SlideShare a Scribd company logo
1 of 5
* GB780120 (A)
Description: GB780120 (A)
No title available
Description of GB780120 (A)
=.. t
PATENT SPECIFICATION "
Inventor: JOHANNES AUGUSTINUS TE NUYL 780,120 Date of Application and
filing Complete Specification Oct. 27, 1955.
No. 30722/55.
Complete Specification Published July 31, 1957.
Index at acceptance.--Classes 55(1), B11; and 55(2), D2(E: F).
International Classification: -ClOb, j.
COMPLETE SPECIFICATION
SPECIFICATION NO. 780,120
In accordance with the Decision of the Superintending Exam.nlner,
acting for the Comptroller-General, dated the sixteenth day of
January, 1959, this specification has been amended under Section 14 in
the following manner:Page 1, line 17, for "always" read "generally,.
Page 1, line 61, after "Fig. 1., insert NSuch apparatus is the subject
of our Patent 703% 721".
Page 3, delete "lines 632-65".
Attention ls also directed to the following printer' s error.Page 1,
line 49, for,causes' read "cause".
THE PA1ENT OFFICE, 28th April, 1959 DB io9a1/2(1)/3759 1S0 4/9 R
PATiTS ACT, 1949 SPECIFICATION NO. 780, 120
In accordance with the Decision of the Superintending Examlner, acting
for the Comptroller-Ceneral, dated the sixteenth day of January, 1959,
this Specification has been amendedaunder Section 14 in the followlng
manner:Page 1, line 17, for "always" read 'generally".
Page 1, llne 61, after "Fig. 1." insert "Such apparatus is the subject
of our Patent 703,721.".
Page 3, delete lines 62-65.
THE PATENT OFFICE, mth February, 1959 DB 09413/1(4)/3732 150 2/59 R R
h PATENT SPECIFICATION
Inventor: JOHANNES AUGUSTINUS TE NUYL, 780. 120 t Date of Application
and filing Complete Specification Oct. 27, 1955.
No. 30722155.
Complete Specification Published July 31, 1957.
Index at acceptance -Classes 55(1), Bil; and 55(2), D2(E: F).
International Classification: -ClOb,j.
COMPLETE SPECIFICATION
Improvements in or relating to Processes for preparing Gas Mixtures
containing Hydrogen and Carbon Monoxide We, N. V. DE BATAAFSCHE
PETROLEUM t MAATSCHAPPIJ, a company organised under a the laws of The
Netherlands, of 30 Carel van t Bylandtlaan, The Hague, The
Netherlands, do 1 hereby declare the invention, for which we pray c
that a patent may be granted to us, and the c method by which it is to
be performed, to be particularly described in and by the following
statement: -
The present invention relates to processes for preparing gas mixtures
containing hydrogen i and carbon monoxide.
It is known to obtain, by partial combustion of hydrocarbon material a
gaseous mixture consisting mainly of hydrogen and carbon monoxide. The
gas mixtures obtained, hoWever, always contain soot, since, when there
is incomplete combustion, the formation of free carbon is practically
unavoidable, and this is a great drawback, for this soot usually has
to be separated from the gas mixture before the latter can be used,
e.g. for the purpose of synthesis.
A process has now been found for the partial combustion of gaseous,
liquid or solid (e.g.
asphalt) hydrocarbon material in which the resulting gas mixtures
containing hydrogen and carbon monoxide contain very little soot. If
desired also, the process may be applied to the partial combustion of
powdered coal. The new process is particularly important for the
partial combustion of high molecular hydrocarbons such as heavy oils
or asphalt, since hitherto there has been heavy soot formation in the
desired conversion of such products.
In a process according to the invention for preparing gas mixtures
containing hydrogen and carbon monoxide by partial combustion of
hydrocarbon material with oxygen-containing gas, the hydrocarbon
material is atomized and injected in the form of a hollow conical jet
coaxially into one end of a cylindrical or substantially cylindrical
combustion chamber the length of which is less than five times the
diameter, the oxygen-containing gas being introduced through an
