SlideShare a Scribd company logo
1 of 11
Download to read offline
A non-local linear dynamical system and
violation of Bell’s inequality
Renzo Mosetti∗
University of Trieste
Department of Mathematics and Geoscience, Via Weiss, 4, 34127, Trieste, ITALY
February 23, 2018
Abstract A simple classical non-local dynamical system with random
initial conditions and an output projecting the state variable on selected axes
has been defined to mimic a two-channel quantum coincidence experiment.
Non-locality is introduced by a parameter connecting the initial conditions
to the selection of the projection axes. The statistics of the results shows
violations up to 100% of the Bell’s inequality, in the form of Clauser-Horne-
Shimony-Holt (CHSH), strongly depending on the non-locality parameter.
Discussions on the parallelism with Bohmian mechanics are given.
∗
rmosetti@inogs.it
1
arXiv:1802.08074v1[physics.gen-ph]21Feb2018
1 Introduction
The Bell inequality [1] [2] is a milestone in the development of the post EPR
[3] discussion on the completeness of Quantum Mechanics. The literature on
the subject is huge and laboratory experiments confirm the violation of the
inequality in the quantum world. Moreover, there are also several papers on
the occurrence of Bell’s inequalities violation in classical random systems [4],
[5], [6], [7], [8] . In this contest, the Accardi et al. papers, [9], [10] have raised
an animate debate due mainly by Gill ( [11], [12] ). Usually, the experiments
are based on computer randomness generation while in this paper we perform
correlation experiments much possible close to the concept of the evolution of
a dynamical state which resembles the causal Bohmian interpretation of EPR
where initial conditions of the wave function appear to be crucial. In fact,
the complete Bohm theory [13] is based on a deterministic dynamics and one
could introduce randomness by randomizing the initial conditions according
to the well known Born’s rule. So, the randomness of the quantum theory
is due to our ignorance of initial conditions. The numerical experiment here
proposed lies within these lines. In the first paragraph a simple two dimen-
sional state-space dynamical system with a scalar output is defined. In the
second paragraph we define the experiment which mimics the behavior of the
quantum two-channel polarized photon experiment for testing the Clauser-
Horne-Shimony-Holt (CHSH) inequality [14] . The third paragraph contains
the set-up of the simulator and algorithm used to compute correlation among
measurement pairs. The fourth paragraph presents the obtained results in
terms of the statistics of the outputs. Finally, some conclusions and open
questions are given.
2 The state-space linear system model
Consider the following two-dimensional linear dynamical system in the state-
space representation:
˙X = AX
Y = CX
(1)
A =
0 1
−1 0
; C = cos(θ) sin(θ) ; XT
:= x1 x2
The formal solution for the state propagation starting with an initial condi-
tion: X0 := X(t = 0) is:
X(t) = X0etA
(2)
2
In this case, the solution is simply a sinusoidal wave. The output is the
projection of the state vector along the axis defined by θ:
y(t) = cos(θ) sin(θ)
x1(t)
x2(t)
(3)
3 The design of the experiment
The usual Alice and Bob perform separate measurements from the output y
of the system (1) at time t = t1 by choosing independently an angle θ.
The scheme is reported in Figure 1.
Figure 1: Scheme of the experiment: S can be considered as a source as well
as the black box containing the system state
The results coming from Alice measurements are labeled with {a} and
those from Bob with {b} .
In order to reproduce the typical measurements of a quantum system, we
define the measurements in the set {−1, +1} according to the following rule:
ai = sign[ya(t = t1)](i = 1, 2)
bi = sign[yb(t = t1)](i = 1, 2)
(4)
The idea is to test, by means of a series of experiments, whether it is pos-
sible to violate the Bell’s inequality by testing the experimental correlations
defined in a standard way as:
E = (N++ + N−− − N+− − N−+)/(N++ + N−− + N+− + N−+) (5)
Where: N++ means that (a = +1) ∧ (b = +1) and so on. Actually, being the
experiment a typical two-channel experiment, the CHSH inequality in the
following form is more suitable:
S = E(a1b1) − E(a1b2) + E(a2b1) + E(a2b2) 2 (6)
3
Furthermore, the derivation of the original Bell inequality assumes perfect
anticorrelation of entangled photon measurements in the EPR setup. The
CHSH inequality has the reputation of being superior for all purposes. It
is harder to violate and its derivation does not need anti-correlation. The
