Digital IC Pin Details and Functional Tables
1) 7400 QUAD 2 INPUT NAND GATE:
𝒀 = 𝑨𝑩
̅̅̅̅
H=High Logic Level
L=Low Logic Level
2) 7402 QUAD 2 INPUT NOR GATE:
𝒀 = 𝑨 + 𝑩
̅̅̅̅̅̅̅̅
H=High Logic Level
L=Low Logic Level
3) 7404 HEX INVERTER/NOT GATE:
𝒀 = 𝑨
̅
H=High Logic Level
L=Low Logic Level
Inputs Output
A B Y
L L H
L H H
H L H
H H L
Inputs Output
A B Y
L L H
L H L
H L L
H H L
Input Output
A Y
L H
H L
4) 7408 QUAD 2 INPUT AND GATE:
𝒀 = 𝑨𝑩
H=High Logic Level
L=Low Logic Level
5) 7410 TRIPLE 3 INPUT NAND GATE:
𝒀 = 𝑨𝑩𝑪
̅̅̅̅̅̅
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
6) 7411 TRIPLE 3 INPUT AND GATE:
𝒀 = 𝑨𝑩𝑪
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
Inputs Output
A B Y
L L L
L H L
H L L
H H H
Inputs Output
A B C Y
X X L H
X L X H
L X X H
H H H L
Inputs Output
A B C Y
X X L L
X L X L
L X X L
H H H H
7) 7420 DUAL 4 INPUT NAND GATE:
𝒀 = 𝑨𝑩𝑪𝑫
̅̅̅̅̅̅̅̅̅
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
8) 7421 DUAL 4 INPUT AND GATE:
𝒀 = 𝑨𝑩𝑪𝑫
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
9) 7427 TRIPLE 3 INPUT NOR GATE:
𝒀 = 𝑨 + 𝑩 + 𝑪
̅̅̅̅̅̅̅̅̅̅̅̅̅
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
Inputs Output
A B C D Y
X X X L H
X X L X H
X L X X H
L X X X H
H H H H L
Inputs Output
A B C D Y
X X X L L
X X L X L
X L X X L
L X X X L
H H H H H
Inputs Output
A B C Y
X X H L
X H X L
H X X L
L L L H
10) 74LS30 - 8 INPUT NAND GATE:
𝒀 = 𝑨𝑩𝑪𝑫𝑬𝑭𝑮𝑯
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H=High Logic Level
L=Low Logic Level
11) 7432 QUAD 2 INPUT OR GATE:
𝑌 = 𝐴 + 𝐵
H=High Logic Level
L=Low Logic Level
12) 7446/7447 BCD TO SEVEN SEGMENT DECODER:
Inputs Output
A through H Y
All inputs H L
One or more inputs L H
Inputs Output
A B Y
L L L
L H H
H L H
H H H
Symbol Description
A, B, C, D BCD inputs
RBI
̅̅̅̅̅ Ripple-Blanking Input
LT Lamp-Test Input
BIRBO
̅̅̅̅̅̅̅̅̅̅ Blanking Input or
Ripple-Blanking Output
𝑎
̅to 𝑔̅ Outputs
13) 7448 BCD TO SEVEN SEGMENT DECODER:
H=High Logic Level
L=Low Logic Level
X=Either Low or High Logic Level
Symbol Description
A, B, C, D BCD inputs
RBI
̅̅̅̅̅ Ripple-Blanking Input
𝐿𝑇
̅
̅̅
̅ Lamp-Test Input
BIRBO
̅̅̅̅̅̅̅̅̅̅ Blanking Input or
Ripple-Blanking Output
𝑎 to 𝑔 Outputs
14) 7473 DUAL J-K FLIP-FLOP:
Symbol Description
Q True output
Q
̅ Complement Output
Clock Clock input
J Data input1
K Data input2
RESET
Asynchronous reset
(Low activated)
GND Ground
VCC Supply Voltage
H = HIGH voltage level;
h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition;
q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition;
X = don’t care;
= HIGH-to-LOW clock transition.