opening at the same end of [Pick he combustion chamber as the conical
jet with L rotary motion about the axis such that two toroidal
vortices are formed inside the cornbustion chamber, which causes a
rapid mixing of the hydrocarbon material with the oxygencontaining gas
and a rapid rate of combustion, such that the combustion time is less
than 4 seconds, and the pressure in the combustion chamber being at
least 3 atmospheres.
Apparatus for carrying out a process according to the invention and a
specific example of its use will now be described by way of example
with reference to the accompanying drawing in which, Fig. 1 is a
longitudinal cross-section of the apparatus and Fig. 2 a vertical
crosssection on the line Il11- of Fig. 1.
As shown in Fig. 1, the apparatus comprises an atomizer holder 1 to
which the hydrocarbon material is supplied at one end as indicated by
the arrow 7. The hydrocarbon is atomized 65 by a whirl chamber
atomizer situated at the other end of the holder 1 and injected into
the combustion chamber 2 so as to form a hollow conical jet. Although
an atomizer operated by means of the fuel pressure alone is preferred,
70 since in this way a fine atomization can be obtained in a simple
manner, it is also possible to use an atomizer requiring a stream of
an auxiliary atomizing fluid such as air or steam, provided a hollow
conical jet is obtained. The 75 atomizer holder 1 is mounted in the
oxygen chamber 3 which is mainly cylindrical. The combustion chamber
2, also mainly cylindrical has walls of refractory material and
communicates with the oxygen chamber 3 through an 80 opening 5 which
has a diameter smaller than the diameter of the chambers 2 and 3. The
diameter of the oxygen chamber 3 should be 12-2 times as great as that
of the opening 5.
The combustion chamber 2 is provided with an 85 annular ridge 4 to
which the shape of the oxygen chamber 3 is adapted.
The atomizer is arranged in the oxygen chamber 3 in a position such
that the hollow conical jet of atomized hydrocarbon passes near 90
FWti'd' 7 :
- 1 t 1 - 1 780,120 the edge of the opening 5 on entering the
combustion chamber 2. This position will depend on the apex angle of
the cone which is determined by the properties of the hydrocarbon, the
construction of the atomizer and the pressure with which the fuel is
applied to it.
The oxygen chamber 3 is provided at its periphery with a number of
tangential slots or nozzles 9 (see Fig. 2) which are placed at 1u
regular intervals around the circumference and through which
oxygen-containing gas from the case 10 can flow tangentially into the
oxygen chamber 3. During operation oxygen-containing gas is introduced
into the case -10 at a suitable super-atmospheric pressure. Owing to
the tangential component of flow on entering the oxygen chamber 3, the
oxygen-containing gas flows with a rotary motion about the axis of the
chamber 3 towards the opening 5, and as the diameter of the opening is
smaller than that of the oxygen chamber, the speed of rotation
increases considerably as the gas flows towards the opening 5.
The result is that the conical jet of fuel in passing close to the
edge of the opening 5 is forcibly entrained by the stream of
oxygencontaining gas also entering the combustion chamber 2 through
the opening 5, and a very intimate mixing of the hydrocarbon and
oxygen-containing gas occurs, which promotes both ignition and
combustion in the combustion chamber 2. The w211 of the combustion
chamber 2 which, when the apparatus is operating, is hot, imparts heat
to the hydrocarbon by radiation and thus promotes the evaporation,
vaporization, ignition and combustion thereof. Moreover, the shape of
the chamber 2 is such that, as shown in the drawving, toroidal
vortices are formed both inside and outside 4C the conical fuel jet
which, particularly in the case of the outermost vortex situated near
the ridge 4, return an already burning mixture to the place where the
