SlideShare a Scribd company logo
REAKTOR ALIR TANGKI
BERPENGADUK (RATB)
Pertemuan 7, 8, dan 9
Sifat-sifat
Sif t if t mendasar pada RATB
d
d
1.
1 Pola alir adalah bercampur sempurna (back

mixed flow atau BMF)
2. Meskipun aliran melalui RATB adalah kontinyu,
tapi kec l
t i k volumetris aliran pada pemasukan d
t i li
d
k dan
pengeluaran dapat berbeda, disebabkan oleh
terjadinya p
j
y perubahan densiti
3. BMF meliputi pengadukan yang sempurna
dalam volume reaktor, yg berimplikasi pada
semua sifat-sifat sistem menjadi seragam
sifat sifat
diseluruh reaktor
4. Pengadukan yg sempurna juga mengakibatkan
semua k
komponen dlm reaktor mempunyai
dl
kt
i
kesempatan yg sama utk meninggalkan reaktor
Sifat sifat
Sifat-sifat mendasar pada RATB
(Lanjut)
5.
6.
6

7.
7

8.

Sebagai akibat poin 4 terdapat di ib i
S b
i kib
i 4, d
distribusi
kontinyu dari waktu tinggal
Sebagai akibat dari poin 4 aliran keluaran
4,
mempunyai sifat-sifat sama dengan fluida
dalam reaktor
Sebagai akibat dari 6 terdapat satu langkah
6,
perubahan yg menjelaskan perubahan sifatsifat dari input dan output
Meskipun terdapat perubahan distribusi waktu
tinggal, pencampuran sempurna fluida pada
tingkat mikroskopik dan makroskofik
membimbing utk merata-rata sifat-sifat seluruh
elemen fluida
Keuntungan dan Kerugian
Menggunakan RATB
Keuntungan
Relatif murah untuk dibangun
Mudah
M d h mengontrol pada ti ti k t k
t l d tiap tingkat, karena ti
tiap
operasi pada keadaan tetap, permukaan perpindahan
panas mudah diadakan
Secara umum mudah beradaptasi dg kontrol
otomatis, memberikan respon cepat pada perubahan
kondisi operasi ( misal: kec umpan dan konsentrasi)
p
p
)
Perawatan dan pembersihan relatif mudah
Dengan pengadukan efisien dan viskositas tidak
terlalu tinggi dalam praktek kelakuan model dapat
tinggi,
didekati lebih tepat untuk memprediksi unjuk kerja.
Kerugian
Secara konsep dasar sangat merugikan d i
S
k
d
t
ik dari
kenyataan karena aliran keluar sama dengan isi
vesel
Hal ini menyebabkan semua reaksi berlangsung
pada konsentrasi yang lebih rendah (katakan
reaktan A CA) antara keluar dan masuk
A,
Secara kinetika normal rA turun bila CA
berkurang, ini berarti diperlukan volume reaktor
lebih besar untuk memperoleh konversi yg
diinginkan
(Untuk kinetika tidak normal bisa terjadi
kebalikannya, tapi ini tidak biasa, apakah
contohnya dari satu situasi demikian?)
Persamaan perancangan untuk
RATB
Pertimbangan secara umum:
Neraca masa
Neraca Energi

Perancangan proses RATB secara khas
dibangun untuk menentukan volume vesel
yang diperlukan guna mencapai
kecepatan produksi yang diinginkan
Parameter yang dicari meliputi:
Jumlah stage yg digunakan untuk operasi
optimal
Fraksi konversi dan suhu dalam tiap stage
Dimulai dengan mempertimbangkan neraca
massa dan neraca energi untuk tiap stage
Neraca massa, volume reaktor,
dan kecepatan produksi
Untuk operasi kontinyu dari
RATB vesel tertutup, tinjau
reaksi:
A+…

νC C + …

dengan kontrol volume
didefinisikan sebagai
volume fl id d l
l
fluida dalam reaktor
k
(1)

Secara operasional:
(2)

Dalam term kecepatan volumetrik:
(3)

Dalam t
D l
term k
konversi A d
i A, dengan h
hanya A yg tid k
tidak
bereaksi dalam umpan (fA0 = 0):
(4)
Untuk opersasi tunak (steady state)
dnA/dt = 0
(5)
(6)
Residence time:

(7)

Space time:
p

(8)

Kecepatan produksi:
(9)
Neraca Energi
Untuk reaktor alir kontinyu seperti RATB, neraca
energi adalah neraca entalpi ( ), bila kita
g
p (H),
mengabaikan perbedaan energi kinetik dan
energi potensial dalam aliran, dan kerja shaft
antara pemasukan dan pengeluaran
Akan tetapi, dalam perbandingannya dengan
BR, kesetimbangan harus meliputi entalpi
masuk dan keluar oleh aliran
Dalam hal berbagai transfer panas dari atau
menuju kontrol volume, dan p
j
pembentukan atau
pelepasan entalpi oleh reaksi dalam kontrol
volume.
Selanjutnya persamaan energi (entalpi)
dinyatakan sbg:
(10)

Untuk operasi tunak m = m0
(11)

Substitusi FA0 fA untuk (-rA)V
(12)
Hubungan fA dengan suhu reaksi (T)
(13)
Sistem densiti konstan
Untuk sistem densiti konstan, beberapa hasil
penyederhanaan antara l i
d h
t
lain:
,
p
p
p
,
Pertama, tanpa memperhatikan tipe reaktor, fraksi
konversi limiting reactant, fA, dapat dinyatakan
dalam konsentrasi molar
(14)

Kedua, untuk aliran reaktor seperti RATB, mean
residence time sama dengan space time, karena
q = q0
(15)
Ketiga,
Ketiga untuk RATB term akumulasi dalam
RATB,
persamaan neraca massa menjadi:
(16)

Terakhir, untuk RATB, persamaan neraca
p
massa keadaan tunak dapat disederhanakan
menjadi:
(17)
Operasi keadaan tunak pada temperatur T
Untuk operasi keadaan tunak, term akumulasi
p
,
dalam pers neraca massa dihilangkan

Atau, untuk densiti konstan

Bila T tertentu, V dapat dihitung dari pers neraca
massa tanpa melibatkan neraca energi
p
g
Contoh 1
1.
For the liquid-phase reaction A + B
products
at 20°C suppose 40% conversion of A is
desired in steady-state operation. The reaction
steady state
is pseudo-first-order with respect to A, with kA =
0.0257 h-1 at 20°C. The total volumetric flow
rate is 1 8 m3 h-1, and the inlet molar flow rates
1.8
of A and B are FAO and FBO mol h-1,
respectively. Determine the vessel volume
required, if,
required if for safety it can only be filled to 75%
safety,
capacity.
Contoh 2.
A liquid-phase reaction A
liquid phase
B is to be
conducted in a CSTR at steady-state at 163°C.
The temperature of the feed is 20°C and 90%
p
conversion of A is required. Determine the
volume of a CSTR to produce 130 kg B h-1, and
calculate the heat load (Q) for the process.
Does this represent addition or removal of heat
from the system?
Data: MA = MB = 200 g mol-1; cp = 2.0 J g-1K-1;
3
1
ρ = 0 95 g cm-3; ∆HRA = -87 kJ mol-1; kA = 0.80
0.95
87
0 80
h-1 at 163°C
Contoh 3

