SlideShare a Scribd company logo
Bandwidth Enhancement in
Multimode Polymer Waveguides Using
Waveguide Layout for Optical Printed Circuit Boards
Jian Chen, Nikos Bamiedakis, Peter Vasil'ev, Richard V. Penty, and Ian H. White
Electrical Engineering Division, University of Cambridge, UK
e-mail: jc791@cam.ac.uk
Optical Fiber Communications Conference and Exposition (OFC 2016)
23rd March 2016
Outline
• Introduction to Optical Interconnects
• Board-level Optical Interconnects
• Bandwidth Studies
 Refractive Index Engineering
 Launch Conditioning
 Waveguide Layout
• Conclusions
Why Optical Interconnects?
Growing demand for data communications link capacity in:
- data centres
- supercomputers
 need for high-capacity short-reach interconnects operating at > 25 Gb/s
Optics better than copper at high data rates (bandwidth, power, EMI, density)
E.Varvarigos, Summer School on Optical Interconnects, 2014.K. Hiramoto, ECOC 2013.
Board-level Optical Interconnects
• Various approaches proposed:
 free space interconnects
 fibres embedded in substrates
 waveguide-based technologies
M. Schneider, et al., ECTC 2009.
Jarczynski J. et al., Appl. Opt, 2006.
R. Dangel, et al., JLT 2013.
Siloxane
waveguides
Interconnection
architectures
Board-level OE
integration
PCB-integrated
optical units
Basic waveguide
components
Our work:
 Polymer waveguides
Multimode Polymer Waveguides
- Siloxane Polymer Materials
• low intrinsic attenuation (0.03–0.05 dB/cm at 850 nm);
• good thermal and mechanical properties (up to 350 °C);
• low birefringence;
• fabricated on FR4, glass or silicon using standard techniques
• offer refractive index tunability
- Multimode Waveguide
• Cost-efficiency: relaxed alignment tolerances
 assembly possible with pick-and-place machines
50 μm
core
top cladding
bottom cladding
Substrate
 suitable for integration on PCBs
 offer high manufacturability
 are cost effective
- typical cross section used: 50×50 μm2
- 1 dB alignment tolerances: > ±10 μm
Technology Development
 increase data rate over each channel
N. Bamiedakis, et al., ECOC, P.4.7, 2014.
waveguide link
Finisar, Xyratex
24 channels x 25 Gb/s
K. Shmidtke et al., IEEE JLT, vol.
31, pp. 3970-3975, 2013.
4 channels x40 Gb/s
M. Sugawara et al., OFC, Th3C.5,
2014.
Fujitsu Laboratories Ltd.
1 channel x40 Gb/s
Cambridge University
- numerous waveguide technology demonstrators:
- continuous bandwidth improvement of VCSELs:
- 850 nm VCSELs:
57 Gb/s (2013)
64 Gb/s (OFC 2014, Chalmers - IBM)
71 Gb/s (PTL 2015, Chalmers - IBM)
 their highly-multimoded nature raises important concerns about their bandwidth
limitations and their potential to support very high on-board data rates (e.g. >100 Gb/s)?
D. M. Kuchta, et al., IEEE JLT, 2015.
Overfilled
Restricted
Input pulse Output pulse
Input pulse Output pulse
Mode propagation in waveguide
Bandwidth Studies
 Bandwidth (BW) limitation due to modal dispersion
1. Refractive index (RI) engineering
2. Launch conditioning
3. Waveguide layout and waveguide components
T. Ishigure, Summer
School on Optical
Interconnects, 2014.
Overfilled
Restricted
Input pulse Output pulse
Input pulse Output pulse
Mode propagation in waveguide Mode propagation in waveguideMode propagation in waveguide
Input pulse Output pulse Input pulse Output pulse
90° crossing 90° bend S bend Y splitter
N. Bamiedakis et al., IEEE JQE, vol. 45, pp. 415-424, 2009.
Elementary waveguide
components in complex
interconnection architectures
Time Domain Measurements
Short
pulse
laser
Autocorrelator10x 16x
Cleaved
50 μm MMF
Short
pulse
laser
Autocorrelator10x 16x
(a)
(b)
MM
10× lens 50 μm MMF 50 μm MMF+MM
1 m long spiral waveguide -25 -20 -15 -10 -5 0 5 10 15 20 25
-25
-20
-15
-10
-5
0
5
10
15
20
25
x (m)
y(m)
1.515
1.517
1.519
1.521