ignition has to occur and thus promote the ignition of the hydrocarbon
entering the combustion chamber 2.
A tube 6 is also provided which surrounds the atomizer holder 1. A
combustible gas can be supplied to the tube 6 through the inlet 8 and
can enter the air chamber around the atomizer nozzle. It has been
found that in the apparatus a combustible gas can be burnt either at
the same time as a liquid hydrocarbon or separately. The gaseous fuel
can be used when there is a temporary shortage of the liquid
hydrocarbon.
The oxygen-containing gas supplied preferably consists either of
substantially pure oxygen or air to which, if desired, additional
oxygen -has been- added.
The amount of oxygen to be used will, of course, have to be smaller
than the quantity required for a complete combustion of the
hydrocarbon. When heavier hydrocarbons are used as initial material,
the oxygen-containing gas used may be mixed with steam, before_ being
passed into the reaction chamber.
Usually a mixture of approximately equal parts by weight of oxygen and
steam is supplied for the partial combustion of heavy products.
Preferably approximately 1.25 kg of oxygen 70 are used per kg of
hydrocarbon.
The reaction is carried out at a temperature of from 1200-1500 C., and
preferably from 1300-1400 C. The pressure used is at least 3
atmospheres, and is preferably higher than 75 atmospheres. The
pressure used depends on the pressure at which the gas mixture formed
is further processed. Thus the combustion reaction is carried out at
elevated pressure if the gas mixture formed is used, for 80 example,
for an ammonia synthesis, which is carried out at a very high
pressure. When the pressure is greater than 3 atmospheres, the
advantage obtained is that the small amount of soot which is present
in the resulting gas mixture may be very easily removed by scrubbing
with water. The partial combustion lasts for less than 4 seconds. Such
a short reaction time is very important for the prevention of
undesired side reactions. The gas mixture 90 formed is preferably
rapidly cooled. Such a short reaction time is possible with the use of
the apparatus described above since there is an intimate mixing in the
reaction chamber immediately after the introduction of the reaction
components, and also an immediate combustion of the reaction mixture
obtained.
The specific gravity and viscosity of the heavier hydrocarbons to
which the invention is particularly applicable may vary between 10
wide limits. Thus the specific gravity may lie between approximately
0.90 and 1.05; the viscosity may vary between that of a gas oil and
that of an asphalt with a penetration of 10-20 at 25 C., as determined
by the Institute 10 of Petroleum's Standard Method IP 49/56 for
measuring the penetration of bitumen, which is set out at p 371-4 of "
Standard Methods for testing Petroleum and its Products " (16th
Edition) published by the Institute of 11 Petroleum. Heavy products of
this type are preheated before being atomized. The mixture of
oxygen-containing gas and steam supplied is also preferably preheated
before being fed into the combustion chamber 2. 11 EXAMPLE
An apparatus of the design shown in Figs.
I and II, the combustion chamber of which was cm long and had a
diameter of 40 cm, was used for the partial combustion of a high 12
sulphur residual fuel oil with a viscosity of 3500 sec. Redwood I at
37.80 C. Preheated oxygen and super-heated steam, preheated to about
400 C., were passed into the combustion chamber under a pressure of 20
atmos- 12 pheres and at a temperature of about 13000 C.
For each 100 kg of oil supplied 85 cubic metres (measured at N.T.P.)
of oxygen and 90 kg of steam were supplied to give 310 cubic metres
4a1 pressure in the combustion chamber being at 35 least 3
atmospheres.
* Sitemap
* Accessibility
* Legal notice
* Terms of use
* Last updated: 08.04.2015
* Worldwide Database
* 5.8.23.4; 93p