Consider the startup of a CSTR for the liquidphase reaction A
products. The reactor is
initially filled with feed when steady flow of feed
(q) is begun. Determine the time (t) required to
achieve 99% of the steady-state value of fA.
y
f
Data: V = 8000 L; q = 2 L s-1; CAo = 1.5 mol L-1;
kA = 1.5 x l0-4 s-1.
REAKTOR ALIR TANGKI
BERPENGADUK (RATB)
Pertemuan 8
TINJAU ULANG NERACA ENERGI SISTEM ALIR
Q
Fi|in
Hi|in
Ei|in

system

Fi|out
Hi|out
Ei|out

Ws

Neraca Energi
Rin − Rout + Rgen = Racc
•

•

n

n

Q − W + ∑ Fi Ei
i =1

− ∑ Fi Ei
in

i =1

out

⎛ dE ⎞
=⎜
⎝ dt ⎠ System

Ei = Energy of component i

(8 1)
(8-1)
•

•

n

n

W = W s − ∑ Fi PVi
i =1

+ ∑ Fi PVi
in

i =1

(8-2)
out

Work do to flow velocity
For chemical reactor Ki, Pi, and “other” energy
gy
are neglected so that:
(8-3)
Ei = U i
and
(8-4)
H i = U i + PVi
Combined the eq. 8-4, 8-3, 8-2, and 8-1 be result,
•

•

n

n

Q − W s + ∑ Fi H i
i =1

− ∑ Fi H i
in

i =1

out

⎛ dE ⎞
=⎜
⎟
⎝ dt ⎠ System

(8-5)
General Energy Balance:

For steady state operation:

We need to put the above equation into a form that
we can easily use to relate X and T in order to size
reactors. To achieve thi goal, we write th molar
t
T
hi
this
l
it the
l
flow rates in terms of conversion and the enthalpies
as a function of temperature We now will "dissect"
temperature.
dissect
both Fi and Hi.
Flow Rates, Fi
For the generalized reaction:

In
I general,
l
Enthalpies,
Enthalpies Hi
Assuming no phase change:

Mean heat capacities:
Self Test
Calculate

,

, and

for the reaction,
reaction
There are inerts I present in the system.
Additional Information:

Solution
Energy Balance with "dissected"
dissected
enthalpies:

For constant or mean heat capacities:

Adiabatic Energy Balance:
Adiabatic Energy Balance for variable
heat capacities:

CSTR Algorithm (Section 8.3 Fogler)
Self Test
For and adiabatic reaction with
and CP=0,
sketch conversion as a function of temperature.
Solution
S l ti
A.
A For an exothermic reaction, HRX is negative (-)
reaction
(-),
XEB increases with increasing T.
[e.g.,
[

HRX= -100 kJ/mole A]
100 kJ/ l
B. For
B F an endothermic reaction, HRX i positive ( )
d th
i
ti
is
iti (+),
XEB increases with decreasing T.
[e.g., HRX= +100 kJ/mole A]
[e g
For a first order reaction,
,

Both the mole and energy balances are satisfied
when XMB=XEB. The steady state temperature and
conversion are TSS and XSS, respectively, for an
entering temperature TO.
Evaluating the Heat Exchange Term, Q

Energy transferred between the reactor and the
gy
coolant:
Assuming the temperature inside the CSTR, T, is
spatially uniform:
Manipulating the Energy Exchange Term
Combining:
At high coolant flowrates the exponential term will
be small, so we can expand the exponential term as
a Taylor Se es, where the terms o seco d o de o
ay o Series,
e e e e s of second order or
greater are neglected, then:
Since the coolant flowrate is high, Ta1 ≅ Ta2 ≅ Ta:
g ,

Reversible Reactions (Chp8 Fogler, Appendix C)
For Id l
F Ideal gases, KC and KP are related b
d
l t d by
KP = KC(RT)δ
δ = Σ νi
For the special case of

:
Algorithm for Adiabatic Reactions:

Levenspiel Plot for an
exothermal, adiabatic reaction.
PFR
the volume.)

(The h d d
(Th shaded area i th plot i
in the l t is

For an exit conversion of
40%

For an exit conersion of
70%
CSTR

Shaded area is the reactor volume.

For an exit conversion of
40%

For an exit conersion of
70%
CSTR+PFR

For an intermediate conversion of 40% and exit
conversion of 70%
Example: Exothermic, Reversible Reaction
p
,
Why is there a maximum in the rate of reaction with
respect to conversion (and hence with respect to
hence,
temperature and reactor volume) for an adiabatic
reactor?
Rate Law:
Reactor Inlet Temperature and Interstage Cooling
Optimum Inlet Temperature:
p
p
Fixed Volume Exothermic Reactor

Curve A: Reaction rate slow conversion dictated by
slow,
rate of reaction and reactor volume. As temperature
increases rate increases and therefore conversion
increases.
Curve B: Reaction rate very rapid. Virtual equilibrium
reached in reaction conversion dictated by
equilibrium conversion.
Interstage Cooling:
g
g
Self Test
An inert I is injected at the points shown below:

Sketch the conversion-temperature trajectory for an
endothermic reaction.
Solution
For an endothermic reaction, the equilibrium
conversion increases with increasing T.
g
For
and Keq=.1 and T2
From the energy balance we know the
temperature decreases with increasing conversion.
Energy Balance around junction:

Solving T2
Example CD8-2
Second Order Reaction Carried Out Adiabatically
in a CSTR
The acid-catalyzed irreversible liquid-phase reaction
is carried out adiabatically in a CSTR.
The reaction is second order in A. The feed, which
is
i equimolar i a solvent ( hi h contains th
i l in
l
t (which
t i the
catalyst) and A, enters the reactor at a total
volumetric flowrate of 10 dm3/min with the
concentration of A being 4M. The entering
temperature is 300 K.
p
What CSTR reactor volume is necessary to
achieve 80% conversion?
b) What conversion can be achieved in a 1000 dm3
CSTR? What is the new exit temperature?
c) How would your answers to part (b) change, if
the entering temperature of the feed were 280
K?
a)
Additional Information:
Example CD8-2 Solution, Part A
Second Order Reaction Carried Out Adiabatically
in a CSTR
(a) We will solve part (a) by using the nonisothermal
reactor design algorithm discussed in Chapter 8.
1. CSTR Design Equation:
2.
2 Rate Law:
3. Stoichiometry:
4. Combine:

liquid,
Given conversion (X) you must first determine the
(X),
reaction temperature (T), and then you can
calculate the reactor volume (V).
( )
5. Determine T:

For this problem:
p
which leaves us with:
After some rearranging we are left with:

Substituting for known values and solving for T:

6. Solve for the Rate Constant (k) at T = 380 K:
7. Calculate the CSTR Reactor Volume (V):
Recall that:
Substituting for k
S b tit ti f known values and solving f V
l
d l i for V:
Example CD8-2 Solution, Part B
Second Order Reaction Carried Out Adiabatically
in a CSTR
(b) For part (b) we will again use the
nonisothermal reactor design algorithm
discussed in Chapter 8. The first four steps of
the algorithm we used in part (a) apply to our
solution to part (b). It is at step number 5,
where the algorithm changes.
NOTE: We will find it more convenient to work with
this equation in terms of space time rather than
time,
volume:
Space time is defined as:
p
After some rearranging:
Substituting:
g

Given reactor volume (V), you must solve th
Gi
t
l
(V)
t l the
energy balance and the mole balance
simultaneously for conversion (X) since it is a
(X),
function of temperature (T).
5.
5 Solve the Energy Balance for XEB as a function
of T:
From the adiabatic energy balance (as applied to
CSTRs):

6. Solve the Mole Balance for XMB as a function of
T:
We'll rearrange our combined equation from
step 4 to give us:
Rearranging g
g g gives:

Solving for X gives us:

After some final rearranging we get:
Let's simplify a little more, by introducing the
Damköhler Number, Da:
D köhl N b D

We then have:

7. Plot XEB and XMB:
You want to plot XEB and XMB on the same graph (as
functions of T) to see where they intersect. This will tell
you where your steady-state point is. To accomplish
this, we will use Polymath (but you could use a
spreadsheet).
X = 0.87 and T = 387 K
Our corresponding Polymath program looks like
this:
thi

