SlideShare a Scribd company logo
Protocolls of the OSI-layer 2
                                                Link Layer
                                       MAC (Medium Access Control)
                                                               Kapitel 7.1

                                                     Netze und Protokolle
                                                         Dr.-Ing. J. Steuer




                                                   Institut für Kommunikationstechnik
                                                             www.ikt.uni-hannover.de




            Literatur:


            [Boss99]            M.Bossert, M.Breitenbach, Digitale Netze, 1999, B.G. Teubner, Stuttgart,
                                Leipzig,                           ISBN 3-519-06191-0
            [Come98]            D. Comer, Computernetzwerke und Internets, Prentice Hall, 1998, ISBN3-8272-
            9552-1,
                                                    2001: ISBN 3-8273-7023
            [Coul02]            Couloris et.al.; „Verteilte Systeme“, Addison- Wesley, 2002, ISBN 3-8273-7022-1
            [Hals96]            F.Halshall, „Data Communications, Computer Networks and Open Systems“, 4th
            edition,
                                Edison-Wesley, 1996, ISBN 0-201-42293-X
            [Kann]              Kanbach, Körber, ISDN - Die Technik, Hüthig-Verlag
            [Reim95]            Reimers, et.al.; Digitale Fernsehtechnik, Springer Verlag, 1995, ISBN 3-540-
            58993-7
            [Sieg99]            Gerd Siegmund,“Technik der Netze“, 4.Auflage, Hüthig Verlag, Heidelberg, 1999,
                                ISBN 3-7785-2637-5
            [Spra91]            J.D.Spragins,et.all, Telecommunications Protocols and Design, Addison Wesley
            Publishing          Company, 1991, ISBN 0-201-09290-5
            [Stall90]       William Stallings, Local and Metropolitan Area Networks, 1990; MacMillen
            Publishing Company,
                                ISBN 0-02-415465-2
            [WAL02(1)]          Walke, B., „Mobilkommunikation, Band1“, Teubner Verlag, 2002




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Goals

                    understand the need for MAC (media access control)
                    understand the most important MAC strategies for ISDN,
                    data networks and mobile networks
                    classify different MAC-strategies
                    evaluate the performance of different MAC-strategies




                                                                   (2)




        The medium access control (MAC) is mandatory in case of shared usage of a media. A media could be a
        twisted pair, an optical fibre, the spectrum in the air (air interface), or in general any media which is able to
        transport communication content. Only in case one user is using one medium in one direction only, the MAC
        is not necessary. It could be implemented, but it need not. The control of the usage of the channel (media)
        could be left to the subscriber.
        Already in case of bidirectional usage a scheduler has to control the access from both ends of the
        communication. This scheduler can be simple, because one station could be declared as master. The
        master is responsible for the scheduling. This is a type of central control. Imagine the Master has not only to
        control one station but several. The master is a little bit more busy, but with sufficient memory and computing
        power he will be able to handle the situation. There is no principle difficulty in such centralized control task.
        It gets much more complicated in case there is no knowledge at the master on the states of the slaves. A
        protocol handling such scenario needs to operate on guesses on the behavior of the other stations
        competing for the usage of the medium. There will be situations of conflict, which means more than one
        station is accessing the medium at the same time. The result will be a corruption of messages. This situation
        is called decentralized and uncoordinated. The protocol must be able to detect such corruptions and to react
        on that, in order to allow for a proper communication.
        With all these issues the MAC has to deal. In this chapter we will study the principal MAC properties for
        different media.




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
need for MAC?

                    Competition for the usage of a transmission medium




                                                                                             limited to the
                                                                      S0-bus
           ISDN Sobus:                                                                       signalling channel
                                                                                 NT
                                                                      4 wire

                                                                                             Why is in the case
                                                                                             of ISDN only the
                                                                                             access to the
                                                                                             signalling channel
           Local Area Network
                                                                                             in competition?
                                                              802.3, coaxial cable,
           (LAN) with shared                                 max 10Mbit/s (5Mbit/s) LAN
           media, e.g. Ethernet




                                                                      (3)




            There are networks for which many users share a common channel using a multi access scheme.
            We find the examples on
                      the signaling channel for the ISDN S0 bus (in this case not for the communication channel,
                      which is controlled by by the switch and the switch knows the status of the users and
                      channels)
                      on Local Area Networks (LAN) (note: latest developments in LAN´s go back to dedicated
                      channels, using switching technologies)
                      mobile networks
                      packet radio networks
                      Adhoc-networks
                      satellite networks




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
need for MAC?

                    Competition for the usage of a transmission medium
                    during registration phases of mobile stations (MS)




                                                                     mobile technologies:
                                                             DECT, GSM, IS95, HSCSD, GPRS,UMTS




                                                                 (4)




 In case the MS (mobile station) is switched of, there is no knowledge in the Basestation or the Basestation controller on this
 subscriber. Thus there can be no dedicated channel for this subscriber. If the MS is switched on, it needs first to access a
 common channel and apply for a dedicated channel. The common channel is used in competition to other subscribers in
 the same state. Consequently we need a media access control.
 Abbreviations:
 DECT:               digital enhanced cordless telephony (ETSI and ECMA standard) (see [WAL02(2)])
 GSM:                global system mobile (ETSI standard) (see [WAL02(1)])
 IS95:               Interim Standard 1995 of the Telecommunications Industry Association (TIA) USA for the first CDMA
                     mobile system (see [WAL02(1)]) , compare ZVEI in Germany (see introduction NUP, standards)
 HSCSD:              High Speed Circuit Switched Data (channel trunking in GSM to increase the channel capacity in SM for
                     Data) (see [WAL02(1)])
 GPRS:               General Packet Radio System (packet switched enhancement of GSM) (see [WAL02(1)])
 UMTS:               Universal Mobile Telecommunication System (expected successor of GSM) (see [WAL02(1)])




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
need for MAC?



                                     Station 1

                                                             Station 3


                                                                                       Station 5




                                             Station 2
                                                                         Station 4

                                                                         The common media is the
                                                                         air interface, all members
                      Basic Service Set (IEEE 802.11)
                                                                         of the AdHoc network are
                      W-LAN, AdHoc-Network
                                                                         Competing at least during
                                                                         the registration process

                                                                     (5)




            In many cases, a network is installed using an infrastructure. This infrastructure takes over some
            central tasks and serves as an access to the wired network. In HIPERLAN/2, the Access Points (AP)
            take over this task. They have a wired as well as a wireless interfaces.
            By the way, there are a number of different technologies and protocols which could serve as wireless
            LAN:
                      HIPERLAN (High PErformance Radio Local Area Network) of ETSI [WAL02(2)])
                      WLAN (Wireless LAN) of IEEE (802.11x) [WAL02(2)])
                      Bluetooth: short range data link or network
            and even others which partly show functionalities of LAN´s (high speed data transport in the access
            area):
                      UMTS (Universal Mobile Telephone System) [WAL02(1)])
                      DAB (Digital Audio Broadcast)
                      DVB (Digital Video Broadcasting) [Reim95]
            During this lecture we are going to concentrate on HIPERLAN due to its enhanced functionality
            compared to wired LAN´s. This stands also for the WLAN, but the WLAN is an American standard
            with some drawbacks in its functionality which is compensated by its better position in the market.
            The coverage area of an AP and its associated terminals is called radio cell in general. In the case of
            IEEE 802.11 (see below), it is called a basic service set, in Bluetooth a scatternet (to
            scatter=umherstreuen; the terminals are scattered in the area of coverage served by an access
            point).




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
need for MAC?



                                                   Access Point A                               Access Point B


                             Station A1


                                                                                                 Station B1
                            Station A1


                                                                                      Station B3
                                 Station A2
                                                                              Station B2

                                                                                    The common media is the air
                                    Radio Cell (HIPERLAN)                           interface, in addition we have
                                    Basic Service Set (IEEE 802.11)                 Influences between the cells!



