SlideShare a Scribd company logo
1 of 5
* GB780080 (A)
Description: GB780080 (A) ? 1957-07-31
Manufacture of hydrogen cyanide
Description of GB780080 (A)
A high quality text as facsimile in your desired language may be available
amongst the following family members:
FR1110171 (A)
FR1110171 (A) less
Translate this text into Tooltip
[79][(1)__Select language]
Translate this text into
The EPO does not accept any responsibility for the accuracy of data
and information originating from other authorities than the EPO; in
particular, the EPO does not guarantee that they are complete,
up-to-date or fit for specific purposes.
PATENT SPECIFICATION
Date of Application and filing Complete Specification: Oct. 18, 1954.
Application made in Germany on Oct. 19, 1953.
Complete Specification Published: July 31, 1957.
780,080 No. 29984/54.
Index at acceptance:-Classes 1(2), F1U(3A:12); 39(3), H(1A:2A:3E1);
and 90, K(4:5).
International Classification:-CO1b, c, H05b.
COMPLETE SPECIFICATION
Manufacture of Hydrogen Cyanide We, KNAPSACK-GRIESHEiM
AicTIENGESELLSCHAFT, a Body Corporate organised under the Laws of
Germany, of Knapsack bei K8ln, Germany, do hereby declare the
invention, for which we pray that a patent may be granted to us, and
the method by which it is to be performed to be particularly described
in and by the following statement:-
The present invention relates to' a process for preparing hydrogen
cyanide.
It is already known to convert hydrocarbons with ammonia, in the
presence of noble metal catalysts and in the absence of oxygen, into
hydrogen cyanide, while simultaneously obtaining hydrogen. The process
involves, however, technical difficulties as regards the supply of the
heat required for the reaction. Furthermore, the noble metal catalyst
is not easy to handle and rather 20expensive, especially since in the
long run losses in the noble metal occur.
It is further known that hydrogen cyanide can be obtained from
hydrocarbons and ammonia at temperatures of above 1150C.
in the absence of catalysts in a smooth-walled reaction tube with the
application of a rapid current of gas, using more than 1 mol of
ammonia per gram-atom of carbon present in the hydrocarbon. This
process, however, requires the application of large quantities of heat
which must be transferred very rapidly to the starting mixture by
means of very large heat exchanging surfaces, that is to say, very
narrow tubes, in practice. The time of stay of the gas in the reaction
zone, i.e., in the tubes, must be very short, otherwise the hydrogen
cyanide obtained decomposes. The short time of stay assumes that the
starting materials are conducted rapidly through the reaction tubes,
whereby the rapid heating up of the starting mixture is impaired.
According to another known process the heat required for the reaction
is partially or completely obtained by combustion of a part of the
hydrocarbon. This process also [Price 3/ 61 involves great
difficulties as to apparatus.
Great losses in material occur and there is a danger that the hydrogen
cyanide obtained may be partially saponified by the reaction water
accumulating. 50 Furthermore, some processes are known which describe
the preparation of hydrogen cyanide from hydrocarbons, nitrogen and
hydrogen in an electric arc. These processes provide, however, only
very small yields with 55 respect to energy and in many cases very
small yields of material.
The present invention is based on the observation that these
disadvantages in the preparation of hydrogen cyanide can be 60 avoided
by passing low molecular weight aliphatic hydrocarbons containing 1-4
carbon atoms and at most 1 olefinic bond, together with ammonia
through an electric arc, while using 0.5 to 1.2 and preferably about 1
mol 65 of ammonia per gram-atom of carbon present in the hydrocarbon.
There are preferably used, for example, about 2 mols of ammonia per
mol of ethane and about 4 mols of ammonia per mol of butane. The
reaction 70 time i.e., the time that the gas actually is in the
electric arc ranges from 0.001 to 0.00002 second, a reaction time of
about 0.0001 second being most suitable. It is, however, necessary
that the resultant reaction mixture 75 containing larger quantities of
hydrogen in addition to hydrogen cyanide is cooled rapidly after it
has left the electric arc.
When larger amounts of hydrocarbon in relation to the ammonia are used
the formation of acteylene increases, whereas larger amounts of
ammonia give rise to an increased formation of nitrogen by
decomposition.
As starting hydrocarbons may be used low molecular weight
straight-chained or 85 branched aliphatic hydrocarbons, either
saturated or containing at most 1 olefinic bond and containing 1-4
carbon atoms; mixtures of these hydrocarbons, for example methane,
ethane, ethylene, propane, propyX 780,080 lene, butane, butylene,
isobutane or isobutylene; furthermore, natural mixtures of
hydrocarbons, such as natural gas, or mixtures of hydrocarbons
obtained in industry, such as 5gases obtained by hydrogenation
processes.
The reaction according to the invention can be carried out in a common
electric arc, for example between carbon electrodes or cooled metal
electrodes. It is of advantage but not necessary to use direct
current. The reaction is carried out at a low potential down to about
20 volts and a ratio of volt: ampere of about 1:10.
