SlideShare a Scribd company logo
1 of 49
MOSFET I-Vs
Substrate
Channel Drain
Insulator
Gate
Operation of a transistor
VSG > 0
n type operation
Positive gate bias attracts electrons into channel
Channel now becomes more conductive
More
electrons
Source
VSD
VSG
Some important equations in the
inversion regime (Depth direction)
VT = fms + 2yB + yox
Wdm = [2eS(2yB)/qNA]
Qinv = -Cox(VG - VT)
yox = Qs/Cox
Qs = qNAWdm
VT = fms + 2yB + [4eSyBqNA]/Cox
Substrate
Channel Drain
Insulator
Gate
Source
x
MOSFET Geometry
x
y
z
L
Z
S D
VG
VD
How to include y-dependent potential
without doing the whole problem over?
Assume potential V(y) varies slowly along
channel, so the x-dependent and y-dependent
electrostats are independent
(GRADUAL CHANNEL APPROXIMATION)
i.e.,
Ignore ∂Ex/∂y
Potential is separable in
x and y
How to include y-dependent potentials?
yS = 2yB + V(y)
VG = yS + [2eSySqNA]/Cox
Need VG – V(y) > VT to invert
channel at y (V increases
threshold)
Since V(y) largest at drain end, that
end reverts from inversion to
depletion first (Pinch off) 
SATURATION [VDSAT = VG – VT]
j = qninvv = (Qinv/tinv)v
I = jA = jZtinv = ZQinvv
So current:
Qinv = -Cox[VG – VT - V(y)]
v = -meffdV(y)/dy
So current:
I = meff ZCox[VG – VT - V(y)]dV(y)/dy
I = meff ZCox[(VG – VT )VD- VD
2/2]/L
Continuity implies ∫Idy = IL
But this current behaves like a parabola !!
ID
VD
IDsat
VDsat
I = meff ZCox[(VG – VT )VD- VD
2/2]/L
We have assumed inversion in our model (ie, always above pinch-off)
So we just extend the maximum current into saturation…
Easy to check that above current is maximum for VDsat = VG - VT
Substituting, IDsat = (CoxmeffZ/2L)(VG-VT)2
What’s Pinch off?
0
0 0
0
VG VG
Now add in the drain voltage to drive a current. Initially you get
an increasing current with increasing drain bias
0 VD
VG VG
When you reach VDsat = VG – VT, inversion is disabled at the drain
end (pinch-off), but the source end is still inverted
The charges still flow, just that you can’t draw more current
with higher drain bias, and the current saturates
Square law theory of MOSFETs
I = meff ZCox[(VG – VT )VD- VD
2/2]/L, VD < VG - VT
I = meff ZCox(VG – VT )2/2L, VD > VG - VT
J = qnv
n ~ Cox(VG – VT )
v ~ meffVD /L
Ideal Characteristics of n-channel
enhancement mode MOSFET
Drain current for REALLY small VD
 
 
 
 
T
G
D
D
T
G
i
n
D
D
D
T
G
i
n
D
V
V
V
V
V
V
C
L
Z
I
V
V
V
V
C
L
Z
I













m
m 2
2
1
Linear operation
Channel Conductance:
)
( T
G
i
n
V
D
D
D V
V
C
L
Z
V
I
g
G

m




Transconductance:
D
i
n
V
G
D
m V
C
L
Z
V
I
g
D
m




In Saturation
• Channel Conductance:
• Transconductance:
 2
2
T
G
i
n
D V
V
C
L
Z
sat
I 
m

0




G
V
D
D
D
V
I
g
 
T
G
i
n
V
G
D
m V
V
C
L
Z
V
I
g
D

m




Equivalent Circuit – Low Frequency AC
• Gate looks like open circuit
• S-D output stage looks like current source with channel
conductance
g
m
d
D
G
V
G
D
D
V
D
D
D
v
g
v
g
i
V
V
I
V
V
I
I
D
G











• Input stage looks like capacitances gate-to-source(gate) and
gate-to-drain(overlap)
• Output capacitances ignored -drain-to-source capacitance
small
Equivalent Circuit – Higher Frequency AC
• Input circuit:
• Input capacitance is mainly gate capacitance
• Output circuit:
  g
gate
g
gd
gs
in v
fC
j
v
C
C
j
i 