More Related Content

What's hot

falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonationGuruprasad Rao
 
Urea manufacturing process
Urea manufacturing processUrea manufacturing process
Urea manufacturing processAshvani Shukla
 
Manufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processManufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processrita martin
 
Typical questionnaire on "Boiler Draft" Related to Thermal Power Stations
Typical questionnaire on "Boiler Draft" Related to Thermal Power StationsTypical questionnaire on "Boiler Draft" Related to Thermal Power Stations
Typical questionnaire on "Boiler Draft" Related to Thermal Power StationsManohar Tatwawadi
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetGerard B. Hawkins
 
Evoparation
EvoparationEvoparation
EvoparationShivaram
 
Operation of urea fertilizers plant
Operation of urea fertilizers plantOperation of urea fertilizers plant
Operation of urea fertilizers plantPrem Baboo
 
4976 4980.output
4976 4980.output4976 4980.output
4976 4980.outputj1075017
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming FlowsheetsGerard B. Hawkins
 
4421 4425.output
4421 4425.output4421 4425.output
4421 4425.outputj1075017
 
F E R T I L I Z E R I N D U S T R Y L E C T U R E 1
F E R T I L I Z E R  I N D U S T R Y  L E C T U R E 1F E R T I L I Z E R  I N D U S T R Y  L E C T U R E 1
F E R T I L I Z E R I N D U S T R Y L E C T U R E 1Rishi Yadav
 

What's hot (20)

Ammonia
AmmoniaAmmonia
Ammonia
 
Boiler equipments
Boiler equipmentsBoiler equipments
Boiler equipments
 
Final Year Project Presentation
Final Year Project PresentationFinal Year Project Presentation
Final Year Project Presentation
 
falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonation
 
Urea manufacturing process
Urea manufacturing processUrea manufacturing process
Urea manufacturing process
 
Manufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's processManufacturing of ammonia using haber's process
Manufacturing of ammonia using haber's process
 
Typical questionnaire on "Boiler Draft" Related to Thermal Power Stations
Typical questionnaire on "Boiler Draft" Related to Thermal Power StationsTypical questionnaire on "Boiler Draft" Related to Thermal Power Stations
Typical questionnaire on "Boiler Draft" Related to Thermal Power Stations
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section Flowsheet
 
Evoparation
EvoparationEvoparation
Evoparation
 
Operation of urea fertilizers plant
Operation of urea fertilizers plantOperation of urea fertilizers plant
Operation of urea fertilizers plant
 
4976 4980.output
4976 4980.output4976 4980.output
4976 4980.output
 
Turbine aux
Turbine auxTurbine aux
Turbine aux
 
5501 5505.output
5501 5505.output5501 5505.output
5501 5505.output
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming Flowsheets
 
Oil tankers
Oil tankersOil tankers
Oil tankers
 
E04413040
E04413040E04413040
E04413040
 
1 combustion chamber-jet engine
1 combustion chamber-jet engine1 combustion chamber-jet engine
1 combustion chamber-jet engine
 
Distillation
DistillationDistillation
Distillation
 
4421 4425.output
4421 4425.output4421 4425.output
4421 4425.output
 
F E R T I L I Z E R I N D U S T R Y L E C T U R E 1
F E R T I L I Z E R  I N D U S T R Y  L E C T U R E 1F E R T I L I Z E R  I N D U S T R Y  L E C T U R E 1
F E R T I L I Z E R I N D U S T R Y L E C T U R E 1
 

Similar to 780120

Similar to 780120 (20)

780148
780148780148
780148
 
4991 4995.output
4991 4995.output4991 4995.output
4991 4995.output
 
5491 5495.output
5491 5495.output5491 5495.output
5491 5495.output
 
5491 5495.output
5491 5495.output5491 5495.output
5491 5495.output
 
hydrogen-gas-burner-4421474.pdf
hydrogen-gas-burner-4421474.pdfhydrogen-gas-burner-4421474.pdf
hydrogen-gas-burner-4421474.pdf
 
780080
780080780080
780080
 
780080
780080780080
780080
 
780080
780080780080
780080
 
780052
780052780052
780052
 
780052
780052780052
780052
 
780052
780052780052
780052
 
228741271 combustion-chamber
228741271 combustion-chamber228741271 combustion-chamber
228741271 combustion-chamber
 
G031202036040
G031202036040G031202036040
G031202036040
 
5586 5590.output
5586 5590.output5586 5590.output
5586 5590.output
 
Presentation:COMBUSTION CHAMBER
Presentation:COMBUSTION CHAMBERPresentation:COMBUSTION CHAMBER
Presentation:COMBUSTION CHAMBER
 
Investigation on evaporative emission from a gasoline
Investigation on evaporative emission from a gasolineInvestigation on evaporative emission from a gasoline
Investigation on evaporative emission from a gasoline
 
Industrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acidIndustrial manufacturing of Nitric acid
Industrial manufacturing of Nitric acid
 
