SlideShare a Scribd company logo
1 of 80
Exponents
Frank Ma Β© 2011
Exponents
We write the quantity A multiplied to itself N times as AN,
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5)
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
AN
AK = AN – K
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
= 56 – 2 = 54
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Power Rule: (AN)K = ANK
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5
Exponents
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34)
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1
A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since =
1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
a. 30
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
b. 3–2
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32b. 3–2 =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
=
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
= ( )25
2
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
= ( )2 =
25
4
5
2
e. 3–1 – 40 * 2–2 =
Exponents
e. 3–1 – 40 * 2–2 =
1
3
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents.
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
= y17
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
9x4
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
= y17
=
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
9x4
y17
9x4
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
=
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
= 33 x3 y–3=
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
= 33 x3 y–3=
27 x3
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
y3
Ex. A. Write the numbers without the negative exponents and
compute the answers.
1. 2–1 2. –2–2 3. 2–3 4. (–3)–2 5. 3–3
6. 5–2 7. 4–3 8. 1
2
( )
–3
9. 2
3
( )
–1
10. 3
2
( )
–2
11. 2–1* 3–2 12. 2–2+ 3–1 13. 2* 4–1– 50 * 3–1
14. 32 * 6–1– 6 * 2–3 15. 2–2* 3–1 + 80 * 2–1
Ex. B. Combine the exponents. Leave the answers in positive
exponents–but do not reciprocate the negative exponents until
the final step.
16. x3x5 17. x–3x5 18. x3x–5 19. x–3x–5
20. x4y2x3y–4 21. y–3x–2 y–4x4 22. 22x–3xy2x32–5
23. 32y–152–2x5y2x–9 24. 42x252–3y–34 x–41y–11
25. x2(x3)5 26. (x–3)–5x –6 27. x4(x3y–5) –3y–8
Exponents
x–8
x–3
B. Combine the exponents. Leave the answers in positive
exponents–but do not reciprocate the negative exponents until
the final step.
28. x8
x–329.
x–8
x330. y6x–8
x–2y331.
x6x–2y–8
y–3x–5y232.
2–3x6y–8
2–5y–5x233.
3–2y2x4
2–3x3y–234.
4–1(x3y–2)–2
2–3(y–5x2)–135.
6–2 y2(x4y–3)–1
9–1(x3y–2)–4y236.
C. Combine the exponents as much as possible.
38. 232x 39. 3x+23x 40. ax–3ax+5
41. (b2)x+1b–x+3 42. e3e2x+1e–x
43. e3e2x+1e–x
44. How would you make sense of 23 ?
2

More Related Content

What's hot

4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressionsmath123a
Β 
43literal equations
43literal equations43literal equations
43literal equationsalg1testreview
Β 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and expmath260
Β 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functionsmath265
Β 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivativesmath265
Β 
1.1 exponents
1.1 exponents1.1 exponents
1.1 exponentsmath260
Β 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-xmath123b
Β 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequencesmath123c
Β 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of divisionmath260
Β 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoringmath123a
Β 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operationsmath123a
Β 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp xmath260
Β 
1.3 rational expressions
1.3 rational expressions1.3 rational expressions
1.3 rational expressionsmath123b
Β 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
Β 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
Β 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
Β 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equationsmath123c
Β 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functionsmath123c
Β 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
Β 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulasmath123a
Β 

What's hot (20)

4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
Β 
43literal equations
43literal equations43literal equations
43literal equations
Β 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and exp
Β 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
Β 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
Β 
1.1 exponents
1.1 exponents1.1 exponents
1.1 exponents
Β 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
Β 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequences
Β 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of division
Β 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoring
Β 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operations
Β 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
Β 
1.3 rational expressions
1.3 rational expressions1.3 rational expressions
1.3 rational expressions
Β 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
Β 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
Β 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
Β 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equations
Β 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functions
Β 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
Β 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulas
Β 