                                                                      (6)




            Wireless LAN´s can be grouped to cells or basic service sets, which are comparable to the cells of
            cellular telephony networks. In the HIPERLAN-System the MAC is of the scheduled type. The
            Access Point serves as scheduler. This scheme allows a better performance for high traffic loads.
            The W-LAN system in contrast operates in a random mode like the Ethernet, which is sufficient for
            low traffic loads.
            In principle it can be expected that data terminals will at least from time to time carry high traffic load.
            This forced the Europeans (ETSI, HIPERLAN) to deviate from the american (IEEE802.11, W-LAN)
            approach.
            The traffic channels in the HIPERLAN-scheme are dedicated to connections and thus terminals.
            They do not need MAC. Bat the traffic channels are assigned after request. During the request
            phase the data terminals compete for transmission capacity, therefore this phase is handled by a
            MAC protocol.




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
when is the MAC function not needed?




                                                             (7)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
influences on the MAC

                    distance of stations to each other (power and delay)
                    visibility of stations (SNR, Signal to Noise Ratio))
                    throughput of the network, e.g. in Kbit/s
                    fairness of the usage of the transmission media by
                    competing terminals
                    transmission speed of channels
                    burstiness of traffic
                    packet length




                                                                   (8)




             The distance between stations influences the ability to detect collisions, e.g. the IEEE802.3 is
            limited to 2500m
              (collision domain)
             Systems with radio connections need to „see“ each other in order to be able to detect collisions
             The required throughput of the network influences the complexity of the MAC. If the throughput is
            high compared to the capacity we need to establish MAC protocols with high efficiency; if the
            throughput is low in contrast to the capacity we can allow for a less efficient MAC. This consideration
            led to the application of the slotted ALOHA for the access to the RACH (Random Access Channel) of
            the GSM system. This channel is used only for the request from the mobile Station to the network in
            order to apply for dedicated channels. The volume of the signaling is low. Thus we can allow for a
            low efficiency. Similar thoughts let us find that a bulk data transfer on a Local Area Network (LAN)
            needs a MAC which minimizes the collisions. If we stick to the random MAC than CSMA/CD is the
            choice.
             Fairness is often an opposite requirement to throughput. A fair MAC allows for each traffic source on
            average the same transmission capacity. Even if we implement no priorities fairness is difficult to
            establish. The MAC for the Dual Queueing Distributed Bus - a Metropolitan Area Network (IEEE
            802.6) - tried to establish fairness. The DQDB is a very good subject for study purposes, but it did
            not gain an important position in the market.
             The transmission speed of the channels dictate the time available in the protocol stack. The higher
            the transmission speed, the more critical is the time spent in the stack. Take the ATM Protocoll with
            a targeted speed of 2.5Gbit/s. There is not much time left to perform complicated operations in the
            stack. Thus the MAC has to be extremly time efficient.
             A high burstiness of traffic generates a high peak load in the stack. This effects the stack in the
            same mannor than a high transnmission speed.
             Long packets put less burdon on the stack compared to short packets




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC principles

                    Scheduling vs. Random access:
                         scheduling means stations ready to send are waiting until it is
                         their turn to operate
                         Under the random access scheme a station tries to access the
                         transmission media as soon as it has to send something
                         (immediately)




                                                                                   Discuss
                                                                                   differences
                                                                                   with respect
                                                                                   to efficiency
                                                             Random
                                      Scheduler
                                                             Access
                                                              (9)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC principles


                          Scheduling                                                    random access
                          Scheduling                                                     random access


                                                               without                     with sensing
           fixed                  demand                        without                     with sensing
            fixed                  demand                      sensing(ALOHA)              (CS)
           assignment             assignment                    sensing(ALOHA)              (CS)
            assignment             assignment


               central        distributed
                central        distributed                                              before             before & during
                                                             pure            slotted
               control        control                                                    before             before & during
                                                              pure            slotted
                control        control                       ALOHA           ALOHA      transmission       transmission
                                                              ALOHA           ALOHA      transmission       transmission
                                                                                        (CSMA)             (CSMA/CD)
                                                                                         (CSMA)             (CSMA/CD)



                 How does the channel selection and the channel assignment of a
                 PDH-, SDH-, ISDN- and Ethernet-LAN-system fit into the above
                 scheme?



                                                                      (10)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC principles (Examples)



                          Scheduling                                                    random access
                          Scheduling                                                     random access


                                                               without                     with sensing
           fixed                  demand                        without                     with sensing
            fixed                  demand                      sensing(ALOHA)              (CS)
           assignments            assignment                    sensing(ALOHA)              (CS)
            assignments            assignment


               central        distributed
                central        distributed                                              before             before & during
                                                             pure            slotted
               control        control                                                    before             before & during
                                                              pure            slotted
                control        control                       ALOHA           ALOHA      transmission       transmission
                                                              ALOHA           ALOHA      transmission       transmission
                                                                                        (CSMA)             (CSMA/CD)
                                                                                         (CSMA)             (CSMA/CD)



             • TDMA/reservation                         • slotted ALOHA:
             • Polling                                          GSM, Random Access Channel (RACH)
             • Token Passing                            • CSMA/CD: Ethernet


                                                                      (11)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
TDMA (Time Division Multiple Access)


                                      frame i                 frame i+1                 frame i+2
                                                                                                                   time 1
                                        guard time

                                         station 1    station 2           station m-2    station m-1   station m
                           control        data         data                 data           data          data
                                                                                                                   time 2


                 no      packet
                         ready?
                                                            control information?
                              yes
                                                            guard time?
                        wait for
                                                            advantages and disadvantages?
                      assigned slot


                        transmit
                         packet




                                                                           (12)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Reservation in TDMA


                                     frame i                     frame i+1              frame i+2
                                                                                                                   time 1
                                           guard time
                                                                                                             n<m
                                           slot 1       slot 2               slot n-2    slot n-1   slot n
                           control          data         data                  data        data       data
                                                                                                                   time 2


                 no      packet
                         ready?
                                                            advantages and disadvantages?
                              yes
                                                            • Number of stations is not limited sharply
                 reservation and waiting
                                                            • traffic behaviour as pure TDMA
                    forassigned slot

                                                            • reservation has to be performed by signalling
                        transmit
                                                              (not shown here)
                         packet


                                                            Application: HIPERLAN

                                                                              (13)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Polling scheduling with central control



                       station 11                     station k                        station R
                        station                        station k                        station R
                                                              message closed
                                   message closed
                                                              by go ahead from
                                   by go ahead from
                                                              station k
                                   station 1                               poll
                                                  poll                                   message closed
                            poll                                           station m
                                                  station k                              by go ahead from
                            station 1
                                                 central controller                      station m
                                                 central controller

                        • efficient with high load from all stations
                        • inefficient if stations have low or zero load
                        • half duplex links need resynch, full duplex links can
                          stay synchronized


                                                                 (14)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Token passing (scheduling with distributed
                                                                         control)
                                                         station 11
                                                          station
                                         station rr                          station 22
                                          station                             station




                                                                             station kk
                                                                              station

                • transmission medium of ring (IEEE 802.5) or bus (IEEE 802.4) type [logically the bus
                   behaves like a ring
                • a token (packet with permission to send) is handed from station to station
                • all stations read all packets
                • all packets are circulating on the ring and have to be removed after one turn
                • the packet control requires receiving and sending of all packets in all stations,
                  which requires highly reliable stations and adds delay in each station
                • the token is a distinctive bit pattern, how can the transmission be data transparent?
                • if no station has to transmit, a free token is circulating. What happens if a bit error
                  occurs?
                • priority handling is possible



                                                                      (15)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Random Access with no sensing (ALOHA
                                                                    and slotted ALOHA)
             shared transmission medium:
                                               station 11
                                                station
                         station rr                                station 22
                          station                                   station


                                                                                            or

                                                                    station kk
                                                                     station




                                                                                                                                 yes
                                                                                                       wait two way
                    no
                                               yes    delay to start of                              propagation time
                                                                                transmit                                      acknoledgement?
                         packet to transmit?
                                                         next slot                                     quantized to
                                                                                                        slot times

                                                                                                                                 no

                                                                                  delay k packets          compute random
                                                                                 transmission time        backoff integer k



                   Discuss high load scenario!
                   Do you see the advantage of the slotted ALOHA?

