2014 © Trivadis
BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN
2014 © Trivadis
Big Data und Fast Data - Lambda
Architektur und deren Umsetzung
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
1
Guido Schmutz
DOAG Konferenz 2014
19.11.2014 – 16:00 Raum Oslo
2014 © Trivadis
Guido Schmutz
•  Working for Trivadis for more than 17 years
•  Oracle ACE Director for Fusion Middleware and SOA
•  Co-Author of different books
•  Consultant, Trainer Software Architect for Java, Oracle, SOA and
Big Data / Fast Data
•  Member of Trivadis Architecture Board
•  Technology Manager @ Trivadis
•  More than 25 years of software development
experience
•  Contact: guido.schmutz@trivadis.com
•  Blog: http://guidoschmutz.wordpress.com
•  Twitter: gschmutz
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
2
2014 © Trivadis
Trivadis is a market leader in IT consulting, system integration,
solution engineering and the provision of IT services focusing
on and technologies in Switzerland,
Germany and Austria.
We offer our services in the following strategic business fields:
Trivadis Services takes over the interacting operation of your IT systems.
Our company
O P E R A T I O N
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
3
2014 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Architecting (Big) Data Systems
3.  The Lambda Architecture
4.  Use Case and the Implementation
5.  Summary and Outlook
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
4
2014 © Trivadis
Big Data Definition (4 Vs)
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
+ Time to action ? – Big Data + Event
Processing = Fast Data
Characteristics of Big Data: Its Volume,
Velocity and Variety in combination
5
2014 © Trivadis
The world is changing …
The model of Generating/Consuming Data has changed ….
Old Model: few companies are generating data, all others are consuming
data
New Model: all of us are generating data, and all of us are consuming data
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
6
2014 © Trivadis
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
7
2014 © Trivadis
Internet Of Things – Sensors
are/will be everywhere
There are more devices tapping into
the internet than people on earth
How do we prepare our
systems/architecture for the future?
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Source: CiscoSource: The Economist
8
2014 © Trivadis
The world is changing …
new data stores
Problem of traditional (R)DBMS approach:
§  Complex object graph
§  Schema evolution
§  Semi-structured data
§  Scaling
Polyglot persistence
§  Using multiple data storage technologies (RDMBS + NoSQL + NewSQL + In-
Memory)
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
9
ORDER
ADDRESS
CUSTOMER
ORDER_LINES
Order
ID: 1001
Order Date: 15.9.2012
Line Items
Customer
First Name: Peter
Last Name: Sample
Billing Address
Street: Somestreet 10
City: Somewhere
Postal Code: 55901
Name
Ipod Touch
Monster Beat
Apple Mouse
Quantity
1
2
1
Price
220.95
190.00
69.90
2014 © Trivadis
The world is changing … New platforms evolving (i.e.
Hadoop Ecosystem)
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
10
2014 © Trivadis
Data as an Asset – Store everything?
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Data is

just too valuable

to delete!

We must 

store anything!
Nonsense! Just 

store the data 

you know 

you need today!
It depends …
Big Data technologies allow to
store the raw information from
new and existing data sources so
that you can later use it to create
new data-driven products, which
you haven’t thought about today!
11
2014 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Architecting (Big) Data Systems
3.  The Lambda Architecture
4.  Use Case and the Implementation
5.  Summary and Outlook
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
12
2014 © Trivadis
What is a data system?
•  A (data) system that manages the storage and querying of
data with a lifetime measured in years encompassing
every version of the application to ever exist, every
hardware failure and every human mistake ever made.
•  A data system answers questions based on information
that was acquired in the past
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
13
2014 © Trivadis
How do we build (data) systems today – Today’s
Architectures
Source of Truth is mutable!
•  CRUD pattern
What is the problem with this?
•  Lack of Human Fault Tolerance
•  Potential loss of information/
data
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Mutable
Database
Application
(Query)
RDBMS
NoSQL
NewSQL
Mobile
Web
RIA
Rich Client
Source of Truth
Source of Truth
14
2014 © Trivadis
Lack of Human Fault Tolerance
Bugs will be deployed to production over the lifetime of a data system
Operational mistakes will be made
Humans are part of the overall system
•  Just like hard disks, CPUs, memory, software
•  design for human error like you design for any other fault
Examples of human error
•  Deploy a bug that increments counters by two instead of by one
•  Accidentally delete data from database
•  Accidental DOS on important internal service
Worst two consequences: data loss or data corruption
As long as an error doesn‘t lose or corrupt good data, you can fix what
went wrong
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
15
2014 © Trivadis
Lack of Human Fault Tolerance – Immutability vs.
Mutability
The U and D in CRUD
A mutable system updates the current
state of the world
Mutable systems inherently lack
human fault-tolerance
Easy to corrupt or lose data
An immutable system captures historical
records of events
Each event happens at a particular
time and is always true
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Immutability restricts the range of errors causing data loss/data corruption
Vastly more human fault-tolerant
Conclusion: Your source of truth should always be immutable
16
2014 © Trivadis
A different kind of architecture with immutable source of
truth
Instead of using our traditional approach … why not building data systems
like this
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
HDFS
NoSQL
NewSQL
RDBMS
View on
Data
Mobile
Web
RIA
Rich Client
Source of Truth
Immutable
data
View on
Data
Application
(Query)
Source of Truth
17
2014 © Trivadis
How to create the views on the Immutable data?
On the fly ?
Materialized, i.e. Pre-computed ?
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Immutable
data
View
Immutable
data
Pre-

