THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
All the measurement devices use the physical principle:: an increase in velocity
result in a decrease of pressure
p1+
1
2
ρv1
2
= p2+
1
2
ρv2
2
Q=A1 v1=A2 v2
Q=A2
√ 2( p1− p2)
ρ(1−(A2 / A1))
2
Qr < Q, depending on geometry
from 2% up to 40%
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Example
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Sluice gates
p1+
1
2
ρv1
2
+γ z1= p2+
1
2
ρv2
2
+γ z2
Q=A1 v1=A2 v2
b z1 v1=b z2 v2
p1= p2=0
Q=z2 b
√2g(z1−z2)
1−(z2 / z1)
2
if z1≫z2 : Q=z2 b√2gz1
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Sluice gates
Example
Q=z2 b
√2g(z1−z2)
1−(z2 / z1)
2
Contraction coefficient:
CC aprox0.61if 0<z/a<0.2
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Weir
From free jet theory, it can be assumed that
v∼√2gH
Then
Q=C1 H b √2gH=C1 b √2g H
3/2
C1 is an unknown constant to be determined experimentally.
Q∼H
3/2
for rectangular weirs
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Weir
Example
v∼√2gH
A=H
2
tan θ
2
THE BERNOULLI EQUATION
FLOW RATE MEASUREMENT
Weir
Example

Bernoulli 6

  • 1.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT All the measurement devices use the physical principle:: an increase in velocity result in a decrease of pressure p1+ 1 2 ρv1 2 = p2+ 1 2 ρv2 2 Q=A1 v1=A2 v2 Q=A2 √ 2( p1− p2) ρ(1−(A2 / A1)) 2 Qr < Q, depending on geometry from 2% up to 40%
  • 2.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Example
  • 3.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Sluice gates p1+ 1 2 ρv1 2 +γ z1= p2+ 1 2 ρv2 2 +γ z2 Q=A1 v1=A2 v2 b z1 v1=b z2 v2 p1= p2=0 Q=z2 b √2g(z1−z2) 1−(z2 / z1) 2 if z1≫z2 : Q=z2 b√2gz1
  • 4.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Sluice gates Example Q=z2 b √2g(z1−z2) 1−(z2 / z1) 2 Contraction coefficient: CC aprox0.61if 0<z/a<0.2
  • 5.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Weir From free jet theory, it can be assumed that v∼√2gH Then Q=C1 H b √2gH=C1 b √2g H 3/2 C1 is an unknown constant to be determined experimentally. Q∼H 3/2 for rectangular weirs
  • 6.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Weir Example v∼√2gH A=H 2 tan θ 2
  • 7.
    THE BERNOULLI EQUATION FLOWRATE MEASUREMENT Weir Example