                                                                                 (16)




 The slotted ALOHA- mechanismn is implemented in the registratition phase of the GSM system.




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Random Access with sensing
                                                Carrier Sense with Multiple Access (CSMA)
            shared transmission medium:
                                                station 11
                                                 station
                         station rr                                   station 22
                          station                                      station




                                                                      station kk
                                                                       station




                                                                                                                                              yes
                                                           Medium                                                   wait two way
               no                         yes    carrier   is free delay to start of                              propagation time
                                                                                              transmit                                     acknowledgement?
                    packet to transmit?           sense
                                                                                                                    quantized to
                                                                       next slot
                                                strategy
                                                                                                                     slot times

                                                                                                                                               no
                                                               Medium is occupied
                                                                                               delay k packets          compute random
                                                                                              transmission time        backoff integer k




                                                                                       (17)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
Random Access with sensing before and during
                                      transmission /Collision Detection (CSMA/CD)
            shared transmission medium:
                                                  station 11
                                                   station
                          station rr                                      station 22
                           station                                         station
                                                                                                                           Implemented in
                                                                                                                           IEEE 802.3



                                                                          station kk
                                                                           station




                                                                                                                                                      no

                                                yes
                     no
                                                                                                                                                 Collision detected/
                                                             carrier                           transmit
                          packet to transmit?
                                                                                                                                                 jamming received?
                                                              sense
                                                            strategy
                                                                                                                                                      yes
                                                                  Medium is occupied


                                                       delay k packets                                transmit yamming
                                                                               compute random
                                                                                                                                 abort transmission
                                                      transmission time                                    Signal*
                                                                              backoff integer k



                                                                                                          * Only in case of collision detected



                                                                                        (18)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC of the ISDN S0-Bus

                    Transmission in frames on S0
                    Activation procedure in the physical layer
                    Frame synchronization in the MAC layer
                    Frame recognition by violation of code rules
                    Distributed MAC for the d-channel only
                    MAC for the user channel by framing




                                                                       S0-bus
                    ISDN Sobus:                                                 NT
                                                                       4 wire




                                                             (19)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (2)



              Leitungscodierung S0

                         AMI-Code
                             01011100
                               +    +
                                  -   -

                         inv. AMI-Code
                               01011100
                               +       +
                                   -     -

                                                               (20)




            AMI - Alternate Mark Inversion: Eine Markierung (1) wird abwechselnd mit positivem bzw. negativem
            Impuls dargestellt.
            Pseudoternärer Code: zwei logische Zustände (Null, Eins) werden auf 3 physikalische Zustände
            abgebildet (pos. Impuls +, kein Impuls 0, neg. Impuls -)
            Am ISDN-Basisanschluß eingesetzt wird ein invertierter AMI-Code: nicht die (1), sondern die (0) wird
            abwechselnd mit positivem bzw. negativem Impuls dargestellt.




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (3)
                         2 bit offset between frame from NT TE and NT TE in order to allow the
                         terminals to read the e-bit before they write the next d-bit
                                                                   48 bits in 250 microseconds

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                           FA   Hilfsrahmenbit                         . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                       L    DC-Ausgleichbit                          Code gleichanteilsfrei
                                                                                                   How is a collision
                   B2   Bit des 2. B-Kanals                       M    Multiframingbit = 0
                   D    Bit des D-Kanals                          N    = FA
                                                                                                   detected?
                   E    Bit des Echokanals                        S    Spare = 0
                   F    Rahmenbit
                                                                                     (21)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (4)
                         Why is there no e-bit for the other direction in the Frame from TE                                           NT?


                                                                   48 bits in 250 microseconds

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                           FA   Hilfsrahmenbit                         . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                       L    DC-Ausgleichbit                          Code gleichanteilsfrei
                   B2   Bit des 2. B-Kanals                       M    Multiframingbit = 0
                   D    Bit des D-Kanals                          N    = FA
                   E    Bit des Echokanals                        S    Spare = 0
                   F    Rahmenbit
                                                                                     (22)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame - frame detection
           Case 1: d-bit from the NT at the end of the frame will be „0“ and negative,
                   the L-bit will be „0“ and positive in order to compensate. The F-bit
                   will be „0“ and positive in in 250 microseconds in conflict with the coding rule.
                                          48 bits order to be

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1 B1 B1 B1 B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2 B2 L. D L. B1 B1 B1 B1 B1B1B1 B1 L. D L. B2 B2 B2 B2 B2 B2B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                            FA   Hilfsrahmenbit                           . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                        L    DC-Ausgleichbit                            Code gleichanteilsfrei
                   B2   Bit des 2. B-Kanals                        M    Multiframingbit = 0
                   D    Bit des D-Kanals                           N    = FA
                   E    Bit des Echokanals                         S    Spare = 0
                   F    Rahmenbit
                                                                                       (23)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame - frame detection
           Case 2: d-bit from the NT at the end of the frame will be „0“ and positive,
                   the L-bit will be „1“in order to compensate. The F-bit
                   will be „0“ and positive in in 250 microseconds in conflict with the coding rule.
                                           48 bits order to be

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                           FA   Hilfsrahmenbit                         . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                       L    DC-Ausgleichbit                          Code gleichanteilsfrei
                   B2   Bit des 2. B-Kanals                       M    Multiframingbit = 0
                   D    Bit des D-Kanals                          N    = FA
                   E    Bit des Echokanals                        S    Spare = 0
                   F    Rahmenbit
                                                                                     (24)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame - frame detection
           Case 3: d-bit from the NT at the end of the frame will be „1“, the L-bit will be „0“
           and positive if the last “0” before the L-bit was negative in order to compensate or
           the L-bit will be “1” if the last “0” before the L-bit was “0” and positive(compensation
           not necessary). The F-bit will be 48 bits and microsecondsbe in conflict with the coding rule.
                                               „0“ in 250 pos. to

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                           FA   Hilfsrahmenbit                         . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                       L    DC-Ausgleichbit                          Code gleichanteilsfrei
                   B2   Bit des 2. B-Kanals                       M    Multiframingbit = 0
                   D    Bit des D-Kanals                          N    = FA
                   E    Bit des Echokanals                        S    Spare = 0
                   F    Rahmenbit                                                    (25)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
The end



                                                             (26)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
need for MAC?

                    Competition for the usage of a transmission medium


                                                                                           limited to the
                                                                 S0-bus
           ISDN Sobus:                                                                     signalling channel
                                                                           NT
                                                                 4 wire

                                                                                           Why is in the case
            The user channel, the B-channel with 64Kbit/s, is needed                       of ISDN only the
            permanently during a communication session, otherwise the                      access to the
            Shannon sample rate of 125µs can not be guaranteed.                            signalling channel
            Therefore the B-channel will be a dedicated channel which is                   in competition ?
            assigned by the switch during call set up phase and released
            at the end of the connection.
            The traffic on the signalling channel is highly bursty, it can
            not be foreseen when it is needed. Therefore the D-channel
            is a packet channel, for which the users have to compete.
            The usage will be assigned for individual packets or
            sequences of packets.


                                                                (27)




            There are networks for which many users share a common channel using a multi access scheme.
            We find the examples on
                      the signaling channel for the ISDN S0 bus (in this case not for the communication channel,
                      this is dedicated by the switch)
                      on Local Area Networks (LAN) (note: latest developments in LAN´s go back to dedicated
                      channels, using switching technologies)
                      mobile networks
                      packet radio networks
                      Adhoc-networks
                      satellite networks




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
when is the MAC function not needed?

                    E.g. to communicate between two points, a
                    communication media need to be used. If this medium is
                    used unidirectional there is no need for MAC (media
                    access control)!




