SlideShare a Scribd company logo
C
W
C
FINNISH WIRELESS COMMUNICATIONS WORKSHOP ’01
Spatial Channel Modeling Based on
Wave-Field Representation
Pavel Loskot, Matti Latva-aho
Centre for Wireless Communications
University of Oulu, Finland
{loskot,matla}@ee.oulu.fi
24th
October 2001
– FWCW’01 –
C
W
C
Outline
• How to apply electromagnetic (EM) theory to channel modeling in
communication signal processing ? i.e. signal −→ wave
• Overview of existing spatial channel models (literature)
• A new approach to spatial channel modeling is suggested
• A necessary EM theory background is discussed
• The method illustrated on linear stochastic and geometrical channel models
– FWCW’01 – c Pavel Loskot 2001/10/24 2(14)
C
W
C
Spatial Channel Models
1. [Hedddergott,Bernhard,Fleury, PIMRC’97]
• time-invariant channel impulse response (CIR) for Rx antenna at location x
with response aRx
(Ω); models delay, direction and polarization
E(x, τ, Ω) =
M(x)
m=1
Em(x, τ, Ω)
h(x, τ) = aRx
(Ω)E(x, τ, Ω)dΩ
2. [Blanz,Jung, TrCom’98]
• time-variant CIR for Tx antenna response aTx
(τ, Ω) convolved with
directional CIR distribution ϑ(τ, t, Ω)
h(τ, t) = ϑ(τ, t, Ω) ⊗ aTx
(τ, Ω)dΩ
– FWCW’01 – c Pavel Loskot 2001/10/24 3(14)
C
W
C
Spatial Channel Models (cont.)
3. [Fleury, TrIT’00]
• relates input signal s(t) and received signal r(x, t) at location x
r(x, t) = expj2πλ−1
0 Ωx
expj2πνt
s(t − τ)h(Ω, τ, ν)dΩdτdν
h(Ω, τ, ν) =
L
l=1
αlδ(Ω − Ωl)δ(τ − τl)δ(ν − νl)
4. [Zwick,Fischer,Didascalou,Wiebeck, JSAC’00]
• time-variant CIR through spatial impulse response Φ(t, τ, ΩTx , ΩRx ) and Rx,
Tx antenna responses aRx (t, ΩRx ), aTx (t, ΩTx ), respectively
h(t, τ) = aRx (t, ΩRx )Φ(t, τ, ΩTx , ΩRx )aTx (t, ΩTx )dΩTx dΩRx
Φ(t, τ, ΩTx , ΩRx ) =
L(t)
l=1
αl(t, τ − τl(t))δ(ΩTx − ΩTx,l)δ(ΩRx − ΩRx,l)
– FWCW’01 – c Pavel Loskot 2001/10/24 4(14)
C
W
C
Representation of Wireless Transmission
• let us assume a global 3D-space, time and frequency coordinates
• ˜x(t, s) could be an electromagnetic wave
signal,wave system (channel)
x(t) ↔ X(f) h(t, τ)
˜x(t, s) h(t, τ; s, σ)
• when does h(t, τ) or h(t, τ; s, σ) form a channel impulse response ?
– FWCW’01 – c Pavel Loskot 2001/10/24 5(14)
C
W
C
System Model
– FWCW’01 – c Pavel Loskot 2001/10/24 6(14)
C
W
C
Antenna Representation
Electromagnetic wave
• is a function of time t ∈ R and space s ∈ R3
, i.e., it is time-varying field
• fields are invariant w.r.t. coordinate system
• fields are scalar |E|, |H| or vector E, H where given E (H) we know H (E)
Transmit Antenna
• radiating (source) field
˜x(t, s − sTx
) = ATx
[x(t)] = x(t)˜xc(t, s − sTx
)
where ˜xc(t, s) is carrier field (hence, amplitude modulator)
Receive Antenna
• observable field
y(t) = ARx
[˜y(t, s)] =
R3
˜y(t, s)aRx
(s − sRx
)ds
where aRx
(s) is time-invariant infinite bandwidth antenna response
– FWCW’01 – c Pavel Loskot 2001/10/24 7(14)
C
W
C
Wave Propagation
• obstacles, atmosphere (rain, fog, smoke), noise and interference (cosmic,
atmospheric, industrial) −→ EM energy absorbed or scattered
• indoor, outdoor and deep-space different propagation conditions, hence
channel models with different accuracy (= prediction)
Near-field
• reactive and radiating field with very complex structure
Far-field