15) 7474 DUAL D FLIP-FLOP:
Symbol Description
Q True output
Q
̅ Complement Output
CLK Clock input
D Data input
CLR
Asynchronous reset
(active low)
PR
Asynchronous set
(active low)
GND Ground
VCC Supply Voltage
Inputs Outputs
Operating mode
RESET Clock J K Q Q
̅
L X X X L H Asynchronous reset (Low activated)
H h h 𝑞
̅ q Toggle
H l h L H Load 0 (reset)
H h l H L Load 1 (set)
H l l q 𝑞
̅ Hold (no change)
Inputs Outputs
Operating mode
PR CLR CLK D Q Q
̅
L H X X H L Asynchronous set (Low activated)
H L X X L H Asynchronous reset (Low activated)
L L X X H H Note1
H H h H L Load 1 (set)
H H l L H Load 0 (reset)
H H L X q 𝑞
̅ Hold (no change)
H = HIGH voltage level;
h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;
q = state of referenced output one set-up time prior to the LOW-to-HIGH clock transition;
X = don’t care;
= LOW-to-HIGH clock transition.
Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to
their inactive (HIGH) level.
16) 7478 DUAL J-K FLIP-FLOP WITH PRESET, COMMON CLOCK, AND
COMMON CLEAR:
Symbol Description
Q True output
Q
̅ Complement Output
CLK Clock input
J Data input1
K Data input2
CLR
Asynchronous reset
(Low activated)
PR
Asynchronous set
(Low activated)
GND Ground
VCC Supply Voltage
Inputs Outputs
Operating mode
PR CLR Clock J K Q Q
̅
L H X X X H L Asynchronous set (Low activated)
H L X X X L H Asynchronous reset (Low activated)
L L X X X H H Note 1
H H h h 𝑞
̅ q Toggle
H H l h L H Load 0 (reset)
H H h l H L Load 1 (set)
H H l l q 𝑞
̅ Hold (no change)
H H H X X q 𝑞
̅ Hold (no change)
H = HIGH voltage level;
h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition;
q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition;
X = don’t care;
= HIGH-to-LOW clock transition.
Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to
their inactive (HIGH) level.
17) 7485 – 4 BIT MAGNITUDE COMPARATOR:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Symbol Description
A0-A3, B0-B3 Parallel inputs
IA=B A=B Expander inputs
IA<B, IA>B
A<B, A>B,
Expander inputs
OA>B A greater than B output
OA<B B greater than A output
OA=B A equal to B output
18) 7486 – QUAD 2 INPUT EXCLUSIVE OR GATE:
𝑌 = 𝐴⨁𝐵 = 𝐴̅𝐵 + 𝐴𝐵
̅
H = HIGH voltage level;
L = LOW voltage level;
19) 7490 ASYNCHRONOUS DECADE COUNTER:
H = HIGH voltage level;
L = LOW voltage level;
X=Either Low or High Logic Level
Inputs Output
A B Y
L L L
L H H
H L H
H H L
Symbol Description
𝐶𝑃0
̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by
2 Section
𝐶𝑃1
̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by
5 Section
MR1, MR2 Master Reset (Clear) Inputs
MS1, MS2 Master Set (Preset-9) Inputs
Q0 Output from divide by 2 Section
Q1, Q2, Q3 Outputs from divide by 5 Section
20) 7493 ASYNCHRONOUS BINARY COUNTER:
H = HIGH voltage level;
L = LOW voltage level;
X=Either Low or High Logic Level
21) 74112 JK FLIP FLOP WITH PRESET AND CLEAR:
Symbol Description
𝐶𝑃0
̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by
2 Section
𝐶𝑃1
̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by
5 Section
MR1, MR2 Master Reset (Clear) Inputs
Q0 Output from divide by 2 Section
Q1, Q2, Q3 Outputs from divide by 5 Section
Symbol Description
Q True output
Q
̅ Complement Output
CLK Clock input
J Data input1
K Data input2
CLR
Asynchronous reset
(Low activated)
PR
Asynchronous set
(Low activated)
GND Ground
VCC Supply Voltage
H = HIGH voltage level;
h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition;
q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition;
X = don’t care;
= HIGH-to-LOW clock transition.
Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to
their inactive (HIGH) level.