following hypotheses are assumed to derive the CHSH inequality :
Hidden variables: The results of any measurement on any individual sys-
tem are predetermined;
Non-Locality: It is well known that non-locality is necessary to reproduce
the quantum mechanics in a deterministic context. So, non-local effect are
here introduced in the initial conditions (hidden variables) by the following
rule:
x1(0) = r1 + λ cos(ϑ1);
x2(0) = r2 + λ cos(ϑ2);
where: r1 and r2 are Gaussian random noises with 0 mean and unitary vari-
ance; and λ cos(ϑ1) and λ cos(ϑ2) constitute the dependence of the initial
conditions on the chosen angle by both Bob and Alice experimental set-
ting. The violation of a Bell inequality guarantees that the observed outputs
are not predetermined and that they arise from entangled quantum systems
that possess intrinsic randomness. As for the standard tests for quantum
systems, the experiments consist on four sub-experiments (each for any cor-
relation pair) and the state model is the same both for Alice and Bob who
do not know the system state and perform the measurements separately at
the same time t1. To randomize the system, the initial condition of the state
variable X0 is picked-up from a normal distribution with zero mean and uni-
tary variance according to the non-local position described in the formula
above in every run of each sub-experiment. To obtain a significant statistics,
a large number of experiments have to be performed by iterating the pro-
cedure. In an algorithmic language, the process can be synthesized as follows:
Set λ
For n=1,Nmax
For i=1,M
Do [random X0, State propagation⇒ measurement a1 and b1]
end
Compute correlation according to (5)E(a1b1)
4
For i=1,M
Do [random X0, State propagation⇒ measurement a1 and b2]
end
Compute correlation E(a1b2)
For i=1,M
Do [random X0, State propagation⇒ measurement a2 and b1]
end
Compute correlation E(a2b1)
For i=1,M
Do [random X0, State propagation⇒ measurement a2 and b2]
end
Compute correlation E(a2b2)
Compute S(n)
end
Compute statistics on S
4 Running the model
We chose as angles for the coincidence measurements the ones which, accord-
ing to the quantum theory, give S = 2
√
2.
{θ} = {
π
2
, 0,
π
4
, −
π
4
} (7)
The importance of this configuration lies on the fact that it corresponds to
a situation which cannot be reproduced by a hidden variable theory. We have
performed 100 (Nmax) independent runs with M=100 yielding hundred mea-
surement pairs in each sub-experiment. The MathematicaTM
software has
been used for the simulations and for the statistical analyses of the outputs.
In what follows, the measurement pairs with respect to the chosen angles are
reported in details.
First coincidence measurements
a1 = sign[ya(t1)] = cos
π
2
sin
π
2
x1(t1)
x2(t1)
b1 = sign[yb(t1)] = cos
π
4
sin
π
4
x1(t1)
x2(t1)
(8)
5
Second coincidence measurements
a1 = sign[ya(t1)] = cos
π
2
sin
π
2
x1(t1)
x2(t1)
b2 = sign[yb(t1)] = cos −
π
4
sin −
π
4
x1(t1)
x2(t1)
(9)
Third coincidence measurements
a2 = sign[ya(t1)] = cos(0) sin(0)
x1(t1)
x2(t1)
b1 = sign[yb(t1)] = cos
π
4
sin
π
4
x1(t1)
x2(t1)
(10)
Fourth coincidence measurements
a2 = sign[ya(t1)] = cos(0) sin(0)
x1(t1)
x2(t1)
b2 = sign[yb(t1)] = cos −
π
4
sin −
π
4
x1(t1)
x2(t1)
(11)
4.1 Results: CHSH inequality violation
For each selected values of 0 ≤ λ ≤ 10 the process, as described above, has
been run and the results obtained of the overall expected value of S and on
the percentage of CHSH violations and are reported in the Figures 2 and 3
respectively. By performing several runs, also by increasing the number M
of measurements pairs and the number of iterations, the overall statistics do
not show any significant variation.
6
Figure 2: S mean values as a function of λ
Figure 3: Percentage of violation as a function of λ
Furthermore, the following figures show the statistics of the run with
λ = 2 corresponding to the maximum value of the average of S i.e. S = 2.62
with a standard deviation STD(S) = 0.12. Note that this value is not to far
from the quantum value S = 2
√
2 2.83.
7
Figure 4: Iteration number and corresponding S value (λ = 2)
Figure 5: Histogram of the values of S violating the CHSH inequality (λ = 2)
Figure 6: Correlation values of the maximal violation (S = 2.94) of CHSH
inequality (λ = 2)
8
If we look to Fig. 2 and 3, we notice that for an experiment forced to
locality i.e. λ = 0, the expectation value is 2, and 50% of the runs violate
the inequality. This is expected from the completely random nature of the
output (Fig. 7). As the effect of non-locality affects the initial condition