• ≈ spherical wave
– FWCW’01 – c Pavel Loskot 2001/10/24 8(14)
C
W
C
Maxwell Theory
• every medium: permitivity εr, permeability µr conductivity σ
E.g. raindrops, trees, walls (dielectric material), cars (conductive material)
Homogeneous medium
• propagation along straight lines (at least locally)
ε(s) → ε µ(s) → µ
Dispersive medium
ε = ε(ω) µ = µ(ω)
Isotropic
• energy flow along the direction of propagation (ε, µ direction independent)
Linear
• ε, µ and σ are independent of applied field E, H
• Maxwell equations are linear and superpozition applies
Etotal = Eincident + Escattered
– FWCW’01 – c Pavel Loskot 2001/10/24 9(14)
C
W
C
Plane Waves
• monochromatic, time-harmonic plane wave with wave-vector k
E(s) = e−jks E0
|k|0
+
E1
|k|1
+
E2
|k|2
+ . . . ≈ E0e−jks
• good approximation for far-field and sufficiently short wavelengths
Complex Envelope (Phasor Representation)
E(t, s) = E(s)ejωct
= E0 cos(ωct + ks + φ)
where ωc is carrier frequency, wave-vector k = 2πΩ
λ , |k| = 2π/λ and ||Ω|| = 1
is direction of propagation
• for Doppler frequency ωd = 2πfd
E(s) −→ E(s)ejωdt
= E0ej(ωdt−ks)
= ˜x(t, s)
– FWCW’01 – c Pavel Loskot 2001/10/24 10(14)
C
W
C
Spatial Channel Model
• radio channel = mapping from radiating field to observable field
˜y(t, s) = H [˜x(t, s)]
spatial channel model
temporal channel model
• linearity
˜y(t, s) = H[
i
˜xi(t, s − sTx
i )] =
i
H[˜xi(t, s − sTx
i )]
– FWCW’01 – c Pavel Loskot 2001/10/24 11(14)
C
W
C
Linear Stochastic Model
• let the linearity assumption holds and ˜x(t, s) =
i
xi(t)˜xci(t, s − sTx
i )
H[˜x(t, s)] = H[
R3 R
˜x(τ, σ)δ(t − τ, s − σ)dτdσ]
• spatio-temporal channel impulse response
h(t, τ; s, σ) = H[δ(t − τ, s − σ)]
• temporal channel impulse response
g(t, τ; sTx
i , sRx
j ) =
R3 R3
˜xci(τ, σ − sTx
i )h(t, τ; s, σ)aRx
j (s − sRx
j )dσds
• finally
yj(t) =
i R
xi(τ)g(t, τ; sTx
i , sRx
j )dτ
– FWCW’01 – c Pavel Loskot 2001/10/24 12(14)
C
W
C
Linear Geometrical Model
Geometrical Optics
• high frequency approximation, diffraction neglected
• asymptotic solution of field integrals (Maxwell equations)
• approximation of the field by rays (= locally plane waves)
• ray tracing → asymptotically accure time-invariant channel impulse response
• assume time-harmonic plane-wave sum approximation of radiating field
˜xi(t, s − sTx
i ) = xi(t)
L
l=1
Alejωlt
e
−j2π
Ωl
λ0
(s−sTx
i )
• assume separate channels with attn. αl, delay τl, shift Ωl → Ω l, ωl → ω l
yj(t) =
i
L
l=1
Alαlxi(t − τi)ej2πw lt
e
j2π
Ωl
λ0
sTx
i
e
−j2π
Ω l
λ l
sRx
j
– FWCW’01 – c Pavel Loskot 2001/10/24 13(14)
C
W
C
Conclusions
• spatial channel modeling based on wave-fields was presented as an attempt
to bring EM theory into communication signal processing
• it was demonstrated for the case of linear stochastic model and linear
geometrical model where plane-wave propagation is assumed
• necessary but not sufficient conditions of radio channel linearity are
– far-field, isotropic and homogeneous medium, no diffraction
– but further investigation is still required
• receiving antennas provide us with (some) knowledge on signal distribution
˜Y (t, Ω/λ) = F(Ω/λ)
s [˜y(t, s)]
where F[.] is 3D-Fourier transform
– FWCW’01 – c Pavel Loskot 2001/10/24 14(14)