22) 74138 -3:8 DECODER:
Inputs Outputs
Operating mode
PR CLR Clock J K Q Q
̅
L H X X X H L Asynchronous set (Low activated)
H L X X X L H Asynchronous reset (Low activated)
L L X X X H H Note 1
H H h h 𝑞
̅ q Toggle
H H l h L H Load 0 (reset)
H H h l H L Load 1 (set)
H H l l q 𝑞
̅ Hold (no change)
H H H X X q 𝑞
̅ Hold (no change)
Symbol Description
A0-A2 Address inputs
𝐸1
̅̅̅̅, 𝐸2
̅̅̅̅ Enable (Active low) inputs
E3 Enable (Active high) input
𝑂
̅0 − 𝑂
̅7 Active low outputs
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
23) 74139 -2:4 DECODER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Inputs Outputs
E1 E2 E3 A0 A1 A2 𝑂
̅0 𝑂
̅1 𝑂
̅2 𝑂
̅3 𝑂
̅4 𝑂
̅5 𝑂
̅6 𝑂
̅7
H X X X X X H H H H H H H H
X H X X X X H H H H H H H H
X X L X X X H H H H H H H H
L L H L L L L H H H H H H H
L L H H L L H L H H H H H H
L L H L H L H H L H H H H H
L L H H H L H H H L H H H H
L L H L L H H H H H L H H H
L L H H L H H H H H H L H H
L L H L H H H H H H H H L H
L L H H H H H H H H H H H L
Symbol Description
A0-A2 Address inputs
E
Enable (Active low)
inputs
𝑂
̅0 − 𝑂
̅3 Active low outputs
Inputs Outputs
E A0 A1 𝑂
̅0 𝑂
̅1 𝑂
̅2 𝑂
̅3
H X X H H H H
L L L L H H H
L H L H L H H
L L H H H L H
L H H H H H L
24) 74147 -10 LINE TO 4 LINE PRIORITY ENCODER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
25) 74148 -8 LINE TO 3 LINE PRIORITY ENCODER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Note: 74148 provides cascading circuitry (Enable input EI and enable output EO) octal expansion without the need
for external circuitry. GS is the glitch free output.
26) 74151 -8:1 MULTIPLEXER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Symbol Description
S0-S2 Select inputs
E
Enable (Active low)
input
I0-I7 Multiplexer inputs
Z Multiplexer output
𝑍̅ Complementary
multiplexer output
27) 74153 -4:1 MULTIPLEXER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Symbol Description
S0-S1 Select inputs
𝐸
̅ Enable (Active low)
input
I0-I3 Multiplexer inputs
Z Multiplexer output
28) 74154 – 4:16 DECODER / DEMULTIPLXER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Symbol Description
A-D Address inputs
𝐺1
̅̅̅̅-𝐺2
̅̅̅̅ Strobe (Active low)
inputs
0-15 Active low outputs
Inputs Outputs
𝐺1
̅̅̅ 𝐺2
̅̅̅ D C B A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L L L L L L L H H H H H H H H H H H H H H H
L L L L L H H L H H H H H H H H H H H H H H
L L L L H L H H L H H H H H H H H H H H H H
L L L L H H H H H L H H H H H H H H H H H H
L L L H L L H H H H L H H H H H H H H H H H
L L L H L H H H H H H L H H H H H H H H H H
L L L H H L H H H H H H L H H H H H H H H H
L L L H H H H H H H H H H L H H H H H H H H
L L H L L L H H H H H H H H L H H H H H H H
L L H L L H H H H H H H H H H L H H H H H H
L L H L H L H H H H H H H H H H L H H H H H
L L H L H H H H H H H H H H H H H L H H H H
L L H H L L H H H H H H H H H H H H L H H H
L L H H L H H H H H H H H H H H H H H L H H
L L H H H L H H H H H H H H H H H H H H L H
L L H H H H H H H H H H H H H H H H H H H L
L H X X X X H H H H H H H H H H H H H H H H
H L X X X X H H H H H H H H H H H H H H H H
H H X X X X H H H H H H H H H H H H H H H H
29) 74155 – 2:4 DECODER / DEMULTIPLXER:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
30) 74160 – BCD DECADE COUNTERS:
Symbol Description
A0-A1 Address inputs
𝐸
̅ Enable (Active low)
inputs
𝑂
̅0-𝑂
̅3 Active low outputs
Symbol Description
𝑃𝐸
̅̅̅̅ Parallel Enable (Active low)
inputs
𝑃0 − 𝑃3 Parallel inputs
CEP Count Enable parallel input
CET Count Enable Trickle input
CP
Clock (Active high going
edge) input
MR
Master reset (Active low)
input
𝑄0 − 𝑄3 Parallel outputs
TC Terminal count output
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
31) 74168 – BCD DECADE BI-DIRECTIONAL COUNTERS:
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
Symbol Description
𝑃𝐸
̅̅̅̅ Parallel Enable (Active low)
inputs
𝑃0 − 𝑃3 Parallel Data inputs
CEP
Count Enable parallel input
(Active low)
𝐶𝐸𝑇
̅̅̅̅̅̅ Count Enable Trickle input
(Active low)
CP
Clock (Active positive going
edge) input
𝑈/𝐷
̅ Up-Down Count Control
Input
𝑄0 − 𝑄3 Parallel outputs
𝑇𝐶
̅̅̅̅ Terminal count output
32) 74170 – 4 X 4 REGISTER FILE:
Write Function
Read Function
 H = HIGH voltage level; L = LOW voltage level; X = don’t care;
 (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data
inputs.