NOTE: Our use of
d(T)/d(t) 2
d(T)/d(t)=2 in the above
program is merely a way
for us to generate a range
of temperatures as we
plot conversion as a
function of temperature.
Example CD8-2 Solution, Part C
Second Order Reaction Carried Out Adiabatically
in a CSTR
(c) For part (c) we will simply modify the Polymath
p g
program we used in p ( ), setting our initial
part (b),
g
temperature to 280 K. All other equations remain
unchanged.
7. Plot XEB and XMB:
We see that our conversion would be
about 0 75 at a temperature of 355 K
0.75,
K.
Multiple Steady States
Pertemuan ke 9
Multiple Steady States

Factor FA0 CP0 and then divide by FA0
For a CSTR: FA0X = -rAV
r

where
Can there be multiple steady states (MSS) for a
irreversible first order endothermic reaction?
Solution
S l i
For an endothermic reaction HRX is positive,
(e.g., HRX=+100 kJ/mole)
There are no multiple steady states for an
endothermic, i
d th
i irreversible fi t order reactor. Th
ibl first d
t The
steady state reactor temperature is TS. Will a
reversible endothermic first order reaction have
MSS?
Now we need to find X. We do this by combining
the mole balance, rate law, Arrhenius Equation,
and stoichiometry.
For the first-order, irreversible reaction A
have:
where
At steady state:
y

B, we
Unsteady State CSTR
y
Balance on a system volume that is well-mixed:
RATB Bertingkat (Multistage)
g
(
g )
RATB bertingkat terdiri atas 2 atau lebih reaktor tangki
berpengaduk y g disusun seri
p g
yang
Keuntungan RATB bertingkat dua atau lebih, untuk
mencapai hasil yg sama? ukuran/ volume reaktor lebih
kecil dibandingkan RATB tunggal
g
gg
Kerugian utama RATB bertingkat beroperasi pada
konsentrasi yang lebih rendah diantara pemasukan dan
pengeluaran
Untuk RATB tunggal, berarti bahwa beroperasi pada
konsentrasi dalam sistem serendah mungkin, dan untuk
kinetika normal, diperlukan volume reaktor semakin besar
Bila 2 tangki (beroperasi pd T sama) disusun seri, yang
kedua beroperasi pada konsentrasi sama spt tangki
tunggal diatas, tapi yg pertama beroperasi pada
konsentrasi lebih tinggi jadi volume total kedua tangki
tinggi,
lebih kecil daripada tangki tunggal
Rangkaian RATB bertingkat N

Pers neraca massa pada RATB ke i
−

(14.4-1)
Grafik ilustrasi operasi 3 RATB seri
Penyelesaian pers 14 4 1 untuk mencari V (diberi
14.4-1
fA) atau mencari fA (diberi V) dapat dilakukan
secara grafik atau secara analitis. Cara grafik
dapat digunakan untuk mencari fA, atau bila
bentuk analitis (-rA) tidak diketahui

Penyelesaian grafis untuk N = 2
P
l
i
fi
t k
Untuk stage 1:
Untuk stage 2:
g
Example 14-9
p

A three-stage CSTR is used for the reaction A
products. The reaction occurs in aqueous solution,
and is second order with respect to A with kA =
second-order
A,
0.040 L mol-1 min-1. The inlet concentration of A
and the inlet volumetric flow rate are 1.5 mol L-1
and 2.5 L min-1, respectively. Determine the
fractional conversion (fA) obtained at the outlet, if V1
= 10 L V2 = 20 L and V3 = 50 L (a) analytically
L,
L,
L,
analytically,
and (b) graphically.
Solusi
Untuk stage 1 dari persamaan kecepatan

Karena densitas konstan
Lakukan
L k k pengaturan sehingga di
t
hi
diperoleh pers k d t
l h
kwadrat

Atau dengan memasukkan bilangan numerik
g
g
Diperoleh fA1 = 0.167
Similarly,
Similarly for stages 2 and 3 we obtain fA2
3,
= 0.362, and fA3 = 0.577, which is the
outlet fractional conversion from the threethree
stage CSTR.
Penyelesaian cara grafis sbb
(b) The graphical solution is shown in Figure
14.12. The curve for (- rA) from the rate law is
first drawn. Then the operating line AB is
p
g
constructed with slope FA0/V1 = cA0q0/V1 =
0.375 mol L-1min-1 to intersect the rate curve at
fA1 = 0.167; similarly, the lines CD and EF, with
corresponding slopes 0.1875 and 0.075,
respectively,
respectively are constructed to intersect 0 36
0.36
and fA3 = 0.58, respectively. These are the
same the rate curve at the values fA2 = values
as obtained in part (a).
Optimal Operation
The following example illustrates a simple case of
optimal operation of a multistage CSTR to minimize
the total volume. We continue to assume a constantdensity system with isothermal operation
Exp. 14-10
Consider the liquid-phase reaction A + . . .
products taking place in a two-stage CSTR. If the
reaction is first-order, and both stages are at the
same T, how are the sizes of the two stages
related t minimize th t t l volume V f a given
l t d to i i i the total l
for
i
feed rate (FAo) and outlet conversion (fA2)?
Solusi
From the material balance, equation 14.4-1, the
total volume is
A

From the rate law,
B
C

Substituting (B) and (C) in (A) we obtain
(A),
D
=
From (E) and (D), we obtain
F
d (D)
bt i

from which

fA2 = fA1(2 – fA1)

If we substitute this result into the material
balance for stage 2 (contained in the last term in
(D)), we have

E
That is, for a first order reaction, the two stages
first-order
must be of equal size to minimize V.
The proof can be extended to an N-stage CSTR.
p
g
For other orders of reaction, this result is
approximately correct. The conclusion is that
tanks in series should all be the same size,
which accords with ease of fabrication.
Although, for other orders of reaction, equalAlth
h f
th
d
f
ti
l
sized vessels do not correspond to the minimum
volume,
volume the difference in total volume is
sufficiently small that there is usually no
economic benefit to constructing different-sized
g
vessels once fabrication costs are considered.
Example 11
A reactor system is to be designed for 85%
conversion of A (fA) in a second-order liquid
phase reaction, A
products; kA = 0.075 L mol-1
min-1, q0 = 25 L min-1, and CA0 = 0 040 mol L-1.
i 1
i 1
d
0.040
l 1
The design options are:
(a) two equal sized stirred tanks in series;
equal-sized
(b) two stirred tanks in series to provide a
minimum total volume.
The cost of a vessel is $290, but a 10% discount
applies if both vessels are the same size and
geometry. Which option l d t th l
t Whi h ti leads to the lower capital
it l
cost?
Solusi
Case (a). From the material-balance equation 14.41 applied to each of the two vessels 1 and 2,

Equating V1 and V2 from (A) and (B), and
simplifying, we obtain

This is a cubic equation for fA1 in terms of fA2:
This equation has one positive real root, fA1 =0.69,
which can be obtained by trial
trial.
This corresponds to V1 = V2 = 5.95 x 104 L (from
equation (A) or (B)) and a total capital cost of
0.9(290)(5.95
0 9(290)(5 95 X 104)2/1000 = $31 000 ( ith th 10%
$31,000 (with the
discount taken into account)

Case (b). The total volume is obtained from
equations (A) and (B):
For minimum V,

This also results in a cubic equation for fA1, which,
with the value fA2 = 0.85 inserted, becomes

Solution by trial yields one positive real root: fA1 =
0.665. This leads to V1 = 4.95 X l04 L, V2= 6.84
X l04 L, and a capital cost of $34,200.
Conclusion:
The lower capital cost is obtained for case
( ) (two equal-sized vessels), in spite of
(a) (
q
),
p
the fact that the total volume is slightly
g (11.9 X l04 L versus 11.8 X 104 L).
)
larger (