Computed

Views
Query
Query
18
2014 © Trivadis
(Big) Data Processing
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Immutable
data
Pre-
Computed
Views
Query??
Incoming
Data
How to compute the materialized views ?
How to compute queries from the views ?
19
2014 © Trivadis
Today Big Data Processing means Batch Processing …
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
HDFS
Data Store optimized
for appending large
results
Queries
Stream 1
Stream 2
Event
Hadoop cluster
(Map/Reduce)
Hadoop Distributed File System
20
2014 © Trivadis
Big Data Processing - Batch
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
1.2.13 Add iPAD 64GB
10.3.13 Add Sony RX-100
11..3.13 Add Canon GX-10
11.3.13 Remove Sony RX-100
12.3.13 Add Nikon S-100
14.4.13 Add BoseQC-15
15.4.13 Add MacBook Pro 15
20.4.13 Remove Canon GX10
iPAD 64GB
Nikon S-100
BoseQC-15
MacBook Pro 15
4derive derive
Favorite Product List Changes
Current Favorite 

Product List
Current
Product
Count
Raw information => data
Information => derived
21
2014 © Trivadis
Big Data Processing –
Batch
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
§  Using only batch processing, leaves you always with a portion of non-
processed data.
Fully processed data Last full
batch period
Time for

batch job
time
now
non-processed data
time
now
batch-processed data
But we are not done yet …
22
2014 © Trivadis
Big Data Processing - Adding Real-Time
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Immutable
data
Batch
Views
Query
?
Data
Stream
Realtime
Views
Incoming
Data
How to compute queries 

from the views ?How to compute real-time views
23
2014 © Trivadis
Big Data Processing - Adding Real-Time
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
1.2.13 Add iPAD 64GB
10.3.13 Add Sony RX-100
11..3.13 Add Canon GX-10
11.3.13 Remove Sony RX-100
12.3.13 Add Nikon S-100
14.4.13 Add BoseQC-15
15.4.13 Add MacBook Pro 15
20.4.13 Remove Canon GX10
Now Add Canon Scanner
iPAD 64GB
Nikon S-100
BoseQC-15
MacBook Pro 15
5
compute
Favorite Product List Changes
Current Favorite 

Product List
Current
Product
Count
Now Canon ScannercomputeAdd Canon Scanner
Stream of
Favorite Product List Changes
Immutable data
Views
Data Stream
Query
incoming
24
2014 © Trivadis
Big Data Processing -
Batch & Real Time
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
time
Fully processed data Last full
batch period
now
Time for