 Q0 = the level of Q before the indicated input conditions were established.
 W0B1 = The first bit of word 0, etc.
Symbol Description
𝐷1 − 𝐷4 Data inputs
𝑊𝐴, 𝑊𝐵 Write Address Inputs
𝐸
̅𝑊
Write Enable
(Active LOW) Input
𝑅𝐴, 𝑅𝐵 Read Address Inputs
𝐸
̅𝑅
Read Enable
(Active LOW) Input
𝑄1 − 𝑄4 Outputs
33) 74181 – 4 BIT ARITHMETIC LOGIC UNIT:
Symbol Description
𝐴̅0 − 𝐴̅3 Operand (Active LOW) Inputs
𝐵
̅0 − 𝐵
̅3 Operand (Active LOW) Inputs
𝑆0 − 𝑆3 Function – select inputs
M Mode Control Input
𝐶𝑛 Carry Input
𝐹
̅0 − 𝐹
̅3 Function (Active LOW) Outputs
A=B Comparator Output
𝐺̅ Carry Generator (Active LOW) Output
𝑃
̅ Carry Propagate (Active LOW) Output
𝐶𝑛+1 Carry Output
 L = LOW Voltage Level
 H = HIGH Voltage Level
 *Each bit is shifted to the next more significant position
 **Arithmetic operations expressed in 2s complement notation
34) 74190 – PRESETTABLE BCD/DECADE UP/DOWN COUNTERS:
Mode select table
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care
35) 74194 – 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER COUNTERS:
Symbol Description
𝐶𝐸
̅̅̅̅ Count Enable (Active LOW) Input
CP Clock Pulse (Active HIGH going edge) Input
𝑈
̅/D Up/Down Count Control Input
𝑃𝐿
̅̅̅̅ Parallel Load Control (Active LOW) Input
Pn Parallel Data Inputs
Qn Flip-Flop Outputs
𝑅𝐶
̅̅̅̅ Ripple Clock Output
TC Terminal Count Output
 H = HIGH voltage level;
 L = LOW voltage level;
 X = don’t care
 I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition
 h = HIGH voltage level one set-up time prior to the LOW to HIGH clock transition
 pn (qn) = Lower case letters indicate the state of the referenced input (or output) one set-up time
prior to the LOW to HIGH clock transition.
Symbol Description
𝑆0, 𝑆1 Mode Control Inputs
𝑃0 − 𝑃3 Parallel Data Inputs
𝐷𝑆𝑅 Serial (Shift Right) Data Input
𝐷𝑆𝐿 Serial (Shift Left) Data Input
𝐶𝑃 Clock (Active HIGH Going Edge) Input
𝑀𝑅
̅̅̅̅̅ Master Reset (Active LOW) Input
𝑄0 − 𝑄3 Parallel Outputs
36) 74280 – 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS:
Function Table:
37) 74283 – 4-BIT BINARY FULL ADDER WITH FAST CARRY:
Example:
Function Truth Table:
C1-C3 are generated internally
C0 is an external input
C4 is an output generated internally
Symbol Description
𝐴1 − 𝐴4 Operand A Inputs
𝐵1 − 𝐵4 Operand B Inputs
𝐶0 Carry Input
∑1 − ∑4 Sum Outputs
𝐶4 Carry Output
38) LT-542 SEVEN SEGMENT DISPLAY (COMMON ANODE):
39) LT-540 SEVEN SEGMENT DISPLAY (COMMON CATHODE):
dp
d
g
a
f b
e c
a
VCC
g f b
c
VCC
e d dp
LT542

0_Digital IC Pin Details and Functional Tables.pdf

  • 1.