5046 5050.output
5046 5050.output5046 5050.output
5046 5050.output
 
Investigation on evaporative emission from a gasoline polycarbonate fuel tank
Investigation on evaporative emission from a gasoline polycarbonate fuel tankInvestigation on evaporative emission from a gasoline polycarbonate fuel tank
Investigation on evaporative emission from a gasoline polycarbonate fuel tank
 
Combustion chamber of Gas turbine power plant cycle
Combustion chamber of Gas turbine power plant cycleCombustion chamber of Gas turbine power plant cycle
Combustion chamber of Gas turbine power plant cycle
 

More from Иван Иванов

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Иван Иванов
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Иван Иванов
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношенийИван Иванов
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Иван Иванов
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеИван Иванов
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБИван Иванов
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...Иван Иванов
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиИван Иванов
 
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииИван Иванов
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Иван Иванов
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомИван Иванов
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Иван Иванов
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИван Иванов
 

More from Иван Иванов (20)

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношений
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применение
 
US2003165637A1
US2003165637A1US2003165637A1
US2003165637A1
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
 
1
11
1
 
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
 
Sdewsdweddes
SdewsdweddesSdewsdweddes
Sdewsdweddes
 
Us873655
Us873655Us873655
Us873655
 
5301 5305.output
5301 5305.output5301 5305.output
5301 5305.output
 
5296 5300.output
5296 5300.output5296 5300.output
5296 5300.output
 
5306 5310.output
5306 5310.output5306 5310.output
5306 5310.output
 

780120

  • 1. * GB780120 (A) Description: GB780120 (A) No title available Description of GB780120 (A) =.. t PATENT SPECIFICATION " Inventor: JOHANNES AUGUSTINUS TE NUYL 780,120 Date of Application and filing Complete Specification Oct. 27, 1955. No. 30722/55. Complete Specification Published July 31, 1957. Index at acceptance.--Classes 55(1), B11; and 55(2), D2(E: F). International Classification: -ClOb, j. COMPLETE SPECIFICATION SPECIFICATION NO. 780,120 In accordance with the Decision of the Superintending Exam.nlner, acting for the Comptroller-General, dated the sixteenth day of January, 1959, this specification has been amended under Section 14 in the following manner:Page 1, line 17, for "always" read "generally,. Page 1, line 61, after "Fig. 1., insert NSuch apparatus is the subject of our Patent 703% 721". Page 3, delete "lines 632-65". Attention ls also directed to the following printer' s error.Page 1, line 49, for,causes' read "cause". THE PA1ENT OFFICE, 28th April, 1959 DB io9a1/2(1)/3759 1S0 4/9 R PATiTS ACT, 1949 SPECIFICATION NO. 780, 120 In accordance with the Decision of the Superintending Examlner, acting for the Comptroller-Ceneral, dated the sixteenth day of January, 1959, this Specification has been amendedaunder Section 14 in the followlng manner:Page 1, line 17, for "always" read 'generally". Page 1, llne 61, after "Fig. 1." insert "Such apparatus is the subject of our Patent 703,721.". Page 3, delete lines 62-65. THE PATENT OFFICE, mth February, 1959 DB 09413/1(4)/3732 150 2/59 R R h PATENT SPECIFICATION
  • 2. Inventor: JOHANNES AUGUSTINUS TE NUYL, 780. 120 t Date of Application and filing Complete Specification Oct. 27, 1955. No. 30722155. Complete Specification Published July 31, 1957. Index at acceptance -Classes 55(1), Bil; and 55(2), D2(E: F). International Classification: -ClOb,j. COMPLETE SPECIFICATION Improvements in or relating to Processes for preparing Gas Mixtures containing Hydrogen and Carbon Monoxide We, N. V. DE BATAAFSCHE PETROLEUM t MAATSCHAPPIJ, a company organised under a the laws of The Netherlands, of 30 Carel van t Bylandtlaan, The Hague, The Netherlands, do 1 hereby declare the invention, for which we pray c that a patent may be granted to us, and the c method by which it is to be performed, to be particularly described in and by the following statement: - The present invention relates to processes for preparing gas mixtures containing hydrogen i and carbon monoxide. It is known to obtain, by partial combustion of hydrocarbon material