Similar to Rules of Exponents Explained

5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notationelem-alg-sample
Β 
4 1exponents
4 1exponents4 1exponents
4 1exponentsmath123a
Β 
1 0 exponents (optional)
1 0 exponents (optional)1 0 exponents (optional)
1 0 exponents (optional)math123b
Β 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-xmath123b
Β 
1.1 exponents yz
1.1 exponents yz1.1 exponents yz
1.1 exponents yzmath260
Β 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yzmath260
Β 
1.1 exponents y
1.1 exponents y1.1 exponents y
1.1 exponents ymath260
Β 
0. exponents y
0. exponents y0. exponents y
0. exponents ymath123c
Β 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
Β 
Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Kwonpyo Ko
Β 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
Β 
Truth, deduction, computation lecture g
Truth, deduction, computation   lecture gTruth, deduction, computation   lecture g
Truth, deduction, computation lecture gVlad Patryshev
Β 
Probability and Entanglement
Probability and EntanglementProbability and Entanglement
Probability and EntanglementGunn Quznetsov
Β 
1105 ch 11 day 5
1105 ch 11 day 51105 ch 11 day 5
1105 ch 11 day 5festivalelmo
Β 

Similar to Rules of Exponents Explained (20)

5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
Β 
4 1exponents
4 1exponents4 1exponents
4 1exponents
Β 
1 0 exponents (optional)
1 0 exponents (optional)1 0 exponents (optional)
1 0 exponents (optional)
Β 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
Β 
43exponents
43exponents43exponents
43exponents
Β 
1.1 exponents yz
1.1 exponents yz1.1 exponents yz
1.1 exponents yz
Β 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
Β 
WEEK-1.pdf
WEEK-1.pdfWEEK-1.pdf
WEEK-1.pdf
Β 
1.1 exponents y
1.1 exponents y1.1 exponents y
1.1 exponents y
Β 
0. exponents y
0. exponents y0. exponents y
0. exponents y
Β 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
Β 
Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)
Β 
Algebra
AlgebraAlgebra
Algebra
Β 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
Β 
Truth, deduction, computation lecture g
Truth, deduction, computation   lecture gTruth, deduction, computation   lecture g
Truth, deduction, computation lecture g
Β 
Math
MathMath
Math
Β 
Probability and Entanglement
Probability and EntanglementProbability and Entanglement
Probability and Entanglement
Β 
1105 ch 11 day 5
1105 ch 11 day 51105 ch 11 day 5
1105 ch 11 day 5
Β 
MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)
Β 
1.7
1.71.7
1.7
Β 

More from math123a

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eqmath123a
Β 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-xmath123a
Β 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-xmath123a
Β 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-xmath123a
Β 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2math123a
Β 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii expmath123a
Β 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-iimath123a
Β 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problemsmath123a
Β 
Soluiton i
Soluiton iSoluiton i
Soluiton imath123a
Β 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-samplemath123a
Β 
Sample fin
Sample finSample fin
Sample finmath123a
Β 
12 4- sample
12 4- sample12 4- sample
12 4- samplemath123a
Β 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ansmath123a
Β 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpgmath123a
Β 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-formmath123a
Β 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optionalmath123a
Β 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractionsmath123a
Β 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcdmath123a
Β 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
Β 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplicationmath123a
Β 

More from math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
Β 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-x
Β 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
Β 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
Β 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
Β 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
Β 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
Β 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
Β 
Soluiton i
Soluiton iSoluiton i
Soluiton i
Β 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
Β 
Sample fin
Sample finSample fin
Sample fin
Β 
12 4- sample
12 4- sample12 4- sample
12 4- sample
Β 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
Β 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
Β 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
Β 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
Β 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
Β 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
Β 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
Β 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
Β 

