Multiplication Formulas
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize.
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other.
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2),
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c).
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2).
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2). 
I. Difference of Squares Formula
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2). 
I. Difference of Squares Formula 
(A + B)(A – B) 
Conjugate Product
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2). 
I. Difference of Squares Formula 
(A + B)(A – B) = A2 – B2 
Conjugate Product Difference of Squares
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
I. Difference of Squares Formula 
(A + B)(A – B) = A2 – B2 
Conjugate Product Difference of Squares 
To verify this : 
(A + B)(A – B) 
Multiplication Formulas 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2).
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2). 
I. Difference of Squares Formula 
(A + B)(A – B) = A2 – B2 
Conjugate Product Difference of Squares 
To verify this : 
(A + B)(A – B) = A2 – AB + AB – B2
Multiplication Formulas 
There are some important patterns in multiplying expressions 
that it is worthwhile to memorize. 
The two binomials (A + B) and (A – B) are said to be the 
conjugate of each other. 
For example, the conjugate of (3x + 2) is (3x – 2), and 
the conjugate of (2ab – c) is (2ab + c). 
Note: The conjugate is different from the opposite. 
The opposite of (3x + 2) is (–3x – 2). 
I. Difference of Squares Formula 
(A + B)(A – B) = A2 – B2 
Conjugate Product Difference of Squares 
To verify this : 
(A + B)(A – B) = A2 – AB + AB – B2 
= A2 – B2
Multiplication Formulas 
Here are some examples of squaring:
Multiplication Formulas 
Here are some examples of squaring: (3x)2 =
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2,
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 =
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2,
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4.
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2)
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) 
(A + B)(A – B)
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 
(A + B)(A – B) = A2 – B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2)
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying,
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying, 
(A + B)2 = (A + B)(A + B)
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying, 
(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying, 
(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying, 
(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 
We say that “(A + B)2 is A2, B2, plus twice A*B”,
Multiplication Formulas 
Here are some examples of squaring: (3x)2 = 9x2, 
(2xy)2 = 4x2y2, and (5z2)2 = 25z4. 
Example A. Expand. 
a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 
(A + B)(A – B) = A2 – B2 
b. (2xy – 5z2)(2xy + 5z2) 
= (2xy)2 – (5z2)2 
= 4x2y2 – 25z4 
II. Square Formulas 
(A + B)2 = A2 + 2AB + B2 
(A – B)2 = A2 – 2AB + B2 
We may check this easily by multiplying, 
(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 
We say that “(A + B)2 is A2, B2, plus twice A*B”, 
and “(A – B)2 is A2, B2, minus twice A*B”.
Example B. 
a. (3x + 4)2 
Multiplication Formulas
Example B. 
a. (3x + 4)2 
(A + B)2 
Multiplication Formulas
Example B. 
a. (3x + 4)2 
Multiplication Formulas 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply.
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1)
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 
c. 63*57 =
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 
c. 63*57 = (60 + 3)(60 – 3) = 602 – 32
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 
c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591
Multiplication Formulas 
Example B. 
a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 
(A + B)2 = A2 + 2AB + B2 
b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 
= 9a2 – 30ab + 25b2 
III. Some Applications of the Formulas 
We can use the above formulas to help us multiply. 
Example C. Calculate. Use the conjugate formula. 
a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 
b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 
c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591 
The conjugate formula 
(A + B)(A – B) = A2 – B2 
may be used to multiply two numbers of the forms 
(A + B) and (A – B) where A2 and B2 can be calculated easily.
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”.
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1)
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1)
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401 
b. (50½) 2 = (50 + ½ )2
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401 
b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401 
b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50)
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401 
b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) 
= 2,500 + 1/4 + 50
Multiplication Formulas 
The Squaring Formulas. 
“(A + B)2 is A2, B2, plus twice A*B”, 
“(A – B)2 is A2, B2, minus twice A*B”. 
Example D. Calculate. Use the squaring formulas. 
a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) 
= 2,500 + 1 + 100 
= 2,601 
b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) 
= 2,500 + 1 – 100 
= 2,401 
b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) 
= 2,500 + 1/4 + 50 
= 2,550¼
Multiplication Formulas 
Exercise. A. Calculate. Use the conjugate formula. 