1.523
1.525
1.527
1.529
1.531
1.532
-25 -20 -15 -10 -5 0 5 10 15 20 25
-25
-20
-15
-10
-5
0
5
10
15
20
25
x (m)
y(m)
1.515
1.516
1.517
1.518
1.519
1.520
1.521
1.522
1.523
1.524
1.525
1.526
WG 1 WG 2(b) (c)
(a)
- cross section ~35×35 µm2
- sample fabricated on 8’’ inch Si substrate
- input/output facets exposed with dicing saw
 this particular features are due to fabrication
process and the mechanism is under study.
near field images
- Experimental setup
- Waveguide samples with different RI profiles
∆tin
∆tout
Input pulse Output pulse
1. Short pulse generation system
(a) Ti:Sapphire laser emitting at 850 nm
(b) Femtosecond erbium-doped fibre laser at ~1574 nm
and a frequency-doubling crystal to generate pulses
at wavelength of ~787 nm
2. Matching autocorrelator to record output pulse
3. Convert autocorrelation traces back to pulse traces
 curve fitting is needed to determine the shapes
of the original pulses, i.e. Gaussian, sech2 or Lorentzian.
4. Bandwidth calculation
 waveguide frequency response and bandwidth estimated by comparing Fourier
transforms of input and output pulses
Bandwidth Estimation
0 0.5 1 1.5 2
x 10
12
-20
-17
-14
-11
-8
-5
-2
0
Frequency (Hz)
Intensity(dB)
Output pulse
Input pulse
3 dB
WG 1 WG 2
10× lens
BLP >100 GHz×m BLP >100 GHz×m
WG 1 WG 2
50 μm MMF
BLP: 30 – 60 GHz×m BLP: 50 – 90 GHz×m
RI engineering & launch conditioning
J. Chen, et al., IEEE Optical Interconnects Conference (OIC), 2015.
J. Chen, et al., Asia Communications and Photonics Conference (ACP), 2015.
-25 -20 -15 -10 -5 0 5 10 15 20 25
-25
-20
-15
-10
-5
0
5
10
15
20
25
x (m)
y(m)
1.515
1.517
1.519
1.521
1.523
1.525
1.527
1.529
1.531
1.532
-25 -20 -15 -10 -5 0 5 10 15 20 25
-25
-20
-15
-10
-5
0
5
10
15
20
25
x (m)
y(m)
1.515
1.516
1.517
1.518
1.519
1.520
1.521
1.522
1.523
1.524
1.525
1.526
WG 1 WG 2(b) (c)
RI engineering Launch conditioning
-16 -12 -8 -4 0 4 8 12 1
-16
-12
-8
-4
0
4
8
12
16
Horizontal offset (m)
Verticaloffset(m)
WG 1 WG 2
-16 -12 -8 -4 0 4 8 12 16
-16
-12
-8
-4
0
4
8
12
16
Horizontal offset (m)
Verticaloffset(m)
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
200.0
-16 -12 -8 -4 0 4 8 12 16
-16
-12
-8
-4
0
4
8
12
16
Horizontal offset (m)
Verticaloffset(m)
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
200.0
WG 1 WG 2
-16 -12 -8 -4 0 4 8 12 16
-16
-12
-8
-4
0
4
8
12
16
Horizontal offset (m)
Verticaloffset(m)
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
200.0
WG 1 WG 2
1 m long spiral waveguide 19.2 cm long waveguide
Waveguide Layout
Radius: 5, 6, 8, 11, 15 and 20 mm
Number of crossings: 1, 5, 10, 20, 40 and 80
A B
A B
Length: ~137 mm
Length: ~137 mm
in
- Mode filtering schemes: used in multimode fibre systems such as mode-selective ring
resonators and couplers.
 Multimoded on-board optical interconnects using waveguide bends / crossings
- Two waveguide samples with slightly different RI profiles under a SMF (loss) and
50 μm MMF launch (loss, BW)
50 μm MMF
B
Length:~137 mm
A B
WG length: 16.25 cm
Experimental Results
-Insertion loss of the crossing and bends measured under:
- 9 μm SMF (restricted launch)
- 50 μm MMF (likely encountered in real-world systems)
- Obtained by normalising with respect to the insertion loss of reference waveguides.
Input
Loss (dB/crossing)
WG A WG B
SMF 0.093 0.033
50 μm MMF 0.098 0.046
- WG A has worse crossing loss
- WG A and B have similar bending loss < 1 dB for radius R > 6 mm.
Experimental Results
0 10 20 30 40 50 60 70 80
35
40
45
50
55
60
65
Bandwidth-lengthproduct(GHzm)
Number of crossings
WG A
WG B
0 10 20 30 40 50 60
0
2
4
6
8
10
12
Insertionloss(dB)
Number of crossings
WG A
WG B
6 8 10 12 14 16 18 20
35
40
45
50
55
60
65
Bandwidth-lengthproduct(GHzm)
Radius (mm)
WG A
WG B
6 8 10 12 14 16 18 20
