63/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
64/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
65/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
66/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
67/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
68/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
69/73
Uncertainty Relations
Schwinger boson representation
Recall
Heisenberg Uncertainty Rel.
Pairwise UncertaintyTrivial bounds
Not SU(2) invariant
Covariance matrix approach
Three invariants:
Determinant
Sum of principal minors
Trace
- Non-trivial bounds
- SU(2) invariant
- Involves all three operators
NOON stateSU(2) coherent state
Heuristic no. 2:
The higher the sum variance, the more metrologically useful a state
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
N=2
PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101
NOON
SU(2) coherent
70/73
Uncertainty Relations
NOON stateSU(2) coherent state N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
N=2
PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101
NOON
SU(2) coherent
N=3
NOON
SU(2) coherent
71/73
Uncertainty Relations
NOON stateSU(2) coherent state N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
N=2
PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101
NOON
SU(2) coherent
N=3
NOON
SU(2) coherent
Extendible to higher N, but computationally intensive
72/73
Summary
N=2
All states on the boundary and inside
correspond to physical states
N=2
SU(2) coherent state NOON state
?
N=2
PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101
NOON
SU(2) coherent
N=3
NOON
SU(2) coherent
Majorana Representation
ARBITRARY INTERFERENCE
Interferometry
Angular momentum operators
SU(2) Uncertainty Limits
73/73
Acknowlegements
Thank you!
Gunnar Björk Marcin Swillo

More Related Content

Similar to Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertainty Relations

Classical and Quantum Interference
Classical and Quantum InterferenceClassical and Quantum Interference
Classical and Quantum Interference
Saroosh Shabbir
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
surendra sharma
 
5_1555_TH4.T01.5_suwa.ppt
5_1555_TH4.T01.5_suwa.ppt5_1555_TH4.T01.5_suwa.ppt
5_1555_TH4.T01.5_suwa.ppt
grssieee
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
zoelfalia
 
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
Wouter Deconinck
 
soil analysis with different techinques.
soil analysis with different techinques.soil analysis with different techinques.
soil analysis with different techinques.
SciencewithAhmed
 
Invisible excitations in hexagonal Boron Nitride
Invisible excitations  in hexagonal Boron NitrideInvisible excitations  in hexagonal Boron Nitride
Invisible excitations in hexagonal Boron Nitride
Claudio Attaccalite
 
2018 HM NEUTRON ACTIVATION ANALYSIS
2018 HM NEUTRON ACTIVATION ANALYSIS2018 HM NEUTRON ACTIVATION ANALYSIS
2018 HM NEUTRON ACTIVATION ANALYSIS
Harsh Mohan
 
Vladan Mlinar 2009 American Physical Society March Meeting
Vladan Mlinar 2009 American Physical Society March MeetingVladan Mlinar 2009 American Physical Society March Meeting
Vladan Mlinar 2009 American Physical Society March Meeting
Vladan Mlinar
 
Slightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLESlightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLE
Johanna Trägårdh
 
Poster-EMRS-2014_finalo
Poster-EMRS-2014_finaloPoster-EMRS-2014_finalo
Poster-EMRS-2014_finalo
Özden Demircioğlu
 
SPDC Presentation (2)
SPDC Presentation (2)SPDC Presentation (2)
SPDC Presentation (2)
Kaleb Niall
 
Raman spectroscopy by dr mahesh kumar
Raman spectroscopy by dr mahesh kumarRaman spectroscopy by dr mahesh kumar
Raman spectroscopy by dr mahesh kumar
Mahesh Attri
 
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
ABDERRAHMANE REGGAD
 
mri artefacts.pptx
mri artefacts.pptxmri artefacts.pptx
mri artefacts.pptx
yashwanthnaik8
 
Poster-EMRS-2014_finalo
Poster-EMRS-2014_finaloPoster-EMRS-2014_finalo
Poster-EMRS-2014_finalo
Özden Demircioğlu
 
Raman.ppt
Raman.pptRaman.ppt
Raman.ppt
KushagraPandey52
 
Raman spectroscopy useful ppt for the al
Raman spectroscopy useful ppt for the alRaman spectroscopy useful ppt for the al
Raman spectroscopy useful ppt for the al
ChristopherJeyakumar3
 
Computational Spectroscopy in G03
Computational Spectroscopy in G03Computational Spectroscopy in G03
Computational Spectroscopy in G03
Inon Sharony
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
Sergey Sozykin
 

Similar to Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertainty Relations (20)

Classical and Quantum Interference
Classical and Quantum InterferenceClassical and Quantum Interference
Classical and Quantum Interference
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
5_1555_TH4.T01.5_suwa.ppt
5_1555_TH4.T01.5_suwa.ppt5_1555_TH4.T01.5_suwa.ppt
5_1555_TH4.T01.5_suwa.ppt
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN scattering in...
 
soil analysis with different techinques.
soil analysis with different techinques.soil analysis with different techinques.
soil analysis with different techinques.
 