1. 21*19 2. 31*29 3. 41*39 4. 71*69 
5. 22*18 6. 32*28 7. 52*48 8. 73*67 
B. Calculate. Use the squaring formula. 
9. 212 10. 312 11. 392 12. 692 
13. 982 14. 30½2 15. 100½2 16. 49½2 
C. Expand. 
18. (x + 5)(x – 5) 19. (x – 7)(x + 7) 
20. (2x + 3)(2x – 3) 21. (3x – 5)(3x + 5) 
22. (7x + 2)(7x – 2) 23. (–7 + 3x )(–7 – 3x) 
24. (–4x + 3)(–4x – 3) 25. (2x – 3y)(2x + 3y) 
26. (4x – 5y)(5x + 5y) 27. (1 – 7y)(1 + 7y) 
28. (5 – 3x)(5 + 3x) 29. (10 + 9x)(10 – 9x) 
30. (x + 5)2 31. (x – 7)2 
32. (2x + 3)2 33. (3x + 5y)2 
34. (7x – 2y)2 35. (2x – h)2

4 6multiplication formulas

  • 1.
  • 2.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize.
  • 3.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other.
  • 4.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2),
  • 5.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c).
  • 6.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2).
  • 7.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula
  • 8.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) Conjugate Product
  • 9.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares
  • 10.
    There are someimportant patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) Multiplication Formulas For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2).
  • 11.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) = A2 – AB + AB – B2
  • 12.
    Multiplication Formulas Thereare some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) = A2 – AB + AB – B2 = A2 – B2
  • 13.
    Multiplication Formulas Hereare some examples of squaring:
  • 14.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 =
  • 15.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2,
  • 16.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 =
  • 17.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2,
  • 18.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2
  • 19.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4.
  • 20.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2)
  • 21.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) (A + B)(A – B)
  • 22.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 (A + B)(A – B) = A2 – B2
  • 23.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2
  • 24.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2)
  • 25.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2
  • 26.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4
  • 27.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas
  • 28.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2
  • 29.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2
  • 30.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying,
  • 31.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B)
  • 32.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2
  • 33.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2
  • 34.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 We say that “(A + B)2 is A2, B2, plus twice A*B”,
  • 35.
    Multiplication Formulas Hereare some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 We say that “(A + B)2 is A2, B2, plus twice A*B”, and “(A – B)2 is A2, B2, minus twice A*B”.
  • 36.
    Example B. a.(3x + 4)2 Multiplication Formulas
  • 37.
    Example B. a.(3x + 4)2 (A + B)2 Multiplication Formulas
  • 38.
    Example B. a.(3x + 4)2 Multiplication Formulas (A + B)2 = A2 + 2AB + B2
  • 39.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 (A + B)2 = A2 + 2AB + B2
  • 40.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) (A + B)2 = A2 + 2AB + B2
  • 41.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 (A + B)2 = A2 + 2AB + B2
  • 42.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2
  • 43.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2
  • 44.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2
  • 45.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2
  • 46.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas
  • 47.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply.
  • 48.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49
  • 49.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1)
  • 50.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12
  • 51.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499
  • 52.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48
  • 53.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22
  • 54.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496
  • 55.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 =
  • 56.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32
  • 57.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591
  • 58.
    Multiplication Formulas ExampleB. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591 The conjugate formula (A + B)(A – B) = A2 – B2 may be used to multiply two numbers of the forms (A + B) and (A – B) where A2 and B2 can be calculated easily.
  • 59.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”.
  • 60.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512
  • 61.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2
  • 62.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12
  • 63.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1)
  • 64.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100
  • 65.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601
  • 66.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492
  • 67.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2
  • 68.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12
  • 69.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1)
  • 70.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100
  • 71.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401
  • 72.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2
  • 73.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2
  • 74.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50)
  • 75.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) = 2,500 + 1/4 + 50
  • 76.
    Multiplication Formulas TheSquaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) = 2,500 + 1/4 + 50 = 2,550¼
  • 77.
    Multiplication Formulas Exercise.A. Calculate. Use the conjugate formula. 1. 21*19 2. 31*29 3. 41*39 4. 71*69 5. 22*18 6. 32*28 7. 52*48 8. 73*67 B. Calculate. Use the squaring formula. 9. 212 10. 312 11. 392 12. 692 13. 982 14. 30½2 15. 100½2 16. 49½2 C. Expand. 18. (x + 5)(x – 5) 19. (x – 7)(x + 7) 20. (2x + 3)(2x – 3) 21. (3x – 5)(3x + 5) 22. (7x + 2)(7x – 2) 23. (–7 + 3x )(–7 – 3x) 24. (–4x + 3)(–4x – 3) 25. (2x – 3y)(2x + 3y) 26. (4x – 5y)(5x + 5y) 27. (1 – 7y)(1 + 7y) 28. (5 – 3x)(5 + 3x) 29. (10 + 9x)(10 – 9x) 30. (x + 5)2 31. (x – 7)2 32. (2x + 3)2 33. (3x + 5y)2 34. (7x – 2y)2 35. (2x – h)2