 2
g
m
out v
g
i 
gate
m
in
out
fC
g
i
i


2
D
i
n
V
G
D
m V
C
L
Z
V
I
g
D
m




Equivalent Circuit – Higher Frequency AC
Maximum Frequency (not in saturation)
• Ci is capacitance per unit area and Cgate is total capacitance
of the gate
• F=fmax when gain=1 (iout/iin=1)
2
max
max
2
2
2
L
V
ZL
C
C
V
L
Z
f
C
g
f
D
n
i
i
D
n
gate
m

m


m



ZL
C
C i
gate 
Maximum Frequency (not in saturation)
2
max 2 L
V
f D
n

m

L
V
v
v
L
D /
/
1
max
m



(Inverse transit time)
Switching Speed, Power Dissipation
ton = CoxZLVD/ION
Trade-off: If Cox too small, Cs and Cd take over and you lose
control of the channel potential (e.g. saturation)
(DRAIN-INDUCED BARRIER LOWERING/DIBL)
If Cox increases, you want to make sure you don’t control
immobile charges (parasitics) which do not contribute to
current.
Switching Speed, Power Dissipation
Pdyn = ½ CoxZLVD
2f
Pst = IoffVD
CMOS
NOT gate
(inverter)
CMOS
NOT gate
(inverter)
Positive gate turns nMOS on
Vin = 1 Vout = 0
CMOS
NOT gate
(inverter)
Negative gate turns pMOS on
Vin = 0 Vout = 1
So what?
• If we can create a NOT gate
we can create other gates
(e.g. NAND, EXOR)
So what?
Ring Oscillator
So what?
• More importantly, since one is open and one is shut at steady
state, no current except during turn-on/turn-off
 Low power dissipation
Getting the inverter output
Gain
ON
OFF
0




G
V
D
D
D
V
I
g
 
T
G
i
n
V
G
D
m V
V
C
L
Z
V
I
g
D

m




What’s the gain here?
Signal Restoration
BJT vs MOSFET
• RTL logic vs CMOS logic
• DC Input impedance of MOSFET (at gate end) is infinite
Thus, current output can drive many inputs  FANOUT
• CMOS static dissipation is low!! ~ IOFFVDD
• Normally BJTs have higher transconductance/current (faster!)
IC = (qni
2Dn/WBND)exp(qVBE/kT) ID = mCoxW(VG-VT) 2/L
gm = IC/VBE = IC/(kT/q) gm = ID/VG = ID/[(VG-VT)/2]
• Today’s MOSFET ID >> IC due to near ballistic operation
What if it isn’t ideal?
• If work function differences and oxide charges are present,
threshold voltage is shifted just like for MOS capacitor:
• If the substrate is biased wrt the Source (VBS) the
threshold voltage is also shifted
i
B
A
s
B
i
f
ms
i
B
A
s
B
FB
T
C
qN
C
Q
C
qN
V
V
)
2
(
2
2
)
2
(
2
2
y
e

y








f

y
e

y


i
BS
B
A
s
B
FB
T
C
V
qN
V
V
)
2
(
2
2

y
e

y


Threshold Voltage Control
• Substrate Bias:
i
BS
B
A
s
B
FB
T
C
V
qN
V
V
)
2
(
2
2

y
e

y


 
B
BS
B
i
A
s
T
BS
T
BS
T
T
V
C
qN
V
V
V
V
V
V
y


y
e






2
2
2
)
0
(
)
(
Threshold Voltage Control-substrate bias
It also affects the I-V
VG
The threshold voltage is increased due to the depletion region
that grows at the drain end because the inversion layer shrinks
there and can’t screen it any more. (Wd > Wdm)
Qinv = -Cox[VG-VT(y)], I = -meffZQinvdV(y)/dy
VT(y) = y + √2esqNAy/Cox
y = 2yB + V(y)
It also affects the I-V
IL = ∫meffZCox[VG – (2yB+V) - √2esqNA(2yB+V)/Cox]dV
I = (ZmeffCox/L)[(VG–2yB)VD –VD
2/2
-2√2esqNA{(2yB+VD)3/2-(2yB)3/2}/3Cox]
We can approximately include this…
Include an additional charge term from the
depletion layer capacitance controlling V(y)
Q = -Cox[VG-VT]+(Cox + Cd)V(y)
where Cd = es/Wdm
Q = -Cox[VG –VT - MV(y)], M = 1 + Cd/Cox
ID = (ZmeffCox/L)[(VG-VT - MVD/2)VD]
Comparison between different models
Square Law Theory
Body Coefficient
Bulk Charge Theory
Still not good below threshold or above saturation
Mobility
• Drain current model assumed constant mobility in channel
• Mobility of channel less than bulk – surface scattering
• Mobility depends on gate voltage – carriers in inversion
channel are attracted to gate – increased surface scattering
– reduced mobility
Mobility dependence on gate voltage
)
(
1
0
T
G V
V 


