SlideShare a Scribd company logo
1
PERANCANGAN JEMBATAN BETON BERTULANG DENGAN
TAMPANG BALOK T
Gambar 1. Penampang melintang jembatan
1. Kondisi Jembatan
• Panjang bentang : 17,5 m
• Lebar jembatan : 9 m
• Lebar perkerasan : 7 m
• Tipe jembatan : beton bertulang dengan gelagar balok T
• Jumlah balok gelagar : 6 buah
• Panjang bersih gelagar : 16,5 m
2. Spesifikasi Pembebanan
a. Beban hidup : PPJJR No. 12/1970 (BM 100 %)
• Beban roda T : 100% x 10 t = 10 t
• Beban garis P : 100% x 12 t/m = 12 t/m
• Beban merata q : 100% x 2,2 t/m2 = 2,2 t/m2
b. Beban kejut, 2963,1
5,1750
20
1
50
20
1 =
+
+=
+
+=
L
k
3. Spesifikasi beton dan baja tulangan
a. Beton
• Kuat tekan, fc’ = 25 MPa
• Kuat tekan ijin, fc’ = 10 MPa
• Modulus elastis, Ec = 4700√25 = 23500 MPa
b. Baja tulangan
• Kuat leleh, fy = 400 MPa
• Modulus elastis, Es = 2x105 MPa
2
PERANCANGAN
1. Tiang sandaran
momen lentur, Mu = 1,2×2×100×1,0 = 240 kg-m = 2400 N-m
gaya geser, V = 1,2 × 2 × 100 = 240 kg = 2400 N
Mn = φ bd2k
Mu = Mn
1095,1
1301608,0
102400
2
3
2
=
××
×
=
××
=
db
M
k u
φ
Mpa
3
'
'
108502,2
2585,0
1095,12
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5×10-3 ×160×130 = 72,8 mm2
Dipakai tulangan 2∅10 (As = 157,0796 mm2)
Kontrol kapasitas momen balok
Dianggap baja tulangan telah luluh pada saat beton mulai retak (εc = 0,003)
5,18
1602585,0
4000796,157
85,0 '
=
××
×
=
××
×
=
bf
fA
a
c
ys
mm
7647,21
85,0
5,18
1
===
β
a
c mm
7847,2983
7647,21
7647,21130
600600 =⎟
⎠
⎞
⎜
⎝
⎛ −
=⎟
⎠
⎞
⎜
⎝
⎛ −
=
c
cd
fs MPa > fy O K
68,7586944
2
5,18
1304000796,157
2
=⎟
⎠
⎞
⎜
⎝
⎛
−×=⎟
⎠
⎞
⎜
⎝
⎛
−×=
a
dfAM ysn N-mm
=7586,9447 N-m > Mu (2400 N-m) O K
Perencanaan tulangan geser
Vu = 2400 N
3333,1733313016020
6
1
6
1 '
=××=××= dbfV cc N
9999,51993333,173336,0
2
1
2
1
=××=cVφ N > Vu (secara teoritis tidak perlu sengkang)
b=160 mm
h=160 mm d=130 mm
3
walaupun secara teoritis tidak perlu sengkang, tetapi untuk kestabilan struktur dan
peraturan mensyaratkan dipasang tulangan minimum
smaksimum = ½ d = ½ x 130 = 65 mm
luas tulangan geser minimum
3333,43
400
6516025
3
1
3
1 '
min =
××
=
××
=
y
c
v
f
sbf
A mm2
dipakai tulangan ∅8 (As = 100,5310 mm2), maka jarak sengkang
7965,150
16025
3
1
4005310,100
3
1 '
=
×
×
=
×
×
=
bf
fA
s
c
yv
mm
untuk penulangan geser dipakai sengkang ∅8-100
2. Perhitungan plat kantilever
Gambar 2. Pembebanan pada plat kantilever
a. momen lentur (bending moment)
Perhitungan momen lentur
No. Volume (m3) γ
(kg/m3)
W
(kg)
Lengan
(m)
Momen
(kg-m)
1 0,10 × 0,16 × 0,50 = 0,008 2400 19,2 1,8 34,5600
2 0,10×(0,70×0,110)/2 = 0,00385 2400 9,24 1,04 9,6096
3 0,10×0,05×0,50 = 0,0025 2400 6 1,025 6,1500
4 0,10 × (0,15 × 0,50)/2 = 0,00375 2400 9 0,95 8,5500
5 1,00 × 1,00 × 0,20 = 0,2 2400 480 0,5 240,0000
6 1,00 × (1,00 × 0,10)/2 = 0,05 2400 120 0,33 39,6000
7 1,00 × 0,90 × 0,07 = 0,063 2200 138,6 0,375 51,9750
P 2,0 × 100 kg/m 200 1,2 240,0000
4
T 1,2963 × 10000 12963 0,5 6481,5000
Air hujan = 2 × 0,90 × 0,05 = 0,0625 1000 62,5 0,375 23,4375
Railing = 2 × 2m× 6 kg/m = 24 24 1,08 25,9200
Total momen, M 7161,3021
Total momen, M (N-m) 71613,0210
b. Gaya geser (shear force)
Berat tiang sandaran = 1 + 2 + 3 +4 + railing = 67,4400 Kg
Slab kantilever dan perkerasan = 5 + 6 +7 = 738,6000 Kg
Beban roda = 12963,0000 Kg
Beban genangan air hujan = 62,5000 Kg
Toal gaya lintang = 13831,5400 Kg
= 138315,4000 N
c. perhitungan baja tulangan
Mu = 1,2×71613,021 =85935,6252 N-m
Vu = 1,2×138315,400 = 165978,48 N
h = 300 mm d = 300-40 = 260 mm
5890,1
26010008,0
1085935,6252
2
3
2
=
××
×
=
××
=
db
M
k u
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
3
'
'
101333,4
2585,0
5890,12
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 4,1333x10-3 x 1000 x 260 = 1074,658 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
4686,195
658,1074
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
kontrol terhadap geser beton
7296,0
2601000
165978,48
8
7
8
7
=
××
=
××
=
hb
V
cτ MPa < 0,45 fc = 11,25 MPa O K
5
3. Perhitungan plat bagian dalam (inner slab)
a. Momen lentur akibat beban hidup
Gambar 3. posisi roda
Penyebaran beban hidup (roda) pada slab
P
20cm21 21
6cm
15cm
15cm
50cm21 21
P
Gambar 4. Penyebaran beban hidup pada slab
lx = 1,4 m
ly = ∞
tx = 0,92 m
ty =0,62 m
6
Beban roda, T = 10000 kg
Bidang kontak = 0,92 m × 0,62 m
Penyebaran beban roda, 1571,22726
62,092,0
2963,110000
=
×
×
=T kg/m2
Dipakai tabel-Bittner (dari Dr. Ing Ernst Bittner)
Dengan lx = 1,4 , ly = ∞ (lantai tidak menumpu pada diafragma)
657,0
4,1
92,0
==
x
x
l
t
fxm = 0,1233
443,0
4,1
62,0
==
x
y
l
t
fym = 0,0661
Mxm = 0,1233 × 22726,1571 × 0,92 × 0,62 = 1598,3379 kgm = 15983,379 Nm
Mym = 0,0661 × 22726,1571 × 0,92 × 0,62 = 856,8543 kgm = 8568,543 Nm
b. momen lentur akibat beban mati
Berat slab = 0,30 × 2400 = 720 kg/m2