The process of the invention offers the advantage that the
difficulties in supplying the heat indispensable for the endothermic
formation of hydrogen cyanide can be avoided and that no expensive
noble metal catalyst which can be handled only with difficulty is
required. The value of the process is further enhanced by the large
quantities of valuable hydrogen obtained.
An apparatus suitable for use in carrying out the process of this
invention is shown diagrammatically by way of Example in the
accompanying drawing.
A mixture of about equimolecular quantities of ammonia and low
molecular weight hydrocarbons is passed through an electric arc
produced by two electrodes 1 and 2 at such a rate that the mixture is
exposed to the action of the arc for a period within the range from
0.001 to 0.00002 second. The electrode 1, which serves as cathode when
direct current is applied, has a borehole 4 through which the gas
mixture enters a walled-up iron case 3 cooled with water. The cooling
water is supplied through pipe 9 and led off through delivery pipe 10.
The two carbon electrodes are installed in the iron case 3 in such a
manner that no gas can escape. The reaction gases consisting of
hydrogen cyanide vapour, hydrogen and nonreacted gases are cooled down
to atmospheric temperature as quickly as possible in tube 5
constructed as a water cooler, tube 12 serving as supply pipe and tube
11 serving as delivery pipe for the cooling water. The gases are then
freed from any fine soot formed in a filter 6 provided with fillers or
glass wool, and the hydrogen cyanide is separated from the hydrogen in
washing tower 7 by dissolving out with water. The hydrogen cyanide may
also be separated in the form of sodium cyanide by washing it with
sodium hydroxide solution. The washing liquid is advantageously
circulated by means of pump 8. It enters the washing tower 7, which is
charged with fillers, at 13 and leaves it at 14, and 60flows through
siphon 15 towards pump 8.
From supply vessel 16, a small amount of washing liquid continually
flows by way of siphon 17 into the washing tower 7. The amount of
washing liquid to be used is 65measured by a measuring device not
shown in the drawing and the regulating cock 18.
Par Fpassut with the introduction of the washing liquid from supply
vessel 16 into the washing tower 7, the cyanide or hydrogen cyanide
solution flows off at 19 and passes 70 through siphon 20. The hydrogen
formed in the course of the reaction leaves the washing tower by way
of conduit 22 fitted with a valve 21.
The following Exampnles are given for the 75 purpose of illustrating
the invention:
EXAMPLE 1.
A mixture of 200 normal litres of ammonia and 202 normal litres of
methane (normal litre meaning a litre at 0OC. under a pressure 80 of
760 millimetres of mercury), is passed, per hour, between the two
carbon electrodes 1 and 2 connected with a direct current source.
The mixture is passed at such a rate that it is exposed to the action
of the arc for not 85 more than about 0.0001 second. The potential
between the carbon electrodes is 32 volts.
The current strength amounts to 254 amperes.
Electrode 1 serving as cathode has a borehole 4, of a diameter of 8
millimetres, and 90 a diameter of 11 millimetres through which
reaction gases are introduced.
With an electrical output of 8-9 kWh an arc of about 4 millimetres is
produced. The reaction mixture bounds against the whitehot anode and
reacts there. The reaction gases are worked up as illustrated in the
accompanying drawing. In addition to large quantities of hydrogen,
about 245 grams of hydrogen cyanide are obtained per hour, 100 which
corresponds to an extent of conversion of more than 99 per cent,
calculated upon the ammonia.
EXAMPLE 2.
An apparatus is used which differs from 105 that described in Example
1 only in that the iron case 3 is fitted with three electrodes
arranged with respect to one another at an angle of 120 and supplied
with three-phase current. The potential amounts to 62 volts 110 and
the current strength to 250 amperes.
Through one of the electrodes which has a borehole of a diameter of
about 8 mm and a diameter of 25 mm similar to that of electrode 1
shown in the drawing a mixture of 115 1100 normal litres of ammonia
and 365 normal litres of propylene is introduced per hour into the
electric arc at such a rate that the reaction mixture is exposed to
the action of the electric arc for not more than 0.0001 120 second.
Since propylene contains 3 carbon atoms, the molecular proportions of
ammonia and propylene in the reaction mixture are 3:1. After having
passed the electric arc, the reaction mixture consisting of hydrogen
cyanide vapour, hydrogen, ammonia, nitrogen, small amounts of
acetylene, and soot, is worked up as described above. 742 Grams of
hydrogen cyanide and 18.8 grams of soot are obtained, the latter
having been 130 780,080 formed by partial decomposition of the
propylene. The yield of hydrogen cyanide amounts to about 55 per cent,
calculated upon the ammonia used. From the hydrogen cyanide solution
about 365 grams of ammonia are recovered, which corresponds to 43 per
cent of the ammonia used, and returned into the reaction apparatus so
that the total yield of material amounts to about 98 per cent.
calculated upon the ammonia.
* Sitemap
* Accessibility
* Legal notice
* Terms of use
* Last updated: 08.04.2015
* Worldwide Database
* 5.8.23.4; 93p