m

m
Sub-Threshold Behavior
• For gate voltage less than the threshold – weak inversion
• Diffusion is dominant current mechanism (not drift)
L
L
n
o
n
qAD
y
n
qAD
A
J
I n
n
D
D
)
(
)
( 







kT
V
q
i
kT
q
i
D
B
s
B
s
e
n
L
n
e
n
n
/
)
(
/
)
(
)
(
)
0
(

y

y
y

y


Sub-threshold
  kT
q
kT
qV
kT
i
n
D
s
D
B
e
e
L
e
n
qAD
I /
/
/
1 y

y



We can approximate ys with VG-VT below threshold since all
voltage drops across depletion region
    kT
V
V
q
kT
qV
kT
i
n
D
T
G
D
B
e
e
L
e
n
qAD
I /
/
/
1 

y



•Sub-threshold current is exponential function of applied gate voltage
•Sub-threshold current gets larger for smaller gates (L)
Subthreshold Characteristic
 
 
G
D V
I
S



log
1
Subthreshold Swing
Tunneling transistor
– Band filter like operation
J Appenzeller et al, PRL ‘04
Ghosh, Rakshit, Datta
(Nanoletters, 2004)
(Sconf)min=2.3(kBT/e).(etox/m)
Hodgkin and Huxley, J. Physiol. 116, 449 (1952a)
Subthreshold slope = (60/Z) mV/decade
Much of new research depends on reducing S !
Much of new research depends on reducing S !
• Increase ‘q’ by collective motion (e.g. relay)
Ghosh, Rakshit, Datta, NL ‘03
• Effectively reduce N through interactions
Salahuddin, Datta
• Negative capacitance
Salahuddin, Datta
• Non-thermionic switching (T-independent)
Appenzeller et al, PRL
• Nonequilibrium switching
Li, Ghosh, Stan
• Impact Ionization
Plummer
More complete model – sub-threshold to
saturation
• Must include diffusion and drift currents
• Still use gradual channel approximation
• Yields sub-threshold and saturation behavior for long
channel MOSFETS
• Exact Charge Model – numerical integration
 








y
m
e

y
y


y
D s
B
V
p
p
V
D
n
s
D
p
n
V
F
e
L
L
Z
I
0
0
0
,
,
Exact Charge Model (Pao-Sah)
– Long Channel MOSFET
http://www.nsti.org/Nanotech2006/WCM2006/WCM2006-BJie.pdf
MOSFET IV characteristics and its operations

More Related Content

Similar to MOSFET IV characteristics and its operations

Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
Yong Heui Cho
 
MOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptxMOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptx
Balraj Singh
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
aicdesign
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage
Murali Rai
 

Similar to MOSFET IV characteristics and its operations (20)

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
 
Small signal Analysis.ppt
Small signal Analysis.pptSmall signal Analysis.ppt
Small signal Analysis.ppt
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
MOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptxMOS Inverters Static Characteristics.pptx
MOS Inverters Static Characteristics.pptx
 
emtl
emtlemtl
emtl
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Power consumption
Power consumptionPower consumption
Power consumption
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Power mosfet characteristics
Power mosfet characteristicsPower mosfet characteristics
Power mosfet characteristics
 
Lect2 up140 (100325)
Lect2 up140 (100325)Lect2 up140 (100325)
Lect2 up140 (100325)
 
UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
 
MOSFET threshold voltage
MOSFET  threshold voltage MOSFET  threshold voltage
MOSFET threshold voltage
 
Field Effect Transistor (FET)
Field Effect Transistor (FET)Field Effect Transistor (FET)
Field Effect Transistor (FET)
 
(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors(Latest) topic 5 field_effect_transistors
(Latest) topic 5 field_effect_transistors
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Giannakas____icecs2010
Giannakas____icecs2010Giannakas____icecs2010
Giannakas____icecs2010
 

More from jpradha86

VLSI-mosfet-construction engineering ECE
VLSI-mosfet-construction engineering ECEVLSI-mosfet-construction engineering ECE
VLSI-mosfet-construction engineering ECE
jpradha86
 
lecture_1_introduction__review_of_classical_control.pptx
lecture_1_introduction__review_of_classical_control.pptxlecture_1_introduction__review_of_classical_control.pptx
lecture_1_introduction__review_of_classical_control.pptx
jpradha86
 