Berat perkerasan = 0,06 × 2200 = 132 kg/m2
Berat air hujan = 0,05 × 1000 = 50 kg/m2
Total qDL = 902 kg/m2
7920,1764,1902
10
1
10
1 22
=××=××= xDLxm lqM kgm = 1767,920 Nm
9307,587920,176
3
1
3
1
=×=×= xmym MM kgm = 589,307 Nm
c. momen total
Mx = 15983,379 + 1767,920 = 17661,299 Nm
My =8568,543 + 589,307 = 9157,85 Nm
d. perhitungan baja tulangan
arah melintang lx
M = 17661,299 Nm
h = 300 mm d = 300-40 = 260 mm
3267,0
26010008,0
1017661,299
2
3
2
=
××
×
=
××
=
db
M
k
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
7
4
'
'
102313,8
2585,0
3267,02
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
8373,230
910
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
arah memanjang ly
M = 9157,85 Nm
h = 300 mm d = 300-40 = 260 mm
1693,0
26010008,0
109157,85
2
3
2
=
××
×
=
××
=
db
M
k
φ
MPa
027094,0
200000
400
003,0
003,0
400
85,025
85,0
003,0
003,0
85,0 1
'
=
+
×
×
=
+
×
×
=
s
yy
c
b
E
ff
f β
ρ
ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
4
'
'
102495,4
2585,0
1693,02
11
400
25
85,0
85,0
2
1185,0 −
×=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
×
×
−−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−=
cy
c
perlu
f
k
f
f
ρ
3
min 105,3
400
4,14,1 −
×===
yf
ρ
As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2
Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan
8373,230
910
10000619,210
=
×
=perlus mm
dipakai tulangan ∅16-125 mm
4. Perhitungan Gelagar
a. beban mati (dead load)
Hand rail = {(0,10 × 0,16 × 1,00 × 2400)/2} × 1,1871 = 22,7923 kg/m
Railing = 2 × 1,00 × 6 × 1,1871 = 14,2452 kg/m
Perkerasan = 0,06 × 2200 × 4,5716 = 603,4512 kg/m
Air hujan = 0,05 × 1000 × 4,5716 = 228,5800 kg/m
Pelat lantai = 0,30 × 2400 × 4,5716 = 3291,5520 kg/m
8
Gelagar = 1,00 × 0,50 × 2400 × 1,00 = 1200,0000 kg/m
Total = 5360,6207 kg/m
Balok melintang (diafragma), Tb = 0,30 × 0,60 × 2400 × 0,9 = 388,8 kg
Gambar 5. Garis pengaruh momen
Gambar 6. Potongan memanjang balok pada perhitungan momen lentur
b. momen lentur akibat beban mati
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=→
L
x
L
x
LqMM DLxqDL 1
2
1 2
Momen pada potongan 1, x = 2,0 m (M1 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
2
1
5,16
2
5,166207,5360
2
1 2
qDLM = 77729,0002 kgm
MTb= ½ × 388,8 × 2 = 388,8000 kgm
M1 DL = 78117,8002 kgm
781178,0020 Nm
9
Momen pada potongan 2, x = 4,0 m (M2 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
4
1
5,16
4
5,166207,5360
2
1 2
qDLM = 134015,5175 kgm
MTb= ½ × 388,8 × 4 = 777,6000 kgm
M2 DL = 134793,1175 kgm
1347931,1750 Nm
Momen pada potongan 3, x = 6,0 m (M3 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
6
1
5,16
6
5,166207,5360
2
1 2
qDLM = 168859,5521 kgm
MTb= ½ × 388,8 × 6 = 1166,4000 kgm
M3 DL 170025,9521 kgm
1700259,5210 Nm
Momen pada potongan 4, x = 8,25 m (M4 DL)
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
25,8
1
5,16
25,8
5,166207,5360
2
1 2
qDLM = 182428,6232 kgm
MTb= ½ × 388,8 × 8,25 = 1603,8000 kgm
M4 DL 184032,4232 kgm
1840324,2320 Nm
c. Beban hidup (live load)
koefisien kejut = 1,2963
beban garis, 6294,258595716,4
75,2
12000
2963,1 =××=P kg
beban terbagi merata, 28,36575716,4
75,2
2200
=×=q kg/m
d. Momen lentur akibat beban hidup
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
L
x
L
x
LPPM x 1
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
L
x
L
x
LqqM x 1
2
1 2
Momen pada potongan 1, x = 2,0 m (M1 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
2
1
5,16
2
5,166294,25859PM x = 45450,2577 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
2
1
5,16
2
5,1628,3657
2
1 2
qM x = 53030,5600 kgm
M1 LL = 98480,8177 kgm
984808,1770 Nm
10
Momen pada potongan 2, x = 4,0 m (M2 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
4
1
5,16
4
5,166294,25859PM x = 78362,5133 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
4
1
5,16
4
5,1628,3657
2
1 2
qM x = 91432,0000 kgm
M2 LL = 169794,5133 kgm
1697945,1330 Nm
Momen pada potongan 3, x = 6,0 m (M3 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
6
1
5,16
6
5,166294,25859PM x = 98736,7668 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
6
1
5,16
6
5,1628,3657
2
1 2
qM x = 115204,3200 kgm
M3 LL 213941,0868 kgm
2139410,8680 Nm
Momen pada potongan 4, x = 8,25 m (M4 LL)
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−×=
5,16
25,8
1
5,16
25,8
5,166294,25859PM x = 106670,9713 kgm
( )
⎭
⎬
⎫
⎩
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
−××=
5,16
25,8
1
5,16
25,8
5,1628,3657
2
1 2
qM x = 124461,8100 kgm
M4 LL 231132,7813 kgm
2311327,8130 Nm
Tabel. Momen lentur total
Pembebanan M.1 M.2 M.3 M.4
Beban mati, DL
Beban hidup, LL
781178,0020
984808,1770
1347931,1750
1697945,1330
1700259,5210
2139410,8680
1840324,2320
2311327,8130
Total, Mu