    Digital IC PinDetails and Functional Tables 1) 7400 QUAD 2 INPUT NAND GATE: 𝒀 = 𝑨𝑩 ̅̅̅̅ H=High Logic Level L=Low Logic Level 2) 7402 QUAD 2 INPUT NOR GATE: 𝒀 = 𝑨 + 𝑩 ̅̅̅̅̅̅̅̅ H=High Logic Level L=Low Logic Level 3) 7404 HEX INVERTER/NOT GATE: 𝒀 = 𝑨 ̅ H=High Logic Level L=Low Logic Level Inputs Output A B Y L L H L H H H L H H H L Inputs Output A B Y L L H L H L H L L H H L Input Output A Y L H H L
  • 2.
    4) 7408 QUAD2 INPUT AND GATE: 𝒀 = 𝑨𝑩 H=High Logic Level L=Low Logic Level 5) 7410 TRIPLE 3 INPUT NAND GATE: 𝒀 = 𝑨𝑩𝑪 ̅̅̅̅̅̅ H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level 6) 7411 TRIPLE 3 INPUT AND GATE: 𝒀 = 𝑨𝑩𝑪 H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level Inputs Output A B Y L L L L H L H L L H H H Inputs Output A B C Y X X L H X L X H L X X H H H H L Inputs Output A B C Y X X L L X L X L L X X L H H H H
  • 3.
    7) 7420 DUAL4 INPUT NAND GATE: 𝒀 = 𝑨𝑩𝑪𝑫 ̅̅̅̅̅̅̅̅̅ H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level 8) 7421 DUAL 4 INPUT AND GATE: 𝒀 = 𝑨𝑩𝑪𝑫 H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level 9) 7427 TRIPLE 3 INPUT NOR GATE: 𝒀 = 𝑨 + 𝑩 + 𝑪 ̅̅̅̅̅̅̅̅̅̅̅̅̅ H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level Inputs Output A B C D Y X X X L H X X L X H X L X X H L X X X H H H H H L Inputs Output A B C D Y X X X L L X X L X L X L X X L L X X X L H H H H H Inputs Output A B C Y X X H L X H X L H X X L L L L H
  • 4.
    10) 74LS30 -8 INPUT NAND GATE: 𝒀 = 𝑨𝑩𝑪𝑫𝑬𝑭𝑮𝑯 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ H=High Logic Level L=Low Logic Level 11) 7432 QUAD 2 INPUT OR GATE: 𝑌 = 𝐴 + 𝐵 H=High Logic Level L=Low Logic Level 12) 7446/7447 BCD TO SEVEN SEGMENT DECODER: Inputs Output A through H Y All inputs H L One or more inputs L H Inputs Output A B Y L L L L H H H L H H H H Symbol Description A, B, C, D BCD inputs RBI ̅̅̅̅̅ Ripple-Blanking Input LT Lamp-Test Input BIRBO ̅̅̅̅̅̅̅̅̅̅ Blanking Input or Ripple-Blanking Output 𝑎 ̅to 𝑔̅ Outputs
  • 6.
    13) 7448 BCDTO SEVEN SEGMENT DECODER: H=High Logic Level L=Low Logic Level X=Either Low or High Logic Level Symbol Description A, B, C, D BCD inputs RBI ̅̅̅̅̅ Ripple-Blanking Input 𝐿𝑇 ̅ ̅̅ ̅ Lamp-Test Input BIRBO ̅̅̅̅̅̅̅̅̅̅ Blanking Input or Ripple-Blanking Output 𝑎 to 𝑔 Outputs
  • 7.
    14) 7473 DUALJ-K FLIP-FLOP: Symbol Description Q True output Q ̅ Complement Output Clock Clock input J Data input1 K Data input2 RESET Asynchronous reset (Low activated) GND Ground VCC Supply Voltage
  • 8.
    H = HIGHvoltage level; h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition; q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition; X = don’t care; = HIGH-to-LOW clock transition. 15) 7474 DUAL D FLIP-FLOP: Symbol Description Q True output Q ̅ Complement Output CLK Clock input D Data input CLR Asynchronous reset (active low) PR Asynchronous set (active low) GND Ground VCC Supply Voltage Inputs Outputs Operating mode RESET Clock J K Q Q ̅ L X X X L H Asynchronous reset (Low activated) H h h 𝑞 ̅ q Toggle H l h L H Load 0 (reset) H h l H L Load 1 (set) H l l q 𝑞 ̅ Hold (no change) Inputs Outputs Operating mode PR CLR CLK D Q Q ̅ L H X X H L Asynchronous set (Low activated) H L X X L H Asynchronous reset (Low activated) L L X X H H Note1 H H h H L Load 1 (set) H H l L H Load 0 (reset) H H L X q 𝑞 ̅ Hold (no change)
  • 9.