0
1
2
3
4
Insertionloss(dB)
Radius (mm)
WG A
WG B
0 10 20 30 40 50 60 70 80
35
40
45
50
55
60
65
Bandwidth-lengthproduct(GHzm)
Number of crossings
WG A
WG B
0 10 20 30 40 50 60 70 80
0
2
4
6
8
10
12
Insertionloss(dB)
Number of crossings
WG A
WG B
1.55× 1.25× ~1.9 dB
~0.7 dB
1.25×
~1.6 dB
BW Loss
BW Loss
90° Bends vs. Straight WG
90° Crossings vs. Straight WG
R = 5 mm R = 11 mm
BLP
improvement
> 60 GHz×m
(1.55×)
> 50 GHz×m
(1.25×)
Additional
loss
~1.9 dB ~0.7 dB
No. crossings = 10
BLP
improvement
~50 GHz×m
(1.25×)
Additional
loss
~1.6 dB
90° Bends
90° Crossings
BW increases but loss degrades
 design trade-off
Conclusions
• Multimode polymer waveguides constitute an attractive technology for
use in board-level optical interconnects
• Bandwidth performance of multimode WGs can be enhanced using
 refractive index engineering, launch conditions, waveguide layout, etc.
• Time domain measurements on waveguide bends and crossings
 potential to get BW improvement via intelligent waveguide layout
o 1.5× BW enhancement, addition loss ~1.9 dB (R = 6 mm)  BLP~60 GHz×m
o 1.25× BW enhancement, addition loss ~1.6 dB (crossing# = 10)  BLP~50 GHz×m
 optimisation of BW and loss performance based on waveguide layout (e.g. optimised
radius), RI profile and launch conditions.
- Dow Corning
- EPSRC UK
Acknowledgements:
50 μm
MMF
 ensure BLP >40 GHz×m to support high on-board data rates while maintaining low
loss performance and without the need for any launch conditioning.
References
[1] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server
architectures,” in IBM Journal of Research and Development, Vol. 49, pp. 755–775 (2005).
[2] J. Chen, N. Bamiedakis, P. Vasil’ev, T. Edwards, C. Brown, R. Penty, and I. White, “High-Bandwidth and Large Coupling
Tolerance Graded-Index Multimode Polymer Waveguides for On-board High-Speed Optical Interconnects,” Journal of Lightwave
Technology, vol. 34, no. 12, pp. 2934–2940 (2015).
[3] N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “High-Bandwidth and Low-Loss Multimode Polymer Waveguides and
Waveguide Components for High-Speed Board-Level Optical Interconnects,” in Photonics West conference, Proceeding of SPIE, vol.
9753, pp. 975304–1–9 (2016).
[4] N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s Data Transmission
Over a 1 m Long Multimode Polymer Spiral Waveguide for Board-Level Optical Interconnects,” Journal of Lightwave Technology, vol.
33, no. 4, pp. 882–888 (2014).
[5] J. Chen, N. Bamiedakis, T. J. Edwards, C. T. A. Brown, R. V Penty, and I. H. White, “Dispersion Studies on Multimode Polymer
Spiral Waveguides for Board-Level Optical Interconnects,” in Optical Interconnects Conference (OIC), p. MD2 (2015).
[6] J. Chen, N. Bamiedakis, P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “Graded-Index Polymer
Multimode Waveguides for 100 Gb/s Board-Level Data Transmission,” in European Conference on Optical Communication (ECOC),
Mo.3.2.3 (2015).
[7] Z. Haas and M.A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber
systems,” in Journal of Lightwave Technology, Vol. 11, pp. 1125–1131 (1993).
[8] B. A. Dorin and W.N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” in Optics Express, Vol. 22, pp.
4547–4558 (2014).
[9] J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” in Optics Letters, Vol. 37, no. 19, pp.
3990–3992 (2012).
[10] B.W. Swatowski, C.M. Amb, M.G. Hyer, R.S. John, W. Ken Weidner, “Graded index silicone waveguides for high performance
computing,” in OIC, WD2, San Diego (2014).
[11] A. Hashim, N. Bamiedakis, R.V. Penty and I.H. White, “Multimode Polymer Waveguide Components for Complex On-Board
Optical Topologies”, in Journal of Lightwave Technology, Vol. 31, no. 24, pp. 3962–3969 (2013).
Thank you !