EE392n_Lecture3apps.ppt
EE392n_Lecture3apps.pptEE392n_Lecture3apps.ppt
EE392n_Lecture3apps.ppt
jpradha86
 
SS7G1 - Africa Geography.ppt
SS7G1 - Africa Geography.pptSS7G1 - Africa Geography.ppt
SS7G1 - Africa Geography.ppt
jpradha86
 
CS4700-LS_v6.pptx
CS4700-LS_v6.pptxCS4700-LS_v6.pptx
CS4700-LS_v6.pptx
jpradha86
 
BeyondClassicalSearch.ppt
BeyondClassicalSearch.pptBeyondClassicalSearch.ppt
BeyondClassicalSearch.ppt
jpradha86
 
Ethnic and Religious Groups Student.pptx
Ethnic and Religious Groups Student.pptxEthnic and Religious Groups Student.pptx
Ethnic and Religious Groups Student.pptx
jpradha86
 

More from jpradha86 (14)

VLSI-mosfet-construction engineering ECE
VLSI-mosfet-construction engineering ECEVLSI-mosfet-construction engineering ECE
VLSI-mosfet-construction engineering ECE
 
Vlsibasic.ppt fundamental for engineering
Vlsibasic.ppt fundamental for engineeringVlsibasic.ppt fundamental for engineering
Vlsibasic.ppt fundamental for engineering
 
MATH 5.6.20 (1).ppt
MATH 5.6.20 (1).pptMATH 5.6.20 (1).ppt
MATH 5.6.20 (1).ppt
 
the-vhsic-.pptx
the-vhsic-.pptxthe-vhsic-.pptx
the-vhsic-.pptx
 
lec16-bari.pptx
lec16-bari.pptxlec16-bari.pptx
lec16-bari.pptx
 
lecture_1_introduction__review_of_classical_control.pptx
lecture_1_introduction__review_of_classical_control.pptxlecture_1_introduction__review_of_classical_control.pptx
lecture_1_introduction__review_of_classical_control.pptx
 
EE392n_Lecture3apps.ppt
EE392n_Lecture3apps.pptEE392n_Lecture3apps.ppt
EE392n_Lecture3apps.ppt
 
SS7G1 - Africa Geography.ppt
SS7G1 - Africa Geography.pptSS7G1 - Africa Geography.ppt
SS7G1 - Africa Geography.ppt
 
NEW-II.pptx
NEW-II.pptxNEW-II.pptx
NEW-II.pptx
 
NEW-II.pptx
NEW-II.pptxNEW-II.pptx
NEW-II.pptx
 
CS4700-LS_v6.pptx
CS4700-LS_v6.pptxCS4700-LS_v6.pptx
CS4700-LS_v6.pptx
 
BeyondClassicalSearch.ppt
BeyondClassicalSearch.pptBeyondClassicalSearch.ppt
BeyondClassicalSearch.ppt
 
Ethnic and Religious Groups Student.pptx
Ethnic and Religious Groups Student.pptxEthnic and Religious Groups Student.pptx
Ethnic and Religious Groups Student.pptx
 
chapter2.pptx
chapter2.pptxchapter2.pptx
chapter2.pptx
 

Recently uploaded

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Recently uploaded (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 