Invisible excitations in hexagonal Boron Nitride
Invisible excitations  in hexagonal Boron NitrideInvisible excitations  in hexagonal Boron Nitride
Invisible excitations in hexagonal Boron Nitride
 
2018 HM NEUTRON ACTIVATION ANALYSIS
2018 HM NEUTRON ACTIVATION ANALYSIS2018 HM NEUTRON ACTIVATION ANALYSIS
2018 HM NEUTRON ACTIVATION ANALYSIS
 
Vladan Mlinar 2009 American Physical Society March Meeting
Vladan Mlinar 2009 American Physical Society March MeetingVladan Mlinar 2009 American Physical Society March Meeting
Vladan Mlinar 2009 American Physical Society March Meeting
 
Slightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLESlightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLE
 
Poster-EMRS-2014_finalo
Poster-EMRS-2014_finaloPoster-EMRS-2014_finalo
Poster-EMRS-2014_finalo
 
SPDC Presentation (2)
SPDC Presentation (2)SPDC Presentation (2)
SPDC Presentation (2)
 
Raman spectroscopy by dr mahesh kumar
Raman spectroscopy by dr mahesh kumarRaman spectroscopy by dr mahesh kumar
Raman spectroscopy by dr mahesh kumar
 
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
 
mri artefacts.pptx
mri artefacts.pptxmri artefacts.pptx
mri artefacts.pptx
 
Poster-EMRS-2014_finalo
Poster-EMRS-2014_finaloPoster-EMRS-2014_finalo
Poster-EMRS-2014_finalo
 
Raman.ppt
Raman.pptRaman.ppt
Raman.ppt
 
Raman spectroscopy useful ppt for the al
Raman spectroscopy useful ppt for the alRaman spectroscopy useful ppt for the al
Raman spectroscopy useful ppt for the al
 
Computational Spectroscopy in G03
Computational Spectroscopy in G03Computational Spectroscopy in G03
Computational Spectroscopy in G03
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
 

Recently uploaded

23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
Scintica Instrumentation
 
HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1
Shashank Shekhar Pandey
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
Advanced-Concepts-Team
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
LengamoLAppostilic
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 

Recently uploaded (20)

23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
 
HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1HOW DO ORGANISMS REPRODUCE?reproduction part 1
HOW DO ORGANISMS REPRODUCE?reproduction part 1
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 

Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertainty Relations

  • 1. Majorana Representation in Quantum Optics SU(2) Interferometry and Uncertainty Relations SAROOSH SHABBIR QEO Supervisors: Prof. Gunnar Björk Dr. Marcin Swillo May 12, 2017 1/73
  • 2. 2/73 The Birth of Experimental Quantum Optics Hanbury Brown and Twiss stellar interferometer
  • 3. 3/73 The Birth of Experimental Quantum Optics Hanbury Brown and Twiss stellar interferometer Detector cable control building tower garage Intensity-intensity correlation
  • 4. 4/73 The Birth of Experimental Quantum Optics Hanbury Brown and Twiss stellar interferometer Detector cable control building tower garage Intensity-intensity correlation
  • 5. 5/73 The Birth of Experimental Quantum Optics Glauber's theory of optical coherence Higher order correlation measurements necessary to discriminate between classical and quantum states
  • 6. 6/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II
  • 7. 7/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II Quantum to Classical Transitions? NON-MONOTONIC PROJECTION PROBABILITIES - PAPER III & IV
  • 8. 8/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II Quantum to Classical Transitions? NON-MONOTONIC PROJECTION PROBABILITIES - PAPER III & IV
  • 9. 9/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II Geometry of Two-Mode States MAJORANA REPRESENTATION - PAPER V
  • 10. 10/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II Geometry of Two-Mode States MAJORANA REPRESENTATION - PAPER V Uncertainty Relations of Angular Momentum Operators
  • 11. 11/73 Outline Higher Order Measurements - Interferometry ARBITRARY INTERFERENCE PATTERNS - PAPERS I & II Geometry of Two-Mode States MAJORANA REPRESENTATION - PAPER V Uncertainty Relations of Angular Momentum Operators SU(2) UNCERTAINTY LIMITS - PAPER V
  • 16. 16/73 Interferometry 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1!
  • 17. 17/73 Interferometry 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ?
  • 18. 18/73 Metrology 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution
  • 19. 19/73 Metrology 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution Beyond Rayleigh diffraction limit resolved Rayleigh limit unresolved
  • 20. 20/73 Metrology 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution Beyond Rayleigh diffraction limit resolved Rayleigh limit unresolved Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 20 phase shi� (radians) N(no.ofquanta)
  • 21. 21/73 Metrology 01‐1 20 phase shi� (radians) 01‐1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution Beyond Rayleigh diffraction limit resolved Rayleigh limit unresolved Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 20 phase shi� (radians) N (no. of quanta) super-resolution microscopy
  • 22. 22/73 Metrology Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 20 phase shi� (radians) N(no.ofquanta) phase super-resolution microscopy Heisenberg limitUncertainty in phase measurement Phase super-sensitivity Heisenberg Limit ?
  • 23. 23/73 Metrology Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 20 phase shi� (radians) N(no.ofquanta) phase super-resolution microscopy Heisenberg limitUncertainty in phase measurement Phase super-sensitivity Heisenberg Limit ? Quantum Metrology
  • 24. 24/73 Issues in Metrology 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution Beyond Rayleigh diffraction limit resolved Rayleigh limit unresolved Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 2 0 phase shi� (radians) N(no.ofquanta) phase super-resolution microscopy Heisenberg limitUncertainty in phase measurement Phase super-sensitivity Heisenberg Limit ? Quantum Metrology Difficult! Requires : - Single Photon Sources - Photon no. resolving detectors etc
  • 25. 25/73 Issues in Metrology - Approaches 01-1 20 phase shi� (radians) 01-1 20 phase shi� (radians) 2 oscillations where we would classically expect 1! N oscillations where we would classically expect 1! ? Limits in Metrology Resolve features times smaller than with ordinary light Phase super-resolution Beyond Rayleigh diffraction limit resolved Rayleigh limit unresolved Standard Quantum Limit (SQL) Phase sensitivity Uncertainty in phase measurement 2 0 phase shi� (radians) N(no.ofquanta) phase super-resolution microscopy Heisenberg limitUncertainty in phase measurement Phase super-sensitivity Heisenberg Limit ? Quantum Metrology Difficult! Requires : - Single Photon Sources - Photon no. resolving detectors etc Sol: Clever measurement scheme
  • 29. 29/73 Projection Measurement D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A
  • 30. 30/73 Projection Measurement D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A
  • 31. 31/73 Projection Measurement D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state
  • 32. 32/73 Projection Measurement D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians)
  • 33. 33/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i
  • 34. 34/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i
  • 35. 35/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time!
  • 36. 36/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time! polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Recipe! - Impelement only one arm - Adjust polariser and phase-shifter setting - Record projection probabilities - Repeat
  • 37. 37/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time! polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Recipe! - Impelement only one arm - Adjust polariser and phase-shifter setting - Record projection probabilities - Repeat Overlap with phase-shifted coherent state
  • 38. 38/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time! polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Recipe! - Impelement only one arm - Adjust polariser and phase-shifter setting - Record projection probabilities - Repeat Overlap with phase-shifted coherent state 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 N=30 N=60 Countrate(arb.units) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 Phase difference (π radians) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 1.6 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1.7 1.8 1.9 2.0 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 Visibility Max 88 % Min 57.5 % NOON 60 PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 Phase difference (π radians) Countrate(arb.units) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 Phase difference (π radians) Countrate(arb.units) 31 term Fourier expansion of Saw function Raw data 31 term Fourier expansion of Rectangular function Raw data