(1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792
e. Gaya geser (shearing force)
Beban mati terbagi merata = 0,5 × 5360,6207 × 16,5 44225,1208 kg
Balok melintang = 1,4 × 388,8 544,3200 kg
Beban hidup garis P = 0,5 × 6294,25859 12928,8147 kg
Beban hidup terbagi merata q = 0,5 × 28,3657 × 16,5 30172,5600 kg
Total V 87870,8155 kg
878708,1550 N
11
f. Perhitungan baja tulangan
Pada tumpuan
V = 878708,1550 N h = 1300 mm
b = 500 mm d = 1300 - 60 = 1240 mm
Perencanaan tulangan geser
Vu = 878708,1550 N
6667,5072911217,550025
6
1
6
1 '
=××=××= dbfV cc N
5,1521876667,5072916,0
2
1
2
1
=××=cVφ N < Vu (perlu sengkang)
Gambar 7. Diagram gaya geser (SFD)
Hasil perhitungan dapat dilihat pada tabel berikut
No. Penampang titik 1 titik 2 titik 3 titik 4
kritis 0 - 2 m 2 - 4 m 4 - 6 m 6 - 8,25 m
1 Vu (N) 878708.1550 698350.141 517992.127 337089.793
2 Vc (N) 507291.6667 507291.6667 507291.6667 507291.6667
3 ½ φ Vc (N) 152187.5 152187.5 152187.5 152187.5
Perlu sengkang Perlu sengkang Perlu sengkang Perlu sengkang
4 Vs (N) 957221.925 656625.235 356028.545 54524.655
5 s (mm) 79.91645314 116.5014334 214.8641793 1402.994317
6 s mak (mm) 608.75 608.75 608.75 608.75
7 Dipakai D10 - 75 D10 - 110 D10 - 200 D10 - 500
Potongan I-I (8,25 m dari tumpuan)
lebar efektif, diambil nilai terkecil dari :
375,45,174
1
4
1
=×== LbE m
( ) 53003001650016 =×+=+= fwE hbb mm
1400== gelagarjarakbE mm
CL
878708,1550
698350.141 517992.127
517447.807
337089.793
111642.2755
bw = 500 mm
bE = 1400 mm
hf = 300 mm
h = 1300 mm
12
Mu = 5906513,5792 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 5906513,5792 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,25906513579
a
a
a2 – 2520a + 397076,5431 = 0
a = 168,8889 mm, c = 168,8889/0,85 = 198,6928 mm
luas tulangan yang diperlukan
1114,4486
400
8889,1685002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
3,6
8583,706
1114,4486
==n dipakai 8∅30 (As = 5654,8664 mm2)
Potongan II-II (6 m dari tumpuan)
Mu = 5463368,8140 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
13
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 5463368,8140 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,05463368814
a
a
a2 – 2520a + 367285,2984 = 0
a = 155,3214 mm, c = 155,3214/0,85 = 182,7311 mm
luas tulangan yang diperlukan
7247,4125
400
155,32145002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
8,5
8583,706
7247,4125
==n dipakai 6∅30 (As = 4241,1501 mm2)
Potongan III-III (4 m dari tumpuan)
Mu = 4334229,6228 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
14
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 4334229,6228 Nm → blok beton a ada di dalam sayap
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,84334229622
a
a
a2 – 2520a + 291376,7813 = 0
a = 121,4820 mm, c = 121,4820/0,85 = 142,92 mm
luas tulangan yang diperlukan
8656,3226
400
121,48205002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
6,4
8583,706
8656,3226
==n dipakai 6∅30 (As = 4241,1501 mm2)
Potongan IV- IV (2 m dari tumpuan)
Mu = 2513106,6856 N-m
s
yb
b
E
fd
c
+
=
003,0
003,0
b
s
y
b d
E
f
a
+
=
003,0
003,0
85,0
ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
dalam keadaan setimbang (ΣH = 0)
( ){ }tbbbaffA wfwbcyb ×−+×××=× '
85,0
( ){ } ( ){ } 34425
400
30050014005007562585,085,0 '
=
×−+×××
=
×−+×××
=
y
wfwbc
b
f
tbbbaf
A mm2
kemampuan sayap mendukung momen
9906750000
2
300
12602585,03001400
2
85,0 '
=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
t
dftbM cf Nmm
M = 9906750 Nm > 2513106,6856 Nm → blok beton a ada di dalam sayap
15
Letak garis netral, c
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
85,0 ' a
dfabM cf
⎭
⎬
⎫
⎩
⎨
⎧
−××××=
2
12602585,01400,62513106685
a
a
a2 – 2520a + 168948,3486 = 0
a = 68,9284 mm, c = 68,9284/0,85 = 81,0922 mm
luas tulangan yang diperlukan
9106,1830
400
68,92845002585,085,0 '
=
×××
=
×××
=
y
wc
f
abf
A mm2 < 0,75×Ab = 0,75×34425
Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan
6,2
8583,706
9106,1830
==n dipakai 3∅30 (As = 2120,5750 mm2)
Tabel Penulangan balok
Pembebanan M.1 M.2 M.3 M.4
Beban mati, DL
Beban hidup, LL
781178,0020
984808,1770
1347931,1750
1697945,1330
1700259,5210
2139410,8680
1840324,2320
2311327,8130
Total, Mu
(1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792
tulangan 3∅30 6∅30 6∅30 8∅30
16
DAFTAR PUSTAKA
Agus Iqbal Manu, Ir.,Dipl. Heng., 1995, Dasar-Dasar Perencanaan Jembatan Beton
Bertulang, Cetakan I,P.T. Mediatana Saptakarya, Jakarta
Bambang Supriyadi, DR.,Ir., CES.,DEA., 2000, Jembatan, Edisi pertama, Beta Offset,
Jogjakarta
Departemen Pekerjaan Umum, Standar Bangunan Atas Jembatan Gelagar Beton
Bertulang Tipe T, 1993, Departemen Pekerjaan Umum Ditjen Bina Marga
Dit. Bina Program Jalan Subdit. Perencanaan Teknik Jembatan