MOSFET IV characteristics and its operations

  • 2. Substrate Channel Drain Insulator Gate Operation of a transistor VSG > 0 n type operation Positive gate bias attracts electrons into channel Channel now becomes more conductive More electrons Source VSD VSG
  • 3. Some important equations in the inversion regime (Depth direction) VT = fms + 2yB + yox Wdm = [2eS(2yB)/qNA] Qinv = -Cox(VG - VT) yox = Qs/Cox Qs = qNAWdm VT = fms + 2yB + [4eSyBqNA]/Cox Substrate Channel Drain Insulator Gate Source x
  • 5. How to include y-dependent potential without doing the whole problem over?
  • 6. Assume potential V(y) varies slowly along channel, so the x-dependent and y-dependent electrostats are independent (GRADUAL CHANNEL APPROXIMATION) i.e., Ignore ∂Ex/∂y Potential is separable in x and y
  • 7. How to include y-dependent potentials? yS = 2yB + V(y) VG = yS + [2eSySqNA]/Cox Need VG – V(y) > VT to invert channel at y (V increases threshold) Since V(y) largest at drain end, that end reverts from inversion to depletion first (Pinch off)  SATURATION [VDSAT = VG – VT]
  • 8. j = qninvv = (Qinv/tinv)v I = jA = jZtinv = ZQinvv So current: Qinv = -Cox[VG – VT - V(y)] v = -meffdV(y)/dy
  • 9. So current: I = meff ZCox[VG – VT - V(y)]dV(y)/dy I = meff ZCox[(VG – VT )VD- VD 2/2]/L Continuity implies ∫Idy = IL
  • 10. But this current behaves like a parabola !! ID VD IDsat VDsat I = meff ZCox[(VG – VT )VD- VD 2/2]/L We have assumed inversion in our model (ie, always above pinch-off) So we just extend the maximum current into saturation… Easy to check that above current is maximum for VDsat = VG - VT Substituting, IDsat = (CoxmeffZ/2L)(VG-VT)2
  • 11. What’s Pinch off? 0 0 0 0 VG VG Now add in the drain voltage to drive a current. Initially you get an increasing current with increasing drain bias 0 VD VG VG When you reach VDsat = VG – VT, inversion is disabled at the drain end (pinch-off), but the source end is still inverted The charges still flow, just that you can’t draw more current with higher drain bias, and the current saturates
  • 12. Square law theory of MOSFETs I = meff ZCox[(VG – VT )VD- VD 2/2]/L, VD < VG - VT I = meff ZCox(VG – VT )2/2L, VD > VG - VT J = qnv n ~ Cox(VG – VT ) v ~ meffVD /L
  • 13. Ideal Characteristics of n-channel enhancement mode MOSFET
  • 14. Drain current for REALLY small VD         T G D D T G i n D D D T G i n D V V V V V V C L Z I V V V V C L Z I              m m 2 2 1 Linear operation Channel Conductance: ) ( T G i n V D D D V V C L Z V I g G  m     Transconductance: D i n V G D m V C L Z V I g D m    
  • 15. In Saturation • Channel Conductance: • Transconductance:  2 2 T G i n D V V C L Z sat I  m  0     G V D D D V I g   T G i n V G D m V V C L Z V I g D  m    
  • 16. Equivalent Circuit – Low Frequency AC • Gate looks like open circuit • S-D output stage looks like current source with channel conductance g m d D G V G D D V D D D v g v g i V V I V V I I D G           
  • 17. • Input stage looks like capacitances gate-to-source(gate) and gate-to-drain(overlap) • Output capacitances ignored -drain-to-source capacitance small Equivalent Circuit – Higher Frequency AC
  • 18. • Input circuit: • Input capacitance is mainly gate capacitance • Output circuit:   g gate g gd gs in v fC j v C C j i      2 g m out v g i  gate m in out fC g i i   2 D i n V G D m V C L Z V I g D m     Equivalent Circuit – Higher Frequency AC
  • 19. Maximum Frequency (not in saturation) • Ci is capacitance per unit area and Cgate is total capacitance of the gate • F=fmax when gain=1 (iout/iin=1) 2 max max 2 2 2 L V ZL C C V L Z f C g f D n i i D n gate m  m   m    ZL C C i gate 
  • 20. Maximum Frequency (not in saturation) 2 max 2 L V f D n  m  L V v v L D / / 1 max m    (Inverse transit time)
  • 21. Switching Speed, Power Dissipation ton = CoxZLVD/ION Trade-off: If Cox too small, Cs and Cd take over and you lose control of the channel potential (e.g. saturation) (DRAIN-INDUCED BARRIER LOWERING/DIBL) If Cox increases, you want to make sure you don’t control immobile charges (parasitics) which do not contribute to current.
  • 22. Switching Speed, Power Dissipation Pdyn = ½ CoxZLVD 2f Pst = IoffVD
  • 24. CMOS NOT gate (inverter) Positive gate turns nMOS on Vin = 1 Vout = 0
  • 25. CMOS NOT gate (inverter) Negative gate turns pMOS on Vin = 0 Vout = 1