  • 39. 39/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time! polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Recipe! - Impelement only one arm - Adjust polariser and phase-shifter setting - Record projection probabilities - Repeat Overlap with phase-shifted coherent state 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 N=30 N=60 Countrate(arb.units) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 Phase difference (π radians) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 1.6 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1.7 1.8 1.9 2.0 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 Visibility Max 88 % Min 57.5 % NOON 60 PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821
  • 40. 40/73 Arbitrary Interference D A L R Coincident detection in all detectors Projects out the NOON4 state! (provided weak coherent state) D L R A Overlap with phase-shifted coherent state 01 20 phase shi� (radians) Generalisation FUndamental theorem of Algebra complex number i polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Laser Laser Laser A B C Coherent state remains a cohrerent state whether split in space or time! polariser polariser polariser polariser Quartz wedge Quartz wedge i i i Recipe! - Impelement only one arm - Adjust polariser and phase-shifter setting - Record projection probabilities - Repeat Overlap with phase-shifted coherent state 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 N=30 N=60 Countrate(arb.units) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 Phase difference (π radians) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 1.6 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1.7 1.8 1.9 2.0 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.6 0.7 0.8 0.9 1.0 Visibility Max 88 % Min 57.5 % NOON 60 PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 Phase difference (π radians) Countrate(arb.units) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 Phase difference (π radians) Countrate(arb.units) 31 term Fourier expansion of Saw function Raw data 31 term Fourier expansion of Rectangular function Raw data N.B. - Can be implemented for any two-mode pure state - Any arbitrary interference pattern can be constructed with unit visibility - Neither visibility nor the shape of the pattern a good indicator of quantumness - Completely extendible to the classical regime PAPER I - S. Shabbir, M. Swillo, G. Björk, Phys. Rev. A 87, 053821 PAPER II - S. Shabbir, M. Swillo, G. Björk, JOSA A 30, 1921
  • 42. 42/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere
  • 43. 43/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system
  • 44. 44/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator
  • 45. 45/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter
  • 46. 46/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly!
  • 47. 47/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! SU(2) coherent state NOON state
  • 48. 48/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! SU(2) coherent state NOON state Heuristic no. 1: The more symmetric a Majorana Representation, the more metrologically useful a state
  • 49. 49/73 Majorana Representation Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! SU(2) coherent state NOON state Heuristic no. 1: The more symmetric a Majorana Representation, the more metrologically useful a state AbraCaDabra! (post-selection)
  • 50. 50/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! Recall! Angular momentum operators generate rotations
  • 51. 51/73 Majorana Representation Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! Recall! Angular momentum operators generate rotations Schwinger boson representation
  • 52. 52/73 Uncertainty Relations Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! Recall! Angular momentum operators generate rotations Schwinger boson representation
  • 53. 53/73 Uncertainty Relations Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! Recall! Angular momentum operators generate rotations Schwinger boson representation Recall Heisenberg Uncertainty Rel.
  • 54. 54/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant
  • 55. 55/73 Uncertainty Relations Two-mode state Geometric representation N points on the surface of the Bloch sphere N-level system on the same geometry as a 2-level system Example - NOON 4 state Geometric representation 4 points distributed symmetrically along the equator Linear optical elements perform rotations along the axes Phase-shifter Beam-splitter Points rotate rigidly! Recall! Angular momentum operators generate rotations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Involves only 2 of 3 operators Trivial bounds Not SU(2) invariant Covariance matrix approach
  • 56. 56/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace
  • 57. 57/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators
  • 58. 58/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators
  • 59. 59/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state
  • 60. 60/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state
  • 61. 61/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2
  • 62. 62/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2
  • 63. 63/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2
  • 64. 64/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states
  • 65. 65/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ?
  • 66. 66/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ?
  • 67. 67/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ?
  • 68. 68/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ?
  • 69. 69/73 Uncertainty Relations Schwinger boson representation Recall Heisenberg Uncertainty Rel. Pairwise UncertaintyTrivial bounds Not SU(2) invariant Covariance matrix approach Three invariants: Determinant Sum of principal minors Trace - Non-trivial bounds - SU(2) invariant - Involves all three operators NOON stateSU(2) coherent state Heuristic no. 2: The higher the sum variance, the more metrologically useful a state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ? N=2 PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101 NOON SU(2) coherent
  • 70. 70/73 Uncertainty Relations NOON stateSU(2) coherent state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ? N=2 PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101 NOON SU(2) coherent N=3 NOON SU(2) coherent
  • 71. 71/73 Uncertainty Relations NOON stateSU(2) coherent state N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ? N=2 PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101 NOON SU(2) coherent N=3 NOON SU(2) coherent Extendible to higher N, but computationally intensive
  • 72. 72/73 Summary N=2 All states on the boundary and inside correspond to physical states N=2 SU(2) coherent state NOON state ? N=2 PAPER V - S. Shabbir, G. Björk, Phys. Rev. A 93, 052101 NOON SU(2) coherent N=3 NOON SU(2) coherent Majorana Representation ARBITRARY INTERFERENCE Interferometry Angular momentum operators SU(2) Uncertainty Limits