                                                              no MAC necessary,
                                                             but might be implemented




                                                                 (28)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC principles

                    Scheduling vs. Random access:
                         scheduling means stations ready to send are waiting until it is
                         their turn (efficient channel control under high load! But,high
                         overhead under low load conditions)
                         Under the random access scheme a station tries to access the
                         transmission media as soon as it has to send something
                         (immediately) (collisions under high load! But, low overhead
                         under low load conditions)




                                                                                   Discuss
                                                                                   differences
                                                                                   with respect
                                                             Random                to efficiency
                                      Scheduler
                                                             Access
                                                              (29)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
MAC principles



                          Scheduling                                                    random access
                          Scheduling                                                     random access


                                                               without                     with sensing
           fixed PDH-, SDH        demand                        without                     with sensing
            fixed PDH-, SDH        demand                      sensing(ALOHA)              (CS)
           assignment             assignment                    sensing(ALOHA)              (CS)
            assignment             assignment


               central        distributed
                central        distributed                                              before             before & during
                                                             pure            slotted
               control        control                                                    before             before & during
                                                              pure            slotted
                control        control                       ALOHA           ALOHA      transmission       transmission
                                                              ALOHA           ALOHA      transmission       transmission
               ISDN             ISDN                                                    (CSMA)             (CSMA/CD)
                                                                                         (CSMA)             (CSMA/CD)
                                                                                                    Ethernet-LAN
                 How does the channel selection and the channel assignment of a
                 PDH-, SDH-, ISDN- and Ethernet-LAN-system fit into the above
                 scheme?


                                                                      (30)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
TDMA (Time Division Multiple Access)

             View on a shared media:

                                      frame i                  frame i+1                 frame i+2
                                                                                                                    time 1
                                        guard time

                                         station 1     station 2           station m-2    station m-1   station m
                           control        data          data                 data           data          data
                                                                                                                    time 2
              View on a single terminal:
                                                     control information?
                 no      packet
                                                     Frame length and Frame start (Frame delimiter)
                         ready?
                                                     guard time?
                              yes
                                                     Data packets from stations suffer from
                        wait for
                      assigned slot
                                                     different latency times which creates the
                                                     danger of overlapping (collision)
                        transmit
                                                     advantages and disadvantages?
                         packet
                                                     Efficient for high traffic load, inappropriate for
                                                     low traffic load
                                                                            (31)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (3)

                                                                   48 bits in 250 microseconds

                       NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                   t

          Let the d-bit be a logical „0“, the e-bit will be a “0” in any case, because the
          logical “0” is dominant! In this case the “blue” terminal will not detect a
          collision and will continue!!!
          The “green” terminal which sent a “1” will get back a
          “0” and will stop transmitting!
                                                                   Are there other cases?
                                                                                     (32)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (3a)

                                                                   48 bits in 250 microseconds

                       NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                   t


                  Let the d-bit be a logical „0“, and let another terminal send a “0”
                  as well. In this case a collision is not detected!!!

                A collision is detected only, if one TE is transmitting a logical „1“
                and the other a „0“. The „0“ will continue and the „1“ will stop!

                                                                                     (33)




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik
S0-Frame (4)

                         Why is there no e-bit for the other direction in the Frame from TE                                           NT?
                         Because the NT is not in competition with other terminals!
                                                                   48 bits in 250 microseconds

                        NT TE
               D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L.
           0
           1
           0

                         2 bits offs et

                         TE NT
                   D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L.




                    t


                   A    Aktivierungsbit                           FA   Hilfsrahmenbit                         . an diesen Stellen ist der
                   B1   Bit des 1. B-Kanals                       L    DC-Ausgleichbit                          Code gleichanteilsfrei
                   B2   Bit des 2. B-Kanals                       M    Multiframingbit = 0
                   D    Bit des D-Kanals                          N    = FA
                   E    Bit des Echokanals                        S    Spare = 0
                   F    Rahmenbit                                                    (34)




               Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann
               (Null als positiver oder negativer Impuls, Eins als kein Impuls).
               2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder
               gesendet werden dürfen => Zugriffssteuerung)
               Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs)
               48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0
               Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits
               im nächsten Echo-Kanal zurück.
               Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT
               Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt:
                                          1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit);
                                          nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-).
               A-Bit (Bus aktiviert)


               Literatur: [Kann]




© UNI Hannover, Institut für Allgemeine Nachrichtentechnik

More Related Content

What's hot

Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK ModulationPerformance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
IOSR Journals
 
Wwwwww
WwwwwwWwwwww
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN  Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
IJORCS
 
Paper
PaperPaper
Paper
boraq
 
J011137479
J011137479J011137479
J011137479
IOSR Journals
 
Cellular systems and infrastructure base wireless network
Cellular systems and infrastructure base wireless networkCellular systems and infrastructure base wireless network
Cellular systems and infrastructure base wireless network
University of Science & Technology, Beijing
 
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
IJERA Editor
 
Iaetsd comparative study mimo ofdm, cdma-sdma
Iaetsd comparative study mimo ofdm, cdma-sdmaIaetsd comparative study mimo ofdm, cdma-sdma
Iaetsd comparative study mimo ofdm, cdma-sdma
Iaetsd Iaetsd
 
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
IJCNCJournal
 
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
TELKOMNIKA JOURNAL
 
Spectral Efficient IDMA System Using Multi User Detection
Spectral Efficient IDMA System Using Multi User DetectionSpectral Efficient IDMA System Using Multi User Detection
Spectral Efficient IDMA System Using Multi User Detection
IJSTA
 
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
IRJET Journal
 
Introductory Approach on Ad-hoc Networks and its Paradigms
Introductory Approach on Ad-hoc Networks and its Paradigms Introductory Approach on Ad-hoc Networks and its Paradigms
Introductory Approach on Ad-hoc Networks and its Paradigms
IJORCS
 
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
pijans
 
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
pijans
 
Survey of Routing Scheme in MANET with Clustering Techniques
Survey of Routing Scheme in MANET with Clustering TechniquesSurvey of Routing Scheme in MANET with Clustering Techniques
Survey of Routing Scheme in MANET with Clustering Techniques
IJMER
 
Kg2518001805
Kg2518001805Kg2518001805
Kg2518001805
IJERA Editor
 
Multi User Detection in CDMA System Using Linear and Non Linear Detector
Multi User Detection in CDMA System Using Linear and Non Linear DetectorMulti User Detection in CDMA System Using Linear and Non Linear Detector
Multi User Detection in CDMA System Using Linear and Non Linear Detector
Waqas Tariq
 

What's hot (20)

Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK ModulationPerformance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
 
Wwwwww
WwwwwwWwwwww
Wwwwww
 
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN  Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
Analysis of Handoff techniques used for hybrid networks: cellular/WLAN
 
Paper
PaperPaper
Paper
 
J011137479
J011137479J011137479
J011137479
 
Cellular systems and infrastructure base wireless network
Cellular systems and infrastructure base wireless networkCellular systems and infrastructure base wireless network
Cellular systems and infrastructure base wireless network
 
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
Performance Evaluation of DSDV and MDSDV Routing Protocol with Varying Node D...
 
Iaetsd comparative study mimo ofdm, cdma-sdma
Iaetsd comparative study mimo ofdm, cdma-sdmaIaetsd comparative study mimo ofdm, cdma-sdma
Iaetsd comparative study mimo ofdm, cdma-sdma
 
Bt25420424
Bt25420424Bt25420424
Bt25420424
 
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based...
 
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
Hybrid multi-independent mmWave MNOs assessment utilising spectrum sharing pa...
 
Spectral Efficient IDMA System Using Multi User Detection
Spectral Efficient IDMA System Using Multi User DetectionSpectral Efficient IDMA System Using Multi User Detection
Spectral Efficient IDMA System Using Multi User Detection
 
33
3333
33
 
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
Block diagonalization for Multi-user MIMO Beamforming Performance over Rician...
 
Introductory Approach on Ad-hoc Networks and its Paradigms
Introductory Approach on Ad-hoc Networks and its Paradigms Introductory Approach on Ad-hoc Networks and its Paradigms
Introductory Approach on Ad-hoc Networks and its Paradigms
 
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
 
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
Comparative Performance Assessment of V-Blast Encoded 8×8 MIMO MC-CDMA Wirele...
 