the violation is growing up to the maximum value for S mean corresponding
to λ = 2. By further increasing λ a decay on violation up to 0 percentage
and again an average value of S equal to 2 is obtained. This because the
randomness of initial conditions are negligible and the system becomes a
causal deterministic system yielding the upper limit of the CHSH inequality.
Figure 7: Iteration number and corresponding S value for λ = 0
5 Conclusions
We do not want to force any ”philosophical” speculation on the results. It
is well known that an impenetrable wall separating Quantum from Classical
Mechanics does exist. We simply enumerate the following facts.
Coincidence measurements from a deterministic but non-local and simple
linear dynamical model with random initial conditions show violations of
the CHSH inequality up to hundred percent of coincidence measurements
and the statistics of the results are robust against the large number of re-
peated experiments and the number of the measurement values. In the case
of locality the results are in agreement with other random simulations. As
Gill pointed out,: ”it is easy to make simulation models of local realistic
loophole free CHSH-type experiments which violate CHSH i.e. the mean
value of S is 2 and half the time the experiment gives a larger result and
half the time it gives a smaller result” (https://pubpeer.com/publications
/B087561066AD645C5348ADC2E4CF1C). The approach of our experiment
is to mimic through a simple dynamical system some aspects of the Bohmian
9
mechanics. Bohmian mechanics is a deterministic theory where a probabilis-
tic element is introduced as probability is introduced into classical mechan-
ics. The observer does not possess the full information about the true initial
configuration of the system, but rather he has to retreat to a probability den-
sity. (See for example: [15] for a criticism of Bohmian theory). Of course,
we cannot conclude that our results might imply adequacy or inadequacy of
Bohmian point of view.
References
[1] Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics(3),
195–200 (1964); reprinted in Bell,J.S. Speakable and Unspeakable in
Quantum Mechanics. 2nd ed., Cambridge: Cambridge University.
[2] Bell, J.S.: On the problem of hidden variables in quantum mechanics.
Rev. Mod. Phys. 38, 447–452 (1966).
[3] Einstein, A.; Podolsky, B.; Rosen, N.: Can Quantum-Mechanical De-
scription of Physical Reality be Considered Complete? Phys. Rev.
47(10), 777-780 (1935).
[4] Aerts, D., 1982, Example of a macroscopical situation that violates Bell
inequalities”, Lett. Nuovo Cim., 34, 107.
[5] Aerts, D. and Durt, T., 1994, Quantum. classical and intermediate, an
illustrative example”, Found. Phys. 24, 1353 - 1368.
[6] J. Kofler and C. Brukner, Conditions for Quantum Violation of Macro-
scopic Realism, Phys. Rev. Lett. 101, 090403 (2008).
[7] Vongehr, S.: Quantum Randi Challenge and Didactic Randi Challenges
arxiv.org/abs/1207.5294v3 (2012).
[8] L. Clemente and J. Kofler, Necessary and sufficient conditions for macro-
scopic realism from quantum mechanics, Phys. Rev. A 91, 062103 (2015).
[9] Luigi Accardi, Massimo Regoli:Locality and Bell’s inequality. Preprint
Volterra, N. 427 (2000) quant-ph/0007005; an extended version of this
paper, including the description of the present experimen will appear
in the proceedings of the conference Foundations of Probability and
Physics, Vaxjo University, Sweden, November 27 - December 1 (2000),
A. Khrennikov (ed.), World Scientific (2001).
10
[10] L.Accardi, K.Imafuku, M.Regoli: On the physical meaning of the
EPR–chameleon experiment, Infinite dimensional analysis, quantum
probability and related topics, 5 N. 1 (2002) 1–20; quant-ph/0112067.
[11] Gill, R.D.: Time, Finite Statistics, and Bell’s Fifth Position. In Proc.
of Foundation of Probability and Physics – 2 Ser. Math. Modelling in
Phys., Engin. And Cogn. Sci, 5, (2002) pp. 179-206. Vaxjo Univ. Press,
(2003).
[12] Gill, R.D.; Larsson, J.A.: Accardi contra Bell (cum mundi): The impos-
sible coupling. In Mathematical Statistics and Applications: Festschrift
for Constance van Eeden. Eds: M. Moore, S. Froda and C. L’eger, pp.
133-154. IMS Lecture Notes, Monograph Series 42, Institute of Mathe-
matical Statistics, Beachwood, Ohio (2003).
[13] Bohm, D., 1951, Quantum Theory, Prentice-Hall, Englewood Cliffs, New
York.
[14] Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A.: Proposed Ex-
periment to Test Local Hidden-Variables Theories. Phys. Rev. Lett. 23,
880-884 (1969).
[15] Kim Joris Bostrom, Is Bohmian Mechanics an empirically adequate the-
ory? arXiv:1503.00201v2 [quant-ph] (2015).
11