More Related Content

What's hot

Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Beniamino Murgante
 
Go3511621168
Go3511621168Go3511621168
Go3511621168
IJERA Editor
 
E04923142
E04923142E04923142
E04923142
IOSR-JEN
 
Терагерцовая камера MIT сканирует закрытые книги
Терагерцовая камера MIT сканирует закрытые книгиТерагерцовая камера MIT сканирует закрытые книги
Терагерцовая камера MIT сканирует закрытые книги
Anatol Alizar
 
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATIONSAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
P singh
 
F-K Filtering for Seismic Data Processing
F-K Filtering for Seismic Data ProcessingF-K Filtering for Seismic Data Processing
F-K Filtering for Seismic Data Processing
Adithya Shettar
 
Principles of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawyPrinciples of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawy
Faculty of Science, Alexandria University, Egypt
 
Source localization using vector sensor array
Source localization using vector sensor arraySource localization using vector sensor array
Source localization using vector sensor array
IAEME Publication
 
D04922630
D04922630D04922630
D04922630
IOSR-JEN
 
About the Phasor Pathways in Analogical Amplitude Modulations
About the Phasor Pathways in Analogical Amplitude ModulationsAbout the Phasor Pathways in Analogical Amplitude Modulations
About the Phasor Pathways in Analogical Amplitude Modulations
IJRES Journal
 
Reduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
Reduction of Azimuth Uncertainties in SAR Images Using Selective RestorationReduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
Reduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
IJTET Journal
 
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
Polytechnique Montreal
 
Taramelli Melelli
Taramelli MelelliTaramelli Melelli
Taramelli Melelli
Beniamino Murgante
 

What's hot (15)

LEUKOS_International_Journal
LEUKOS_International_JournalLEUKOS_International_Journal
LEUKOS_International_Journal
 
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
Some Developments in Space-Time Modelling with GIS Tao Cheng – University Col...
 
PosterICAD_4
PosterICAD_4PosterICAD_4
PosterICAD_4
 
Go3511621168
Go3511621168Go3511621168
Go3511621168
 
E04923142
E04923142E04923142
E04923142
 
Терагерцовая камера MIT сканирует закрытые книги
Терагерцовая камера MIT сканирует закрытые книгиТерагерцовая камера MIT сканирует закрытые книги
Терагерцовая камера MIT сканирует закрытые книги
 
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATIONSAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
SAUSAGE MINKOWSKI SQUARE PATCH ANTENNA FOR GPS APPLICATION
 
F-K Filtering for Seismic Data Processing
F-K Filtering for Seismic Data ProcessingF-K Filtering for Seismic Data Processing
F-K Filtering for Seismic Data Processing
 
Principles of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawyPrinciples of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawy
 
Source localization using vector sensor array
Source localization using vector sensor arraySource localization using vector sensor array
Source localization using vector sensor array
 
D04922630
D04922630D04922630
D04922630
 
About the Phasor Pathways in Analogical Amplitude Modulations
About the Phasor Pathways in Analogical Amplitude ModulationsAbout the Phasor Pathways in Analogical Amplitude Modulations
About the Phasor Pathways in Analogical Amplitude Modulations
 
Reduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
Reduction of Azimuth Uncertainties in SAR Images Using Selective RestorationReduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
Reduction of Azimuth Uncertainties in SAR Images Using Selective Restoration
 
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
Projected Barzilai-Borwein Methods Applied to Distributed Compressive Spectru...
 