More Related Content

What's hot

Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber Communication
Amit Raikar
 
Fiber optics measurement Technique by mitesh kumar
Fiber optics measurement Technique by mitesh kumarFiber optics measurement Technique by mitesh kumar
Fiber optics measurement Technique by mitesh kumar
Mitesh Kumar
 
Improvement in Repeater Spacing for Fiber Optic Communication
Improvement in Repeater Spacing for Fiber Optic CommunicationImprovement in Repeater Spacing for Fiber Optic Communication
Improvement in Repeater Spacing for Fiber Optic Communication
IRJET Journal
 
High capacity optical
High capacity opticalHigh capacity optical
High capacity optical
Nisha Menon K
 
optical time division multiplexing
optical time division multiplexingoptical time division multiplexing
optical time division multiplexing
Amandeep kaur
 
Ppt
PptPpt
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
megha agrawal
 
Advance optical modulation formats
Advance optical modulation formatsAdvance optical modulation formats
Advance optical modulation formats
Satya Prakash Rout
 
PhySec_MassiveMIMO
PhySec_MassiveMIMOPhySec_MassiveMIMO
PhySec_MassiveMIMO
Jun Zhu
 
Wavelength Division Multiplexing summary
Wavelength Division Multiplexing summaryWavelength Division Multiplexing summary
Wavelength Division Multiplexing summary
Mahesh Tripathy
 
20120140503003
2012014050300320120140503003
20120140503003
IAEME Publication
 
Dispersion Modified Optical Fiber
Dispersion Modified Optical FiberDispersion Modified Optical Fiber
Dispersion Modified Optical Fiber
hassaanashraf1
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
Jagadish Gurrala
 
Presentation Royal Society meeting
Presentation Royal Society meetingPresentation Royal Society meeting
Presentation Royal Society meeting
Vincent Sleiffer
 
Transmission system used for optical fibers
Transmission system used for optical fibers Transmission system used for optical fibers
Transmission system used for optical fibers
Jay Baria
 
Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)
Debashish Pradhan
 
Optoelectronics and optical communication lab
Optoelectronics and optical communication labOptoelectronics and optical communication lab
Optoelectronics and optical communication lab
Dr. Ved Nath Jha
 
Govind agrawal's fiber optical communication
Govind agrawal's fiber optical  communicationGovind agrawal's fiber optical  communication
Govind agrawal's fiber optical communication
smartknight
 
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
IOSR Journals
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513
Pooja Shukla
 

What's hot (20)

Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber Communication
 
Fiber optics measurement Technique by mitesh kumar
Fiber optics measurement Technique by mitesh kumarFiber optics measurement Technique by mitesh kumar
Fiber optics measurement Technique by mitesh kumar
 
Improvement in Repeater Spacing for Fiber Optic Communication
Improvement in Repeater Spacing for Fiber Optic CommunicationImprovement in Repeater Spacing for Fiber Optic Communication
Improvement in Repeater Spacing for Fiber Optic Communication
 
High capacity optical
High capacity opticalHigh capacity optical
High capacity optical
 
optical time division multiplexing
optical time division multiplexingoptical time division multiplexing
optical time division multiplexing
 
Ppt
PptPpt
Ppt
 
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...Fiber Optics Lab  Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT,  L...
Fiber Optics Lab Experiments (EDWDM KIT,EDCOM KIT, EDLASE KIT, EDAMP KIT, L...
 
Advance optical modulation formats
Advance optical modulation formatsAdvance optical modulation formats
Advance optical modulation formats
 
PhySec_MassiveMIMO
PhySec_MassiveMIMOPhySec_MassiveMIMO
PhySec_MassiveMIMO
 
Wavelength Division Multiplexing summary
Wavelength Division Multiplexing summaryWavelength Division Multiplexing summary
Wavelength Division Multiplexing summary
 
20120140503003
2012014050300320120140503003
20120140503003
 
Dispersion Modified Optical Fiber
Dispersion Modified Optical FiberDispersion Modified Optical Fiber
Dispersion Modified Optical Fiber
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
Presentation Royal Society meeting
Presentation Royal Society meetingPresentation Royal Society meeting
Presentation Royal Society meeting
 
Transmission system used for optical fibers
Transmission system used for optical fibers Transmission system used for optical fibers
Transmission system used for optical fibers
 
Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)Uwb antenna by debashish(IIT DELHI)
Uwb antenna by debashish(IIT DELHI)
 
Optoelectronics and optical communication lab
Optoelectronics and optical communication labOptoelectronics and optical communication lab
Optoelectronics and optical communication lab
 
Govind agrawal's fiber optical communication
Govind agrawal's fiber optical  communicationGovind agrawal's fiber optical  communication
Govind agrawal's fiber optical communication
 
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
Performance Analysis of Dispersion Compensation in Long Haul Optical Fiber wi...
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513
 

Similar to Bandwidth Enhancement in Multimode Polymer Waveguides Using Waveguide Layout for Optical Printed Circuit Boards