batch job
batch processing

worked fine here
(e.g. Hadoop)
real time processing

works here
blended view for end user
Adapted from Ted Dunning (March 2012):
http://www.youtube.com/watch?v=7PcmbI5aC20
25
2014 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Architecting (Big) Data Systems
3.  The Lambda Architecture
4.  The Use Case and the Implementation
5.  Summary and Outlook
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
26
2014 © Trivadis
Lambda Architecture
Lambda => Query = function(all data)
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
27
Immutable
data
Batch
View
Query
Data
Stream
Realtime
View
Incoming
Data
Serving Layer
Speed Layer
Batch Layer
A
B
C D
E
F
G
2014 © Trivadis
Lambda Architecture
A.  All data is sent to both the batch and speed layer
B.  Master data set is an immutable, append-only set of data
C.  Batch layer pre-computes query functions from scratch, result is called Batch
Views. Batch layer constantly re-computes the batch views.
D.  Batch views are indexed and stored in a scalable database to get particular
values very quickly. Swaps in new batch views when they are available
E.  Speed layer compensates for the high latency of updates to the Batch Views
F.  Uses fast incremental algorithms and read/write databases to produce real-
time views
G.  Queries are resolved by getting results from both batch and real-time views
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
28
2014 © Trivadis
Lambda Architecture
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Stores the immutable constantly growing dataset
Computes arbitrary views from this dataset using BigData
technologies (can take hours)
Can be always recreated
Computes the views from the constant stream of data it receives
Needed to compensate for the high latency of the batch layer
Incremental model and views are transient
Responsible for indexing and exposing the pre-computed batch
views so that they can be queried
Exposes the incremented real-time views
Merges the batch and the real-time views into a consistent result
Serving Layer
Batch Layer
Speed Layer
29
2014 © Trivadis
Lambda Architecture
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Adapted from: Marz, N. & Warren, J. (2013) Big Data. Manning.
30
Distribution
Layer
Speed Layer
Precompute
Views
Visualization
Batch Layer
Precomputed
information
All data
Incremented
information
Process stream
Batch
recompute
Realtime
increment
Serving Layer
batch view
batch view
real time view
real time view
DataService(Merge)
Sensor
Layer
Incoming
Data
social
mobile
IoT
…
2014 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Architecting (Big) Data Systems
3.  The Lambda Architecture
4.  Use Case and the Implementation
5.  Summary and Outlook
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
31
2014 © Trivadis
Project Definition
•  Build a platform for analyzing Twitter communications in retrospective
and in real-time
•  Scalability and ability for future data fusion with other information is a
must
•  Provide a Web-based access to the analytical information
•  Invest into new, innovative and not widely-proven technology
•  PoC environment, a pre-invest for future systems
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
32
2014 © Trivadis
"profile_banner_url":"https://pbs.twimg.com/profile_banners/15032594/
1371570460",
"profile_link_color":"2FC2EF",
"profile_sidebar_border_color":"FFFFFF",
"profile_sidebar_fill_color":"252429",
"profile_text_color":"666666",
"profile_use_background_image":true,
"default_profile":false,
"default_profile_image":false,
"following":null,
"follow_request_sent":null,
"notifications":null},
"geo":{
"type":"Point","coordinates":[43.28261499,-2.96464655]},
"coordinates":{"type":"Point","coordinates":[-2.96464655,43.28261499]},
"place":{"id":"cd43ea85d651af92",
"url":"https://api.twitter.com/1.1/geo/id/cd43ea85d651af92.json",
"place_type":"city",
"name":"Bilbao",
"full_name":"Bilbao, Vizcaya",
"country_code":"ES",
"country":"Espau00f1a",
"bounding_box":{"type":"Polygon","coordinates":[[[-2.9860102,43.2136542],
[-2.9860102,43.2901452],[-2.8803248,43.2901452],[-2.8803248,43.2136542]]]},
"attributes":{}},
"contributors": null,
"retweet_count":0,
"favorite_count":0,
"entities":{"hashtags":[{"text":"quelosepash","indices":[58,70]}],
"symbols":[],
"urls":[],
"user_mentions":[]},
"favorited":false,
"retweeted":false,
"filter_level":"medium",
"lang":"es“
}
Anatomy of a tweet
33
{
"created_at":"Sun Aug 18 14:29:11 +0000 2013",
"id":369103686938546176,
"id_str":"369103686938546176",
"text":"Baloncesto preparaciu00f3n Eslovenia, Rajoy derrota a Merkel. #quelosepash",
"source":"u003ca href="http://twitter.com/download/iphone" rel="nofollow”
u003eTwitter for iPhoneu003c/au003e",
"truncated":false,
"in_reply_to_status_id":null,
"in_reply_to_status_id_str":null,
"in_reply_to_user_id":null,
"in_reply_to_user_id_str":null,
"in_reply_to_screen_name":null,
"user":{
"id":15032594,
"id_str":"15032594",
"name":"Juan Carlos Romou2122",
"screen_name":"jcsromo",
"location":"Sopuerta, Vizcaya",
"url":null,
"description":"Portugalujo, saturado de todo, de baloncesto no. Twitter personal.",
"protected":false,
"followers_count":1331,
"friends_count":1326,
"listed_count":31,
"created_at":"Fri Jun 06 21:21:22 +0000 2008",
"favourites_count":255,
"utc_offset":7200,
"time_zone":"Madrid",
"geo_enabled":true,
"verified":false,
"statuses_count":22787,
"lang":"es",
"contributors_enabled":false,
"is_translator":false,
…
"profile_image_url_https":"https://si0.twimg.com/profile_images/2649762203
be4973d9eb457a45077897879c47c8b7_normal.jpeg",
Time Space Content Social Technic
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
2014 © Trivadis
Views on Tweets in four dimensions
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
34
when ⇐ where+what+who