Taramelli Melelli
Taramelli MelelliTaramelli Melelli
Taramelli Melelli
 

Viewers also liked

Adaptive Transmission Concept
Adaptive Transmission ConceptAdaptive Transmission Concept
Adaptive Transmission Concept
Pavel Loskot
 
Templates and other research methods in Telecommunications
Templates and other research methods in TelecommunicationsTemplates and other research methods in Telecommunications
Templates and other research methods in Telecommunications
Pavel Loskot
 
Innovative Baggage Delivery for Sustainable Air Transport
Innovative Baggage Delivery for Sustainable Air TransportInnovative Baggage Delivery for Sustainable Air Transport
Innovative Baggage Delivery for Sustainable Air Transport
Pavel Loskot
 
Overview of Digital Economy
Overview of Digital EconomyOverview of Digital Economy
Overview of Digital Economy
Pavel Loskot
 
ICT for Care and Assisted Living
ICT for Care and Assisted LivingICT for Care and Assisted Living
ICT for Care and Assisted Living
Pavel Loskot
 
Concept of Adaptive Transmission
Concept of Adaptive TransmissionConcept of Adaptive Transmission
Concept of Adaptive Transmission
Pavel Loskot
 
The Next Big Thing: The Physical Internet
The Next Big Thing: The Physical InternetThe Next Big Thing: The Physical Internet
The Next Big Thing: The Physical Internet
Pavel Loskot
 
Minicourse on Network Science
Minicourse on Network ScienceMinicourse on Network Science
Minicourse on Network Science
Pavel Loskot
 
Multiuser MIMO-OFDM simulation framework in Matlab
Multiuser MIMO-OFDM simulation framework in MatlabMultiuser MIMO-OFDM simulation framework in Matlab
Multiuser MIMO-OFDM simulation framework in Matlab
Pavel Loskot
 
Adaptive Radio Links 2
Adaptive Radio Links 2Adaptive Radio Links 2
Adaptive Radio Links 2
Pavel Loskot
 
Energy Efficiency of Telecom Networks
Energy Efficiency of Telecom NetworksEnergy Efficiency of Telecom Networks
Energy Efficiency of Telecom Networks
Pavel Loskot
 

Viewers also liked (11)

Adaptive Transmission Concept
Adaptive Transmission ConceptAdaptive Transmission Concept
Adaptive Transmission Concept
 
Templates and other research methods in Telecommunications
Templates and other research methods in TelecommunicationsTemplates and other research methods in Telecommunications
Templates and other research methods in Telecommunications
 
Innovative Baggage Delivery for Sustainable Air Transport
Innovative Baggage Delivery for Sustainable Air TransportInnovative Baggage Delivery for Sustainable Air Transport
Innovative Baggage Delivery for Sustainable Air Transport
 
Overview of Digital Economy
Overview of Digital EconomyOverview of Digital Economy
Overview of Digital Economy
 
ICT for Care and Assisted Living
ICT for Care and Assisted LivingICT for Care and Assisted Living
ICT for Care and Assisted Living
 
Concept of Adaptive Transmission
Concept of Adaptive TransmissionConcept of Adaptive Transmission
Concept of Adaptive Transmission
 
The Next Big Thing: The Physical Internet
The Next Big Thing: The Physical InternetThe Next Big Thing: The Physical Internet
The Next Big Thing: The Physical Internet
 
Minicourse on Network Science
Minicourse on Network ScienceMinicourse on Network Science
Minicourse on Network Science
 
Multiuser MIMO-OFDM simulation framework in Matlab
Multiuser MIMO-OFDM simulation framework in MatlabMultiuser MIMO-OFDM simulation framework in Matlab
Multiuser MIMO-OFDM simulation framework in Matlab
 
Adaptive Radio Links 2
Adaptive Radio Links 2Adaptive Radio Links 2
Adaptive Radio Links 2
 
Energy Efficiency of Telecom Networks
Energy Efficiency of Telecom NetworksEnergy Efficiency of Telecom Networks
Energy Efficiency of Telecom Networks
 