More Related Content

What's hot

Urea manufacturing process
Urea manufacturing processUrea manufacturing process
Urea manufacturing processAshvani Shukla
 
Chemical Cleaning of Boiler in a Thermal Power Plant
Chemical Cleaning of Boiler in a Thermal Power PlantChemical Cleaning of Boiler in a Thermal Power Plant
Chemical Cleaning of Boiler in a Thermal Power PlantSUDHEER KUMAR KALYANAM
 
Manufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processManufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processrita martin
 
Ammonia plant fundamentals
Ammonia plant fundamentalsAmmonia plant fundamentals
Ammonia plant fundamentalsPrem Baboo
 
Hydrogen production in refinery
Hydrogen production in refineryHydrogen production in refinery
Hydrogen production in refineryAnupam Basu
 
Anhydrous Ammonia
Anhydrous AmmoniaAnhydrous Ammonia
Anhydrous Ammoniajbgruver
 
U#3 BOILER CHEMICAL CLEANING.
U#3 BOILER CHEMICAL CLEANING.U#3 BOILER CHEMICAL CLEANING.
U#3 BOILER CHEMICAL CLEANING.Dilip Kumar
 
Developments in Ammonia Production Technology
Developments in Ammonia Production TechnologyDevelopments in Ammonia Production Technology
Developments in Ammonia Production TechnologyJahanzeb Khan
 
falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonationGuruprasad Rao
 
Process simulation of urea plant
Process simulation of urea plantProcess simulation of urea plant
Process simulation of urea plantGajanan Hange
 
Methanol Loop Start Up and Shut Down
Methanol Loop Start Up and Shut DownMethanol Loop Start Up and Shut Down
Methanol Loop Start Up and Shut DownGerard B. Hawkins
 
Manufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 saltsManufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 saltsSouvikbiswas52
 
Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balancebalas1943
 

What's hot (19)

Urea manufacturing process
Urea manufacturing processUrea manufacturing process
Urea manufacturing process
 
Ammonia CO2 Removal Systems
Ammonia CO2 Removal SystemsAmmonia CO2 Removal Systems
Ammonia CO2 Removal Systems
 
Chemical Cleaning of Boiler in a Thermal Power Plant
Chemical Cleaning of Boiler in a Thermal Power PlantChemical Cleaning of Boiler in a Thermal Power Plant
Chemical Cleaning of Boiler in a Thermal Power Plant
 
narendra VT SIT
narendra VT SITnarendra VT SIT
narendra VT SIT
 
Manufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processManufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's process
 
Ammonia plant fundamentals
Ammonia plant fundamentalsAmmonia plant fundamentals
Ammonia plant fundamentals
 
Hydrogen production in refinery
Hydrogen production in refineryHydrogen production in refinery
Hydrogen production in refinery
 
Anhydrous Ammonia
Anhydrous AmmoniaAnhydrous Ammonia
Anhydrous Ammonia
 
Kbr[1] report
Kbr[1] reportKbr[1] report
Kbr[1] report
 
U#3 BOILER CHEMICAL CLEANING.
U#3 BOILER CHEMICAL CLEANING.U#3 BOILER CHEMICAL CLEANING.
U#3 BOILER CHEMICAL CLEANING.
 