Recently uploaded

Call Girls in Faridabad 9000000000 Faridabad Escorts Service
Call Girls in Faridabad 9000000000 Faridabad Escorts ServiceCall Girls in Faridabad 9000000000 Faridabad Escorts Service
Call Girls in Faridabad 9000000000 Faridabad Escorts ServiceTina Ji
Β 
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...Amil Baba Company
Β 
fmovies-Movies hold a special place in the hearts
fmovies-Movies hold a special place in the heartsfmovies-Movies hold a special place in the hearts
fmovies-Movies hold a special place in the heartsa18205752
Β 
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...anamikaraghav4
Β 
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...ranjana rawat
Β 
Pallawi ❣ πŸ’“ Pallawi 09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...
Pallawi ❣ πŸ’“ Pallawi  09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...Pallawi ❣ πŸ’“ Pallawi  09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...
Pallawi ❣ πŸ’“ Pallawi 09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...Pooja Nehwal
Β 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607dollysharma2066
Β 
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.com
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.comKolkata Call Girls Service +918240919228 - Kolkatanightgirls.com
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.comKolkata Call Girls
Β 
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...anamikaraghav4
Β 
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call Girl
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call GirlFun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call Girl
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call GirlApsara Of India
Β 
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Riya Pathan
Β 
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa Escorts
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa EscortsCash Payment Contact:- 7028418221 Goa Call Girls Service North Goa Escorts
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa EscortsApsara Of India
Β 
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...Apsara Of India
Β 
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji Escorts
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji EscortsFun Call Girls In Goa 7028418221 Call Girl Service In Panaji Escorts
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji EscortsApsara Of India
Β 
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Riya Pathan
Β 
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtS
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtSHot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtS
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtSApsara Of India
Β 
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Booking
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment BookingModels Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Booking
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Bookinganamikaraghav4
Β 
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...Riya Pathan
Β 
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...anamikaraghav4
Β 
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130Suhani Kapoor
Β 

Recently uploaded (20)

Call Girls in Faridabad 9000000000 Faridabad Escorts Service
Call Girls in Faridabad 9000000000 Faridabad Escorts ServiceCall Girls in Faridabad 9000000000 Faridabad Escorts Service
Call Girls in Faridabad 9000000000 Faridabad Escorts Service
Β 
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...
Amil Baba in Pakistan Kala jadu Expert Amil baba Black magic Specialist in Is...
Β 
fmovies-Movies hold a special place in the hearts
fmovies-Movies hold a special place in the heartsfmovies-Movies hold a special place in the hearts
fmovies-Movies hold a special place in the hearts
Β 
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Β 
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...
(KRITI) Pimpri Chinchwad Call Girls Just Call 7001035870 [ Cash on Delivery ]...
Β 
Pallawi ❣ πŸ’“ Pallawi 09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...
Pallawi ❣ πŸ’“ Pallawi  09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...Pallawi ❣ πŸ’“ Pallawi  09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...
Pallawi ❣ πŸ’“ Pallawi 09167673311 πŸ’“Call Girl in Thane Near Hiranandani Estate ...
Β 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377087607
Β 
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.com
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.comKolkata Call Girls Service +918240919228 - Kolkatanightgirls.com
Kolkata Call Girls Service +918240919228 - Kolkatanightgirls.com
Β 
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...
Verified Call Girls Esplanade - [ Cash on Delivery ] Contact 8250192130 Escor...
Β 
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call Girl
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call GirlFun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call Girl
Fun Call Girls In Goa 7028418221 Escort Service In Morjim Beach Call Girl
Β 
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Bagbazar πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Β 
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa Escorts
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa EscortsCash Payment Contact:- 7028418221 Goa Call Girls Service North Goa Escorts
Cash Payment Contact:- 7028418221 Goa Call Girls Service North Goa Escorts
Β 
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...
5* Hotel Call Girls In Goa 7028418221 Call Girls In Calangute Beach Escort Se...
Β 
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji Escorts
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji EscortsFun Call Girls In Goa 7028418221 Call Girl Service In Panaji Escorts
Fun Call Girls In Goa 7028418221 Call Girl Service In Panaji Escorts
Β 
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Kolkata Call Girl Howrah πŸ‘‰ 8250192130 β£οΈπŸ’― Available With Room 24Γ—7
Β 
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtS
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtSHot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtS
Hot Call Girls In Goa 7028418221 Call Girls In Vagator Beach EsCoRtS
Β 
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Booking
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment BookingModels Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Booking
Models Call Girls Hridaypur | 8250192130 At Low Cost Cash Payment Booking
Β 
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...
Housewife Call Girls Sonagachi - 8250192130 Booking and charges genuine rate ...
Β 
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Β 
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
Β 