Survey of Routing Scheme in MANET with Clustering Techniques
Survey of Routing Scheme in MANET with Clustering TechniquesSurvey of Routing Scheme in MANET with Clustering Techniques
Survey of Routing Scheme in MANET with Clustering Techniques
 
Kg2518001805
Kg2518001805Kg2518001805
Kg2518001805
 
Multi User Detection in CDMA System Using Linear and Non Linear Detector
Multi User Detection in CDMA System Using Linear and Non Linear DetectorMulti User Detection in CDMA System Using Linear and Non Linear Detector
Multi User Detection in CDMA System Using Linear and Non Linear Detector
 

Viewers also liked

Standards 2009 Ppt 2003
Standards 2009 Ppt 2003Standards 2009 Ppt 2003
Standards 2009 Ppt 2003gg_ieee
 

Viewers also liked (6)

Como evitar enfermarse
Como evitar enfermarseComo evitar enfermarse
Como evitar enfermarse
 
Standards 2009 Ppt 2003
Standards 2009 Ppt 2003Standards 2009 Ppt 2003
Standards 2009 Ppt 2003
 
Como evitar enfermarse
Como evitar enfermarseComo evitar enfermarse
Como evitar enfermarse
 
[10] Nu P 06 1
[10] Nu P 06 1[10] Nu P 06 1
[10] Nu P 06 1
 
Como evitar enfermarse
Como evitar enfermarseComo evitar enfermarse
Como evitar enfermarse
 
[18] Nu P 13 1
[18] Nu P 13 1[18] Nu P 13 1
[18] Nu P 13 1
 

Similar to [11] Nu P 07 1

Cs6003 ahsn-add-qb
Cs6003 ahsn-add-qbCs6003 ahsn-add-qb
Cs6003 ahsn-add-qb
KGunasekaran1
 
A QoS Based MAC Protocol For Wireless Ad-hoc Network
A QoS Based MAC Protocol For Wireless Ad-hoc NetworkA QoS Based MAC Protocol For Wireless Ad-hoc Network
A QoS Based MAC Protocol For Wireless Ad-hoc Network
IJNSA Journal
 
Survey on energy efficiency in wireless sensor network using mac protocol wit...
Survey on energy efficiency in wireless sensor network using mac protocol wit...Survey on energy efficiency in wireless sensor network using mac protocol wit...
Survey on energy efficiency in wireless sensor network using mac protocol wit...
Editor Jacotech
 
Bsnl
BsnlBsnl
Mobile Wireless Communications.pdf
Mobile Wireless Communications.pdfMobile Wireless Communications.pdf
Mobile Wireless Communications.pdf
SusieMaestre1
 
wireless communication
wireless  communicationwireless  communication
wireless communication
cosmic123
 
INTRODUCTION TO WIRELESS NETWORKING
INTRODUCTION TO WIRELESS NETWORKINGINTRODUCTION TO WIRELESS NETWORKING
INTRODUCTION TO WIRELESS NETWORKING
DURGARAOBHARGAVI
 
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdfrohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
RobinKumar260480
 
INTRODUCTION TO WIRELESS COMMUNICATION
INTRODUCTION TO WIRELESS COMMUNICATIONINTRODUCTION TO WIRELESS COMMUNICATION
INTRODUCTION TO WIRELESS COMMUNICATION
SANDIP BURNWAL
 
1_introduction.ppt
1_introduction.ppt1_introduction.ppt
1_introduction.ppt
usmanEhsan8
 
Br33421423
Br33421423Br33421423
Br33421423
IJERA Editor
 
Br33421423
Br33421423Br33421423
Br33421423
IJERA Editor
 
1 s2.0-s1877050915029002-main
1 s2.0-s1877050915029002-main1 s2.0-s1877050915029002-main
1 s2.0-s1877050915029002-main
Rahul Singh
 
An enhancement of rtscts control handshake in
An enhancement of rtscts control handshake inAn enhancement of rtscts control handshake in
An enhancement of rtscts control handshake in
eSAT Publishing House
 
An enhancement of rts
An enhancement of rtsAn enhancement of rts
An enhancement of rts
eSAT Journals
 
BSNL TRAINNING
BSNL TRAINNING BSNL TRAINNING
BSNL TRAINNING ridhuaditi
 
L 1 overview of telecom network
L 1 overview of telecom networkL 1 overview of telecom network
L 1 overview of telecom network
Bala V
 

Similar to [11] Nu P 07 1 (20)

Cs6003 ahsn-add-qb
Cs6003 ahsn-add-qbCs6003 ahsn-add-qb
Cs6003 ahsn-add-qb
 
A QoS Based MAC Protocol For Wireless Ad-hoc Network
A QoS Based MAC Protocol For Wireless Ad-hoc NetworkA QoS Based MAC Protocol For Wireless Ad-hoc Network
A QoS Based MAC Protocol For Wireless Ad-hoc Network
 
Survey on energy efficiency in wireless sensor network using mac protocol wit...
Survey on energy efficiency in wireless sensor network using mac protocol wit...Survey on energy efficiency in wireless sensor network using mac protocol wit...
Survey on energy efficiency in wireless sensor network using mac protocol wit...
 
Bsnl
BsnlBsnl
Bsnl
 
Report
ReportReport
Report
 
Mobile Wireless Communications.pdf
Mobile Wireless Communications.pdfMobile Wireless Communications.pdf
Mobile Wireless Communications.pdf
 
wireless communication
wireless  communicationwireless  communication
wireless communication
 
INTRODUCTION TO WIRELESS NETWORKING
INTRODUCTION TO WIRELESS NETWORKINGINTRODUCTION TO WIRELESS NETWORKING
INTRODUCTION TO WIRELESS NETWORKING
 
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdfrohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
 
INTRODUCTION TO WIRELESS COMMUNICATION
INTRODUCTION TO WIRELESS COMMUNICATIONINTRODUCTION TO WIRELESS COMMUNICATION
INTRODUCTION TO WIRELESS COMMUNICATION
 
1_introduction.ppt
1_introduction.ppt1_introduction.ppt
1_introduction.ppt
 
40120140503011
4012014050301140120140503011
40120140503011
 
Br33421423
Br33421423Br33421423
Br33421423
 
Br33421423
Br33421423Br33421423
Br33421423
 
1 s2.0-s1877050915029002-main
1 s2.0-s1877050915029002-main1 s2.0-s1877050915029002-main
1 s2.0-s1877050915029002-main
 
An enhancement of rtscts control handshake in
An enhancement of rtscts control handshake inAn enhancement of rtscts control handshake in
An enhancement of rtscts control handshake in
 
An enhancement of rts
An enhancement of rtsAn enhancement of rts
An enhancement of rts
 
BSNL TRAINNING
BSNL TRAINNING BSNL TRAINNING
BSNL TRAINNING
 
270 273
270 273270 273
270 273
 
L 1 overview of telecom network
L 1 overview of telecom networkL 1 overview of telecom network
L 1 overview of telecom network
 

More from Rafael Scudelari (20)