More Related Content

What's hot

Prinsip kerja rotary drum vacuum filter
Prinsip kerja rotary drum vacuum filterPrinsip kerja rotary drum vacuum filter
Prinsip kerja rotary drum vacuum filter
Ahmadjuni1
 
Judul prarancangan pabrik kimia teknik kimia
Judul prarancangan pabrik kimia  teknik kimia Judul prarancangan pabrik kimia  teknik kimia
Judul prarancangan pabrik kimia teknik kimia
wahyuddin S.T
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar Kalor
Ali Hasimi Pane
 
160124864 bab-i-konsep-dasar-pengendalian-proses
160124864 bab-i-konsep-dasar-pengendalian-proses160124864 bab-i-konsep-dasar-pengendalian-proses
160124864 bab-i-konsep-dasar-pengendalian-proses
Dicky Syahputra
 
Kesetimbangan uap cair
Kesetimbangan uap cairKesetimbangan uap cair
Kesetimbangan uap cairRyan Tito
 
Matematika teknik kimia_2
Matematika teknik kimia_2Matematika teknik kimia_2
Matematika teknik kimia_2
Gayuh Permadi
 
ITP UNS SEMESTER 2 Transportasi fluida
ITP UNS SEMESTER 2 Transportasi fluidaITP UNS SEMESTER 2 Transportasi fluida
ITP UNS SEMESTER 2 Transportasi fluidaFransiska Puteri
 
Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Jaýa Mañdala
 
Laporan Sedimentasi
Laporan SedimentasiLaporan Sedimentasi
Laporan Sedimentasi
GGM Spektafest
 
Laporan praktikum aliran fluida praktikum instruksional i (1)
Laporan praktikum aliran fluida praktikum instruksional i (1)Laporan praktikum aliran fluida praktikum instruksional i (1)
Laporan praktikum aliran fluida praktikum instruksional i (1)
RafidimSeptian
 
Decanter - Peralatan Industri Proses
Decanter - Peralatan Industri ProsesDecanter - Peralatan Industri Proses
Decanter - Peralatan Industri Proses
AhmadRifaldhi
 
Pertemuan 5 perhitungan alat filtrasi
Pertemuan 5 perhitungan alat filtrasiPertemuan 5 perhitungan alat filtrasi
Pertemuan 5 perhitungan alat filtrasi
deniswan
 
Lab Teknik Kimia ITENAS - Aliran Fluida 1
Lab Teknik Kimia ITENAS - Aliran Fluida 1Lab Teknik Kimia ITENAS - Aliran Fluida 1
Lab Teknik Kimia ITENAS - Aliran Fluida 1
GGM Spektafest
 
Termodinamika 1 lanjutan
Termodinamika 1 lanjutanTermodinamika 1 lanjutan
Termodinamika 1 lanjutanAPRIL
 
Alat Kristalisasi
Alat KristalisasiAlat Kristalisasi
Alat Kristalisasi
liabika
 
perancangan proses kimia
perancangan proses kimiaperancangan proses kimia
perancangan proses kimia
Ika Sylvie Sepdiani
 
Modul perpindahan panas konduksi steady state one dimensional
Modul perpindahan panas konduksi steady state one dimensionalModul perpindahan panas konduksi steady state one dimensional
Modul perpindahan panas konduksi steady state one dimensional
Ali Hasimi Pane
 

What's hot (20)

Prinsip kerja rotary drum vacuum filter
Prinsip kerja rotary drum vacuum filterPrinsip kerja rotary drum vacuum filter
Prinsip kerja rotary drum vacuum filter
 
Judul prarancangan pabrik kimia teknik kimia
Judul prarancangan pabrik kimia  teknik kimia Judul prarancangan pabrik kimia  teknik kimia
Judul prarancangan pabrik kimia teknik kimia
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar Kalor
 
160124864 bab-i-konsep-dasar-pengendalian-proses
160124864 bab-i-konsep-dasar-pengendalian-proses160124864 bab-i-konsep-dasar-pengendalian-proses
160124864 bab-i-konsep-dasar-pengendalian-proses
 
Kesetimbangan uap cair
Kesetimbangan uap cairKesetimbangan uap cair
Kesetimbangan uap cair
 
Matematika teknik kimia_2
Matematika teknik kimia_2Matematika teknik kimia_2
Matematika teknik kimia_2
 
ITP UNS SEMESTER 2 Transportasi fluida
ITP UNS SEMESTER 2 Transportasi fluidaITP UNS SEMESTER 2 Transportasi fluida
ITP UNS SEMESTER 2 Transportasi fluida
 
Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)Kelompok 3 PP(dekanter)
Kelompok 3 PP(dekanter)
 
Laporan Sedimentasi
Laporan SedimentasiLaporan Sedimentasi
Laporan Sedimentasi
 
Double Pipe Heat Excanger
Double Pipe Heat ExcangerDouble Pipe Heat Excanger
Double Pipe Heat Excanger
 
Laporan praktikum aliran fluida praktikum instruksional i (1)
Laporan praktikum aliran fluida praktikum instruksional i (1)Laporan praktikum aliran fluida praktikum instruksional i (1)
Laporan praktikum aliran fluida praktikum instruksional i (1)
 
Decanter - Peralatan Industri Proses
Decanter - Peralatan Industri ProsesDecanter - Peralatan Industri Proses
Decanter - Peralatan Industri Proses
 
Leaching
LeachingLeaching
Leaching
 
Pertemuan 5 perhitungan alat filtrasi
Pertemuan 5 perhitungan alat filtrasiPertemuan 5 perhitungan alat filtrasi
Pertemuan 5 perhitungan alat filtrasi
 
Lab Teknik Kimia ITENAS - Aliran Fluida 1
Lab Teknik Kimia ITENAS - Aliran Fluida 1Lab Teknik Kimia ITENAS - Aliran Fluida 1
Lab Teknik Kimia ITENAS - Aliran Fluida 1
 
Termodinamika 1 lanjutan
Termodinamika 1 lanjutanTermodinamika 1 lanjutan
Termodinamika 1 lanjutan
 
Alat Kristalisasi
Alat KristalisasiAlat Kristalisasi
Alat Kristalisasi
 
Fluidisasi
FluidisasiFluidisasi
Fluidisasi
 
perancangan proses kimia
perancangan proses kimiaperancangan proses kimia
perancangan proses kimia
 
Modul perpindahan panas konduksi steady state one dimensional
Modul perpindahan panas konduksi steady state one dimensionalModul perpindahan panas konduksi steady state one dimensional
Modul perpindahan panas konduksi steady state one dimensional
 

Viewers also liked

Dasar neraca massa dan energi
Dasar neraca massa dan energiDasar neraca massa dan energi
Dasar neraca massa dan energiManar Gazali
 
Fer teknik-fermentasi
Fer teknik-fermentasiFer teknik-fermentasi
Fer teknik-fermentasi
junajunedjunot
 
Non isothermal+reactor+(repaired)
Non isothermal+reactor+(repaired)Non isothermal+reactor+(repaired)
Non isothermal+reactor+(repaired)Adun Dudun
 
Final project of process control
Final project of process controlFinal project of process control
Final project of process control
Fitra Dani
 
Laporan dinamika tangki kelompok 2
Laporan dinamika tangki kelompok 2Laporan dinamika tangki kelompok 2
Laporan dinamika tangki kelompok 2Rima Puspitasari
 
Neraca massa, multiple unit process
Neraca massa, multiple unit processNeraca massa, multiple unit process
Neraca massa, multiple unit processRidha Faturachmi
 
Drying Operasi teknik kimia
Drying Operasi teknik kimiaDrying Operasi teknik kimia
Drying Operasi teknik kimia
Ratna54
 