• Time series
• Timelines
where ⇐ when+what+who

• Geo maps
• Density plots
what ⇐ when+where+who

• Word clouds
• Topic trends
who ⇐ when+where+what

• Social network graphs
• Activity graphs
Time
Space
Social
Content
Time
Space
Social
Content
Time
Space
Social
Content
Time
Space
Social
Content
2014 © Trivadis
Accessing Twitter
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
35
Quelle Limitierungen Zugang
Twitter’s Search API 3200 / user
5000 / keyword
180 Anfragen / 15 Minuten
gratis
Twitter’s Streaming API 1%-40% des Volumens gratis
DataSift
keine
0.15 -0.20$ /
unit
Gnip keine Auf Anfrage
2014 © Trivadis
Lambda Architecture
Open Source Frameworks for implementing a Lambda Architecture
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
36
Distribution
Layer
Speed Layer
Precompute
Views
Visualization
Batch Layer
Precomputed
information
All data
Incremented
information
Process stream
Batch
recompute
Realtime
increment
Serving Layer
batch view
batch view
real time view
real time view
DataService(Merge)
Sensor
Layer
Incoming
Data
social
mobile
IoT
…
2014 © Trivadis
Lambda Architecture in Action
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
37
Cloudera Distribution
•  Distribution of Apache Hadoop: HDFS,
MapReduce, Hive, Flume, Pig, Impala
Cloudera Impala
•  distributed query execution engine that runs
against data stored in HDFS and HBase
Apache Zookeeper
•  Distributed, highly available coordination service.
Provides primitives such as distributed locks
Apache Storm & Trident
•  distributed, fault-tolerant realtime computation
system
Apache Cassandra
•  distributed database management system
designed to handle large amounts of data across
many commodity servers, providing high
availability with no single point of failure
Twitter Horsebird Client (hbc)
•  Twitter Java API over Streaming API
Spring Framework
•  Popular Java Framework used to modularize
part of the logic (sensor and serving layer)
Apache Kafka
•  Simple messaging framework based on file
system to distribute information to both batch
and speed layer
Apache Avro
•  Serialization system for efficient cross-language
RPC and persistent data storage
JSON
•  open standard format that uses human-
readable text to transmit data objects consisting
of attribute–value pairs.
2014 © Trivadis
Facts & Figures
Currently in total
•  2.7 TB Raw Data
•  1.1 TB Pre-Processed data in
Impala
•  1 TB Solr indices for full text search
Cloudera 4.7.0 with Hadoop, Pig,
Hive, Impala and Solr
Kafka 0.7, Storm 0.9, DataStax
Enterprise Edition
14 active twitter feeds
•  ~ 14 million tweets/day ( > 5 billion
tweets/year)
•  ~ 8 GB/day raw data, compressed (2
DVDs)
•  66 GB storage capacity / day
(replication & views/results included)
Cluster of 10 nodes
•  ~100 processors
•  ~40 TB HD capacity in total; 46%
used
•  >500 GB RAM
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
38
2014 © Trivadis
Lambda Architecture with Oracle Product Stack
Possible implementation with Oracle Product stack
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
39
Distribution
Layer
Speed Layer
Precompute
Views
Visualization
Batch Layer
Precomputed
information
All data
Incremented
information
Process stream
Batch
recompute
Realtime
increment
Serving Layer
batch view
batch view
real time view
real time view
DataService(Merge)
Sensor
Layer
Incoming
Data
social
mobile
IoT
…
Oracle NoSQL
Oracle RDBMS
Oracle Coherence
Oracle BigData Appliance
Oracle NoSQL
Oracle Coherence
Oracle Event Processing
Oracle GoldenGate
Oracle Data Integrator
Oracle GoldenGate
Oracle Event
Processing
For Embedded
Oracle Service Bus
OracleWebLogicServer
OBIEEOracleEndeca
OracleBigData

Connectors
Oracle Coherence
WebLogic JMS
OracleBAM
2014 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Architecting (Big) Data Systems
3.  The Lambda Architecture
4.  Use Case and the Implementation
5.  Summary and Outlook
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
40
2014 © Trivadis
Summary – The lambda architecture
•  Can discard batch views and real-time views and recreate
everything from scratch
•  Mistakes corrected via re-computation
•  Scalability through platform and distribution
•  Data storage layer optimized independently from query resolution layer
•  Still in a early stage …. But a very interesting idea!
•  Today a zoo of technologies are needed => Infrastructure group might not like
it
•  Better with so-called Hadoop distributions and Hadoop V2 (YARN)
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
41
2014 © Trivadis
Alternative Approaches – Motivation
Data Sharing in Map Reduce …
23/06/14
Obsidian
42
iter. 1
 iter. 2
 . . .
Input
HDFS"
read
HDFS"
write
HDFS"
read
HDFS"
write
Input
query 1
query 2
query 3
result 1
result 2
result 3
. . .
HDFS"
read
2014 © Trivadis
iter. 1
 iter. 2
 . . .
Input
Alternative Approaches – Motivation
What we would like …
23/06/14
Obsidian
43
Distributed"
memory
Input
query 1
query 2
query 3
. . .
one-time"
processing
2014 © Trivadis
Alternatives – Apache Spark
23/06/14
Obsidian
44
Spark
Spark
Streaming"
real-time
Spark SQL
structured
GraphX
graph
MLlib
machine
learning
…
YARN
HDFS
HDFS
Cassandra
2014 © Trivadis
Alternative Technologies – Apache Spark
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
45
Distribution
Layer
Speed Layer
Precompute
Views
Visualization
Batch Layer
Precomputed
information
All data
Incremented
information
Process stream
Batch
recompute
Realtime
increment
Serving Layer
batch view
batch view
real time view
real time view
DataService(Merge)
Sensor
Layer
Incoming
Data
social
mobile
IoT
…
2014 © Trivadis
“Kappa Architecture”
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
Adapted from: Marz, N. & Warren, J. (2013) Big Data. Manning.
46
Distribution
Layer
Speed Layer
Visualization
Batch Layer
All data
Incremented
information
Process stream
Realtime
increment
Serving Layer
real time view
real time view
DataService
Sensor
Layer
Incoming
Data
social
mobile
IoT
…
Precomputed
analytics
analytic view
DataService
Batch
Analytical analysis
Replay
2014 © Trivadis
Unified Log Processing Architecture
Stream processing
allows
for computing feeds
off of other feeds
Derived feeds
are no different
than original feeds
they are computed off
Single deployment of
“Unified Log” but
logically different
feeds
August 2014
Einheitlicher Umgang mit Ereignisströmen - Unified Log Processing Architecture
47
Meter
Readings
Collector
Enrich /
Transform
Aggregate
by Minute
Raw Meter