Developments in Ammonia Production Technology
Developments in Ammonia Production TechnologyDevelopments in Ammonia Production Technology
Developments in Ammonia Production Technology
 
falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonation
 
Orsat apparatus
Orsat apparatusOrsat apparatus
Orsat apparatus
 
Process simulation of urea plant
Process simulation of urea plantProcess simulation of urea plant
Process simulation of urea plant
 
Methanol Loop Start Up and Shut Down
Methanol Loop Start Up and Shut DownMethanol Loop Start Up and Shut Down
Methanol Loop Start Up and Shut Down
 
Manufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 saltsManufacturing process of n ox, hno3 and nh4 salts
Manufacturing process of n ox, hno3 and nh4 salts
 
Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balance
 
Industrial Ammonia Refrigeration Systems
Industrial Ammonia Refrigeration SystemsIndustrial Ammonia Refrigeration Systems
Industrial Ammonia Refrigeration Systems
 
Urea production prepared
Urea production preparedUrea production prepared
Urea production prepared
 

Viewers also liked

методические указания к практическим занятиям «основные понятия статистики и ...
методические указания к практическим занятиям «основные понятия статистики и ...методические указания к практическим занятиям «основные понятия статистики и ...
методические указания к практическим занятиям «основные понятия статистики и ...Иван Иванов
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...Иван Иванов
 
алгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые заданииалгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые заданииИван Иванов
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...Иван Иванов
 
методические указания по выполнению самостоятельной работы по дисциплине безо...
методические указания по выполнению самостоятельной работы по дисциплине безо...методические указания по выполнению самостоятельной работы по дисциплине безо...
методические указания по выполнению самостоятельной работы по дисциплине безо...Иван Иванов
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...Иван Иванов
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...Иван Иванов
 
методическая разработка к выполнению лабораторных работ по учебной дисциплине...
методическая разработка к выполнению лабораторных работ по учебной дисциплине...методическая разработка к выполнению лабораторных работ по учебной дисциплине...
методическая разработка к выполнению лабораторных работ по учебной дисциплине...Иван Иванов
 
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...лабораторный практикум по общей физике учебное пособие для студентов вузов, о...
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...Иван Иванов
 

Viewers also liked (18)

780108
780108780108
780108
 
780073
780073780073
780073
 
методические указания к практическим занятиям «основные понятия статистики и ...
методические указания к практическим занятиям «основные понятия статистики и ...методические указания к практическим занятиям «основные понятия статистики и ...
методические указания к практическим занятиям «основные понятия статистики и ...
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
 
780085
780085780085
780085
 
алгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые заданииалгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые задании
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
 
методические указания по выполнению самостоятельной работы по дисциплине безо...
методические указания по выполнению самостоятельной работы по дисциплине безо...методические указания по выполнению самостоятельной работы по дисциплине безо...
методические указания по выполнению самостоятельной работы по дисциплине безо...
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
 
780043
780043780043
780043
 
780101
780101780101
780101
 
780048
780048780048
780048
 
780054
780054780054
780054
 
780065
780065780065
780065
 
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...вестник южно уральского-государственного_университета._серия_компьютерные_тех...
вестник южно уральского-государственного_университета._серия_компьютерные_тех...
 
780058
780058780058
780058
 
методическая разработка к выполнению лабораторных работ по учебной дисциплине...
методическая разработка к выполнению лабораторных работ по учебной дисциплине...методическая разработка к выполнению лабораторных работ по учебной дисциплине...
методическая разработка к выполнению лабораторных работ по учебной дисциплине...
 
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...лабораторный практикум по общей физике учебное пособие для студентов вузов, о...
лабораторный практикум по общей физике учебное пособие для студентов вузов, о...
 