More Related Content

What's hot

contoh soal menghitung momen ultimate pada balok
contoh soal menghitung momen ultimate pada balokcontoh soal menghitung momen ultimate pada balok
contoh soal menghitung momen ultimate pada balok
Shaleh Afif Hasibuan
 
1 perhitungan-balok
1 perhitungan-balok1 perhitungan-balok
1 perhitungan-balok
eidhy setiawan eidhy Edy
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
Mira Pemayun
 
Statika
StatikaStatika
Statika
theo_rifai
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
MOSES HADUN
 
Standar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatanStandar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatan
ardi nasir
 
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
wahyu nurul aini
 
Balok lentur dan geser baja
Balok lentur dan geser  bajaBalok lentur dan geser  baja
Balok lentur dan geser baja
Shaleh Afif Hasibuan
 
06 momen inersia 3
06  momen inersia 306  momen inersia 3
06 momen inersia 3
tekpal14
 
Bab4 mt uji tarik
Bab4 mt uji tarikBab4 mt uji tarik
Bab4 mt uji tarikkaatteell
 
2 struktur-statis-tertentu2-libre
2 struktur-statis-tertentu2-libre2 struktur-statis-tertentu2-libre
2 struktur-statis-tertentu2-libre
rosidahmad
 
Pengujian kuat tarik_baja_beton (umum)
Pengujian kuat tarik_baja_beton (umum)Pengujian kuat tarik_baja_beton (umum)
Pengujian kuat tarik_baja_beton (umum)
Surya BS
 
4. struktur baja metode lrfd
4. struktur baja metode lrfd4. struktur baja metode lrfd
4. struktur baja metode lrfd
KHRISTIAN MAUKO
 
SNI 07-2052-2002 Baja Tulang beton
SNI 07-2052-2002 Baja Tulang betonSNI 07-2052-2002 Baja Tulang beton
SNI 07-2052-2002 Baja Tulang beton
Mira Pemayun
 
Mekanika tanah jilid 2
Mekanika tanah jilid 2Mekanika tanah jilid 2
Mekanika tanah jilid 2
Basit Hanif
 
Elemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
Elemen Mesin 2 - Perencanaan Poros dengan Beban PuntirElemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
Elemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
Dewi Izza
 
Contoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton iiContoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton ii
Harry Calbara
 
Laporan tugas struktur baja
Laporan tugas struktur bajaLaporan tugas struktur baja
Laporan tugas struktur baja
tanchul
 
Tugas-Tugas Beton 1-10
Tugas-Tugas Beton 1-10Tugas-Tugas Beton 1-10
Tugas-Tugas Beton 1-10
noussevarenna
 
Perhitungan pertemuan balok dan kolom
Perhitungan pertemuan balok dan kolomPerhitungan pertemuan balok dan kolom
Perhitungan pertemuan balok dan kolom
Shaleh Afif Hasibuan
 

What's hot (20)

contoh soal menghitung momen ultimate pada balok
contoh soal menghitung momen ultimate pada balokcontoh soal menghitung momen ultimate pada balok
contoh soal menghitung momen ultimate pada balok
 
1 perhitungan-balok
1 perhitungan-balok1 perhitungan-balok
1 perhitungan-balok
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
 
Statika
StatikaStatika
Statika
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
 
Standar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatanStandar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatan
 
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
Prosedur Perencanaan Perkerasan Jalan Lentur dan Kaku
 
Balok lentur dan geser baja
Balok lentur dan geser  bajaBalok lentur dan geser  baja
Balok lentur dan geser baja
 