    H = HIGHvoltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition; q = state of referenced output one set-up time prior to the LOW-to-HIGH clock transition; X = don’t care; = LOW-to-HIGH clock transition. Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to their inactive (HIGH) level. 16) 7478 DUAL J-K FLIP-FLOP WITH PRESET, COMMON CLOCK, AND COMMON CLEAR: Symbol Description Q True output Q ̅ Complement Output CLK Clock input J Data input1 K Data input2 CLR Asynchronous reset (Low activated) PR Asynchronous set (Low activated) GND Ground VCC Supply Voltage Inputs Outputs Operating mode PR CLR Clock J K Q Q ̅ L H X X X H L Asynchronous set (Low activated) H L X X X L H Asynchronous reset (Low activated) L L X X X H H Note 1 H H h h 𝑞 ̅ q Toggle H H l h L H Load 0 (reset) H H h l H L Load 1 (set) H H l l q 𝑞 ̅ Hold (no change) H H H X X q 𝑞 ̅ Hold (no change)
  • 10.
    H = HIGHvoltage level; h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition; q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition; X = don’t care; = HIGH-to-LOW clock transition. Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to their inactive (HIGH) level. 17) 7485 – 4 BIT MAGNITUDE COMPARATOR: H = HIGH voltage level; L = LOW voltage level; X = don’t care Symbol Description A0-A3, B0-B3 Parallel inputs IA=B A=B Expander inputs IA<B, IA>B A<B, A>B, Expander inputs OA>B A greater than B output OA<B B greater than A output OA=B A equal to B output
  • 11.
    18) 7486 –QUAD 2 INPUT EXCLUSIVE OR GATE: 𝑌 = 𝐴⨁𝐵 = 𝐴̅𝐵 + 𝐴𝐵 ̅ H = HIGH voltage level; L = LOW voltage level; 19) 7490 ASYNCHRONOUS DECADE COUNTER: H = HIGH voltage level; L = LOW voltage level; X=Either Low or High Logic Level Inputs Output A B Y L L L L H H H L H H H L Symbol Description 𝐶𝑃0 ̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by 2 Section 𝐶𝑃1 ̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by 5 Section MR1, MR2 Master Reset (Clear) Inputs MS1, MS2 Master Set (Preset-9) Inputs Q0 Output from divide by 2 Section Q1, Q2, Q3 Outputs from divide by 5 Section
  • 12.
    20) 7493 ASYNCHRONOUSBINARY COUNTER: H = HIGH voltage level; L = LOW voltage level; X=Either Low or High Logic Level 21) 74112 JK FLIP FLOP WITH PRESET AND CLEAR: Symbol Description 𝐶𝑃0 ̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by 2 Section 𝐶𝑃1 ̅̅̅̅̅ Clock (Active LOW going edge) Input to divide by 5 Section MR1, MR2 Master Reset (Clear) Inputs Q0 Output from divide by 2 Section Q1, Q2, Q3 Outputs from divide by 5 Section Symbol Description Q True output Q ̅ Complement Output CLK Clock input J Data input1 K Data input2 CLR Asynchronous reset (Low activated) PR Asynchronous set (Low activated) GND Ground VCC Supply Voltage
  • 13.
    H = HIGHvoltage level; h = HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition; q = state of referenced output one set-up time prior to the HIGH-to-LOW clock transition; X = don’t care; = HIGH-to-LOW clock transition. Note1: This configuration is nonstable; That is, it will not persist when either the preset andor clear inputs return to their inactive (HIGH) level. 22) 74138 -3:8 DECODER: Inputs Outputs Operating mode PR CLR Clock J K Q Q ̅ L H X X X H L Asynchronous set (Low activated) H L X X X L H Asynchronous reset (Low activated) L L X X X H H Note 1 H H h h 𝑞 ̅ q Toggle H H l h L H Load 0 (reset) H H h l H L Load 1 (set) H H l l q 𝑞 ̅ Hold (no change) H H H X X q 𝑞 ̅ Hold (no change) Symbol Description A0-A2 Address inputs 𝐸1 ̅̅̅̅, 𝐸2 ̅̅̅̅ Enable (Active low) inputs E3 Enable (Active high) input 𝑂 ̅0 − 𝑂 ̅7 Active low outputs
  • 14.