Similar to 780080

pdf on modern chemical manufacture (1).pdf
pdf on modern chemical manufacture (1).pdfpdf on modern chemical manufacture (1).pdf
pdf on modern chemical manufacture (1).pdfgovinda pathak
 
4646 4650.output
4646 4650.output4646 4650.output
4646 4650.outputj1075017
 
Industrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acidIndustrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acidTaha Siddiqui
 
5041 5045.output
5041 5045.output5041 5045.output
5041 5045.outputj1075017
 
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTIONBACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTIONAkshay Moholkar
 
Basic understanding of thermal power generation
Basic understanding of thermal power generationBasic understanding of thermal power generation
Basic understanding of thermal power generationSourav Jana
 
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...iosrjce
 
plasma arc reactor
plasma arc reactor plasma arc reactor
plasma arc reactor Sagar Savale
 
Styrene methods 2520of-2520-production
Styrene methods 2520of-2520-productionStyrene methods 2520of-2520-production
Styrene methods 2520of-2520-productionkioaudi
 
4746 4750.output
4746 4750.output4746 4750.output
4746 4750.outputj1075017
 
4991 4995.output
4991 4995.output4991 4995.output
4991 4995.outputj1075017
 
Question & answers on boiler, MED 06209
Question & answers on boiler, MED 06209Question & answers on boiler, MED 06209
Question & answers on boiler, MED 06209Godiva-marwa
 
4231 4235.output
4231 4235.output4231 4235.output
4231 4235.outputj1075017
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionnewarqadir51
 

Similar to 780080 (20)

780120
780120780120
780120
 
780120
780120780120
780120
 
pdf on modern chemical manufacture (1).pdf
pdf on modern chemical manufacture (1).pdfpdf on modern chemical manufacture (1).pdf
pdf on modern chemical manufacture (1).pdf
 
4646 4650.output
4646 4650.output4646 4650.output
4646 4650.output
 
Industrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acidIndustrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acid
 
5041 5045.output
5041 5045.output5041 5045.output
5041 5045.output
 
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTIONBACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION
 
Basic understanding of thermal power generation
Basic understanding of thermal power generationBasic understanding of thermal power generation
Basic understanding of thermal power generation
 
5316 5320.output
5316 5320.output5316 5320.output
5316 5320.output
 
5316 5320.output
5316 5320.output5316 5320.output
5316 5320.output
 
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...
Fullerenes Synthesis Using Fabricated Arc Discharge System with Relatively La...
 
B11s04
B11s04B11s04
B11s04
 
plasma arc reactor
plasma arc reactor plasma arc reactor
plasma arc reactor
 
Styrene methods 2520of-2520-production
Styrene methods 2520of-2520-productionStyrene methods 2520of-2520-production
Styrene methods 2520of-2520-production
 
4746 4750.output
4746 4750.output4746 4750.output
4746 4750.output
 
4991 4995.output
4991 4995.output4991 4995.output
4991 4995.output
 
Ch.2
Ch.2Ch.2
Ch.2
 
Question & answers on boiler, MED 06209
Question & answers on boiler, MED 06209Question & answers on boiler, MED 06209
Question & answers on boiler, MED 06209
 
4231 4235.output
4231 4235.output4231 4235.output
4231 4235.output
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and description
 

More from Иван Иванов

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Иван Иванов
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Иван Иванов
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношенийИван Иванов
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Иван Иванов
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеИван Иванов
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБИван Иванов
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...Иван Иванов
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиИван Иванов
 
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииИван Иванов
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Иван Иванов
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомИван Иванов
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Иван Иванов
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИван Иванов
 

More from Иван Иванов (20)

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношений
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применение
 
US2003165637A1
US2003165637A1US2003165637A1
US2003165637A1
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
 