Similar to Channel modeling based on 3D time-varying fields of information

Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
Gabriel O'Brien
 
Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
VincentMompatiJessie
 
X-Ray Topic.ppt
X-Ray Topic.pptX-Ray Topic.ppt
X-Ray Topic.ppt
NabamitaDawn
 
Acoustic Model.pptx
Acoustic Model.pptxAcoustic Model.pptx
Acoustic Model.pptx
ManiMaran230751
 
Tutorial no. 6
Tutorial no. 6Tutorial no. 6
Tutorial no. 6
Shankar Gangaju
 
Electromagnetic fields
Electromagnetic fieldsElectromagnetic fields
Electromagnetic fields
FFMdeMul
 
Standing waves
Standing wavesStanding waves
Standing waves
Jenny He
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
Babul Islam
 
Convolution linear and circular using z transform day 5
Convolution   linear and circular using z transform day 5Convolution   linear and circular using z transform day 5
Convolution linear and circular using z transform day 5
vijayanand Kandaswamy
 
Slide Handouts with Notes
Slide Handouts with NotesSlide Handouts with Notes
Slide Handouts with NotesLeon Nguyen
 
Ch16 ssm
Ch16 ssmCh16 ssm
Ch16 ssm
Marta Díaz
 
dmct-otfs lab.pptx
dmct-otfs lab.pptxdmct-otfs lab.pptx
dmct-otfs lab.pptx
Madhumitha Jayaram
 
EC6602-Antenna fundamentals
EC6602-Antenna fundamentals EC6602-Antenna fundamentals
EC6602-Antenna fundamentals
krishnamrm
 
Recent developments on unbiased MCMC
Recent developments on unbiased MCMCRecent developments on unbiased MCMC
Recent developments on unbiased MCMC
Pierre Jacob
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMA
Hossam Zein
 
Fields Lec 5&6
Fields Lec 5&6Fields Lec 5&6
Fields Lec 5&6
cairo university
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
Lakshmikanta Satapathy
 

Similar to Channel modeling based on 3D time-varying fields of information (20)

Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
 
Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
 
X-Ray Topic.ppt
X-Ray Topic.pptX-Ray Topic.ppt
X-Ray Topic.ppt
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Acoustic Model.pptx
Acoustic Model.pptxAcoustic Model.pptx
Acoustic Model.pptx
 
Tutorial no. 6
Tutorial no. 6Tutorial no. 6
Tutorial no. 6
 
Electromagnetic fields
Electromagnetic fieldsElectromagnetic fields
Electromagnetic fields
 
Standing waves
Standing wavesStanding waves
Standing waves
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
 
Convolution linear and circular using z transform day 5
Convolution   linear and circular using z transform day 5Convolution   linear and circular using z transform day 5
Convolution linear and circular using z transform day 5
 
Slide Handouts with Notes
Slide Handouts with NotesSlide Handouts with Notes
Slide Handouts with Notes
 
Ch16 ssm
Ch16 ssmCh16 ssm
Ch16 ssm
 
dmct-otfs lab.pptx
dmct-otfs lab.pptxdmct-otfs lab.pptx
dmct-otfs lab.pptx
 
EC6602-Antenna fundamentals
EC6602-Antenna fundamentals EC6602-Antenna fundamentals
EC6602-Antenna fundamentals
 
Recent developments on unbiased MCMC
Recent developments on unbiased MCMCRecent developments on unbiased MCMC
Recent developments on unbiased MCMC
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMA
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Fields Lec 5&6
Fields Lec 5&6Fields Lec 5&6
Fields Lec 5&6
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
 

Recently uploaded

Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 

Recently uploaded (20)

Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 

Channel modeling based on 3D time-varying fields of information

  • 1. C W C FINNISH WIRELESS COMMUNICATIONS WORKSHOP ’01 Spatial Channel Modeling Based on Wave-Field Representation Pavel Loskot, Matti Latva-aho Centre for Wireless Communications University of Oulu, Finland {loskot,matla}@ee.oulu.fi 24th October 2001 – FWCW’01 –
  • 2. C W C Outline • How to apply electromagnetic (EM) theory to channel modeling in communication signal processing ? i.e. signal −→ wave • Overview of existing spatial channel models (literature) • A new approach to spatial channel modeling is suggested • A necessary EM theory background is discussed • The method illustrated on linear stochastic and geometrical channel models – FWCW’01 – c Pavel Loskot 2001/10/24 2(14)
  • 3. C W C Spatial Channel Models 1. [Hedddergott,Bernhard,Fleury, PIMRC’97] • time-invariant channel impulse response (CIR) for Rx antenna at location x with response aRx (Ω); models delay, direction and polarization E(x, τ, Ω) = M(x) m=1 Em(x, τ, Ω) h(x, τ) = aRx (Ω)E(x, τ, Ω)dΩ 2. [Blanz,Jung, TrCom’98] • time-variant CIR for Tx antenna response aTx (τ, Ω) convolved with directional CIR distribution ϑ(τ, t, Ω) h(τ, t) = ϑ(τ, t, Ω) ⊗ aTx (τ, Ω)dΩ – FWCW’01 – c Pavel Loskot 2001/10/24 3(14)
  • 4. C W C Spatial Channel Models (cont.) 3. [Fleury, TrIT’00] • relates input signal s(t) and received signal r(x, t) at location x r(x, t) = expj2πλ−1 0 Ωx expj2πνt s(t − τ)h(Ω, τ, ν)dΩdτdν h(Ω, τ, ν) = L l=1 αlδ(Ω − Ωl)δ(τ − τl)δ(ν − νl) 4. [Zwick,Fischer,Didascalou,Wiebeck, JSAC’00] • time-variant CIR through spatial impulse response Φ(t, τ, ΩTx , ΩRx ) and Rx, Tx antenna responses aRx (t, ΩRx ), aTx (t, ΩTx ), respectively h(t, τ) = aRx (t, ΩRx )Φ(t, τ, ΩTx , ΩRx )aTx (t, ΩTx )dΩTx dΩRx Φ(t, τ, ΩTx , ΩRx ) = L(t) l=1 αl(t, τ − τl(t))δ(ΩTx − ΩTx,l)δ(ΩRx − ΩRx,l) – FWCW’01 – c Pavel Loskot 2001/10/24 4(14)
  • 5. C W C Representation of Wireless Transmission • let us assume a global 3D-space, time and frequency coordinates • ˜x(t, s) could be an electromagnetic wave signal,wave system (channel) x(t) ↔ X(f) h(t, τ) ˜x(t, s) h(t, τ; s, σ) • when does h(t, τ) or h(t, τ; s, σ) form a channel impulse response ? – FWCW’01 – c Pavel Loskot 2001/10/24 5(14)
  • 6. C W C System Model – FWCW’01 – c Pavel Loskot 2001/10/24 6(14)
  • 7. C W C Antenna Representation Electromagnetic wave • is a function of time t ∈ R and space s ∈ R3 , i.e., it is time-varying field • fields are invariant w.r.t. coordinate system • fields are scalar |E|, |H| or vector E, H where given E (H) we know H (E) Transmit Antenna • radiating (source) field ˜x(t, s − sTx ) = ATx [x(t)] = x(t)˜xc(t, s − sTx ) where ˜xc(t, s) is carrier field (hence, amplitude modulator) Receive Antenna • observable field y(t) = ARx [˜y(t, s)] = R3 ˜y(t, s)aRx (s − sRx )ds where aRx (s) is time-invariant infinite bandwidth antenna response – FWCW’01 – c Pavel Loskot 2001/10/24 7(14)
  • 8. C W C Wave Propagation • obstacles, atmosphere (rain, fog, smoke), noise and interference (cosmic, atmospheric, industrial) −→ EM energy absorbed or scattered • indoor, outdoor and deep-space different propagation conditions, hence channel models with different accuracy (= prediction) Near-field • reactive and radiating field with very complex structure Far-field • ≈ spherical wave – FWCW’01 – c Pavel Loskot 2001/10/24 8(14)