Atk 1 pertemuan 1 dan 2
Atk 1 pertemuan 1 dan 2Atk 1 pertemuan 1 dan 2
Atk 1 pertemuan 1 dan 2
Winda Sari
 
Bab iv mtk 1
Bab iv mtk 1Bab iv mtk 1
Bab iv mtk 1
TEKNIK KIMIA
 
Tugas petrokimia
Tugas petrokimiaTugas petrokimia
Tugas petrokimia
wahyuddin S.T
 
Bab iii mtk 1
Bab iii mtk 1Bab iii mtk 1
Bab iii mtk 1
TEKNIK KIMIA
 
Bab i mtk 1
Bab i mtk 1Bab i mtk 1
Bab i mtk 1
TEKNIK KIMIA
 
Laporan Mixing and Blending
Laporan Mixing and Blending Laporan Mixing and Blending
Laporan Mixing and Blending
Nugraha Teguh
 
Rangkuman bab 1 matematika teknik
Rangkuman bab 1 matematika teknikRangkuman bab 1 matematika teknik
Rangkuman bab 1 matematika teknik
TEKNIK KIMIA
 
Neraca panas materi
Neraca panas materiNeraca panas materi
Neraca panas materi
WWTF_Production
 
Bab 7-penyelesaian-persamaan-diferensial
Bab 7-penyelesaian-persamaan-diferensialBab 7-penyelesaian-persamaan-diferensial
Bab 7-penyelesaian-persamaan-diferensial
Pujiati Puu
 
Matematika teknik kimia minggu 3
Matematika teknik kimia minggu 3Matematika teknik kimia minggu 3
Matematika teknik kimia minggu 3
Afifah Nur
 
Bismo yuswan-matematika teknik-kimia
Bismo yuswan-matematika teknik-kimiaBismo yuswan-matematika teknik-kimia
Bismo yuswan-matematika teknik-kimia
TEKNIK KIMIA
 
3 bab-ii-neraca-massa
3 bab-ii-neraca-massa3 bab-ii-neraca-massa
3 bab-ii-neraca-massaEggy Brilyan
 

Viewers also liked (20)

Ratb
RatbRatb
Ratb
 
Dasar neraca massa dan energi
Dasar neraca massa dan energiDasar neraca massa dan energi
Dasar neraca massa dan energi
 
Fer teknik-fermentasi
Fer teknik-fermentasiFer teknik-fermentasi
Fer teknik-fermentasi
 
Non isothermal+reactor+(repaired)
Non isothermal+reactor+(repaired)Non isothermal+reactor+(repaired)
Non isothermal+reactor+(repaired)
 
Final project of process control
Final project of process controlFinal project of process control
Final project of process control
 
Laporan dinamika tangki kelompok 2
Laporan dinamika tangki kelompok 2Laporan dinamika tangki kelompok 2
Laporan dinamika tangki kelompok 2
 
Neraca massa, multiple unit process
Neraca massa, multiple unit processNeraca massa, multiple unit process
Neraca massa, multiple unit process
 
Drying Operasi teknik kimia
Drying Operasi teknik kimiaDrying Operasi teknik kimia
Drying Operasi teknik kimia
 
Atk 1 pertemuan 1 dan 2
Atk 1 pertemuan 1 dan 2Atk 1 pertemuan 1 dan 2
Atk 1 pertemuan 1 dan 2
 
Bab iv mtk 1
Bab iv mtk 1Bab iv mtk 1
Bab iv mtk 1
 
Tugas petrokimia
Tugas petrokimiaTugas petrokimia
Tugas petrokimia
 
Bab iii mtk 1
Bab iii mtk 1Bab iii mtk 1
Bab iii mtk 1
 
Bab i mtk 1
Bab i mtk 1Bab i mtk 1
Bab i mtk 1
 
Laporan Mixing and Blending
Laporan Mixing and Blending Laporan Mixing and Blending
Laporan Mixing and Blending
 
Rangkuman bab 1 matematika teknik
Rangkuman bab 1 matematika teknikRangkuman bab 1 matematika teknik
Rangkuman bab 1 matematika teknik
 
Neraca panas materi
Neraca panas materiNeraca panas materi
Neraca panas materi
 
Bab 7-penyelesaian-persamaan-diferensial
Bab 7-penyelesaian-persamaan-diferensialBab 7-penyelesaian-persamaan-diferensial
Bab 7-penyelesaian-persamaan-diferensial
 
Matematika teknik kimia minggu 3
Matematika teknik kimia minggu 3Matematika teknik kimia minggu 3
Matematika teknik kimia minggu 3
 
Bismo yuswan-matematika teknik-kimia
Bismo yuswan-matematika teknik-kimiaBismo yuswan-matematika teknik-kimia
Bismo yuswan-matematika teknik-kimia
 
3 bab-ii-neraca-massa
3 bab-ii-neraca-massa3 bab-ii-neraca-massa
3 bab-ii-neraca-massa
 

Similar to Reaktor Alir Tangki Berpengaduk

Rea 2.ppt
Rea 2.pptRea 2.ppt
Rea 2.ppt
SurafelMustefa1
 
conversion and reactor sizing
conversion and reactor sizingconversion and reactor sizing
conversion and reactor sizing
Gökçe Ece Şeyda
 
week 6 (1).ppt
week 6 (1).pptweek 6 (1).ppt
week 6 (1).ppt
chemeng87
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores
MelanieQuiroz6
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
IyerVasundhara
 
Mathematical modeling of continuous stirred tank reactor systems (cstr)
Mathematical modeling of continuous stirred tank reactor systems (cstr)Mathematical modeling of continuous stirred tank reactor systems (cstr)
Mathematical modeling of continuous stirred tank reactor systems (cstr)
Karnav Rana
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
BlahBeleh
 
Et ii --assignment_1.
Et ii --assignment_1.Et ii --assignment_1.
Et ii --assignment_1.sanjeev2011
 
Microsoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDFMicrosoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDF
hesam ahmadian
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
hassanzain10
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
Hashim Hasnain Hadi
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Arash Nasiri
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Arash Nasiri
 
Midterm review
Midterm reviewMidterm review
Midterm review
Sporsho
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam Help
Live Exam Helper
 
Hydraulic Engineering Assignment Help
Hydraulic Engineering Assignment HelpHydraulic Engineering Assignment Help
Hydraulic Engineering Assignment Help
Edu Assignment Help
 
FUZZY LOGIC Control of CONTINUOUS STIRRED TANK REACTOR
FUZZY LOGIC Control  of CONTINUOUS STIRRED TANK REACTOR FUZZY LOGIC Control  of CONTINUOUS STIRRED TANK REACTOR
FUZZY LOGIC Control of CONTINUOUS STIRRED TANK REACTOR
ProfDrDuraidAhmed
 
Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...
ISA Interchange
 

Similar to Reaktor Alir Tangki Berpengaduk (20)

Rea 2.ppt
Rea 2.pptRea 2.ppt
Rea 2.ppt
 
GroupW _Kinetics
GroupW _KineticsGroupW _Kinetics
GroupW _Kinetics
 
conversion and reactor sizing
conversion and reactor sizingconversion and reactor sizing
conversion and reactor sizing
 
week 6 (1).ppt
week 6 (1).pptweek 6 (1).ppt
week 6 (1).ppt
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
Mathematical modeling of continuous stirred tank reactor systems (cstr)
Mathematical modeling of continuous stirred tank reactor systems (cstr)Mathematical modeling of continuous stirred tank reactor systems (cstr)
Mathematical modeling of continuous stirred tank reactor systems (cstr)
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
Et ii --assignment_1.
Et ii --assignment_1.Et ii --assignment_1.
Et ii --assignment_1.
 
Microsoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDFMicrosoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDF
 
types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
 
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
Simultaneousnonlinear two dimensional modeling of tubular reactor of hydrogen...
 
Midterm review
Midterm reviewMidterm review
Midterm review
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam Help
 
Hydraulic Engineering Assignment Help
Hydraulic Engineering Assignment HelpHydraulic Engineering Assignment Help
Hydraulic Engineering Assignment Help
 
FUZZY LOGIC Control of CONTINUOUS STIRRED TANK REACTOR
FUZZY LOGIC Control  of CONTINUOUS STIRRED TANK REACTOR FUZZY LOGIC Control  of CONTINUOUS STIRRED TANK REACTOR
FUZZY LOGIC Control of CONTINUOUS STIRRED TANK REACTOR
 
Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...
 

Reaktor Alir Tangki Berpengaduk

  • 1. REAKTOR ALIR TANGKI BERPENGADUK (RATB) Pertemuan 7, 8, dan 9
  • 2. Sifat-sifat Sif t if t mendasar pada RATB d d 1. 1 Pola alir adalah bercampur sempurna (back mixed flow atau BMF) 2. Meskipun aliran melalui RATB adalah kontinyu, tapi kec l t i k volumetris aliran pada pemasukan d t i li d k dan pengeluaran dapat berbeda, disebabkan oleh terjadinya p j y perubahan densiti 3. BMF meliputi pengadukan yang sempurna dalam volume reaktor, yg berimplikasi pada semua sifat-sifat sistem menjadi seragam sifat sifat diseluruh reaktor 4. Pengadukan yg sempurna juga mengakibatkan semua k komponen dlm reaktor mempunyai dl kt i kesempatan yg sama utk meninggalkan reaktor
  • 3. Sifat sifat Sifat-sifat mendasar pada RATB (Lanjut) 5. 6. 6 7. 7 8. Sebagai akibat poin 4 terdapat di ib i S b i kib i 4, d distribusi kontinyu dari waktu tinggal Sebagai akibat dari poin 4 aliran keluaran 4, mempunyai sifat-sifat sama dengan fluida dalam reaktor Sebagai akibat dari 6 terdapat satu langkah 6, perubahan yg menjelaskan perubahan sifatsifat dari input dan output Meskipun terdapat perubahan distribusi waktu tinggal, pencampuran sempurna fluida pada tingkat mikroskopik dan makroskofik membimbing utk merata-rata sifat-sifat seluruh elemen fluida
  • 4. Keuntungan dan Kerugian Menggunakan RATB Keuntungan Relatif murah untuk dibangun Mudah M d h mengontrol pada ti ti k t k t l d tiap tingkat, karena ti tiap operasi pada keadaan tetap, permukaan perpindahan panas mudah diadakan Secara umum mudah beradaptasi dg kontrol otomatis, memberikan respon cepat pada perubahan kondisi operasi ( misal: kec umpan dan konsentrasi) p p ) Perawatan dan pembersihan relatif mudah Dengan pengadukan efisien dan viskositas tidak terlalu tinggi dalam praktek kelakuan model dapat tinggi, didekati lebih tepat untuk memprediksi unjuk kerja.
  • 5. Kerugian Secara konsep dasar sangat merugikan d i S k d t ik dari kenyataan karena aliran keluar sama dengan isi vesel Hal ini menyebabkan semua reaksi berlangsung pada konsentrasi yang lebih rendah (katakan reaktan A CA) antara keluar dan masuk A, Secara kinetika normal rA turun bila CA berkurang, ini berarti diperlukan volume reaktor lebih besar untuk memperoleh konversi yg diinginkan (Untuk kinetika tidak normal bisa terjadi kebalikannya, tapi ini tidak biasa, apakah contohnya dari satu situasi demikian?)
  • 6. Persamaan perancangan untuk RATB Pertimbangan secara umum: Neraca masa Neraca Energi Perancangan proses RATB secara khas dibangun untuk menentukan volume vesel yang diperlukan guna mencapai kecepatan produksi yang diinginkan
  • 7. Parameter yang dicari meliputi: Jumlah stage yg digunakan untuk operasi optimal Fraksi konversi dan suhu dalam tiap stage Dimulai dengan mempertimbangkan neraca massa dan neraca energi untuk tiap stage
  • 8. Neraca massa, volume reaktor, dan kecepatan produksi Untuk operasi kontinyu dari RATB vesel tertutup, tinjau reaksi: A+… νC C + … dengan kontrol volume didefinisikan sebagai volume fl id d l l fluida dalam reaktor k
  • 9. (1) Secara operasional: (2) Dalam term kecepatan volumetrik: (3) Dalam t D l term k konversi A d i A, dengan h hanya A yg tid k tidak bereaksi dalam umpan (fA0 = 0): (4)
  • 10. Untuk opersasi tunak (steady state) dnA/dt = 0 (5) (6)
  • 12. Neraca Energi Untuk reaktor alir kontinyu seperti RATB, neraca energi adalah neraca entalpi ( ), bila kita g p (H), mengabaikan perbedaan energi kinetik dan energi potensial dalam aliran, dan kerja shaft antara pemasukan dan pengeluaran Akan tetapi, dalam perbandingannya dengan BR, kesetimbangan harus meliputi entalpi masuk dan keluar oleh aliran Dalam hal berbagai transfer panas dari atau menuju kontrol volume, dan p j pembentukan atau pelepasan entalpi oleh reaksi dalam kontrol volume. Selanjutnya persamaan energi (entalpi) dinyatakan sbg:
  • 13. (10) Untuk operasi tunak m = m0 (11) Substitusi FA0 fA untuk (-rA)V (12)
  • 14. Hubungan fA dengan suhu reaksi (T) (13)
  • 15. Sistem densiti konstan Untuk sistem densiti konstan, beberapa hasil penyederhanaan antara l i d h t lain: , p p p , Pertama, tanpa memperhatikan tipe reaktor, fraksi konversi limiting reactant, fA, dapat dinyatakan dalam konsentrasi molar (14) Kedua, untuk aliran reaktor seperti RATB, mean residence time sama dengan space time, karena q = q0 (15)
  • 16. Ketiga, Ketiga untuk RATB term akumulasi dalam RATB, persamaan neraca massa menjadi: (16) Terakhir, untuk RATB, persamaan neraca p massa keadaan tunak dapat disederhanakan menjadi: (17)
  • 17. Operasi keadaan tunak pada temperatur T Untuk operasi keadaan tunak, term akumulasi p , dalam pers neraca massa dihilangkan Atau, untuk densiti konstan Bila T tertentu, V dapat dihitung dari pers neraca massa tanpa melibatkan neraca energi p g
  • 18. Contoh 1 1. For the liquid-phase reaction A + B products at 20°C suppose 40% conversion of A is desired in steady-state operation. The reaction steady state is pseudo-first-order with respect to A, with kA = 0.0257 h-1 at 20°C. The total volumetric flow rate is 1 8 m3 h-1, and the inlet molar flow rates 1.8 of A and B are FAO and FBO mol h-1, respectively. Determine the vessel volume required, if, required if for safety it can only be filled to 75% safety, capacity.
  • 19. Contoh 2. A liquid-phase reaction A liquid phase B is to be conducted in a CSTR at steady-state at 163°C. The temperature of the feed is 20°C and 90% p conversion of A is required. Determine the volume of a CSTR to produce 130 kg B h-1, and calculate the heat load (Q) for the process. Does this represent addition or removal of heat from the system? Data: MA = MB = 200 g mol-1; cp = 2.0 J g-1K-1; 3 1 ρ = 0 95 g cm-3; ∆HRA = -87 kJ mol-1; kA = 0.80 0.95 87 0 80 h-1 at 163°C
  • 20. Contoh 3 Consider the startup of a CSTR for the liquidphase reaction A products. The reactor is initially filled with feed when steady flow of feed (q) is begun. Determine the time (t) required to achieve 99% of the steady-state value of fA. y f Data: V = 8000 L; q = 2 L s-1; CAo = 1.5 mol L-1; kA = 1.5 x l0-4 s-1.
  • 21. REAKTOR ALIR TANGKI BERPENGADUK (RATB) Pertemuan 8