Readings
Meter with
Customer
Meter by Customer
by Minute
Customer
Aggregate
by Minute
Meter by
Minute
Persist
Meter by
Minute
Persist
Raw Meter
Readings
2014 © Trivadis
Weitere Informationen...
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
48
2014 © Trivadis
BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN
Fragen und Antworten...
2013 © Trivadis
Guido Schmutz
Technology Manager
guido.schmutz@trivadis.com
19.11.2014
DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung

Big Data and Fast Data - Lambda Architecture in Action

  • 1.
    2014 © Trivadis BASELBERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 2014 © Trivadis Big Data und Fast Data - Lambda Architektur und deren Umsetzung 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 1 Guido Schmutz DOAG Konferenz 2014 19.11.2014 – 16:00 Raum Oslo
  • 2.
    2014 © Trivadis GuidoSchmutz •  Working for Trivadis for more than 17 years •  Oracle ACE Director for Fusion Middleware and SOA •  Co-Author of different books •  Consultant, Trainer Software Architect for Java, Oracle, SOA and Big Data / Fast Data •  Member of Trivadis Architecture Board •  Technology Manager @ Trivadis •  More than 25 years of software development experience •  Contact: guido.schmutz@trivadis.com •  Blog: http://guidoschmutz.wordpress.com •  Twitter: gschmutz 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 2
  • 3.
    2014 © Trivadis Trivadisis a market leader in IT consulting, system integration, solution engineering and the provision of IT services focusing on and technologies in Switzerland, Germany and Austria. We offer our services in the following strategic business fields: Trivadis Services takes over the interacting operation of your IT systems. Our company O P E R A T I O N 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 3
  • 4.
    2014 © Trivadis AGENDA 1. Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Use Case and the Implementation 5.  Summary and Outlook 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 4
  • 5.
    2014 © Trivadis BigData Definition (4 Vs) 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung + Time to action ? – Big Data + Event Processing = Fast Data Characteristics of Big Data: Its Volume, Velocity and Variety in combination 5
  • 6.
    2014 © Trivadis Theworld is changing … The model of Generating/Consuming Data has changed …. Old Model: few companies are generating data, all others are consuming data New Model: all of us are generating data, and all of us are consuming data 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 6
  • 7.
    2014 © Trivadis 19.11.2014 DOAG2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 7
  • 8.
    2014 © Trivadis InternetOf Things – Sensors are/will be everywhere There are more devices tapping into the internet than people on earth How do we prepare our systems/architecture for the future? 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Source: CiscoSource: The Economist 8
  • 9.
    2014 © Trivadis Theworld is changing … new data stores Problem of traditional (R)DBMS approach: §  Complex object graph §  Schema evolution §  Semi-structured data §  Scaling Polyglot persistence §  Using multiple data storage technologies (RDMBS + NoSQL + NewSQL + In- Memory) 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 9 ORDER ADDRESS CUSTOMER ORDER_LINES Order ID: 1001 Order Date: 15.9.2012 Line Items Customer First Name: Peter Last Name: Sample Billing Address Street: Somestreet 10 City: Somewhere Postal Code: 55901 Name Ipod Touch Monster Beat Apple Mouse Quantity 1 2 1 Price 220.95 190.00 69.90
  • 10.
    2014 © Trivadis Theworld is changing … New platforms evolving (i.e. Hadoop Ecosystem) 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 10
  • 11.
    2014 © Trivadis Dataas an Asset – Store everything? 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Data is
 just too valuable
 to delete!
 We must 
 store anything! Nonsense! Just 
 store the data 
 you know 
 you need today! It depends … Big Data technologies allow to store the raw information from new and existing data sources so that you can later use it to create new data-driven products, which you haven’t thought about today! 11
  • 12.
    2014 © Trivadis AGENDA 1. Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Use Case and the Implementation 5.  Summary and Outlook 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 12
  • 13.
    2014 © Trivadis Whatis a data system? •  A (data) system that manages the storage and querying of data with a lifetime measured in years encompassing every version of the application to ever exist, every hardware failure and every human mistake ever made. •  A data system answers questions based on information that was acquired in the past 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 13
  • 14.
    2014 © Trivadis Howdo we build (data) systems today – Today’s Architectures Source of Truth is mutable! •  CRUD pattern What is the problem with this? •  Lack of Human Fault Tolerance •  Potential loss of information/ data 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Mutable Database Application (Query) RDBMS NoSQL NewSQL Mobile Web RIA Rich Client Source of Truth Source of Truth 14
  • 15.