[17] Nu P 11 1
[17] Nu P 11 1[17] Nu P 11 1
[17] Nu P 11 1
 
[16] Nu P 09 1
[16] Nu P 09 1[16] Nu P 09 1
[16] Nu P 09 1
 
[15] Nu P 08 1
[15] Nu P 08 1[15] Nu P 08 1
[15] Nu P 08 1
 
[14] Nu P 09 2
[14] Nu P 09 2[14] Nu P 09 2
[14] Nu P 09 2
 
[14] Nu P 09 2
[14] Nu P 09 2[14] Nu P 09 2
[14] Nu P 09 2
 
[14] Nu P 08 1
[14] Nu P 08 1[14] Nu P 08 1
[14] Nu P 08 1
 
[13] Nu P 08 2
[13] Nu P 08 2[13] Nu P 08 2
[13] Nu P 08 2
 
[13] Nup 07 5
[13] Nup 07 5[13] Nup 07 5
[13] Nup 07 5
 
[12] Nup 07 6
[12] Nup 07 6[12] Nup 07 6
[12] Nup 07 6
 
[12] Nup 07 3
[12] Nup 07 3[12] Nup 07 3
[12] Nup 07 3
 
[11] Nu P 02 2
[11] Nu P 02 2[11] Nu P 02 2
[11] Nu P 02 2
 
[10] Nup 07 4
[10] Nup 07 4[10] Nup 07 4
[10] Nup 07 4
 
[9] Nup 07 2
[9] Nup 07 2[9] Nup 07 2
[9] Nup 07 2
 
[9] Nu P 05 1
[9] Nu P 05 1[9] Nu P 05 1
[9] Nu P 05 1
 
[8] Nu P 06 2
[8] Nu P 06 2[8] Nu P 06 2
[8] Nu P 06 2
 
[8] Nu P 04 3
[8] Nu P 04 3[8] Nu P 04 3
[8] Nu P 04 3
 
[7] Nu P 05 2
[7] Nu P 05 2[7] Nu P 05 2
[7] Nu P 05 2
 
[7] Nu P 04 1
[7] Nu P 04 1[7] Nu P 04 1
[7] Nu P 04 1
 
[6] Nu P 04 4
[6] Nu P 04 4[6] Nu P 04 4
[6] Nu P 04 4
 
[6] Nu P 04 4
[6] Nu P 04 4[6] Nu P 04 4
[6] Nu P 04 4
 

Recently uploaded

Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
Vlad Stirbu
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
Assure Contact Center Experiences for Your Customers With ThousandEyes
Assure Contact Center Experiences for Your Customers With ThousandEyesAssure Contact Center Experiences for Your Customers With ThousandEyes
Assure Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
UiPathCommunity
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 

Recently uploaded (20)

Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
Assure Contact Center Experiences for Your Customers With ThousandEyes
Assure Contact Center Experiences for Your Customers With ThousandEyesAssure Contact Center Experiences for Your Customers With ThousandEyes
Assure Contact Center Experiences for Your Customers With ThousandEyes
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 