06 momen inersia 3
06  momen inersia 306  momen inersia 3
06 momen inersia 3
 
Bab4 mt uji tarik
Bab4 mt uji tarikBab4 mt uji tarik
Bab4 mt uji tarik
 
2 struktur-statis-tertentu2-libre
2 struktur-statis-tertentu2-libre2 struktur-statis-tertentu2-libre
2 struktur-statis-tertentu2-libre
 
Pengujian kuat tarik_baja_beton (umum)
Pengujian kuat tarik_baja_beton (umum)Pengujian kuat tarik_baja_beton (umum)
Pengujian kuat tarik_baja_beton (umum)
 
4. struktur baja metode lrfd
4. struktur baja metode lrfd4. struktur baja metode lrfd
4. struktur baja metode lrfd
 
SNI 07-2052-2002 Baja Tulang beton
SNI 07-2052-2002 Baja Tulang betonSNI 07-2052-2002 Baja Tulang beton
SNI 07-2052-2002 Baja Tulang beton
 
Mekanika tanah jilid 2
Mekanika tanah jilid 2Mekanika tanah jilid 2
Mekanika tanah jilid 2
 
Elemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
Elemen Mesin 2 - Perencanaan Poros dengan Beban PuntirElemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
Elemen Mesin 2 - Perencanaan Poros dengan Beban Puntir
 
Contoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton iiContoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton ii
 
Laporan tugas struktur baja
Laporan tugas struktur bajaLaporan tugas struktur baja
Laporan tugas struktur baja
 
Tugas-Tugas Beton 1-10
Tugas-Tugas Beton 1-10Tugas-Tugas Beton 1-10
Tugas-Tugas Beton 1-10
 
Perhitungan pertemuan balok dan kolom
Perhitungan pertemuan balok dan kolomPerhitungan pertemuan balok dan kolom
Perhitungan pertemuan balok dan kolom
 

Similar to 131445983 jembatan-balok-t

Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
ssuser021946
 
Chapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAChapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFA
Mustafa Al Bakri
 
materi kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balokmateri kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balok
IlhamPutera2
 
2 compression
2  compression2  compression
2 compression
Ahmed Gamal
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
Harsh Shani
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 som
vinodh kumar
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
Robin Arthur Flores
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
subhashini214160
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
Victor Omotoriogun
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
Hossam Shafiq II
 
Planing,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLPlaning,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALL
Arshana Anu
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
nabal_iitb
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solution
dodi mulya
 
Sums on Rigid Pavement Design
Sums on Rigid Pavement DesignSums on Rigid Pavement Design
Sums on Rigid Pavement Design
ArnabKarmakar18
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
luantvconst
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
Luan Truong Van
 
Columns and struts_-_solved
Columns and struts_-_solvedColumns and struts_-_solved
Columns and struts_-_solved
ViriSharma
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solved
ViriSharma
 
Columns lecture#3
Columns lecture#3Columns lecture#3
Columns lecture#3
Irfan Malik
 

Similar to 131445983 jembatan-balok-t (20)

Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
 
Chapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAChapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFA
 
materi kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balokmateri kuliah it pln perhitungan plat balok
materi kuliah it pln perhitungan plat balok
 
2 compression
2  compression2  compression
2 compression
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 som
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
 
Planing,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLPlaning,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALL
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solution
 
Sums on Rigid Pavement Design
Sums on Rigid Pavement DesignSums on Rigid Pavement Design
Sums on Rigid Pavement Design
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Columns and struts_-_solved
Columns and struts_-_solvedColumns and struts_-_solved
Columns and struts_-_solved
 
Numericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solvedNumericals on Columns and struts_-_solved
Numericals on Columns and struts_-_solved
 
Columns lecture#3
Columns lecture#3Columns lecture#3
Columns lecture#3
 

Recently uploaded

14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 

Recently uploaded (20)