    H = HIGHvoltage level; L = LOW voltage level; X = don’t care 23) 74139 -2:4 DECODER: H = HIGH voltage level; L = LOW voltage level; X = don’t care Inputs Outputs E1 E2 E3 A0 A1 A2 𝑂 ̅0 𝑂 ̅1 𝑂 ̅2 𝑂 ̅3 𝑂 ̅4 𝑂 ̅5 𝑂 ̅6 𝑂 ̅7 H X X X X X H H H H H H H H X H X X X X H H H H H H H H X X L X X X H H H H H H H H L L H L L L L H H H H H H H L L H H L L H L H H H H H H L L H L H L H H L H H H H H L L H H H L H H H L H H H H L L H L L H H H H H L H H H L L H H L H H H H H H L H H L L H L H H H H H H H H L H L L H H H H H H H H H H H L Symbol Description A0-A2 Address inputs E Enable (Active low) inputs 𝑂 ̅0 − 𝑂 ̅3 Active low outputs Inputs Outputs E A0 A1 𝑂 ̅0 𝑂 ̅1 𝑂 ̅2 𝑂 ̅3 H X X H H H H L L L L H H H L H L H L H H L L H H H L H L H H H H H L
  • 15.
    24) 74147 -10LINE TO 4 LINE PRIORITY ENCODER: H = HIGH voltage level; L = LOW voltage level; X = don’t care
  • 16.
    25) 74148 -8LINE TO 3 LINE PRIORITY ENCODER: H = HIGH voltage level; L = LOW voltage level; X = don’t care Note: 74148 provides cascading circuitry (Enable input EI and enable output EO) octal expansion without the need for external circuitry. GS is the glitch free output.
  • 17.
    26) 74151 -8:1MULTIPLEXER: H = HIGH voltage level; L = LOW voltage level; X = don’t care Symbol Description S0-S2 Select inputs E Enable (Active low) input I0-I7 Multiplexer inputs Z Multiplexer output 𝑍̅ Complementary multiplexer output
  • 18.
    27) 74153 -4:1MULTIPLEXER: H = HIGH voltage level; L = LOW voltage level; X = don’t care Symbol Description S0-S1 Select inputs 𝐸 ̅ Enable (Active low) input I0-I3 Multiplexer inputs Z Multiplexer output
  • 19.
    28) 74154 –4:16 DECODER / DEMULTIPLXER: H = HIGH voltage level; L = LOW voltage level; X = don’t care Symbol Description A-D Address inputs 𝐺1 ̅̅̅̅-𝐺2 ̅̅̅̅ Strobe (Active low) inputs 0-15 Active low outputs Inputs Outputs 𝐺1 ̅̅̅ 𝐺2 ̅̅̅ D C B A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 L L L L L L L H H H H H H H H H H H H H H H L L L L L H H L H H H H H H H H H H H H H H L L L L H L H H L H H H H H H H H H H H H H L L L L H H H H H L H H H H H H H H H H H H L L L H L L H H H H L H H H H H H H H H H H L L L H L H H H H H H L H H H H H H H H H H L L L H H L H H H H H H L H H H H H H H H H L L L H H H H H H H H H H L H H H H H H H H L L H L L L H H H H H H H H L H H H H H H H L L H L L H H H H H H H H H H L H H H H H H L L H L H L H H H H H H H H H H L H H H H H L L H L H H H H H H H H H H H H H L H H H H L L H H L L H H H H H H H H H H H H L H H H L L H H L H H H H H H H H H H H H H H L H H L L H H H L H H H H H H H H H H H H H H L H L L H H H H H H H H H H H H H H H H H H H L L H X X X X H H H H H H H H H H H H H H H H H L X X X X H H H H H H H H H H H H H H H H H H X X X X H H H H H H H H H H H H H H H H
  • 20.
    29) 74155 –2:4 DECODER / DEMULTIPLXER: H = HIGH voltage level; L = LOW voltage level; X = don’t care 30) 74160 – BCD DECADE COUNTERS: Symbol Description A0-A1 Address inputs 𝐸 ̅ Enable (Active low) inputs 𝑂 ̅0-𝑂 ̅3 Active low outputs Symbol Description 𝑃𝐸 ̅̅̅̅ Parallel Enable (Active low) inputs 𝑃0 − 𝑃3 Parallel inputs CEP Count Enable parallel input CET Count Enable Trickle input CP Clock (Active high going edge) input MR Master reset (Active low) input 𝑄0 − 𝑄3 Parallel outputs TC Terminal count output
  • 21.