  • 22. TINJAU ULANG NERACA ENERGI SISTEM ALIR Q Fi|in Hi|in Ei|in system Fi|out Hi|out Ei|out Ws Neraca Energi Rin − Rout + Rgen = Racc • • n n Q − W + ∑ Fi Ei i =1 − ∑ Fi Ei in i =1 out ⎛ dE ⎞ =⎜ ⎝ dt ⎠ System Ei = Energy of component i (8 1) (8-1)
  • 23. • • n n W = W s − ∑ Fi PVi i =1 + ∑ Fi PVi in i =1 (8-2) out Work do to flow velocity For chemical reactor Ki, Pi, and “other” energy gy are neglected so that: (8-3) Ei = U i and (8-4) H i = U i + PVi Combined the eq. 8-4, 8-3, 8-2, and 8-1 be result, • • n n Q − W s + ∑ Fi H i i =1 − ∑ Fi H i in i =1 out ⎛ dE ⎞ =⎜ ⎟ ⎝ dt ⎠ System (8-5)
  • 24. General Energy Balance: For steady state operation: We need to put the above equation into a form that we can easily use to relate X and T in order to size reactors. To achieve thi goal, we write th molar t T hi this l it the l flow rates in terms of conversion and the enthalpies as a function of temperature We now will "dissect" temperature. dissect both Fi and Hi.
  • 25. Flow Rates, Fi For the generalized reaction: In I general, l
  • 26. Enthalpies, Enthalpies Hi Assuming no phase change: Mean heat capacities:
  • 27. Self Test Calculate , , and for the reaction, reaction There are inerts I present in the system.
  • 29.
  • 30. Energy Balance with "dissected" dissected enthalpies: For constant or mean heat capacities: Adiabatic Energy Balance:
  • 31. Adiabatic Energy Balance for variable heat capacities: CSTR Algorithm (Section 8.3 Fogler)
  • 32.
  • 33. Self Test For and adiabatic reaction with and CP=0, sketch conversion as a function of temperature. Solution S l ti
  • 34. A. A For an exothermic reaction, HRX is negative (-) reaction (-), XEB increases with increasing T. [e.g., [ HRX= -100 kJ/mole A] 100 kJ/ l
  • 35. B. For B F an endothermic reaction, HRX i positive ( ) d th i ti is iti (+), XEB increases with decreasing T. [e.g., HRX= +100 kJ/mole A] [e g
  • 36. For a first order reaction, , Both the mole and energy balances are satisfied when XMB=XEB. The steady state temperature and conversion are TSS and XSS, respectively, for an entering temperature TO.
  • 37. Evaluating the Heat Exchange Term, Q Energy transferred between the reactor and the gy coolant: Assuming the temperature inside the CSTR, T, is spatially uniform: Manipulating the Energy Exchange Term
  • 39. At high coolant flowrates the exponential term will be small, so we can expand the exponential term as a Taylor Se es, where the terms o seco d o de o ay o Series, e e e e s of second order or greater are neglected, then:
  • 40. Since the coolant flowrate is high, Ta1 ≅ Ta2 ≅ Ta: g , Reversible Reactions (Chp8 Fogler, Appendix C) For Id l F Ideal gases, KC and KP are related b d l t d by KP = KC(RT)δ δ = Σ νi
  • 41. For the special case of :
  • 42. Algorithm for Adiabatic Reactions: Levenspiel Plot for an exothermal, adiabatic reaction.
  • 43. PFR the volume.) (The h d d (Th shaded area i th plot i in the l t is For an exit conversion of 40% For an exit conersion of 70%
  • 44. CSTR Shaded area is the reactor volume. For an exit conversion of 40% For an exit conersion of 70%
  • 45. CSTR+PFR For an intermediate conversion of 40% and exit conversion of 70%
  • 46. Example: Exothermic, Reversible Reaction p , Why is there a maximum in the rate of reaction with respect to conversion (and hence with respect to hence, temperature and reactor volume) for an adiabatic reactor? Rate Law:
  • 47.
  • 48. Reactor Inlet Temperature and Interstage Cooling Optimum Inlet Temperature: p p Fixed Volume Exothermic Reactor Curve A: Reaction rate slow conversion dictated by slow, rate of reaction and reactor volume. As temperature increases rate increases and therefore conversion increases. Curve B: Reaction rate very rapid. Virtual equilibrium reached in reaction conversion dictated by equilibrium conversion.
  • 50. Self Test An inert I is injected at the points shown below: Sketch the conversion-temperature trajectory for an endothermic reaction.
  • 51. Solution For an endothermic reaction, the equilibrium conversion increases with increasing T. g For and Keq=.1 and T2
  • 52. From the energy balance we know the temperature decreases with increasing conversion.
  • 53. Energy Balance around junction: Solving T2
  • 54. Example CD8-2 Second Order Reaction Carried Out Adiabatically in a CSTR The acid-catalyzed irreversible liquid-phase reaction is carried out adiabatically in a CSTR.
  • 55. The reaction is second order in A. The feed, which is i equimolar i a solvent ( hi h contains th i l in l t (which t i the catalyst) and A, enters the reactor at a total volumetric flowrate of 10 dm3/min with the concentration of A being 4M. The entering temperature is 300 K. p What CSTR reactor volume is necessary to achieve 80% conversion? b) What conversion can be achieved in a 1000 dm3 CSTR? What is the new exit temperature? c) How would your answers to part (b) change, if the entering temperature of the feed were 280 K? a)
  • 57. Example CD8-2 Solution, Part A Second Order Reaction Carried Out Adiabatically in a CSTR (a) We will solve part (a) by using the nonisothermal reactor design algorithm discussed in Chapter 8. 1. CSTR Design Equation: 2. 2 Rate Law: 3. Stoichiometry: 4. Combine: liquid,
  • 58. Given conversion (X) you must first determine the (X), reaction temperature (T), and then you can calculate the reactor volume (V). ( ) 5. Determine T: For this problem: p
  • 59. which leaves us with: After some rearranging we are left with: Substituting for known values and solving for T: 6. Solve for the Rate Constant (k) at T = 380 K:
  • 60. 7. Calculate the CSTR Reactor Volume (V): Recall that: Substituting for k S b tit ti f known values and solving f V l d l i for V:
  • 61. Example CD8-2 Solution, Part B Second Order Reaction Carried Out Adiabatically in a CSTR (b) For part (b) we will again use the nonisothermal reactor design algorithm discussed in Chapter 8. The first four steps of the algorithm we used in part (a) apply to our solution to part (b). It is at step number 5, where the algorithm changes. NOTE: We will find it more convenient to work with this equation in terms of space time rather than time, volume:
  • 62. Space time is defined as: p After some rearranging: Substituting: g Given reactor volume (V), you must solve th Gi t l (V) t l the energy balance and the mole balance simultaneously for conversion (X) since it is a (X), function of temperature (T). 5. 5 Solve the Energy Balance for XEB as a function of T:
  • 63. From the adiabatic energy balance (as applied to CSTRs): 6. Solve the Mole Balance for XMB as a function of T: We'll rearrange our combined equation from step 4 to give us:
  • 64. Rearranging g g g gives: Solving for X gives us: After some final rearranging we get:
  • 65. Let's simplify a little more, by introducing the Damköhler Number, Da: D köhl N b D We then have: 7. Plot XEB and XMB: You want to plot XEB and XMB on the same graph (as functions of T) to see where they intersect. This will tell you where your steady-state point is. To accomplish this, we will use Polymath (but you could use a spreadsheet).
  • 66. X = 0.87 and T = 387 K