14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 

131445983 jembatan-balok-t

  • 1. 1 PERANCANGAN JEMBATAN BETON BERTULANG DENGAN TAMPANG BALOK T Gambar 1. Penampang melintang jembatan 1. Kondisi Jembatan • Panjang bentang : 17,5 m • Lebar jembatan : 9 m • Lebar perkerasan : 7 m • Tipe jembatan : beton bertulang dengan gelagar balok T • Jumlah balok gelagar : 6 buah • Panjang bersih gelagar : 16,5 m 2. Spesifikasi Pembebanan a. Beban hidup : PPJJR No. 12/1970 (BM 100 %) • Beban roda T : 100% x 10 t = 10 t • Beban garis P : 100% x 12 t/m = 12 t/m • Beban merata q : 100% x 2,2 t/m2 = 2,2 t/m2 b. Beban kejut, 2963,1 5,1750 20 1 50 20 1 = + += + += L k 3. Spesifikasi beton dan baja tulangan a. Beton • Kuat tekan, fc’ = 25 MPa • Kuat tekan ijin, fc’ = 10 MPa • Modulus elastis, Ec = 4700√25 = 23500 MPa b. Baja tulangan • Kuat leleh, fy = 400 MPa • Modulus elastis, Es = 2x105 MPa
  • 2. 2 PERANCANGAN 1. Tiang sandaran momen lentur, Mu = 1,2×2×100×1,0 = 240 kg-m = 2400 N-m gaya geser, V = 1,2 × 2 × 100 = 240 kg = 2400 N Mn = φ bd2k Mu = Mn 1095,1 1301608,0 102400 2 3 2 = ×× × = ×× = db M k u φ Mpa 3 ' ' 108502,2 2585,0 1095,12 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5×10-3 ×160×130 = 72,8 mm2 Dipakai tulangan 2∅10 (As = 157,0796 mm2) Kontrol kapasitas momen balok Dianggap baja tulangan telah luluh pada saat beton mulai retak (εc = 0,003) 5,18 1602585,0 4000796,157 85,0 ' = ×× × = ×× × = bf fA a c ys mm 7647,21 85,0 5,18 1 === β a c mm 7847,2983 7647,21 7647,21130 600600 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = c cd fs MPa > fy O K 68,7586944 2 5,18 1304000796,157 2 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= a dfAM ysn N-mm =7586,9447 N-m > Mu (2400 N-m) O K Perencanaan tulangan geser Vu = 2400 N 3333,1733313016020 6 1 6 1 ' =××=××= dbfV cc N 9999,51993333,173336,0 2 1 2 1 =××=cVφ N > Vu (secara teoritis tidak perlu sengkang) b=160 mm h=160 mm d=130 mm
  • 3. 3 walaupun secara teoritis tidak perlu sengkang, tetapi untuk kestabilan struktur dan peraturan mensyaratkan dipasang tulangan minimum smaksimum = ½ d = ½ x 130 = 65 mm luas tulangan geser minimum 3333,43 400 6516025 3 1 3 1 ' min = ×× = ×× = y c v f sbf A mm2 dipakai tulangan ∅8 (As = 100,5310 mm2), maka jarak sengkang 7965,150 16025 3 1 4005310,100 3 1 ' = × × = × × = bf fA s c yv mm untuk penulangan geser dipakai sengkang ∅8-100 2. Perhitungan plat kantilever Gambar 2. Pembebanan pada plat kantilever a. momen lentur (bending moment) Perhitungan momen lentur No. Volume (m3) γ (kg/m3) W (kg) Lengan (m) Momen (kg-m) 1 0,10 × 0,16 × 0,50 = 0,008 2400 19,2 1,8 34,5600 2 0,10×(0,70×0,110)/2 = 0,00385 2400 9,24 1,04 9,6096 3 0,10×0,05×0,50 = 0,0025 2400 6 1,025 6,1500 4 0,10 × (0,15 × 0,50)/2 = 0,00375 2400 9 0,95 8,5500 5 1,00 × 1,00 × 0,20 = 0,2 2400 480 0,5 240,0000 6 1,00 × (1,00 × 0,10)/2 = 0,05 2400 120 0,33 39,6000 7 1,00 × 0,90 × 0,07 = 0,063 2200 138,6 0,375 51,9750 P 2,0 × 100 kg/m 200 1,2 240,0000
  • 4. 4 T 1,2963 × 10000 12963 0,5 6481,5000 Air hujan = 2 × 0,90 × 0,05 = 0,0625 1000 62,5 0,375 23,4375 Railing = 2 × 2m× 6 kg/m = 24 24 1,08 25,9200 Total momen, M 7161,3021 Total momen, M (N-m) 71613,0210 b. Gaya geser (shear force) Berat tiang sandaran = 1 + 2 + 3 +4 + railing = 67,4400 Kg Slab kantilever dan perkerasan = 5 + 6 +7 = 738,6000 Kg Beban roda = 12963,0000 Kg Beban genangan air hujan = 62,5000 Kg Toal gaya lintang = 13831,5400 Kg = 138315,4000 N c. perhitungan baja tulangan Mu = 1,2×71613,021 =85935,6252 N-m Vu = 1,2×138315,400 = 165978,48 N h = 300 mm d = 300-40 = 260 mm 5890,1 26010008,0 1085935,6252 2 3 2 = ×× × = ×× = db M k u φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205 3 ' ' 101333,4 2585,0 5890,12 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 4,1333x10-3 x 1000 x 260 = 1074,658 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 4686,195 658,1074 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm kontrol terhadap geser beton 7296,0 2601000 165978,48 8 7 8 7 = ×× = ×× = hb V cτ MPa < 0,45 fc = 11,25 MPa O K
  • 5. 5 3. Perhitungan plat bagian dalam (inner slab) a. Momen lentur akibat beban hidup Gambar 3. posisi roda Penyebaran beban hidup (roda) pada slab P 20cm21 21 6cm 15cm 15cm 50cm21 21 P Gambar 4. Penyebaran beban hidup pada slab lx = 1,4 m ly = ∞ tx = 0,92 m ty =0,62 m