    2014 © Trivadis Lackof Human Fault Tolerance Bugs will be deployed to production over the lifetime of a data system Operational mistakes will be made Humans are part of the overall system •  Just like hard disks, CPUs, memory, software •  design for human error like you design for any other fault Examples of human error •  Deploy a bug that increments counters by two instead of by one •  Accidentally delete data from database •  Accidental DOS on important internal service Worst two consequences: data loss or data corruption As long as an error doesn‘t lose or corrupt good data, you can fix what went wrong 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 15
  • 16.
    2014 © Trivadis Lackof Human Fault Tolerance – Immutability vs. Mutability The U and D in CRUD A mutable system updates the current state of the world Mutable systems inherently lack human fault-tolerance Easy to corrupt or lose data An immutable system captures historical records of events Each event happens at a particular time and is always true 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Immutability restricts the range of errors causing data loss/data corruption Vastly more human fault-tolerant Conclusion: Your source of truth should always be immutable 16
  • 17.
    2014 © Trivadis Adifferent kind of architecture with immutable source of truth Instead of using our traditional approach … why not building data systems like this 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung HDFS NoSQL NewSQL RDBMS View on Data Mobile Web RIA Rich Client Source of Truth Immutable data View on Data Application (Query) Source of Truth 17
  • 18.
    2014 © Trivadis Howto create the views on the Immutable data? On the fly ? Materialized, i.e. Pre-computed ? 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Immutable data View Immutable data Pre-
 Computed
 Views Query Query 18
  • 19.
    2014 © Trivadis (Big)Data Processing 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Immutable data Pre- Computed Views Query?? Incoming Data How to compute the materialized views ? How to compute queries from the views ? 19
  • 20.
    2014 © Trivadis TodayBig Data Processing means Batch Processing … 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung HDFS Data Store optimized for appending large results Queries Stream 1 Stream 2 Event Hadoop cluster (Map/Reduce) Hadoop Distributed File System 20
  • 21.
    2014 © Trivadis BigData Processing - Batch 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 1.2.13 Add iPAD 64GB 10.3.13 Add Sony RX-100 11..3.13 Add Canon GX-10 11.3.13 Remove Sony RX-100 12.3.13 Add Nikon S-100 14.4.13 Add BoseQC-15 15.4.13 Add MacBook Pro 15 20.4.13 Remove Canon GX10 iPAD 64GB Nikon S-100 BoseQC-15 MacBook Pro 15 4derive derive Favorite Product List Changes Current Favorite 
 Product List Current Product Count Raw information => data Information => derived 21
  • 22.
    2014 © Trivadis BigData Processing – Batch 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung §  Using only batch processing, leaves you always with a portion of non- processed data. Fully processed data Last full batch period Time for
 batch job time now non-processed data time now batch-processed data But we are not done yet … 22
  • 23.
    2014 © Trivadis BigData Processing - Adding Real-Time 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Immutable data Batch Views Query ? Data Stream Realtime Views Incoming Data How to compute queries 
 from the views ?How to compute real-time views 23
  • 24.
    2014 © Trivadis BigData Processing - Adding Real-Time 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 1.2.13 Add iPAD 64GB 10.3.13 Add Sony RX-100 11..3.13 Add Canon GX-10 11.3.13 Remove Sony RX-100 12.3.13 Add Nikon S-100 14.4.13 Add BoseQC-15 15.4.13 Add MacBook Pro 15 20.4.13 Remove Canon GX10 Now Add Canon Scanner iPAD 64GB Nikon S-100 BoseQC-15 MacBook Pro 15 5 compute Favorite Product List Changes Current Favorite 
 Product List Current Product Count Now Canon ScannercomputeAdd Canon Scanner Stream of Favorite Product List Changes Immutable data Views Data Stream Query incoming 24
  • 25.
    2014 © Trivadis BigData Processing - Batch & Real Time 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung time Fully processed data Last full batch period now Time for
 batch job batch processing
 worked fine here (e.g. Hadoop) real time processing
 works here blended view for end user Adapted from Ted Dunning (March 2012): http://www.youtube.com/watch?v=7PcmbI5aC20 25
  • 26.
    2014 © Trivadis AGENDA 1. Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  The Use Case and the Implementation 5.  Summary and Outlook 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 26
  • 27.
    2014 © Trivadis LambdaArchitecture Lambda => Query = function(all data) 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 27 Immutable data Batch View Query Data Stream Realtime View Incoming Data Serving Layer Speed Layer Batch Layer A B C D E F G
  • 28.
    2014 © Trivadis LambdaArchitecture A.  All data is sent to both the batch and speed layer B.  Master data set is an immutable, append-only set of data C.  Batch layer pre-computes query functions from scratch, result is called Batch Views. Batch layer constantly re-computes the batch views. D.  Batch views are indexed and stored in a scalable database to get particular values very quickly. Swaps in new batch views when they are available E.  Speed layer compensates for the high latency of updates to the Batch Views F.  Uses fast incremental algorithms and read/write databases to produce real- time views G.  Queries are resolved by getting results from both batch and real-time views 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 28
  • 29.