    H = HIGHvoltage level; L = LOW voltage level; X = don’t care 31) 74168 – BCD DECADE BI-DIRECTIONAL COUNTERS: H = HIGH voltage level; L = LOW voltage level; X = don’t care Symbol Description 𝑃𝐸 ̅̅̅̅ Parallel Enable (Active low) inputs 𝑃0 − 𝑃3 Parallel Data inputs CEP Count Enable parallel input (Active low) 𝐶𝐸𝑇 ̅̅̅̅̅̅ Count Enable Trickle input (Active low) CP Clock (Active positive going edge) input 𝑈/𝐷 ̅ Up-Down Count Control Input 𝑄0 − 𝑄3 Parallel outputs 𝑇𝐶 ̅̅̅̅ Terminal count output
  • 22.
    32) 74170 –4 X 4 REGISTER FILE: Write Function Read Function  H = HIGH voltage level; L = LOW voltage level; X = don’t care;  (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.  Q0 = the level of Q before the indicated input conditions were established.  W0B1 = The first bit of word 0, etc. Symbol Description 𝐷1 − 𝐷4 Data inputs 𝑊𝐴, 𝑊𝐵 Write Address Inputs 𝐸 ̅𝑊 Write Enable (Active LOW) Input 𝑅𝐴, 𝑅𝐵 Read Address Inputs 𝐸 ̅𝑅 Read Enable (Active LOW) Input 𝑄1 − 𝑄4 Outputs
  • 23.
    33) 74181 –4 BIT ARITHMETIC LOGIC UNIT: Symbol Description 𝐴̅0 − 𝐴̅3 Operand (Active LOW) Inputs 𝐵 ̅0 − 𝐵 ̅3 Operand (Active LOW) Inputs 𝑆0 − 𝑆3 Function – select inputs M Mode Control Input 𝐶𝑛 Carry Input 𝐹 ̅0 − 𝐹 ̅3 Function (Active LOW) Outputs A=B Comparator Output 𝐺̅ Carry Generator (Active LOW) Output 𝑃 ̅ Carry Propagate (Active LOW) Output 𝐶𝑛+1 Carry Output
  • 24.
     L =LOW Voltage Level  H = HIGH Voltage Level  *Each bit is shifted to the next more significant position  **Arithmetic operations expressed in 2s complement notation 34) 74190 – PRESETTABLE BCD/DECADE UP/DOWN COUNTERS:
  • 25.
    Mode select table H= HIGH voltage level; L = LOW voltage level; X = don’t care 35) 74194 – 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER COUNTERS: Symbol Description 𝐶𝐸 ̅̅̅̅ Count Enable (Active LOW) Input CP Clock Pulse (Active HIGH going edge) Input 𝑈 ̅/D Up/Down Count Control Input 𝑃𝐿 ̅̅̅̅ Parallel Load Control (Active LOW) Input Pn Parallel Data Inputs Qn Flip-Flop Outputs 𝑅𝐶 ̅̅̅̅ Ripple Clock Output TC Terminal Count Output
  • 26.
     H =HIGH voltage level;  L = LOW voltage level;  X = don’t care  I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition  h = HIGH voltage level one set-up time prior to the LOW to HIGH clock transition  pn (qn) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition. Symbol Description 𝑆0, 𝑆1 Mode Control Inputs 𝑃0 − 𝑃3 Parallel Data Inputs 𝐷𝑆𝑅 Serial (Shift Right) Data Input 𝐷𝑆𝐿 Serial (Shift Left) Data Input 𝐶𝑃 Clock (Active HIGH Going Edge) Input 𝑀𝑅 ̅̅̅̅̅ Master Reset (Active LOW) Input 𝑄0 − 𝑄3 Parallel Outputs
  • 27.
    36) 74280 –9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS: Function Table: 37) 74283 – 4-BIT BINARY FULL ADDER WITH FAST CARRY:
  • 28.
    Example: Function Truth Table: C1-C3are generated internally C0 is an external input C4 is an output generated internally Symbol Description 𝐴1 − 𝐴4 Operand A Inputs 𝐵1 − 𝐵4 Operand B Inputs 𝐶0 Carry Input ∑1 − ∑4 Sum Outputs 𝐶4 Carry Output
  • 29.
    38) LT-542 SEVENSEGMENT DISPLAY (COMMON ANODE): 39) LT-540 SEVEN SEGMENT DISPLAY (COMMON CATHODE): dp d g a f b e c a VCC g f b c VCC e d dp LT542