  • 26. So what? • If we can create a NOT gate we can create other gates (e.g. NAND, EXOR)
  • 28. So what? • More importantly, since one is open and one is shut at steady state, no current except during turn-on/turn-off  Low power dissipation
  • 29. Getting the inverter output Gain ON OFF
  • 32. BJT vs MOSFET • RTL logic vs CMOS logic • DC Input impedance of MOSFET (at gate end) is infinite Thus, current output can drive many inputs  FANOUT • CMOS static dissipation is low!! ~ IOFFVDD • Normally BJTs have higher transconductance/current (faster!) IC = (qni 2Dn/WBND)exp(qVBE/kT) ID = mCoxW(VG-VT) 2/L gm = IC/VBE = IC/(kT/q) gm = ID/VG = ID/[(VG-VT)/2] • Today’s MOSFET ID >> IC due to near ballistic operation
  • 33. What if it isn’t ideal? • If work function differences and oxide charges are present, threshold voltage is shifted just like for MOS capacitor: • If the substrate is biased wrt the Source (VBS) the threshold voltage is also shifted i B A s B i f ms i B A s B FB T C qN C Q C qN V V ) 2 ( 2 2 ) 2 ( 2 2 y e  y         f  y e  y   i BS B A s B FB T C V qN V V ) 2 ( 2 2  y e  y  
  • 34. Threshold Voltage Control • Substrate Bias: i BS B A s B FB T C V qN V V ) 2 ( 2 2  y e  y     B BS B i A s T BS T BS T T V C qN V V V V V V y   y e       2 2 2 ) 0 ( ) (
  • 36. It also affects the I-V VG The threshold voltage is increased due to the depletion region that grows at the drain end because the inversion layer shrinks there and can’t screen it any more. (Wd > Wdm) Qinv = -Cox[VG-VT(y)], I = -meffZQinvdV(y)/dy VT(y) = y + √2esqNAy/Cox y = 2yB + V(y)
  • 37. It also affects the I-V IL = ∫meffZCox[VG – (2yB+V) - √2esqNA(2yB+V)/Cox]dV I = (ZmeffCox/L)[(VG–2yB)VD –VD 2/2 -2√2esqNA{(2yB+VD)3/2-(2yB)3/2}/3Cox]
  • 38. We can approximately include this… Include an additional charge term from the depletion layer capacitance controlling V(y) Q = -Cox[VG-VT]+(Cox + Cd)V(y) where Cd = es/Wdm Q = -Cox[VG –VT - MV(y)], M = 1 + Cd/Cox ID = (ZmeffCox/L)[(VG-VT - MVD/2)VD]
  • 39. Comparison between different models Square Law Theory Body Coefficient Bulk Charge Theory Still not good below threshold or above saturation
  • 40. Mobility • Drain current model assumed constant mobility in channel • Mobility of channel less than bulk – surface scattering • Mobility depends on gate voltage – carriers in inversion channel are attracted to gate – increased surface scattering – reduced mobility
  • 41. Mobility dependence on gate voltage ) ( 1 0 T G V V    m  m
  • 42. Sub-Threshold Behavior • For gate voltage less than the threshold – weak inversion • Diffusion is dominant current mechanism (not drift) L L n o n qAD y n qAD A J I n n D D ) ( ) (         kT V q i kT q i D B s B s e n L n e n n / ) ( / ) ( ) ( ) 0 (  y  y y  y  
  • 43. Sub-threshold   kT q kT qV kT i n D s D B e e L e n qAD I / / / 1 y  y    We can approximate ys with VG-VT below threshold since all voltage drops across depletion region     kT V V q kT qV kT i n D T G D B e e L e n qAD I / / / 1   y    •Sub-threshold current is exponential function of applied gate voltage •Sub-threshold current gets larger for smaller gates (L)
  • 44. Subthreshold Characteristic     G D V I S    log 1 Subthreshold Swing
  • 45. Tunneling transistor – Band filter like operation J Appenzeller et al, PRL ‘04 Ghosh, Rakshit, Datta (Nanoletters, 2004) (Sconf)min=2.3(kBT/e).(etox/m) Hodgkin and Huxley, J. Physiol. 116, 449 (1952a) Subthreshold slope = (60/Z) mV/decade Much of new research depends on reducing S !
  • 46. Much of new research depends on reducing S ! • Increase ‘q’ by collective motion (e.g. relay) Ghosh, Rakshit, Datta, NL ‘03 • Effectively reduce N through interactions Salahuddin, Datta • Negative capacitance Salahuddin, Datta • Non-thermionic switching (T-independent) Appenzeller et al, PRL • Nonequilibrium switching Li, Ghosh, Stan • Impact Ionization Plummer
  • 47. More complete model – sub-threshold to saturation • Must include diffusion and drift currents • Still use gradual channel approximation • Yields sub-threshold and saturation behavior for long channel MOSFETS • Exact Charge Model – numerical integration           y m e  y y   y D s B V p p V D n s D p n V F e L L Z I 0 0 0 , ,
  • 48. Exact Charge Model (Pao-Sah) – Long Channel MOSFET http://www.nsti.org/Nanotech2006/WCM2006/WCM2006-BJie.pdf