  • 6. 6 Beban roda, T = 10000 kg Bidang kontak = 0,92 m × 0,62 m Penyebaran beban roda, 1571,22726 62,092,0 2963,110000 = × × =T kg/m2 Dipakai tabel-Bittner (dari Dr. Ing Ernst Bittner) Dengan lx = 1,4 , ly = ∞ (lantai tidak menumpu pada diafragma) 657,0 4,1 92,0 == x x l t fxm = 0,1233 443,0 4,1 62,0 == x y l t fym = 0,0661 Mxm = 0,1233 × 22726,1571 × 0,92 × 0,62 = 1598,3379 kgm = 15983,379 Nm Mym = 0,0661 × 22726,1571 × 0,92 × 0,62 = 856,8543 kgm = 8568,543 Nm b. momen lentur akibat beban mati Berat slab = 0,30 × 2400 = 720 kg/m2 Berat perkerasan = 0,06 × 2200 = 132 kg/m2 Berat air hujan = 0,05 × 1000 = 50 kg/m2 Total qDL = 902 kg/m2 7920,1764,1902 10 1 10 1 22 =××=××= xDLxm lqM kgm = 1767,920 Nm 9307,587920,176 3 1 3 1 =×=×= xmym MM kgm = 589,307 Nm c. momen total Mx = 15983,379 + 1767,920 = 17661,299 Nm My =8568,543 + 589,307 = 9157,85 Nm d. perhitungan baja tulangan arah melintang lx M = 17661,299 Nm h = 300 mm d = 300-40 = 260 mm 3267,0 26010008,0 1017661,299 2 3 2 = ×× × = ×× = db M k φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205
  • 7. 7 4 ' ' 102313,8 2585,0 3267,02 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 8373,230 910 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm arah memanjang ly M = 9157,85 Nm h = 300 mm d = 300-40 = 260 mm 1693,0 26010008,0 109157,85 2 3 2 = ×× × = ×× = db M k φ MPa 027094,0 200000 400 003,0 003,0 400 85,025 85,0 003,0 003,0 85,0 1 ' = + × × = + × × = s yy c b E ff f β ρ ρmaks = 0,75 ρb = 0,75 x 0,027094 = 0,0203205 4 ' ' 102495,4 2585,0 1693,02 11 400 25 85,0 85,0 2 1185,0 − ×=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × × −−= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −−= cy c perlu f k f f ρ 3 min 105,3 400 4,14,1 − ×=== yf ρ As = ρ x b x d = 3,5 x10-3 x 1000 x 260 = 910 mm2 Dipakai tulangan ∅16 (As = 210,0619 mm2), dengan jarak antar tulangan 8373,230 910 10000619,210 = × =perlus mm dipakai tulangan ∅16-125 mm 4. Perhitungan Gelagar a. beban mati (dead load) Hand rail = {(0,10 × 0,16 × 1,00 × 2400)/2} × 1,1871 = 22,7923 kg/m Railing = 2 × 1,00 × 6 × 1,1871 = 14,2452 kg/m Perkerasan = 0,06 × 2200 × 4,5716 = 603,4512 kg/m Air hujan = 0,05 × 1000 × 4,5716 = 228,5800 kg/m Pelat lantai = 0,30 × 2400 × 4,5716 = 3291,5520 kg/m
  • 8. 8 Gelagar = 1,00 × 0,50 × 2400 × 1,00 = 1200,0000 kg/m Total = 5360,6207 kg/m Balok melintang (diafragma), Tb = 0,30 × 0,60 × 2400 × 0,9 = 388,8 kg Gambar 5. Garis pengaruh momen Gambar 6. Potongan memanjang balok pada perhitungan momen lentur b. momen lentur akibat beban mati ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×=→ L x L x LqMM DLxqDL 1 2 1 2 Momen pada potongan 1, x = 2,0 m (M1 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 2 1 5,16 2 5,166207,5360 2 1 2 qDLM = 77729,0002 kgm MTb= ½ × 388,8 × 2 = 388,8000 kgm M1 DL = 78117,8002 kgm 781178,0020 Nm
  • 9. 9 Momen pada potongan 2, x = 4,0 m (M2 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 4 1 5,16 4 5,166207,5360 2 1 2 qDLM = 134015,5175 kgm MTb= ½ × 388,8 × 4 = 777,6000 kgm M2 DL = 134793,1175 kgm 1347931,1750 Nm Momen pada potongan 3, x = 6,0 m (M3 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 6 1 5,16 6 5,166207,5360 2 1 2 qDLM = 168859,5521 kgm MTb= ½ × 388,8 × 6 = 1166,4000 kgm M3 DL 170025,9521 kgm 1700259,5210 Nm Momen pada potongan 4, x = 8,25 m (M4 DL) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 25,8 1 5,16 25,8 5,166207,5360 2 1 2 qDLM = 182428,6232 kgm MTb= ½ × 388,8 × 8,25 = 1603,8000 kgm M4 DL 184032,4232 kgm 1840324,2320 Nm c. Beban hidup (live load) koefisien kejut = 1,2963 beban garis, 6294,258595716,4 75,2 12000 2963,1 =××=P kg beban terbagi merata, 28,36575716,4 75,2 2200 =×=q kg/m d. Momen lentur akibat beban hidup ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= L x L x LPPM x 1 ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= L x L x LqqM x 1 2 1 2 Momen pada potongan 1, x = 2,0 m (M1 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 2 1 5,16 2 5,166294,25859PM x = 45450,2577 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 2 1 5,16 2 5,1628,3657 2 1 2 qM x = 53030,5600 kgm M1 LL = 98480,8177 kgm 984808,1770 Nm
  • 10. 10 Momen pada potongan 2, x = 4,0 m (M2 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 4 1 5,16 4 5,166294,25859PM x = 78362,5133 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 4 1 5,16 4 5,1628,3657 2 1 2 qM x = 91432,0000 kgm M2 LL = 169794,5133 kgm 1697945,1330 Nm Momen pada potongan 3, x = 6,0 m (M3 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 6 1 5,16 6 5,166294,25859PM x = 98736,7668 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 6 1 5,16 6 5,1628,3657 2 1 2 qM x = 115204,3200 kgm M3 LL 213941,0868 kgm 2139410,8680 Nm Momen pada potongan 4, x = 8,25 m (M4 LL) ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −×= 5,16 25,8 1 5,16 25,8 5,166294,25859PM x = 106670,9713 kgm ( ) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −××= 5,16 25,8 1 5,16 25,8 5,1628,3657 2 1 2 qM x = 124461,8100 kgm M4 LL 231132,7813 kgm 2311327,8130 Nm Tabel. Momen lentur total Pembebanan M.1 M.2 M.3 M.4 Beban mati, DL Beban hidup, LL 781178,0020 984808,1770 1347931,1750 1697945,1330 1700259,5210 2139410,8680 1840324,2320 2311327,8130 Total, Mu (1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792 e. Gaya geser (shearing force) Beban mati terbagi merata = 0,5 × 5360,6207 × 16,5 44225,1208 kg Balok melintang = 1,4 × 388,8 544,3200 kg Beban hidup garis P = 0,5 × 6294,25859 12928,8147 kg Beban hidup terbagi merata q = 0,5 × 28,3657 × 16,5 30172,5600 kg Total V 87870,8155 kg 878708,1550 N