  • 67. Our corresponding Polymath program looks like this: thi NOTE: Our use of d(T)/d(t) 2 d(T)/d(t)=2 in the above program is merely a way for us to generate a range of temperatures as we plot conversion as a function of temperature.
  • 68. Example CD8-2 Solution, Part C Second Order Reaction Carried Out Adiabatically in a CSTR (c) For part (c) we will simply modify the Polymath p g program we used in p ( ), setting our initial part (b), g temperature to 280 K. All other equations remain unchanged. 7. Plot XEB and XMB: We see that our conversion would be about 0 75 at a temperature of 355 K 0.75, K.
  • 70. Multiple Steady States Factor FA0 CP0 and then divide by FA0
  • 71. For a CSTR: FA0X = -rAV r where
  • 72.
  • 73. Can there be multiple steady states (MSS) for a irreversible first order endothermic reaction? Solution S l i For an endothermic reaction HRX is positive, (e.g., HRX=+100 kJ/mole)
  • 74.
  • 75. There are no multiple steady states for an endothermic, i d th i irreversible fi t order reactor. Th ibl first d t The steady state reactor temperature is TS. Will a reversible endothermic first order reaction have MSS?
  • 76. Now we need to find X. We do this by combining the mole balance, rate law, Arrhenius Equation, and stoichiometry. For the first-order, irreversible reaction A have: where At steady state: y B, we
  • 77. Unsteady State CSTR y Balance on a system volume that is well-mixed:
  • 78. RATB Bertingkat (Multistage) g ( g ) RATB bertingkat terdiri atas 2 atau lebih reaktor tangki berpengaduk y g disusun seri p g yang Keuntungan RATB bertingkat dua atau lebih, untuk mencapai hasil yg sama? ukuran/ volume reaktor lebih kecil dibandingkan RATB tunggal g gg Kerugian utama RATB bertingkat beroperasi pada konsentrasi yang lebih rendah diantara pemasukan dan pengeluaran Untuk RATB tunggal, berarti bahwa beroperasi pada konsentrasi dalam sistem serendah mungkin, dan untuk kinetika normal, diperlukan volume reaktor semakin besar Bila 2 tangki (beroperasi pd T sama) disusun seri, yang kedua beroperasi pada konsentrasi sama spt tangki tunggal diatas, tapi yg pertama beroperasi pada konsentrasi lebih tinggi jadi volume total kedua tangki tinggi, lebih kecil daripada tangki tunggal
  • 79. Rangkaian RATB bertingkat N Pers neraca massa pada RATB ke i − (14.4-1)
  • 81. Penyelesaian pers 14 4 1 untuk mencari V (diberi 14.4-1 fA) atau mencari fA (diberi V) dapat dilakukan secara grafik atau secara analitis. Cara grafik dapat digunakan untuk mencari fA, atau bila bentuk analitis (-rA) tidak diketahui Penyelesaian grafis untuk N = 2 P l i fi t k Untuk stage 1: Untuk stage 2: g
  • 82.
  • 83. Example 14-9 p A three-stage CSTR is used for the reaction A products. The reaction occurs in aqueous solution, and is second order with respect to A with kA = second-order A, 0.040 L mol-1 min-1. The inlet concentration of A and the inlet volumetric flow rate are 1.5 mol L-1 and 2.5 L min-1, respectively. Determine the fractional conversion (fA) obtained at the outlet, if V1 = 10 L V2 = 20 L and V3 = 50 L (a) analytically L, L, L, analytically, and (b) graphically.
  • 84. Solusi Untuk stage 1 dari persamaan kecepatan Karena densitas konstan Lakukan L k k pengaturan sehingga di t hi diperoleh pers k d t l h kwadrat Atau dengan memasukkan bilangan numerik g g
  • 85. Diperoleh fA1 = 0.167 Similarly, Similarly for stages 2 and 3 we obtain fA2 3, = 0.362, and fA3 = 0.577, which is the outlet fractional conversion from the threethree stage CSTR.
  • 87. (b) The graphical solution is shown in Figure 14.12. The curve for (- rA) from the rate law is first drawn. Then the operating line AB is p g constructed with slope FA0/V1 = cA0q0/V1 = 0.375 mol L-1min-1 to intersect the rate curve at fA1 = 0.167; similarly, the lines CD and EF, with corresponding slopes 0.1875 and 0.075, respectively, respectively are constructed to intersect 0 36 0.36 and fA3 = 0.58, respectively. These are the same the rate curve at the values fA2 = values as obtained in part (a).
  • 88. Optimal Operation The following example illustrates a simple case of optimal operation of a multistage CSTR to minimize the total volume. We continue to assume a constantdensity system with isothermal operation Exp. 14-10 Consider the liquid-phase reaction A + . . . products taking place in a two-stage CSTR. If the reaction is first-order, and both stages are at the same T, how are the sizes of the two stages related t minimize th t t l volume V f a given l t d to i i i the total l for i feed rate (FAo) and outlet conversion (fA2)?
  • 89. Solusi From the material balance, equation 14.4-1, the total volume is A From the rate law, B C Substituting (B) and (C) in (A) we obtain (A), D
  • 90. = From (E) and (D), we obtain F d (D) bt i from which fA2 = fA1(2 – fA1) If we substitute this result into the material balance for stage 2 (contained in the last term in (D)), we have E
  • 91. That is, for a first order reaction, the two stages first-order must be of equal size to minimize V. The proof can be extended to an N-stage CSTR. p g For other orders of reaction, this result is approximately correct. The conclusion is that tanks in series should all be the same size, which accords with ease of fabrication. Although, for other orders of reaction, equalAlth h f th d f ti l sized vessels do not correspond to the minimum volume, volume the difference in total volume is sufficiently small that there is usually no economic benefit to constructing different-sized g vessels once fabrication costs are considered.
  • 92. Example 11 A reactor system is to be designed for 85% conversion of A (fA) in a second-order liquid phase reaction, A products; kA = 0.075 L mol-1 min-1, q0 = 25 L min-1, and CA0 = 0 040 mol L-1. i 1 i 1 d 0.040 l 1 The design options are: (a) two equal sized stirred tanks in series; equal-sized (b) two stirred tanks in series to provide a minimum total volume. The cost of a vessel is $290, but a 10% discount applies if both vessels are the same size and geometry. Which option l d t th l t Whi h ti leads to the lower capital it l cost?
  • 93. Solusi Case (a). From the material-balance equation 14.41 applied to each of the two vessels 1 and 2, Equating V1 and V2 from (A) and (B), and simplifying, we obtain This is a cubic equation for fA1 in terms of fA2:
  • 94. This equation has one positive real root, fA1 =0.69, which can be obtained by trial trial. This corresponds to V1 = V2 = 5.95 x 104 L (from equation (A) or (B)) and a total capital cost of 0.9(290)(5.95 0 9(290)(5 95 X 104)2/1000 = $31 000 ( ith th 10% $31,000 (with the discount taken into account) Case (b). The total volume is obtained from equations (A) and (B):
  • 95. For minimum V, This also results in a cubic equation for fA1, which, with the value fA2 = 0.85 inserted, becomes Solution by trial yields one positive real root: fA1 = 0.665. This leads to V1 = 4.95 X l04 L, V2= 6.84 X l04 L, and a capital cost of $34,200.
  • 96. Conclusion: The lower capital cost is obtained for case ( ) (two equal-sized vessels), in spite of (a) ( q ), p the fact that the total volume is slightly g (11.9 X l04 L versus 11.8 X 104 L). ) larger (