Rules of Exponents Explained

  • 2. Exponents We write the quantity A multiplied to itself N times as AN,
  • 3. Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 4. base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 5. Example A. 43 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 6. Example A. 43 = (4)(4)(4) = 64 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 7. Example A. 43 = (4)(4)(4) = 64 (xy)2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 8. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 9. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 10. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 11. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 12. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 13. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 14. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 15. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 16. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 17. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 18. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 19. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 20. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 21. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: AN AK = AN – K We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 22. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 23. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 24. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 25. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) = 56 – 2 = 54 We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 26. Power Rule: (AN)K = ANK Exponents
  • 27. Power Rule: (AN)K = ANK Example D. (34)5 Exponents A1
  • 28. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) Exponents
  • 29. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 Exponents
  • 30. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents
  • 31. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 A1 A1
  • 32. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1A1 A1
  • 33. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0A1 A1
  • 34. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1
  • 35. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1
  • 36. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = 1 AK A0 AK
  • 37. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K1 AK A0 AK
  • 38. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK
  • 39. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK
  • 40. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify a. 30
  • 41. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify a. 30 = 1
  • 42. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify b. 3–2 a. 30 = 1
  • 43. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32b. 3–2 = a. 30 = 1
  • 44. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9b. 3–2 = = a. 30 = 1
  • 45. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 b. 3–2 = = a. 30 = 1
  • 46. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = b. 3–2 = = a. 30 = 1
  • 47. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1
  • 48. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a
  • 49. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5
  • 50. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5 = ( )25 2
  • 51. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5 = ( )2 = 25 4 5 2
  • 52. e. 3–1 – 40 * 2–2 = Exponents
  • 53. e. 3–1 – 40 * 2–2 = 1 3 Exponents
  • 54. e. 3–1 – 40 * 2–2 = 1 3 – 1* Exponents
  • 55. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 Exponents
  • 56. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents
  • 57. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents.
  • 58. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first.
  • 59. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 60. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 61. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 62. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 63. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 64. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 = y17 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 9x4 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 65. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 = y17 = Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 9x4 y17 9x4 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 66. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3
  • 67. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3
  • 68. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 )
  • 69. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5
  • 70. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1
  • 71. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 72. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 73. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 74. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6
  • 75. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 76. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 77. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) = 33 x3 y–3= (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 78. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) = 33 x3 y–3= 27 x3 (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3 y3
  • 79. Ex. A. Write the numbers without the negative exponents and compute the answers. 1. 2–1 2. –2–2 3. 2–3 4. (–3)–2 5. 3–3 6. 5–2 7. 4–3 8. 1 2 ( ) –3 9. 2 3 ( ) –1 10. 3 2 ( ) –2 11. 2–1* 3–2 12. 2–2+ 3–1 13. 2* 4–1– 50 * 3–1 14. 32 * 6–1– 6 * 2–3 15. 2–2* 3–1 + 80 * 2–1 Ex. B. Combine the exponents. Leave the answers in positive exponents–but do not reciprocate the negative exponents until the final step. 16. x3x5 17. x–3x5 18. x3x–5 19. x–3x–5 20. x4y2x3y–4 21. y–3x–2 y–4x4 22. 22x–3xy2x32–5 23. 32y–152–2x5y2x–9 24. 42x252–3y–34 x–41y–11 25. x2(x3)5 26. (x–3)–5x –6 27. x4(x3y–5) –3y–8 Exponents
  • 80. x–8 x–3 B. Combine the exponents. Leave the answers in positive exponents–but do not reciprocate the negative exponents until the final step. 28. x8 x–329. x–8 x330. y6x–8 x–2y331. x6x–2y–8 y–3x–5y232. 2–3x6y–8 2–5y–5x233. 3–2y2x4 2–3x3y–234. 4–1(x3y–2)–2 2–3(y–5x2)–135. 6–2 y2(x4y–3)–1 9–1(x3y–2)–4y236. C. Combine the exponents as much as possible. 38. 232x 39. 3x+23x 40. ax–3ax+5 41. (b2)x+1b–x+3 42. e3e2x+1e–x 43. e3e2x+1e–x 44. How would you make sense of 23 ? 2