  • 11. 11 f. Perhitungan baja tulangan Pada tumpuan V = 878708,1550 N h = 1300 mm b = 500 mm d = 1300 - 60 = 1240 mm Perencanaan tulangan geser Vu = 878708,1550 N 6667,5072911217,550025 6 1 6 1 ' =××=××= dbfV cc N 5,1521876667,5072916,0 2 1 2 1 =××=cVφ N < Vu (perlu sengkang) Gambar 7. Diagram gaya geser (SFD) Hasil perhitungan dapat dilihat pada tabel berikut No. Penampang titik 1 titik 2 titik 3 titik 4 kritis 0 - 2 m 2 - 4 m 4 - 6 m 6 - 8,25 m 1 Vu (N) 878708.1550 698350.141 517992.127 337089.793 2 Vc (N) 507291.6667 507291.6667 507291.6667 507291.6667 3 ½ φ Vc (N) 152187.5 152187.5 152187.5 152187.5 Perlu sengkang Perlu sengkang Perlu sengkang Perlu sengkang 4 Vs (N) 957221.925 656625.235 356028.545 54524.655 5 s (mm) 79.91645314 116.5014334 214.8641793 1402.994317 6 s mak (mm) 608.75 608.75 608.75 608.75 7 Dipakai D10 - 75 D10 - 110 D10 - 200 D10 - 500 Potongan I-I (8,25 m dari tumpuan) lebar efektif, diambil nilai terkecil dari : 375,45,174 1 4 1 =×== LbE m ( ) 53003001650016 =×+=+= fwE hbb mm 1400== gelagarjarakbE mm CL 878708,1550 698350.141 517992.127 517447.807 337089.793 111642.2755 bw = 500 mm bE = 1400 mm hf = 300 mm h = 1300 mm
  • 12. 12 Mu = 5906513,5792 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 5906513,5792 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,25906513579 a a a2 – 2520a + 397076,5431 = 0 a = 168,8889 mm, c = 168,8889/0,85 = 198,6928 mm luas tulangan yang diperlukan 1114,4486 400 8889,1685002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 3,6 8583,706 1114,4486 ==n dipakai 8∅30 (As = 5654,8664 mm2) Potongan II-II (6 m dari tumpuan) Mu = 5463368,8140 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm
  • 13. 13 dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 5463368,8140 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,05463368814 a a a2 – 2520a + 367285,2984 = 0 a = 155,3214 mm, c = 155,3214/0,85 = 182,7311 mm luas tulangan yang diperlukan 7247,4125 400 155,32145002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 8,5 8583,706 7247,4125 ==n dipakai 6∅30 (As = 4241,1501 mm2) Potongan III-III (4 m dari tumpuan) Mu = 4334229,6228 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2
  • 14. 14 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 4334229,6228 Nm → blok beton a ada di dalam sayap Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,84334229622 a a a2 – 2520a + 291376,7813 = 0 a = 121,4820 mm, c = 121,4820/0,85 = 142,92 mm luas tulangan yang diperlukan 8656,3226 400 121,48205002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 6,4 8583,706 8656,3226 ==n dipakai 6∅30 (As = 4241,1501 mm2) Potongan IV- IV (2 m dari tumpuan) Mu = 2513106,6856 N-m s yb b E fd c + = 003,0 003,0 b s y b d E f a + = 003,0 003,0 85,0 ab = 0,6 db = 0,6 (1300-40) = 756 mm > 300 mm dalam keadaan setimbang (ΣH = 0) ( ){ }tbbbaffA wfwbcyb ×−+×××=× ' 85,0 ( ){ } ( ){ } 34425 400 30050014005007562585,085,0 ' = ×−+××× = ×−+××× = y wfwbc b f tbbbaf A mm2 kemampuan sayap mendukung momen 9906750000 2 300 12602585,03001400 2 85,0 ' = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= t dftbM cf Nmm M = 9906750 Nm > 2513106,6856 Nm → blok beton a ada di dalam sayap
  • 15. 15 Letak garis netral, c ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 85,0 ' a dfabM cf ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ −××××= 2 12602585,01400,62513106685 a a a2 – 2520a + 168948,3486 = 0 a = 68,9284 mm, c = 68,9284/0,85 = 81,0922 mm luas tulangan yang diperlukan 9106,1830 400 68,92845002585,085,0 ' = ××× = ××× = y wc f abf A mm2 < 0,75×Ab = 0,75×34425 Dipakai tulangan ∅30 (As = 706,8583 mm2), jumlah tulangan yang dibutuhkan 6,2 8583,706 9106,1830 ==n dipakai 3∅30 (As = 2120,5750 mm2) Tabel Penulangan balok Pembebanan M.1 M.2 M.3 M.4 Beban mati, DL Beban hidup, LL 781178,0020 984808,1770 1347931,1750 1697945,1330 1700259,5210 2139410,8680 1840324,2320 2311327,8130 Total, Mu (1,2MD+1,6ML) 2513106,6856 4334229,6228 5463368,8140 5906513,5792 tulangan 3∅30 6∅30 6∅30 8∅30
  • 16. 16 DAFTAR PUSTAKA Agus Iqbal Manu, Ir.,Dipl. Heng., 1995, Dasar-Dasar Perencanaan Jembatan Beton Bertulang, Cetakan I,P.T. Mediatana Saptakarya, Jakarta Bambang Supriyadi, DR.,Ir., CES.,DEA., 2000, Jembatan, Edisi pertama, Beta Offset, Jogjakarta Departemen Pekerjaan Umum, Standar Bangunan Atas Jembatan Gelagar Beton Bertulang Tipe T, 1993, Departemen Pekerjaan Umum Ditjen Bina Marga Dit. Bina Program Jalan Subdit. Perencanaan Teknik Jembatan