a gaseous mixture consisting mainly of hydrogen and carbon monoxide. The gas mixtures obtained, hoWever, always contain soot, since, when there is incomplete combustion, the formation of free carbon is practically unavoidable, and this is a great drawback, for this soot usually has to be separated from the gas mixture before the latter can be used, e.g. for the purpose of synthesis. A process has now been found for the partial combustion of gaseous, liquid or solid (e.g. asphalt) hydrocarbon material in which the resulting gas mixtures containing hydrogen and carbon monoxide contain very little soot. If desired also, the process may be applied to the partial combustion of powdered coal. The new process is particularly important for the partial combustion of high molecular hydrocarbons such as heavy oils or asphalt, since hitherto there has been heavy soot formation in the desired conversion of such products. In a process according to the invention for preparing gas mixtures containing hydrogen and carbon monoxide by partial combustion of hydrocarbon material with oxygen-containing gas, the hydrocarbon material is atomized and injected in the form of a hollow conical jet coaxially into one end of a cylindrical or substantially cylindrical combustion chamber the length of which is less than five times the diameter, the oxygen-containing gas being introduced through an opening at the same end of [Pick he combustion chamber as the conical jet with L rotary motion about the axis such that two toroidal vortices are formed inside the cornbustion chamber, which causes a rapid mixing of the hydrocarbon material with the oxygencontaining gas
  • 3. and a rapid rate of combustion, such that the combustion time is less than 4 seconds, and the pressure in the combustion chamber being at least 3 atmospheres. Apparatus for carrying out a process according to the invention and a specific example of its use will now be described by way of example with reference to the accompanying drawing in which, Fig. 1 is a longitudinal cross-section of the apparatus and Fig. 2 a vertical crosssection on the line Il11- of Fig. 1. As shown in Fig. 1, the apparatus comprises an atomizer holder 1 to which the hydrocarbon material is supplied at one end as indicated by the arrow 7. The hydrocarbon is atomized 65 by a whirl chamber atomizer situated at the other end of the holder 1 and injected into the combustion chamber 2 so as to form a hollow conical jet. Although an atomizer operated by means of the fuel pressure alone is preferred, 70 since in this way a fine atomization can be obtained in a simple manner, it is also possible to use an atomizer requiring a stream of an auxiliary atomizing fluid such as air or steam, provided a hollow conical jet is obtained. The 75 atomizer holder 1 is mounted in the oxygen chamber 3 which is mainly cylindrical. The combustion chamber 2, also mainly cylindrical has walls of refractory material and communicates with the oxygen chamber 3 through an 80 opening 5 which has a diameter smaller than the diameter of the chambers 2 and 3. The diameter of the oxygen chamber 3 should be 12-2 times as great as that of the opening 5. The combustion chamber 2 is provided with an 85 annular ridge 4 to which the shape of the oxygen chamber 3 is adapted. The atomizer is arranged in the oxygen chamber 3 in a position such that the hollow conical jet of atomized hydrocarbon passes near 90 FWti'd' 7 : - 1 t 1 - 1 780,120 the edge of the opening 5 on entering the combustion chamber 2. This position will depend on the apex angle of the cone which is determined by the properties of the hydrocarbon, the construction of the atomizer and the pressure with which the fuel is applied to it. The oxygen chamber 3 is provided at its periphery with a number of tangential slots or nozzles 9 (see Fig. 2) which are placed at 1u regular intervals around the circumference and through which oxygen-containing gas from the case 10 can flow tangentially into the oxygen chamber 3. During operation oxygen-containing gas is introduced into the case -10 at a suitable super-atmospheric pressure. Owing to the tangential component of flow on entering the oxygen chamber 3, the oxygen-containing gas flows with a rotary motion about the axis of the chamber 3 towards the opening 5, and as the diameter of the opening is smaller than that of the oxygen chamber, the speed of rotation