ICRCWIP2014
ICRCWIP2014ICRCWIP2014
ICRCWIP2014
PRIYANKA RAHI
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
IRJET- A CPW Feed UWB Antenna with Quad Band Notches
IRJET- A CPW Feed UWB Antenna with Quad Band NotchesIRJET- A CPW Feed UWB Antenna with Quad Band Notches
IRJET- A CPW Feed UWB Antenna with Quad Band Notches
IRJET Journal
 
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
CSCJournals
 
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
IRJET Journal
 
06807651ieee.pdf
06807651ieee.pdf06807651ieee.pdf
06807651ieee.pdf
Asit Panda
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptx
SupriaNandan
 
1ICRASE-48
1ICRASE-481ICRASE-48
1ICRASE-48
Manisha Nayak
 
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical AmplifiersHeterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Hossein Babashah
 
UWB Band Pass Filter with WLAN notch
UWB Band Pass Filter with WLAN notchUWB Band Pass Filter with WLAN notch
UWB Band Pass Filter with WLAN notch
IDES Editor
 
IRJET- MIMO Antenna with Notched Band Characteristics for UWB Applications
IRJET-  	  MIMO Antenna with Notched Band Characteristics for UWB ApplicationsIRJET-  	  MIMO Antenna with Notched Band Characteristics for UWB Applications
IRJET- MIMO Antenna with Notched Band Characteristics for UWB Applications
IRJET Journal
 
Design and modification of circular monpole uwb antenna for wpan application
Design and modification of circular monpole uwb antenna for wpan applicationDesign and modification of circular monpole uwb antenna for wpan application
Design and modification of circular monpole uwb antenna for wpan application
Alexander Decker
 
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
IJMER
 
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
INFOGAIN PUBLICATION
 
Transmissionmedia ccn
Transmissionmedia ccnTransmissionmedia ccn
Transmissionmedia ccn
Mudasir Mukhtar
 
IRJET- Microstrip Patch Antenna for C Band Satellite Application
IRJET- Microstrip Patch Antenna for C Band Satellite ApplicationIRJET- Microstrip Patch Antenna for C Band Satellite Application
IRJET- Microstrip Patch Antenna for C Band Satellite Application
IRJET Journal
 
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
TELKOMNIKA JOURNAL
 
A New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
A New Design of Dual-Band Microstrip Patch Antenna for Wireless CommunicationA New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
A New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
IRJET Journal
 
Simulative analysis of power effects for 2.5×8 gbs wdm pon
Simulative analysis of power effects for 2.5×8 gbs wdm ponSimulative analysis of power effects for 2.5×8 gbs wdm pon
Simulative analysis of power effects for 2.5×8 gbs wdm pon
IAEME Publication
 
Spatial optical transmitter based on on/off keying line coding modulation sch...
Spatial optical transmitter based on on/off keying line coding modulation sch...Spatial optical transmitter based on on/off keying line coding modulation sch...
Spatial optical transmitter based on on/off keying line coding modulation sch...
nooriasukmaningtyas
 

Similar to Bandwidth Enhancement in Multimode Polymer Waveguides Using Waveguide Layout for Optical Printed Circuit Boards (20)

ICRCWIP2014
ICRCWIP2014ICRCWIP2014
ICRCWIP2014
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
IRJET- A CPW Feed UWB Antenna with Quad Band Notches
IRJET- A CPW Feed UWB Antenna with Quad Band NotchesIRJET- A CPW Feed UWB Antenna with Quad Band Notches
IRJET- A CPW Feed UWB Antenna with Quad Band Notches
 
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
Integrated DWDM and MIMO-OFDM System for 4G High Capacity Mobile Communicatio...
 
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
Design and Performance Analysis of an Inset Feed and Slot Configuration on Ci...
 
06807651ieee.pdf
06807651ieee.pdf06807651ieee.pdf
06807651ieee.pdf
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptx
 
1ICRASE-48
1ICRASE-481ICRASE-48
1ICRASE-48
 
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical AmplifiersHeterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
 
UWB Band Pass Filter with WLAN notch
UWB Band Pass Filter with WLAN notchUWB Band Pass Filter with WLAN notch
UWB Band Pass Filter with WLAN notch
 
IRJET- MIMO Antenna with Notched Band Characteristics for UWB Applications
IRJET-  	  MIMO Antenna with Notched Band Characteristics for UWB ApplicationsIRJET-  	  MIMO Antenna with Notched Band Characteristics for UWB Applications
IRJET- MIMO Antenna with Notched Band Characteristics for UWB Applications
 
Design and modification of circular monpole uwb antenna for wpan application
Design and modification of circular monpole uwb antenna for wpan applicationDesign and modification of circular monpole uwb antenna for wpan application
Design and modification of circular monpole uwb antenna for wpan application
 
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
A CPW-Fed Wideband And Multiband Rectangular Microstrip Patch Antenna For Wir...
 
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
6 ijaems jan-2016-15-comparative analysis of free space optics and single mod...
 