1
11
1
 
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
 
Sdewsdweddes
SdewsdweddesSdewsdweddes
Sdewsdweddes
 
Us873655
Us873655Us873655
Us873655
 
5301 5305.output
5301 5305.output5301 5305.output
5301 5305.output
 
5296 5300.output
5296 5300.output5296 5300.output
5296 5300.output
 
5306 5310.output
5306 5310.output5306 5310.output
5306 5310.output
 

780080

  • 1. * GB780080 (A) Description: GB780080 (A) ? 1957-07-31 Manufacture of hydrogen cyanide Description of GB780080 (A) A high quality text as facsimile in your desired language may be available amongst the following family members: FR1110171 (A) FR1110171 (A) less Translate this text into Tooltip [79][(1)__Select language] Translate this text into The EPO does not accept any responsibility for the accuracy of data and information originating from other authorities than the EPO; in particular, the EPO does not guarantee that they are complete, up-to-date or fit for specific purposes. PATENT SPECIFICATION Date of Application and filing Complete Specification: Oct. 18, 1954. Application made in Germany on Oct. 19, 1953. Complete Specification Published: July 31, 1957. 780,080 No. 29984/54. Index at acceptance:-Classes 1(2), F1U(3A:12); 39(3), H(1A:2A:3E1); and 90, K(4:5). International Classification:-CO1b, c, H05b. COMPLETE SPECIFICATION Manufacture of Hydrogen Cyanide We, KNAPSACK-GRIESHEiM AicTIENGESELLSCHAFT, a Body Corporate organised under the Laws of Germany, of Knapsack bei K8ln, Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed to be particularly described in and by the following statement:- The present invention relates to' a process for preparing hydrogen
  • 2. cyanide. It is already known to convert hydrocarbons with ammonia, in the presence of noble metal catalysts and in the absence of oxygen, into hydrogen cyanide, while simultaneously obtaining hydrogen. The process involves, however, technical difficulties as regards the supply of the heat required for the reaction. Furthermore, the noble metal catalyst is not easy to handle and rather 20expensive, especially since in the long run losses in the noble metal occur. It is further known that hydrogen cyanide can be obtained from hydrocarbons and ammonia at temperatures of above 1150C. in the absence of catalysts in a smooth-walled reaction tube with the application of a rapid current of gas, using more than 1 mol of ammonia per gram-atom of carbon present in the hydrocarbon. This process, however, requires the application of large quantities of heat which must be transferred very rapidly to the starting mixture by means of very large heat exchanging surfaces, that is to say, very narrow tubes, in practice. The time of stay of the gas in the reaction zone, i.e., in the tubes, must be very short, otherwise the hydrogen cyanide obtained decomposes. The short time of stay assumes that the starting materials are conducted rapidly through the reaction tubes, whereby the rapid heating up of the starting mixture is impaired. According to another known process the heat required for the reaction is partially or completely obtained by combustion of a part of the hydrocarbon. This process also [Price 3/ 61 involves great difficulties as to apparatus. Great losses in material occur and there is a danger that the hydrogen cyanide obtained may be partially saponified by the reaction water accumulating. 50 Furthermore, some processes are known which describe the preparation of hydrogen cyanide from hydrocarbons, nitrogen and hydrogen in an electric arc. These processes provide, however, only very small yields with 55 respect to energy and in many cases very small yields of material. The present invention is based on the observation that these disadvantages in the preparation of hydrogen cyanide can be 60 avoided by passing low molecular weight aliphatic hydrocarbons containing 1-4 carbon atoms and at most 1 olefinic bond, together with ammonia through an electric arc, while using 0.5 to 1.2 and preferably about 1 mol 65 of ammonia per gram-atom of carbon present in the hydrocarbon. There are preferably used, for example, about 2 mols of ammonia per mol of ethane and about 4 mols of ammonia per mol of butane. The reaction 70 time i.e., the time that the gas actually is in the electric arc ranges from 0.001 to 0.00002 second, a reaction time of about 0.0001 second being most suitable. It is, however, necessary that the resultant reaction mixture 75 containing larger quantities of
  • 3. hydrogen in addition to hydrogen cyanide is cooled rapidly after it has left the electric arc. When larger amounts of hydrocarbon in relation to the ammonia are used the formation of acteylene increases, whereas larger amounts of ammonia give rise to an increased formation of nitrogen by decomposition. As starting hydrocarbons may be used low molecular weight straight-chained or 85 branched aliphatic hydrocarbons, either saturated or containing at most 1 olefinic bond and containing 1-4 carbon atoms; mixtures of these hydrocarbons, for example methane, ethane, ethylene, propane, propyX 780,080 lene, butane, butylene, isobutane or isobutylene; furthermore, natural mixtures of hydrocarbons, such as natural gas, or mixtures of hydrocarbons obtained in industry, such as 5gases obtained by hydrogenation processes. The reaction according to the invention can be carried out in a common electric arc, for example between carbon electrodes or cooled metal electrodes. It is of advantage but not necessary to use direct current. The reaction