More Related Content

What's hot

M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...
M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...
M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...Project KRIT
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsTeja Ande
 
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Chyi-Tsong Chen
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
Gauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial PivotingGauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial PivotingSM. Aurnob
 
Iterativos Methods
Iterativos MethodsIterativos Methods
Iterativos MethodsJeannie
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...Facultad de Informática UCM
 
An Improvement to the Brent’s Method
An Improvement to the Brent’s MethodAn Improvement to the Brent’s Method
An Improvement to the Brent’s MethodWaqas Tariq
 
Iterative methods
Iterative methodsIterative methods
Iterative methodsKt Silva
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Autocorrelation- Detection- part 1- Durbin-Watson d test
Autocorrelation- Detection- part 1- Durbin-Watson d testAutocorrelation- Detection- part 1- Durbin-Watson d test
Autocorrelation- Detection- part 1- Durbin-Watson d testShilpa Chaudhary
 
Direct Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfDirect Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfMarcela Carrillo
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 
Matlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@tajMatlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@tajTajim Md. Niamat Ullah Akhund
 

What's hot (20)

M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...
M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...
M.G.Goman, A.V.Khramtsovsky (1997) - Global Stability Analysis of Nonlinear A...
 
Es272 ch3b
Es272 ch3bEs272 ch3b
Es272 ch3b
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 01 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
Ch08 1
Ch08 1Ch08 1
Ch08 1
 
Integration
IntegrationIntegration
Integration
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Nsm
Nsm Nsm
Nsm
 
Gauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial PivotingGauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial Pivoting
 
Iterativos Methods
Iterativos MethodsIterativos Methods
Iterativos Methods
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
 
An Improvement to the Brent’s Method
An Improvement to the Brent’s MethodAn Improvement to the Brent’s Method
An Improvement to the Brent’s Method
 
Iterative methods
Iterative methodsIterative methods
Iterative methods
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Autocorrelation- Detection- part 1- Durbin-Watson d test
Autocorrelation- Detection- part 1- Durbin-Watson d testAutocorrelation- Detection- part 1- Durbin-Watson d test
Autocorrelation- Detection- part 1- Durbin-Watson d test
 
Direct Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfDirect Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems Of
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
Matlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@tajMatlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@taj
 

Similar to A non local linear dynamical system and violation of Bell’s inequality.

Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Charlton Inao
 
11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...Alexander Decker
 
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...Pourya Jafarzadeh
 
A Numerical Method For Friction Problems With Multiple Contacts
A Numerical Method For Friction Problems With Multiple ContactsA Numerical Method For Friction Problems With Multiple Contacts
A Numerical Method For Friction Problems With Multiple ContactsJoshua Gorinson
 
from_data_to_differential_equations.ppt
from_data_to_differential_equations.pptfrom_data_to_differential_equations.ppt
from_data_to_differential_equations.pptashutoshvb1
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionbutest
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionbutest
 
Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...ANIRBANMAJUMDAR18
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Alexander Litvinenko
 
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaSolution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaLong Beach City College
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionijscmcj
 
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...ijcsa
 
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...Katie Naple
 

Similar to A non local linear dynamical system and violation of Bell’s inequality. (20)

Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...11.a family of implicit higher order methods for the numerical integration of...
11.a family of implicit higher order methods for the numerical integration of...
 
Online Signals and Systems Assignment Help
Online Signals and Systems Assignment HelpOnline Signals and Systems Assignment Help
Online Signals and Systems Assignment Help
 
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...
A-Hybrid-Approach-Using-Particle-Swarm-Optimization-and-Simulated-Annealing-f...
 
Project2
Project2Project2
Project2
 
A Numerical Method For Friction Problems With Multiple Contacts
A Numerical Method For Friction Problems With Multiple ContactsA Numerical Method For Friction Problems With Multiple Contacts
A Numerical Method For Friction Problems With Multiple Contacts
 
from_data_to_differential_equations.ppt
from_data_to_differential_equations.pptfrom_data_to_differential_equations.ppt
from_data_to_differential_equations.ppt
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognition
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognition
 
Nature16059
Nature16059Nature16059
Nature16059
 
Extrapolation
ExtrapolationExtrapolation
Extrapolation
 
Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...
 
Signals and Systems Assignment Help
Signals and Systems Assignment HelpSignals and Systems Assignment Help
Signals and Systems Assignment Help
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
 
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaSolution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
 
paper publication
paper publicationpaper publication
paper publication
 
An alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic functionAn alternative scheme for approximating a periodic function
An alternative scheme for approximating a periodic function
 
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
Sliding Mode Controller Design for Hybrid Synchronization of Hyperchaotic Che...
 
Week_10.2.pdf
Week_10.2.pdfWeek_10.2.pdf
Week_10.2.pdf
 
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...
A Parallel Direct Method For Solving Initial Value Problems For Ordinary Diff...
 

More from Fausto Intilla

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Fausto Intilla
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...Fausto Intilla
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...Fausto Intilla
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaFausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...Fausto Intilla
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Fausto Intilla
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Fausto Intilla
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaFausto Intilla
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Fausto Intilla
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Fausto Intilla
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Fausto Intilla
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Fausto Intilla
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Fausto Intilla
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Fausto Intilla
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Fausto Intilla
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereFausto Intilla
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Fausto Intilla
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Fausto Intilla
 

More from Fausto Intilla (20)

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivere
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.
 

Recently uploaded

GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 

Recently uploaded (20)

CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 

A non local linear dynamical system and violation of Bell’s inequality.