Transmissionmedia ccn
Transmissionmedia ccnTransmissionmedia ccn
Transmissionmedia ccn
 
IRJET- Microstrip Patch Antenna for C Band Satellite Application
IRJET- Microstrip Patch Antenna for C Band Satellite ApplicationIRJET- Microstrip Patch Antenna for C Band Satellite Application
IRJET- Microstrip Patch Antenna for C Band Satellite Application
 
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
 
A New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
A New Design of Dual-Band Microstrip Patch Antenna for Wireless CommunicationA New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
A New Design of Dual-Band Microstrip Patch Antenna for Wireless Communication
 
Simulative analysis of power effects for 2.5×8 gbs wdm pon
Simulative analysis of power effects for 2.5×8 gbs wdm ponSimulative analysis of power effects for 2.5×8 gbs wdm pon
Simulative analysis of power effects for 2.5×8 gbs wdm pon
 
Spatial optical transmitter based on on/off keying line coding modulation sch...
Spatial optical transmitter based on on/off keying line coding modulation sch...Spatial optical transmitter based on on/off keying line coding modulation sch...
Spatial optical transmitter based on on/off keying line coding modulation sch...
 

Recently uploaded

People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
riddhimaagrawal986
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 

Recently uploaded (20)

People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 

Bandwidth Enhancement in Multimode Polymer Waveguides Using Waveguide Layout for Optical Printed Circuit Boards