is carried out at a low potential down to about 20 volts and a ratio of volt: ampere of about 1:10. The process of the invention offers the advantage that the difficulties in supplying the heat indispensable for the endothermic formation of hydrogen cyanide can be avoided and that no expensive noble metal catalyst which can be handled only with difficulty is required. The value of the process is further enhanced by the large quantities of valuable hydrogen obtained. An apparatus suitable for use in carrying out the process of this invention is shown diagrammatically by way of Example in the accompanying drawing. A mixture of about equimolecular quantities of ammonia and low molecular weight hydrocarbons is passed through an electric arc produced by two electrodes 1 and 2 at such a rate that the mixture is exposed to the action of the arc for a period within the range from 0.001 to 0.00002 second. The electrode 1, which serves as cathode when direct current is applied, has a borehole 4 through which the gas mixture enters a walled-up iron case 3 cooled with water. The cooling water is supplied through pipe 9 and led off through delivery pipe 10. The two carbon electrodes are installed in the iron case 3 in such a manner that no gas can escape. The reaction gases consisting of hydrogen cyanide vapour, hydrogen and nonreacted gases are cooled down to atmospheric temperature as quickly as possible in tube 5 constructed as a water cooler, tube 12 serving as supply pipe and tube 11 serving as delivery pipe for the cooling water. The gases are then freed from any fine soot formed in a filter 6 provided with fillers or
  • 4. glass wool, and the hydrogen cyanide is separated from the hydrogen in washing tower 7 by dissolving out with water. The hydrogen cyanide may also be separated in the form of sodium cyanide by washing it with sodium hydroxide solution. The washing liquid is advantageously circulated by means of pump 8. It enters the washing tower 7, which is charged with fillers, at 13 and leaves it at 14, and 60flows through siphon 15 towards pump 8. From supply vessel 16, a small amount of washing liquid continually flows by way of siphon 17 into the washing tower 7. The amount of washing liquid to be used is 65measured by a measuring device not shown in the drawing and the regulating cock 18. Par Fpassut with the introduction of the washing liquid from supply vessel 16 into the washing tower 7, the cyanide or hydrogen cyanide solution flows off at 19 and passes 70 through siphon 20. The hydrogen formed in the course of the reaction leaves the washing tower by way of conduit 22 fitted with a valve 21. The following Exampnles are given for the 75 purpose of illustrating the invention: EXAMPLE 1. A mixture of 200 normal litres of ammonia and 202 normal litres of methane (normal litre meaning a litre at 0OC. under a pressure 80 of 760 millimetres of mercury), is passed, per hour, between the two carbon electrodes 1 and 2 connected with a direct current source. The mixture is passed at such a rate that it is exposed to the action of the arc for not 85 more than about 0.0001 second. The potential between the carbon electrodes is 32 volts. The current strength amounts to 254 amperes. Electrode 1 serving as cathode has a borehole 4, of a diameter of 8 millimetres, and 90 a diameter of 11 millimetres through which reaction gases are introduced. With an electrical output of 8-9 kWh an arc of about 4 millimetres is produced. The reaction mixture bounds against the whitehot anode and reacts there. The reaction gases are worked up as illustrated in the accompanying drawing. In addition to large quantities of hydrogen, about 245 grams of hydrogen cyanide are obtained per hour, 100 which corresponds to an extent of conversion of more than 99 per cent, calculated upon the ammonia. EXAMPLE 2. An apparatus is used which differs from 105 that described in Example 1 only in that the iron case 3 is fitted with three electrodes arranged with respect to one another at an angle of 120 and supplied with three-phase current. The potential amounts to 62 volts 110 and the current strength to 250 amperes. Through one of the electrodes which has a borehole of a diameter of
  • 5. about 8 mm and a diameter of 25 mm similar to that of electrode 1 shown in the drawing a mixture of 115 1100 normal litres of ammonia and 365 normal litres of propylene is introduced per hour into the electric arc at such a rate that the reaction mixture is exposed to the action of the electric arc for not more than 0.0001 120 second. Since propylene contains 3 carbon atoms, the molecular proportions of ammonia and propylene in the reaction mixture are 3:1. After having passed the electric arc, the reaction mixture consisting of hydrogen cyanide vapour, hydrogen, ammonia, nitrogen, small amounts of acetylene, and soot, is worked up as described above. 742 Grams of hydrogen cyanide and 18.8 grams of soot are obtained, the latter having been 130 780,080 formed by partial decomposition of the propylene. The yield of hydrogen cyanide amounts to about 55 per cent, calculated upon the ammonia used. From the hydrogen cyanide solution about 365 grams of ammonia are recovered, which corresponds to 43 per cent of the ammonia used, and returned into the reaction apparatus so that the total yield of material amounts to about 98 per cent. calculated upon the ammonia. * Sitemap * Accessibility * Legal notice * Terms of use * Last updated: 08.04.2015 * Worldwide Database * 5.8.23.4; 93p