  • 4. increases considerably as the gas flows towards the opening 5. The result is that the conical jet of fuel in passing close to the edge of the opening 5 is forcibly entrained by the stream of oxygencontaining gas also entering the combustion chamber 2 through the opening 5, and a very intimate mixing of the hydrocarbon and oxygen-containing gas occurs, which promotes both ignition and combustion in the combustion chamber 2. The w211 of the combustion chamber 2 which, when the apparatus is operating, is hot, imparts heat to the hydrocarbon by radiation and thus promotes the evaporation, vaporization, ignition and combustion thereof. Moreover, the shape of the chamber 2 is such that, as shown in the drawving, toroidal vortices are formed both inside and outside 4C the conical fuel jet which, particularly in the case of the outermost vortex situated near the ridge 4, return an already burning mixture to the place where the ignition has to occur and thus promote the ignition of the hydrocarbon entering the combustion chamber 2. A tube 6 is also provided which surrounds the atomizer holder 1. A combustible gas can be supplied to the tube 6 through the inlet 8 and can enter the air chamber around the atomizer nozzle. It has been found that in the apparatus a combustible gas can be burnt either at the same time as a liquid hydrocarbon or separately. The gaseous fuel can be used when there is a temporary shortage of the liquid hydrocarbon. The oxygen-containing gas supplied preferably consists either of substantially pure oxygen or air to which, if desired, additional oxygen -has been- added. The amount of oxygen to be used will, of course, have to be smaller than the quantity required for a complete combustion of the hydrocarbon. When heavier hydrocarbons are used as initial material, the oxygen-containing gas used may be mixed with steam, before_ being passed into the reaction chamber. Usually a mixture of approximately equal parts by weight of oxygen and steam is supplied for the partial combustion of heavy products. Preferably approximately 1.25 kg of oxygen 70 are used per kg of hydrocarbon. The reaction is carried out at a temperature of from 1200-1500 C., and preferably from 1300-1400 C. The pressure used is at least 3 atmospheres, and is preferably higher than 75 atmospheres. The pressure used depends on the pressure at which the gas mixture formed is further processed. Thus the combustion reaction is carried out at elevated pressure if the gas mixture formed is used, for 80 example, for an ammonia synthesis, which is carried out at a very high pressure. When the pressure is greater than 3 atmospheres, the advantage obtained is that the small amount of soot which is present
  • 5. in the resulting gas mixture may be very easily removed by scrubbing with water. The partial combustion lasts for less than 4 seconds. Such a short reaction time is very important for the prevention of undesired side reactions. The gas mixture 90 formed is preferably rapidly cooled. Such a short reaction time is possible with the use of the apparatus described above since there is an intimate mixing in the reaction chamber immediately after the introduction of the reaction components, and also an immediate combustion of the reaction mixture obtained. The specific gravity and viscosity of the heavier hydrocarbons to which the invention is particularly applicable may vary between 10 wide limits. Thus the specific gravity may lie between approximately 0.90 and 1.05; the viscosity may vary between that of a gas oil and that of an asphalt with a penetration of 10-20 at 25 C., as determined by the Institute 10 of Petroleum's Standard Method IP 49/56 for measuring the penetration of bitumen, which is set out at p 371-4 of " Standard Methods for testing Petroleum and its Products " (16th Edition) published by the Institute of 11 Petroleum. Heavy products of this type are preheated before being atomized. The mixture of oxygen-containing gas and steam supplied is also preferably preheated before being fed into the combustion chamber 2. 11 EXAMPLE An apparatus of the design shown in Figs. I and II, the combustion chamber of which was cm long and had a diameter of 40 cm, was used for the partial combustion of a high 12 sulphur residual fuel oil with a viscosity of 3500 sec. Redwood I at 37.80 C. Preheated oxygen and super-heated steam, preheated to about 400 C., were passed into the combustion chamber under a pressure of 20 atmos- 12 pheres and at a temperature of about 13000 C. For each 100 kg of oil supplied 85 cubic metres (measured at N.T.P.) of oxygen and 90 kg of steam were supplied to give 310 cubic metres 4a1 pressure in the combustion chamber being at 35 least 3 atmospheres. * Sitemap * Accessibility * Legal notice * Terms of use * Last updated: 08.04.2015 * Worldwide Database * 5.8.23.4; 93p