[11] Nu P 07 1

  • 1. Protocolls of the OSI-layer 2 Link Layer MAC (Medium Access Control) Kapitel 7.1 Netze und Protokolle Dr.-Ing. J. Steuer Institut für Kommunikationstechnik www.ikt.uni-hannover.de Literatur: [Boss99] M.Bossert, M.Breitenbach, Digitale Netze, 1999, B.G. Teubner, Stuttgart, Leipzig, ISBN 3-519-06191-0 [Come98] D. Comer, Computernetzwerke und Internets, Prentice Hall, 1998, ISBN3-8272- 9552-1, 2001: ISBN 3-8273-7023 [Coul02] Couloris et.al.; „Verteilte Systeme“, Addison- Wesley, 2002, ISBN 3-8273-7022-1 [Hals96] F.Halshall, „Data Communications, Computer Networks and Open Systems“, 4th edition, Edison-Wesley, 1996, ISBN 0-201-42293-X [Kann] Kanbach, Körber, ISDN - Die Technik, Hüthig-Verlag [Reim95] Reimers, et.al.; Digitale Fernsehtechnik, Springer Verlag, 1995, ISBN 3-540- 58993-7 [Sieg99] Gerd Siegmund,“Technik der Netze“, 4.Auflage, Hüthig Verlag, Heidelberg, 1999, ISBN 3-7785-2637-5 [Spra91] J.D.Spragins,et.all, Telecommunications Protocols and Design, Addison Wesley Publishing Company, 1991, ISBN 0-201-09290-5 [Stall90] William Stallings, Local and Metropolitan Area Networks, 1990; MacMillen Publishing Company, ISBN 0-02-415465-2 [WAL02(1)] Walke, B., „Mobilkommunikation, Band1“, Teubner Verlag, 2002 © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 2. Goals understand the need for MAC (media access control) understand the most important MAC strategies for ISDN, data networks and mobile networks classify different MAC-strategies evaluate the performance of different MAC-strategies (2) The medium access control (MAC) is mandatory in case of shared usage of a media. A media could be a twisted pair, an optical fibre, the spectrum in the air (air interface), or in general any media which is able to transport communication content. Only in case one user is using one medium in one direction only, the MAC is not necessary. It could be implemented, but it need not. The control of the usage of the channel (media) could be left to the subscriber. Already in case of bidirectional usage a scheduler has to control the access from both ends of the communication. This scheduler can be simple, because one station could be declared as master. The master is responsible for the scheduling. This is a type of central control. Imagine the Master has not only to control one station but several. The master is a little bit more busy, but with sufficient memory and computing power he will be able to handle the situation. There is no principle difficulty in such centralized control task. It gets much more complicated in case there is no knowledge at the master on the states of the slaves. A protocol handling such scenario needs to operate on guesses on the behavior of the other stations competing for the usage of the medium. There will be situations of conflict, which means more than one station is accessing the medium at the same time. The result will be a corruption of messages. This situation is called decentralized and uncoordinated. The protocol must be able to detect such corruptions and to react on that, in order to allow for a proper communication. With all these issues the MAC has to deal. In this chapter we will study the principal MAC properties for different media. © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 3. need for MAC? Competition for the usage of a transmission medium limited to the S0-bus ISDN Sobus: signalling channel NT 4 wire Why is in the case of ISDN only the access to the signalling channel Local Area Network in competition? 802.3, coaxial cable, (LAN) with shared max 10Mbit/s (5Mbit/s) LAN media, e.g. Ethernet (3) There are networks for which many users share a common channel using a multi access scheme. We find the examples on the signaling channel for the ISDN S0 bus (in this case not for the communication channel, which is controlled by by the switch and the switch knows the status of the users and channels) on Local Area Networks (LAN) (note: latest developments in LAN´s go back to dedicated channels, using switching technologies) mobile networks packet radio networks Adhoc-networks satellite networks © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 4. need for MAC? Competition for the usage of a transmission medium during registration phases of mobile stations (MS) mobile technologies: DECT, GSM, IS95, HSCSD, GPRS,UMTS (4) In case the MS (mobile station) is switched of, there is no knowledge in the Basestation or the Basestation controller on this subscriber. Thus there can be no dedicated channel for this subscriber. If the MS is switched on, it needs first to access a common channel and apply for a dedicated channel. The common channel is used in competition to other subscribers in the same state. Consequently we need a media access control. Abbreviations: DECT: digital enhanced cordless telephony (ETSI and ECMA standard) (see [WAL02(2)]) GSM: global system mobile (ETSI standard) (see [WAL02(1)]) IS95: Interim Standard 1995 of the Telecommunications Industry Association (TIA) USA for the first CDMA mobile system (see [WAL02(1)]) , compare ZVEI in Germany (see introduction NUP, standards) HSCSD: High Speed Circuit Switched Data (channel trunking in GSM to increase the channel capacity in SM for Data) (see [WAL02(1)]) GPRS: General Packet Radio System (packet switched enhancement of GSM) (see [WAL02(1)]) UMTS: Universal Mobile Telecommunication System (expected successor of GSM) (see [WAL02(1)]) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 5. need for MAC? Station 1 Station 3 Station 5 Station 2 Station 4 The common media is the air interface, all members Basic Service Set (IEEE 802.11) of the AdHoc network are W-LAN, AdHoc-Network Competing at least during the registration process (5) In many cases, a network is installed using an infrastructure. This infrastructure takes over some central tasks and serves as an access to the wired network. In HIPERLAN/2, the Access Points (AP) take over this task. They have a wired as well as a wireless interfaces. By the way, there are a number of different technologies and protocols which could serve as wireless LAN: HIPERLAN (High PErformance Radio Local Area Network) of ETSI [WAL02(2)]) WLAN (Wireless LAN) of IEEE (802.11x) [WAL02(2)]) Bluetooth: short range data link or network and even others which partly show functionalities of LAN´s (high speed data transport in the access area): UMTS (Universal Mobile Telephone System) [WAL02(1)]) DAB (Digital Audio Broadcast) DVB (Digital Video Broadcasting) [Reim95] During this lecture we are going to concentrate on HIPERLAN due to its enhanced functionality compared to wired LAN´s. This stands also for the WLAN, but the WLAN is an American standard with some drawbacks in its functionality which is compensated by its better position in the market. The coverage area of an AP and its associated terminals is called radio cell in general. In the case of IEEE 802.11 (see below), it is called a basic service set, in Bluetooth a scatternet (to scatter=umherstreuen; the terminals are scattered in the area of coverage served by an access point). © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 6. need for MAC? Access Point A Access Point B Station A1 Station B1 Station A1 Station B3 Station A2 Station B2 The common media is the air Radio Cell (HIPERLAN) interface, in addition we have Basic Service Set (IEEE 802.11) Influences between the cells! (6) Wireless LAN´s can be grouped to cells or basic service sets, which are comparable to the cells of cellular telephony networks. In the HIPERLAN-System the MAC is of the scheduled type. The Access Point serves as scheduler. This scheme allows a better performance for high traffic loads. The W-LAN system in contrast operates in a random mode like the Ethernet, which is sufficient for low traffic loads. In principle it can be expected that data terminals will at least from time to time carry high traffic load. This forced the Europeans (ETSI, HIPERLAN) to deviate from the american (IEEE802.11, W-LAN) approach. The traffic channels in the HIPERLAN-scheme are dedicated to connections and thus terminals. They do not need MAC. Bat the traffic channels are assigned after request. During the request phase the data terminals compete for transmission capacity, therefore this phase is handled by a MAC protocol. © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 7. when is the MAC function not needed? (7) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 8. influences on the MAC distance of stations to each other (power and delay) visibility of stations (SNR, Signal to Noise Ratio)) throughput of the network, e.g. in Kbit/s fairness of the usage of the transmission media by competing terminals transmission speed of channels burstiness of traffic packet length (8) The distance between stations influences the ability to detect collisions, e.g. the IEEE802.3 is limited to 2500m (collision domain) Systems with radio connections need to „see“ each other in order to be able to detect collisions The required throughput of the network influences the complexity of the MAC. If the throughput is high compared to the capacity we need to establish MAC protocols with high efficiency; if the throughput is low in contrast to the capacity we can allow for a less efficient MAC. This consideration led to the application of the slotted ALOHA for the access to the RACH (Random Access Channel) of the GSM system. This channel is used only for the request from the mobile Station to the network in order to apply for dedicated channels. The volume of the signaling is low. Thus we can allow for a low efficiency. Similar thoughts let us find that a bulk data transfer on a Local Area Network (LAN) needs a MAC which minimizes the collisions. If we stick to the random MAC than CSMA/CD is the choice. Fairness is often an opposite requirement to throughput. A fair MAC allows for each traffic source on average the same transmission capacity. Even if we implement no priorities fairness is difficult to establish. The MAC for the Dual Queueing Distributed Bus - a Metropolitan Area Network (IEEE 802.6) - tried to establish fairness. The DQDB is a very good subject for study purposes, but it did not gain an important position in the market. The transmission speed of the channels dictate the time available in the protocol stack. The higher the transmission speed, the more critical is the time spent in the stack. Take the ATM Protocoll with a targeted speed of 2.5Gbit/s. There is not much time left to perform complicated operations in the stack. Thus the MAC has to be extremly time efficient. A high burstiness of traffic generates a high peak load in the stack. This effects the stack in the same mannor than a high transnmission speed. Long packets put less burdon on the stack compared to short packets © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 9. MAC principles Scheduling vs. Random access: scheduling means stations ready to send are waiting until it is their turn to operate Under the random access scheme a station tries to access the transmission media as soon as it has to send something (immediately) Discuss differences with respect to efficiency Random Scheduler Access (9) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 10. MAC principles Scheduling random access Scheduling random access without with sensing fixed demand without with sensing fixed demand sensing(ALOHA) (CS) assignment assignment sensing(ALOHA) (CS) assignment assignment central distributed central distributed before before & during pure slotted control control before before & during pure slotted control control ALOHA ALOHA transmission transmission ALOHA ALOHA transmission transmission (CSMA) (CSMA/CD) (CSMA) (CSMA/CD) How does the channel selection and the channel assignment of a PDH-, SDH-, ISDN- and Ethernet-LAN-system fit into the above scheme? (10) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 11. MAC principles (Examples) Scheduling random access Scheduling random access without with sensing fixed demand without with sensing fixed demand sensing(ALOHA) (CS) assignments assignment sensing(ALOHA) (CS) assignments assignment central distributed central distributed before before & during pure slotted control control before before & during pure slotted control control ALOHA ALOHA transmission transmission ALOHA ALOHA transmission transmission (CSMA) (CSMA/CD) (CSMA) (CSMA/CD) • TDMA/reservation • slotted ALOHA: • Polling GSM, Random Access Channel (RACH) • Token Passing • CSMA/CD: Ethernet (11) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 12. TDMA (Time Division Multiple Access) frame i frame i+1 frame i+2 time 1 guard time station 1 station 2 station m-2 station m-1 station m control data data data data data time 2 no packet ready? control information? yes guard time? wait for advantages and disadvantages? assigned slot transmit packet (12) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 13. Reservation in TDMA frame i frame i+1 frame i+2 time 1 guard time n<m slot 1 slot 2 slot n-2 slot n-1 slot n control data data data data data time 2 no packet ready? advantages and disadvantages? yes • Number of stations is not limited sharply reservation and waiting • traffic behaviour as pure TDMA forassigned slot • reservation has to be performed by signalling transmit (not shown here) packet Application: HIPERLAN (13) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 14. Polling scheduling with central control station 11 station k station R station station k station R message closed message closed by go ahead from by go ahead from station k station 1 poll poll message closed poll station m station k by go ahead from station 1 central controller station m central controller • efficient with high load from all stations • inefficient if stations have low or zero load • half duplex links need resynch, full duplex links can stay synchronized (14) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 15. Token passing (scheduling with distributed control) station 11 station station rr station 22 station station station kk station • transmission medium of ring (IEEE 802.5) or bus (IEEE 802.4) type [logically the bus behaves like a ring • a token (packet with permission to send) is handed from station to station • all stations read all packets • all packets are circulating on the ring and have to be removed after one turn • the packet control requires receiving and sending of all packets in all stations, which requires highly reliable stations and adds delay in each station • the token is a distinctive bit pattern, how can the transmission be data transparent? • if no station has to transmit, a free token is circulating. What happens if a bit error occurs? • priority handling is possible (15) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 16. Random Access with no sensing (ALOHA and slotted ALOHA) shared transmission medium: station 11 station station rr station 22 station station or station kk station yes wait two way no yes delay to start of propagation time transmit acknoledgement? packet to transmit? next slot quantized to slot times no delay k packets compute random transmission time backoff integer k Discuss high load scenario! Do you see the advantage of the slotted ALOHA? (16) The slotted ALOHA- mechanismn is implemented in the registratition phase of the GSM system. © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 17. Random Access with sensing Carrier Sense with Multiple Access (CSMA) shared transmission medium: station 11 station station rr station 22 station station station kk station yes Medium wait two way no yes carrier is free delay to start of propagation time transmit acknowledgement? packet to transmit? sense quantized to next slot strategy slot times no Medium is occupied delay k packets compute random transmission time backoff integer k (17) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 18. Random Access with sensing before and during transmission /Collision Detection (CSMA/CD) shared transmission medium: station 11 station station rr station 22 station station Implemented in IEEE 802.3 station kk station no yes no Collision detected/ carrier transmit packet to transmit? jamming received? sense strategy yes Medium is occupied delay k packets transmit yamming compute random abort transmission transmission time Signal* backoff integer k * Only in case of collision detected (18) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 19. MAC of the ISDN S0-Bus Transmission in frames on S0 Activation procedure in the physical layer Frame synchronization in the MAC layer Frame recognition by violation of code rules Distributed MAC for the d-channel only MAC for the user channel by framing S0-bus ISDN Sobus: NT 4 wire (19) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 20. S0-Frame (2) Leitungscodierung S0 AMI-Code 01011100 + + - - inv. AMI-Code 01011100 + + - - (20) AMI - Alternate Mark Inversion: Eine Markierung (1) wird abwechselnd mit positivem bzw. negativem Impuls dargestellt. Pseudoternärer Code: zwei logische Zustände (Null, Eins) werden auf 3 physikalische Zustände abgebildet (pos. Impuls +, kein Impuls 0, neg. Impuls -) Am ISDN-Basisanschluß eingesetzt wird ein invertierter AMI-Code: nicht die (1), sondern die (0) wird abwechselnd mit positivem bzw. negativem Impuls dargestellt. © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 21. S0-Frame (3) 2 bit offset between frame from NT TE and NT TE in order to allow the terminals to read the e-bit before they write the next d-bit 48 bits in 250 microseconds NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei How is a collision B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA detected? E Bit des Echokanals S Spare = 0 F Rahmenbit (21) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 22. S0-Frame (4) Why is there no e-bit for the other direction in the Frame from TE NT? 48 bits in 250 microseconds NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA E Bit des Echokanals S Spare = 0 F Rahmenbit (22) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 23. S0-Frame - frame detection Case 1: d-bit from the NT at the end of the frame will be „0“ and negative, the L-bit will be „0“ and positive in order to compensate. The F-bit will be „0“ and positive in in 250 microseconds in conflict with the coding rule. 48 bits order to be NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1 B1 B1 B1 B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2 B2 L. D L. B1 B1 B1 B1 B1B1B1 B1 L. D L. B2 B2 B2 B2 B2 B2B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA E Bit des Echokanals S Spare = 0 F Rahmenbit (23) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 24. S0-Frame - frame detection Case 2: d-bit from the NT at the end of the frame will be „0“ and positive, the L-bit will be „1“in order to compensate. The F-bit will be „0“ and positive in in 250 microseconds in conflict with the coding rule. 48 bits order to be NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA E Bit des Echokanals S Spare = 0 F Rahmenbit (24) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 25. S0-Frame - frame detection Case 3: d-bit from the NT at the end of the frame will be „1“, the L-bit will be „0“ and positive if the last “0” before the L-bit was negative in order to compensate or the L-bit will be “1” if the last “0” before the L-bit was “0” and positive(compensation not necessary). The F-bit will be 48 bits and microsecondsbe in conflict with the coding rule. „0“ in 250 pos. to NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA E Bit des Echokanals S Spare = 0 F Rahmenbit (25) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 26. The end (26) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 27. need for MAC? Competition for the usage of a transmission medium limited to the S0-bus ISDN Sobus: signalling channel NT 4 wire Why is in the case The user channel, the B-channel with 64Kbit/s, is needed of ISDN only the permanently during a communication session, otherwise the access to the Shannon sample rate of 125µs can not be guaranteed. signalling channel Therefore the B-channel will be a dedicated channel which is in competition ? assigned by the switch during call set up phase and released at the end of the connection. The traffic on the signalling channel is highly bursty, it can not be foreseen when it is needed. Therefore the D-channel is a packet channel, for which the users have to compete. The usage will be assigned for individual packets or sequences of packets. (27) There are networks for which many users share a common channel using a multi access scheme. We find the examples on the signaling channel for the ISDN S0 bus (in this case not for the communication channel, this is dedicated by the switch) on Local Area Networks (LAN) (note: latest developments in LAN´s go back to dedicated channels, using switching technologies) mobile networks packet radio networks Adhoc-networks satellite networks © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 28. when is the MAC function not needed? E.g. to communicate between two points, a communication media need to be used. If this medium is used unidirectional there is no need for MAC (media access control)! no MAC necessary, but might be implemented (28) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 29. MAC principles Scheduling vs. Random access: scheduling means stations ready to send are waiting until it is their turn (efficient channel control under high load! But,high overhead under low load conditions) Under the random access scheme a station tries to access the transmission media as soon as it has to send something (immediately) (collisions under high load! But, low overhead under low load conditions) Discuss differences with respect Random to efficiency Scheduler Access (29) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 30. MAC principles Scheduling random access Scheduling random access without with sensing fixed PDH-, SDH demand without with sensing fixed PDH-, SDH demand sensing(ALOHA) (CS) assignment assignment sensing(ALOHA) (CS) assignment assignment central distributed central distributed before before & during pure slotted control control before before & during pure slotted control control ALOHA ALOHA transmission transmission ALOHA ALOHA transmission transmission ISDN ISDN (CSMA) (CSMA/CD) (CSMA) (CSMA/CD) Ethernet-LAN How does the channel selection and the channel assignment of a PDH-, SDH-, ISDN- and Ethernet-LAN-system fit into the above scheme? (30) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 31. TDMA (Time Division Multiple Access) View on a shared media: frame i frame i+1 frame i+2 time 1 guard time station 1 station 2 station m-2 station m-1 station m control data data data data data time 2 View on a single terminal: control information? no packet Frame length and Frame start (Frame delimiter) ready? guard time? yes Data packets from stations suffer from wait for assigned slot different latency times which creates the danger of overlapping (collision) transmit advantages and disadvantages? packet Efficient for high traffic load, inappropriate for low traffic load (31) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 32. S0-Frame (3) 48 bits in 250 microseconds NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t Let the d-bit be a logical „0“, the e-bit will be a “0” in any case, because the logical “0” is dominant! In this case the “blue” terminal will not detect a collision and will continue!!! The “green” terminal which sent a “1” will get back a “0” and will stop transmitting! Are there other cases? (32) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 33. S0-Frame (3a) 48 bits in 250 microseconds NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t Let the d-bit be a logical „0“, and let another terminal send a “0” as well. In this case a collision is not detected!!! A collision is detected only, if one TE is transmitting a logical „1“ and the other a „0“. The „0“ will continue and the „1“ will stop! (33) © UNI Hannover, Institut für Allgemeine Nachrichtentechnik
  • 34. S0-Frame (4) Why is there no e-bit for the other direction in the Frame from TE NT? Because the NT is not in competition with other terminals! 48 bits in 250 microseconds NT TE D L. F L. B1B1B1B1B1B1B1B1 E D A FA N B2B2B2B2B2B2B2B2 E D M B1B1B1B1B1B1B1B1 E D S B2B2B2B2B2B2B2B2 E D L. F L. 0 1 0 2 bits offs et TE NT D L. F L. B1B1B1B1B1 B1B1B1 L. D L. FA L. B2B2 B2 B2 B2 B2B2B2 L. D L. B1 B1B1 B1B1B1 B1 B1 L. D L. B2 B2 B2 B2 B2 B2 B2 B2 L. D L. F L. t A Aktivierungsbit FA Hilfsrahmenbit . an diesen Stellen ist der B1 Bit des 1. B-Kanals L DC-Ausgleichbit Code gleichanteilsfrei B2 Bit des 2. B-Kanals M Multiframingbit = 0 D Bit des D-Kanals N = FA E Bit des Echokanals S Spare = 0 F Rahmenbit (34) Diagramm zeigt die möglichen physikalischen Zustände, die ein Bit im Rahmen annehmen kann (Null als positiver oder negativer Impuls, Eins als kein Impuls). 2 Bit Versatz zwischen den Rahmen (E-Bit muß angekommen sein, bevor D-Kanal-Bits wieder gesendet werden dürfen => Zugriffssteuerung) Zusammenfassung von 2 Abtastperioden (je 125µs) in einem S0-Rahmen (250 µs) 48bit/250µsec = 192 kbit/s Datenrate je Richtung auf S0 Echokanal zur D-Kanal-Zugriffsteuerung: NT spiegelt das zuletzt vom im D-Kanal empfangenen Bits im nächsten Echo-Kanal zurück. Ausgleichsbits zur Herstellung der Gleichanteilsfreiheit nach jeden logischen Kanal in Richtung NT Coderegelverletzung am Beginn eines jeden Rahmen wie folgt festgelegt: 1.Coderegelverletzung durch F-Bit (+,Verletzung mit letztem D- bzw. L-Bit); nächste Coderegelverletzung zwischen L-Bit(-) und (spätestens) FA-Bit (-). A-Bit (Bus aktiviert) Literatur: [Kann] © UNI Hannover, Institut für Allgemeine Nachrichtentechnik