    2014 © Trivadis LambdaArchitecture 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Stores the immutable constantly growing dataset Computes arbitrary views from this dataset using BigData technologies (can take hours) Can be always recreated Computes the views from the constant stream of data it receives Needed to compensate for the high latency of the batch layer Incremental model and views are transient Responsible for indexing and exposing the pre-computed batch views so that they can be queried Exposes the incremented real-time views Merges the batch and the real-time views into a consistent result Serving Layer Batch Layer Speed Layer 29
  • 30.
    2014 © Trivadis LambdaArchitecture 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Adapted from: Marz, N. & Warren, J. (2013) Big Data. Manning. 30 Distribution Layer Speed Layer Precompute Views Visualization Batch Layer Precomputed information All data Incremented information Process stream Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view DataService(Merge) Sensor Layer Incoming Data social mobile IoT …
  • 31.
    2014 © Trivadis AGENDA 1. Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Use Case and the Implementation 5.  Summary and Outlook 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 31
  • 32.
    2014 © Trivadis ProjectDefinition •  Build a platform for analyzing Twitter communications in retrospective and in real-time •  Scalability and ability for future data fusion with other information is a must •  Provide a Web-based access to the analytical information •  Invest into new, innovative and not widely-proven technology •  PoC environment, a pre-invest for future systems 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 32
  • 33.
    2014 © Trivadis "profile_banner_url":"https://pbs.twimg.com/profile_banners/15032594/ 1371570460", "profile_link_color":"2FC2EF", "profile_sidebar_border_color":"FFFFFF", "profile_sidebar_fill_color":"252429", "profile_text_color":"666666", "profile_use_background_image":true, "default_profile":false, "default_profile_image":false, "following":null, "follow_request_sent":null, "notifications":null}, "geo":{ "type":"Point","coordinates":[43.28261499,-2.96464655]}, "coordinates":{"type":"Point","coordinates":[-2.96464655,43.28261499]}, "place":{"id":"cd43ea85d651af92", "url":"https://api.twitter.com/1.1/geo/id/cd43ea85d651af92.json", "place_type":"city", "name":"Bilbao", "full_name":"Bilbao,Vizcaya", "country_code":"ES", "country":"Espau00f1a", "bounding_box":{"type":"Polygon","coordinates":[[[-2.9860102,43.2136542], [-2.9860102,43.2901452],[-2.8803248,43.2901452],[-2.8803248,43.2136542]]]}, "attributes":{}}, "contributors": null, "retweet_count":0, "favorite_count":0, "entities":{"hashtags":[{"text":"quelosepash","indices":[58,70]}], "symbols":[], "urls":[], "user_mentions":[]}, "favorited":false, "retweeted":false, "filter_level":"medium", "lang":"es“ } Anatomy of a tweet 33 { "created_at":"Sun Aug 18 14:29:11 +0000 2013", "id":369103686938546176, "id_str":"369103686938546176", "text":"Baloncesto preparaciu00f3n Eslovenia, Rajoy derrota a Merkel. #quelosepash", "source":"u003ca href="http://twitter.com/download/iphone" rel="nofollow” u003eTwitter for iPhoneu003c/au003e", "truncated":false, "in_reply_to_status_id":null, "in_reply_to_status_id_str":null, "in_reply_to_user_id":null, "in_reply_to_user_id_str":null, "in_reply_to_screen_name":null, "user":{ "id":15032594, "id_str":"15032594", "name":"Juan Carlos Romou2122", "screen_name":"jcsromo", "location":"Sopuerta, Vizcaya", "url":null, "description":"Portugalujo, saturado de todo, de baloncesto no. Twitter personal.", "protected":false, "followers_count":1331, "friends_count":1326, "listed_count":31, "created_at":"Fri Jun 06 21:21:22 +0000 2008", "favourites_count":255, "utc_offset":7200, "time_zone":"Madrid", "geo_enabled":true, "verified":false, "statuses_count":22787, "lang":"es", "contributors_enabled":false, "is_translator":false, … "profile_image_url_https":"https://si0.twimg.com/profile_images/2649762203 be4973d9eb457a45077897879c47c8b7_normal.jpeg", Time Space Content Social Technic 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung
  • 34.
    2014 © Trivadis Viewson Tweets in four dimensions 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 34 when ⇐ where+what+who • Time series • Timelines where ⇐ when+what+who • Geo maps • Density plots what ⇐ when+where+who • Word clouds • Topic trends who ⇐ when+where+what • Social network graphs • Activity graphs Time Space Social Content Time Space Social Content Time Space Social Content Time Space Social Content
  • 35.
    2014 © Trivadis AccessingTwitter 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 35 Quelle Limitierungen Zugang Twitter’s Search API 3200 / user 5000 / keyword 180 Anfragen / 15 Minuten gratis Twitter’s Streaming API 1%-40% des Volumens gratis DataSift keine 0.15 -0.20$ / unit Gnip keine Auf Anfrage
  • 36.
    2014 © Trivadis LambdaArchitecture Open Source Frameworks for implementing a Lambda Architecture 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 36 Distribution Layer Speed Layer Precompute Views Visualization Batch Layer Precomputed information All data Incremented information Process stream Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view DataService(Merge) Sensor Layer Incoming Data social mobile IoT …
  • 37.