  • 1. A non-local linear dynamical system and violation of Bell’s inequality Renzo Mosetti∗ University of Trieste Department of Mathematics and Geoscience, Via Weiss, 4, 34127, Trieste, ITALY February 23, 2018 Abstract A simple classical non-local dynamical system with random initial conditions and an output projecting the state variable on selected axes has been defined to mimic a two-channel quantum coincidence experiment. Non-locality is introduced by a parameter connecting the initial conditions to the selection of the projection axes. The statistics of the results shows violations up to 100% of the Bell’s inequality, in the form of Clauser-Horne- Shimony-Holt (CHSH), strongly depending on the non-locality parameter. Discussions on the parallelism with Bohmian mechanics are given. ∗ rmosetti@inogs.it 1 arXiv:1802.08074v1[physics.gen-ph]21Feb2018
  • 2. 1 Introduction The Bell inequality [1] [2] is a milestone in the development of the post EPR [3] discussion on the completeness of Quantum Mechanics. The literature on the subject is huge and laboratory experiments confirm the violation of the inequality in the quantum world. Moreover, there are also several papers on the occurrence of Bell’s inequalities violation in classical random systems [4], [5], [6], [7], [8] . In this contest, the Accardi et al. papers, [9], [10] have raised an animate debate due mainly by Gill ( [11], [12] ). Usually, the experiments are based on computer randomness generation while in this paper we perform correlation experiments much possible close to the concept of the evolution of a dynamical state which resembles the causal Bohmian interpretation of EPR where initial conditions of the wave function appear to be crucial. In fact, the complete Bohm theory [13] is based on a deterministic dynamics and one could introduce randomness by randomizing the initial conditions according to the well known Born’s rule. So, the randomness of the quantum theory is due to our ignorance of initial conditions. The numerical experiment here proposed lies within these lines. In the first paragraph a simple two dimen- sional state-space dynamical system with a scalar output is defined. In the second paragraph we define the experiment which mimics the behavior of the quantum two-channel polarized photon experiment for testing the Clauser- Horne-Shimony-Holt (CHSH) inequality [14] . The third paragraph contains the set-up of the simulator and algorithm used to compute correlation among measurement pairs. The fourth paragraph presents the obtained results in terms of the statistics of the outputs. Finally, some conclusions and open questions are given. 2 The state-space linear system model Consider the following two-dimensional linear dynamical system in the state- space representation: ˙X = AX Y = CX (1) A = 0 1 −1 0 ; C = cos(θ) sin(θ) ; XT := x1 x2 The formal solution for the state propagation starting with an initial condi- tion: X0 := X(t = 0) is: X(t) = X0etA (2) 2
  • 3. In this case, the solution is simply a sinusoidal wave. The output is the projection of the state vector along the axis defined by θ: y(t) = cos(θ) sin(θ) x1(t) x2(t) (3) 3 The design of the experiment The usual Alice and Bob perform separate measurements from the output y of the system (1) at time t = t1 by choosing independently an angle θ. The scheme is reported in Figure 1. Figure 1: Scheme of the experiment: S can be considered as a source as well as the black box containing the system state The results coming from Alice measurements are labeled with {a} and those from Bob with {b} . In order to reproduce the typical measurements of a quantum system, we define the measurements in the set {−1, +1} according to the following rule: ai = sign[ya(t = t1)](i = 1, 2) bi = sign[yb(t = t1)](i = 1, 2) (4) The idea is to test, by means of a series of experiments, whether it is pos- sible to violate the Bell’s inequality by testing the experimental correlations defined in a standard way as: E = (N++ + N−− − N+− − N−+)/(N++ + N−− + N+− + N−+) (5) Where: N++ means that (a = +1) ∧ (b = +1) and so on. Actually, being the experiment a typical two-channel experiment, the CHSH inequality in the following form is more suitable: S = E(a1b1) − E(a1b2) + E(a2b1) + E(a2b2) 2 (6) 3