  • 1. Bandwidth Enhancement in Multimode Polymer Waveguides Using Waveguide Layout for Optical Printed Circuit Boards Jian Chen, Nikos Bamiedakis, Peter Vasil'ev, Richard V. Penty, and Ian H. White Electrical Engineering Division, University of Cambridge, UK e-mail: jc791@cam.ac.uk Optical Fiber Communications Conference and Exposition (OFC 2016) 23rd March 2016
  • 2. Outline • Introduction to Optical Interconnects • Board-level Optical Interconnects • Bandwidth Studies  Refractive Index Engineering  Launch Conditioning  Waveguide Layout • Conclusions
  • 3. Why Optical Interconnects? Growing demand for data communications link capacity in: - data centres - supercomputers  need for high-capacity short-reach interconnects operating at > 25 Gb/s Optics better than copper at high data rates (bandwidth, power, EMI, density) E.Varvarigos, Summer School on Optical Interconnects, 2014.K. Hiramoto, ECOC 2013.
  • 4. Board-level Optical Interconnects • Various approaches proposed:  free space interconnects  fibres embedded in substrates  waveguide-based technologies M. Schneider, et al., ECTC 2009. Jarczynski J. et al., Appl. Opt, 2006. R. Dangel, et al., JLT 2013. Siloxane waveguides Interconnection architectures Board-level OE integration PCB-integrated optical units Basic waveguide components Our work:  Polymer waveguides
  • 5. Multimode Polymer Waveguides - Siloxane Polymer Materials • low intrinsic attenuation (0.03–0.05 dB/cm at 850 nm); • good thermal and mechanical properties (up to 350 °C); • low birefringence; • fabricated on FR4, glass or silicon using standard techniques • offer refractive index tunability - Multimode Waveguide • Cost-efficiency: relaxed alignment tolerances  assembly possible with pick-and-place machines 50 μm core top cladding bottom cladding Substrate  suitable for integration on PCBs  offer high manufacturability  are cost effective - typical cross section used: 50×50 μm2 - 1 dB alignment tolerances: > ±10 μm
  • 6. Technology Development  increase data rate over each channel N. Bamiedakis, et al., ECOC, P.4.7, 2014. waveguide link Finisar, Xyratex 24 channels x 25 Gb/s K. Shmidtke et al., IEEE JLT, vol. 31, pp. 3970-3975, 2013. 4 channels x40 Gb/s M. Sugawara et al., OFC, Th3C.5, 2014. Fujitsu Laboratories Ltd. 1 channel x40 Gb/s Cambridge University - numerous waveguide technology demonstrators: - continuous bandwidth improvement of VCSELs: - 850 nm VCSELs: 57 Gb/s (2013) 64 Gb/s (OFC 2014, Chalmers - IBM) 71 Gb/s (PTL 2015, Chalmers - IBM)  their highly-multimoded nature raises important concerns about their bandwidth limitations and their potential to support very high on-board data rates (e.g. >100 Gb/s)? D. M. Kuchta, et al., IEEE JLT, 2015.
  • 7. Overfilled Restricted Input pulse Output pulse Input pulse Output pulse Mode propagation in waveguide Bandwidth Studies  Bandwidth (BW) limitation due to modal dispersion 1. Refractive index (RI) engineering 2. Launch conditioning 3. Waveguide layout and waveguide components T. Ishigure, Summer School on Optical Interconnects, 2014. Overfilled Restricted Input pulse Output pulse Input pulse Output pulse Mode propagation in waveguide Mode propagation in waveguideMode propagation in waveguide Input pulse Output pulse Input pulse Output pulse 90° crossing 90° bend S bend Y splitter N. Bamiedakis et al., IEEE JQE, vol. 45, pp. 415-424, 2009. Elementary waveguide components in complex interconnection architectures
  • 8. Time Domain Measurements Short pulse laser Autocorrelator10x 16x Cleaved 50 μm MMF Short pulse laser Autocorrelator10x 16x (a) (b) MM 10× lens 50 μm MMF 50 μm MMF+MM 1 m long spiral waveguide -25 -20 -15 -10 -5 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10 15 20 25 x (m) y(m) 1.515 1.517 1.519 1.521 1.523 1.525 1.527 1.529 1.531 1.532 -25 -20 -15 -10 -5 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10 15 20 25 x (m) y(m) 1.515 1.516 1.517 1.518 1.519 1.520 1.521 1.522 1.523 1.524 1.525 1.526 WG 1 WG 2(b) (c) (a) - cross section ~35×35 µm2 - sample fabricated on 8’’ inch Si substrate - input/output facets exposed with dicing saw  this particular features are due to fabrication process and the mechanism is under study. near field images - Experimental setup - Waveguide samples with different RI profiles
  • 9. ∆tin ∆tout Input pulse Output pulse 1. Short pulse generation system (a) Ti:Sapphire laser emitting at 850 nm (b) Femtosecond erbium-doped fibre laser at ~1574 nm and a frequency-doubling crystal to generate pulses at wavelength of ~787 nm 2. Matching autocorrelator to record output pulse 3. Convert autocorrelation traces back to pulse traces  curve fitting is needed to determine the shapes of the original pulses, i.e. Gaussian, sech2 or Lorentzian. 4. Bandwidth calculation  waveguide frequency response and bandwidth estimated by comparing Fourier transforms of input and output pulses Bandwidth Estimation 0 0.5 1 1.5 2 x 10 12 -20 -17 -14 -11 -8 -5 -2 0 Frequency (Hz) Intensity(dB) Output pulse Input pulse 3 dB