    2014 © Trivadis LambdaArchitecture in Action 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 37 Cloudera Distribution •  Distribution of Apache Hadoop: HDFS, MapReduce, Hive, Flume, Pig, Impala Cloudera Impala •  distributed query execution engine that runs against data stored in HDFS and HBase Apache Zookeeper •  Distributed, highly available coordination service. Provides primitives such as distributed locks Apache Storm & Trident •  distributed, fault-tolerant realtime computation system Apache Cassandra •  distributed database management system designed to handle large amounts of data across many commodity servers, providing high availability with no single point of failure Twitter Horsebird Client (hbc) •  Twitter Java API over Streaming API Spring Framework •  Popular Java Framework used to modularize part of the logic (sensor and serving layer) Apache Kafka •  Simple messaging framework based on file system to distribute information to both batch and speed layer Apache Avro •  Serialization system for efficient cross-language RPC and persistent data storage JSON •  open standard format that uses human- readable text to transmit data objects consisting of attribute–value pairs.
  • 38.
    2014 © Trivadis Facts& Figures Currently in total •  2.7 TB Raw Data •  1.1 TB Pre-Processed data in Impala •  1 TB Solr indices for full text search Cloudera 4.7.0 with Hadoop, Pig, Hive, Impala and Solr Kafka 0.7, Storm 0.9, DataStax Enterprise Edition 14 active twitter feeds •  ~ 14 million tweets/day ( > 5 billion tweets/year) •  ~ 8 GB/day raw data, compressed (2 DVDs) •  66 GB storage capacity / day (replication & views/results included) Cluster of 10 nodes •  ~100 processors •  ~40 TB HD capacity in total; 46% used •  >500 GB RAM 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 38
  • 39.
    2014 © Trivadis LambdaArchitecture with Oracle Product Stack Possible implementation with Oracle Product stack 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 39 Distribution Layer Speed Layer Precompute Views Visualization Batch Layer Precomputed information All data Incremented information Process stream Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view DataService(Merge) Sensor Layer Incoming Data social mobile IoT … Oracle NoSQL Oracle RDBMS Oracle Coherence Oracle BigData Appliance Oracle NoSQL Oracle Coherence Oracle Event Processing Oracle GoldenGate Oracle Data Integrator Oracle GoldenGate Oracle Event Processing For Embedded Oracle Service Bus OracleWebLogicServer OBIEEOracleEndeca OracleBigData
 Connectors Oracle Coherence WebLogic JMS OracleBAM
  • 40.
    2014 © Trivadis AGENDA 1. Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Use Case and the Implementation 5.  Summary and Outlook 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 40
  • 41.
    2014 © Trivadis Summary– The lambda architecture •  Can discard batch views and real-time views and recreate everything from scratch •  Mistakes corrected via re-computation •  Scalability through platform and distribution •  Data storage layer optimized independently from query resolution layer •  Still in a early stage …. But a very interesting idea! •  Today a zoo of technologies are needed => Infrastructure group might not like it •  Better with so-called Hadoop distributions and Hadoop V2 (YARN) 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 41
  • 42.
    2014 © Trivadis AlternativeApproaches – Motivation Data Sharing in Map Reduce … 23/06/14 Obsidian 42 iter. 1 iter. 2 . . . Input HDFS" read HDFS" write HDFS" read HDFS" write Input query 1 query 2 query 3 result 1 result 2 result 3 . . . HDFS" read
  • 43.
    2014 © Trivadis iter.1 iter. 2 . . . Input Alternative Approaches – Motivation What we would like … 23/06/14 Obsidian 43 Distributed" memory Input query 1 query 2 query 3 . . . one-time" processing
  • 44.
    2014 © Trivadis Alternatives– Apache Spark 23/06/14 Obsidian 44 Spark Spark Streaming" real-time Spark SQL structured GraphX graph MLlib machine learning … YARN HDFS HDFS Cassandra
  • 45.
    2014 © Trivadis AlternativeTechnologies – Apache Spark 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 45 Distribution Layer Speed Layer Precompute Views Visualization Batch Layer Precomputed information All data Incremented information Process stream Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view DataService(Merge) Sensor Layer Incoming Data social mobile IoT …
  • 46.
    2014 © Trivadis “KappaArchitecture” 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung Adapted from: Marz, N. & Warren, J. (2013) Big Data. Manning. 46 Distribution Layer Speed Layer Visualization Batch Layer All data Incremented information Process stream Realtime increment Serving Layer real time view real time view DataService Sensor Layer Incoming Data social mobile IoT … Precomputed analytics analytic view DataService Batch Analytical analysis Replay
  • 47.
    2014 © Trivadis UnifiedLog Processing Architecture Stream processing allows for computing feeds off of other feeds Derived feeds are no different than original feeds they are computed off Single deployment of “Unified Log” but logically different feeds August 2014 Einheitlicher Umgang mit Ereignisströmen - Unified Log Processing Architecture 47 Meter Readings Collector Enrich / Transform Aggregate by Minute Raw Meter
 Readings Meter with Customer Meter by Customer by Minute Customer Aggregate by Minute Meter by Minute Persist Meter by Minute Persist Raw Meter Readings
  • 48.
    2014 © Trivadis WeitereInformationen... 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung 48
  • 49.
    2014 © Trivadis BASELBERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN Fragen und Antworten... 2013 © Trivadis Guido Schmutz Technology Manager guido.schmutz@trivadis.com 19.11.2014 DOAG 2014 | Big Data und Fast Data - Lambda Architektur und deren Umsetzung