  • 4. Furthermore, the derivation of the original Bell inequality assumes perfect anticorrelation of entangled photon measurements in the EPR setup. The CHSH inequality has the reputation of being superior for all purposes. It is harder to violate and its derivation does not need anti-correlation. The following hypotheses are assumed to derive the CHSH inequality : Hidden variables: The results of any measurement on any individual sys- tem are predetermined; Non-Locality: It is well known that non-locality is necessary to reproduce the quantum mechanics in a deterministic context. So, non-local effect are here introduced in the initial conditions (hidden variables) by the following rule: x1(0) = r1 + λ cos(ϑ1); x2(0) = r2 + λ cos(ϑ2); where: r1 and r2 are Gaussian random noises with 0 mean and unitary vari- ance; and λ cos(ϑ1) and λ cos(ϑ2) constitute the dependence of the initial conditions on the chosen angle by both Bob and Alice experimental set- ting. The violation of a Bell inequality guarantees that the observed outputs are not predetermined and that they arise from entangled quantum systems that possess intrinsic randomness. As for the standard tests for quantum systems, the experiments consist on four sub-experiments (each for any cor- relation pair) and the state model is the same both for Alice and Bob who do not know the system state and perform the measurements separately at the same time t1. To randomize the system, the initial condition of the state variable X0 is picked-up from a normal distribution with zero mean and uni- tary variance according to the non-local position described in the formula above in every run of each sub-experiment. To obtain a significant statistics, a large number of experiments have to be performed by iterating the pro- cedure. In an algorithmic language, the process can be synthesized as follows: Set λ For n=1,Nmax For i=1,M Do [random X0, State propagation⇒ measurement a1 and b1] end Compute correlation according to (5)E(a1b1) 4
  • 5. For i=1,M Do [random X0, State propagation⇒ measurement a1 and b2] end Compute correlation E(a1b2) For i=1,M Do [random X0, State propagation⇒ measurement a2 and b1] end Compute correlation E(a2b1) For i=1,M Do [random X0, State propagation⇒ measurement a2 and b2] end Compute correlation E(a2b2) Compute S(n) end Compute statistics on S 4 Running the model We chose as angles for the coincidence measurements the ones which, accord- ing to the quantum theory, give S = 2 √ 2. {θ} = { π 2 , 0, π 4 , − π 4 } (7) The importance of this configuration lies on the fact that it corresponds to a situation which cannot be reproduced by a hidden variable theory. We have performed 100 (Nmax) independent runs with M=100 yielding hundred mea- surement pairs in each sub-experiment. The MathematicaTM software has been used for the simulations and for the statistical analyses of the outputs. In what follows, the measurement pairs with respect to the chosen angles are reported in details. First coincidence measurements a1 = sign[ya(t1)] = cos π 2 sin π 2 x1(t1) x2(t1) b1 = sign[yb(t1)] = cos π 4 sin π 4 x1(t1) x2(t1) (8) 5
  • 6. Second coincidence measurements a1 = sign[ya(t1)] = cos π 2 sin π 2 x1(t1) x2(t1) b2 = sign[yb(t1)] = cos − π 4 sin − π 4 x1(t1) x2(t1) (9) Third coincidence measurements a2 = sign[ya(t1)] = cos(0) sin(0) x1(t1) x2(t1) b1 = sign[yb(t1)] = cos π 4 sin π 4 x1(t1) x2(t1) (10) Fourth coincidence measurements a2 = sign[ya(t1)] = cos(0) sin(0) x1(t1) x2(t1) b2 = sign[yb(t1)] = cos − π 4 sin − π 4 x1(t1) x2(t1) (11) 4.1 Results: CHSH inequality violation For each selected values of 0 ≤ λ ≤ 10 the process, as described above, has been run and the results obtained of the overall expected value of S and on the percentage of CHSH violations and are reported in the Figures 2 and 3 respectively. By performing several runs, also by increasing the number M of measurements pairs and the number of iterations, the overall statistics do not show any significant variation. 6
  • 7. Figure 2: S mean values as a function of λ Figure 3: Percentage of violation as a function of λ Furthermore, the following figures show the statistics of the run with λ = 2 corresponding to the maximum value of the average of S i.e. S = 2.62 with a standard deviation STD(S) = 0.12. Note that this value is not to far from the quantum value S = 2 √ 2 2.83. 7
  • 8. Figure 4: Iteration number and corresponding S value (λ = 2) Figure 5: Histogram of the values of S violating the CHSH inequality (λ = 2) Figure 6: Correlation values of the maximal violation (S = 2.94) of CHSH inequality (λ = 2) 8