  • 10. WG 1 WG 2 10× lens BLP >100 GHz×m BLP >100 GHz×m WG 1 WG 2 50 μm MMF BLP: 30 – 60 GHz×m BLP: 50 – 90 GHz×m RI engineering & launch conditioning J. Chen, et al., IEEE Optical Interconnects Conference (OIC), 2015. J. Chen, et al., Asia Communications and Photonics Conference (ACP), 2015. -25 -20 -15 -10 -5 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10 15 20 25 x (m) y(m) 1.515 1.517 1.519 1.521 1.523 1.525 1.527 1.529 1.531 1.532 -25 -20 -15 -10 -5 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10 15 20 25 x (m) y(m) 1.515 1.516 1.517 1.518 1.519 1.520 1.521 1.522 1.523 1.524 1.525 1.526 WG 1 WG 2(b) (c) RI engineering Launch conditioning -16 -12 -8 -4 0 4 8 12 1 -16 -12 -8 -4 0 4 8 12 16 Horizontal offset (m) Verticaloffset(m) WG 1 WG 2 -16 -12 -8 -4 0 4 8 12 16 -16 -12 -8 -4 0 4 8 12 16 Horizontal offset (m) Verticaloffset(m) 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 -16 -12 -8 -4 0 4 8 12 16 -16 -12 -8 -4 0 4 8 12 16 Horizontal offset (m) Verticaloffset(m) 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 WG 1 WG 2 -16 -12 -8 -4 0 4 8 12 16 -16 -12 -8 -4 0 4 8 12 16 Horizontal offset (m) Verticaloffset(m) 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 WG 1 WG 2 1 m long spiral waveguide 19.2 cm long waveguide
  • 11. Waveguide Layout Radius: 5, 6, 8, 11, 15 and 20 mm Number of crossings: 1, 5, 10, 20, 40 and 80 A B A B Length: ~137 mm Length: ~137 mm in - Mode filtering schemes: used in multimode fibre systems such as mode-selective ring resonators and couplers.  Multimoded on-board optical interconnects using waveguide bends / crossings - Two waveguide samples with slightly different RI profiles under a SMF (loss) and 50 μm MMF launch (loss, BW) 50 μm MMF B Length:~137 mm A B WG length: 16.25 cm
  • 12. Experimental Results -Insertion loss of the crossing and bends measured under: - 9 μm SMF (restricted launch) - 50 μm MMF (likely encountered in real-world systems) - Obtained by normalising with respect to the insertion loss of reference waveguides. Input Loss (dB/crossing) WG A WG B SMF 0.093 0.033 50 μm MMF 0.098 0.046 - WG A has worse crossing loss - WG A and B have similar bending loss < 1 dB for radius R > 6 mm.
  • 13. Experimental Results 0 10 20 30 40 50 60 70 80 35 40 45 50 55 60 65 Bandwidth-lengthproduct(GHzm) Number of crossings WG A WG B 0 10 20 30 40 50 60 0 2 4 6 8 10 12 Insertionloss(dB) Number of crossings WG A WG B 6 8 10 12 14 16 18 20 35 40 45 50 55 60 65 Bandwidth-lengthproduct(GHzm) Radius (mm) WG A WG B 6 8 10 12 14 16 18 20 0 1 2 3 4 Insertionloss(dB) Radius (mm) WG A WG B 0 10 20 30 40 50 60 70 80 35 40 45 50 55 60 65 Bandwidth-lengthproduct(GHzm) Number of crossings WG A WG B 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 12 Insertionloss(dB) Number of crossings WG A WG B 1.55× 1.25× ~1.9 dB ~0.7 dB 1.25× ~1.6 dB BW Loss BW Loss 90° Bends vs. Straight WG 90° Crossings vs. Straight WG R = 5 mm R = 11 mm BLP improvement > 60 GHz×m (1.55×) > 50 GHz×m (1.25×) Additional loss ~1.9 dB ~0.7 dB No. crossings = 10 BLP improvement ~50 GHz×m (1.25×) Additional loss ~1.6 dB 90° Bends 90° Crossings BW increases but loss degrades  design trade-off
  • 14. Conclusions • Multimode polymer waveguides constitute an attractive technology for use in board-level optical interconnects • Bandwidth performance of multimode WGs can be enhanced using  refractive index engineering, launch conditions, waveguide layout, etc. • Time domain measurements on waveguide bends and crossings  potential to get BW improvement via intelligent waveguide layout o 1.5× BW enhancement, addition loss ~1.9 dB (R = 6 mm)  BLP~60 GHz×m o 1.25× BW enhancement, addition loss ~1.6 dB (crossing# = 10)  BLP~50 GHz×m  optimisation of BW and loss performance based on waveguide layout (e.g. optimised radius), RI profile and launch conditions. - Dow Corning - EPSRC UK Acknowledgements: 50 μm MMF  ensure BLP >40 GHz×m to support high on-board data rates while maintaining low loss performance and without the need for any launch conditioning.
  • 15. References [1] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” in IBM Journal of Research and Development, Vol. 49, pp. 755–775 (2005). [2] J. Chen, N. Bamiedakis, P. Vasil’ev, T. Edwards, C. Brown, R. Penty, and I. White, “High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-board High-Speed Optical Interconnects,” Journal of Lightwave Technology, vol. 34, no. 12, pp. 2934–2940 (2015). [3] N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “High-Bandwidth and Low-Loss Multimode Polymer Waveguides and Waveguide Components for High-Speed Board-Level Optical Interconnects,” in Photonics West conference, Proceeding of SPIE, vol. 9753, pp. 975304–1–9 (2016). [4] N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s Data Transmission Over a 1 m Long Multimode Polymer Spiral Waveguide for Board-Level Optical Interconnects,” Journal of Lightwave Technology, vol. 33, no. 4, pp. 882–888 (2014). [5] J. Chen, N. Bamiedakis, T. J. Edwards, C. T. A. Brown, R. V Penty, and I. H. White, “Dispersion Studies on Multimode Polymer Spiral Waveguides for Board-Level Optical Interconnects,” in Optical Interconnects Conference (OIC), p. MD2 (2015). [6] J. Chen, N. Bamiedakis, P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “Graded-Index Polymer Multimode Waveguides for 100 Gb/s Board-Level Data Transmission,” in European Conference on Optical Communication (ECOC), Mo.3.2.3 (2015). [7] Z. Haas and M.A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” in Journal of Lightwave Technology, Vol. 11, pp. 1125–1131 (1993). [8] B. A. Dorin and W.N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” in Optics Express, Vol. 22, pp. 4547–4558 (2014). [9] J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” in Optics Letters, Vol. 37, no. 19, pp. 3990–3992 (2012). [10] B.W. Swatowski, C.M. Amb, M.G. Hyer, R.S. John, W. Ken Weidner, “Graded index silicone waveguides for high performance computing,” in OIC, WD2, San Diego (2014). [11] A. Hashim, N. Bamiedakis, R.V. Penty and I.H. White, “Multimode Polymer Waveguide Components for Complex On-Board Optical Topologies”, in Journal of Lightwave Technology, Vol. 31, no. 24, pp. 3962–3969 (2013).