  • 9. C W C Maxwell Theory • every medium: permitivity εr, permeability µr conductivity σ E.g. raindrops, trees, walls (dielectric material), cars (conductive material) Homogeneous medium • propagation along straight lines (at least locally) ε(s) → ε µ(s) → µ Dispersive medium ε = ε(ω) µ = µ(ω) Isotropic • energy flow along the direction of propagation (ε, µ direction independent) Linear • ε, µ and σ are independent of applied field E, H • Maxwell equations are linear and superpozition applies Etotal = Eincident + Escattered – FWCW’01 – c Pavel Loskot 2001/10/24 9(14)
  • 10. C W C Plane Waves • monochromatic, time-harmonic plane wave with wave-vector k E(s) = e−jks E0 |k|0 + E1 |k|1 + E2 |k|2 + . . . ≈ E0e−jks • good approximation for far-field and sufficiently short wavelengths Complex Envelope (Phasor Representation) E(t, s) = E(s)ejωct = E0 cos(ωct + ks + φ) where ωc is carrier frequency, wave-vector k = 2πΩ λ , |k| = 2π/λ and ||Ω|| = 1 is direction of propagation • for Doppler frequency ωd = 2πfd E(s) −→ E(s)ejωdt = E0ej(ωdt−ks) = ˜x(t, s) – FWCW’01 – c Pavel Loskot 2001/10/24 10(14)
  • 11. C W C Spatial Channel Model • radio channel = mapping from radiating field to observable field ˜y(t, s) = H [˜x(t, s)] spatial channel model temporal channel model • linearity ˜y(t, s) = H[ i ˜xi(t, s − sTx i )] = i H[˜xi(t, s − sTx i )] – FWCW’01 – c Pavel Loskot 2001/10/24 11(14)
  • 12. C W C Linear Stochastic Model • let the linearity assumption holds and ˜x(t, s) = i xi(t)˜xci(t, s − sTx i ) H[˜x(t, s)] = H[ R3 R ˜x(τ, σ)δ(t − τ, s − σ)dτdσ] • spatio-temporal channel impulse response h(t, τ; s, σ) = H[δ(t − τ, s − σ)] • temporal channel impulse response g(t, τ; sTx i , sRx j ) = R3 R3 ˜xci(τ, σ − sTx i )h(t, τ; s, σ)aRx j (s − sRx j )dσds • finally yj(t) = i R xi(τ)g(t, τ; sTx i , sRx j )dτ – FWCW’01 – c Pavel Loskot 2001/10/24 12(14)
  • 13. C W C Linear Geometrical Model Geometrical Optics • high frequency approximation, diffraction neglected • asymptotic solution of field integrals (Maxwell equations) • approximation of the field by rays (= locally plane waves) • ray tracing → asymptotically accure time-invariant channel impulse response • assume time-harmonic plane-wave sum approximation of radiating field ˜xi(t, s − sTx i ) = xi(t) L l=1 Alejωlt e −j2π Ωl λ0 (s−sTx i ) • assume separate channels with attn. αl, delay τl, shift Ωl → Ω l, ωl → ω l yj(t) = i L l=1 Alαlxi(t − τi)ej2πw lt e j2π Ωl λ0 sTx i e −j2π Ω l λ l sRx j – FWCW’01 – c Pavel Loskot 2001/10/24 13(14)
  • 14. C W C Conclusions • spatial channel modeling based on wave-fields was presented as an attempt to bring EM theory into communication signal processing • it was demonstrated for the case of linear stochastic model and linear geometrical model where plane-wave propagation is assumed • necessary but not sufficient conditions of radio channel linearity are – far-field, isotropic and homogeneous medium, no diffraction – but further investigation is still required • receiving antennas provide us with (some) knowledge on signal distribution ˜Y (t, Ω/λ) = F(Ω/λ) s [˜y(t, s)] where F[.] is 3D-Fourier transform – FWCW’01 – c Pavel Loskot 2001/10/24 14(14)