  • 9. If we look to Fig. 2 and 3, we notice that for an experiment forced to locality i.e. λ = 0, the expectation value is 2, and 50% of the runs violate the inequality. This is expected from the completely random nature of the output (Fig. 7). As the effect of non-locality affects the initial condition the violation is growing up to the maximum value for S mean corresponding to λ = 2. By further increasing λ a decay on violation up to 0 percentage and again an average value of S equal to 2 is obtained. This because the randomness of initial conditions are negligible and the system becomes a causal deterministic system yielding the upper limit of the CHSH inequality. Figure 7: Iteration number and corresponding S value for λ = 0 5 Conclusions We do not want to force any ”philosophical” speculation on the results. It is well known that an impenetrable wall separating Quantum from Classical Mechanics does exist. We simply enumerate the following facts. Coincidence measurements from a deterministic but non-local and simple linear dynamical model with random initial conditions show violations of the CHSH inequality up to hundred percent of coincidence measurements and the statistics of the results are robust against the large number of re- peated experiments and the number of the measurement values. In the case of locality the results are in agreement with other random simulations. As Gill pointed out,: ”it is easy to make simulation models of local realistic loophole free CHSH-type experiments which violate CHSH i.e. the mean value of S is 2 and half the time the experiment gives a larger result and half the time it gives a smaller result” (https://pubpeer.com/publications /B087561066AD645C5348ADC2E4CF1C). The approach of our experiment is to mimic through a simple dynamical system some aspects of the Bohmian 9
  • 10. mechanics. Bohmian mechanics is a deterministic theory where a probabilis- tic element is introduced as probability is introduced into classical mechan- ics. The observer does not possess the full information about the true initial configuration of the system, but rather he has to retreat to a probability den- sity. (See for example: [15] for a criticism of Bohmian theory). Of course, we cannot conclude that our results might imply adequacy or inadequacy of Bohmian point of view. References [1] Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics(3), 195–200 (1964); reprinted in Bell,J.S. Speakable and Unspeakable in Quantum Mechanics. 2nd ed., Cambridge: Cambridge University. [2] Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). [3] Einstein, A.; Podolsky, B.; Rosen, N.: Can Quantum-Mechanical De- scription of Physical Reality be Considered Complete? Phys. Rev. 47(10), 777-780 (1935). [4] Aerts, D., 1982, Example of a macroscopical situation that violates Bell inequalities”, Lett. Nuovo Cim., 34, 107. [5] Aerts, D. and Durt, T., 1994, Quantum. classical and intermediate, an illustrative example”, Found. Phys. 24, 1353 - 1368. [6] J. Kofler and C. Brukner, Conditions for Quantum Violation of Macro- scopic Realism, Phys. Rev. Lett. 101, 090403 (2008). [7] Vongehr, S.: Quantum Randi Challenge and Didactic Randi Challenges arxiv.org/abs/1207.5294v3 (2012). [8] L. Clemente and J. Kofler, Necessary and sufficient conditions for macro- scopic realism from quantum mechanics, Phys. Rev. A 91, 062103 (2015). [9] Luigi Accardi, Massimo Regoli:Locality and Bell’s inequality. Preprint Volterra, N. 427 (2000) quant-ph/0007005; an extended version of this paper, including the description of the present experimen will appear in the proceedings of the conference Foundations of Probability and Physics, Vaxjo University, Sweden, November 27 - December 1 (2000), A. Khrennikov (ed.), World Scientific (2001). 10
  • 11. [10] L.Accardi, K.Imafuku, M.Regoli: On the physical meaning of the EPR–chameleon experiment, Infinite dimensional analysis, quantum probability and related topics, 5 N. 1 (2002) 1–20; quant-ph/0112067. [11] Gill, R.D.: Time, Finite Statistics, and Bell’s Fifth Position. In Proc. of Foundation of Probability and Physics – 2 Ser. Math. Modelling in Phys., Engin. And Cogn. Sci, 5, (2002) pp. 179-206. Vaxjo Univ. Press, (2003). [12] Gill, R.D.; Larsson, J.A.: Accardi contra Bell (cum mundi): The impos- sible coupling. In Mathematical Statistics and Applications: Festschrift for Constance van Eeden. Eds: M. Moore, S. Froda and C. L’eger, pp. 133-154. IMS Lecture Notes, Monograph Series 42, Institute of Mathe- matical Statistics, Beachwood, Ohio (2003). [13] Bohm, D., 1951, Quantum Theory, Prentice-Hall, Englewood Cliffs, New York. [14] Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A.: Proposed Ex- periment to Test Local Hidden-Variables Theories. Phys. Rev. Lett. 23, 880-884 (1969). [15] Kim Joris Bostrom, Is Bohmian Mechanics an empirically adequate the- ory? arXiv:1503.00201v2 [quant-ph] (2015). 11