SlideShare a Scribd company logo
1 of 52
LEPTOQUARK MASS LIMIT IN SU(5)*
Ilja Doršner
University of Sarajevo, Bosnia and Herzegovina
BALKAN WORKSHOP 2013 — BW2013
Vrnjačka Banja, Serbia
April 28, 2013
I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998;
I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
*
• MINIMAL UNIFICATION OF MATTER
THE GEORGI-GLASHOW SU(5) SCENARIO
• d = 6 PROTON DECAY OPERATORS
SCALAR CONTRIBUTIONS
• MINIMAL VIABLE SU(5) UNIFICATION
• p-DECAY PREDICTIONS
SCALAR CONTRIBUTIONS
OUTLINE
THE STANDARD MODEL COMPRISES 15 FERMIONS.
THE GEORGI-GLASHOW SU(5) MODEL*
*See talk by Borut Bajc.
SU(5) SCENARIO*
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
FIFTEEN FERMIONS OF THE STANDARD MODEL:
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
SU(5) SCENARIO*
FIFTEEN FERMIONS OF THE STANDARD MODEL:
*H. Georgi and S.L. Glashow (1974).
LEPTONS
QUARKS
FIFTEEN FERMIONS OF THE STANDARD MODEL:
SU(5) SCENARIO*
FERMION MASSES
(SCALAR REPRESENTATIONS IN THE MINIMAL SU(5))
&
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
NOTATION
(VACUUM EXPECTATION VALUE)
MD = Y1v⇤
45
1
2
Y3v⇤
5
ME = 3Y T
1 v⇤
45
1
2
Y T
3 v⇤
5
(Y1)ij10i5j45⇤
(Y3)ij10i5j5⇤
h4515
1 i = h4525
2 i = h4535
3 i = v45/
p
2
E†
RDLMdiag
D Mdiag
E ET
L D⇤
R = 4Y1v45
h55
i = v5/
p
2
|v5|2
/2 + 12|v45|2
= v2
t ¯t
(g 2)µ
45 2 126
&
*H. Georgi and S.L. Glashow (1974).
WHAT GOES WRONG WITH SU(5)?*
FERMION MASSES*
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
*See talk by Borut Bajc.
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
FERMION MASSES
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
1 5 T ⇤
1
|v5|2
/2 + 12|v45|2
= v2
v = 246 GeV
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
p 5 5 T
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5
v⇤
45⇤
MD =
1
2
Y 5
v⇤
5
ME = 3Y 5 T
v⇤
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
p 10 10 T
45
ME =
1
2
Y 5 T
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v45
MU =
p
2(Y 10
+ Y 10 T
)v5
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, MD
10+1
⇥ 10+1
= 5
+2
45
+2
: MD
10+1
⇥ 5
3
= 5 2
45 2
: MU
3 3 6 6
NOTATION
(MASS MATRICES AND UNITARY TRANSFORMATIONS)
UP-TYPE QUARKS, DOWN-TYPE QUARKS AND CHARGED LEPTONS:
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
*H. Georgi and S.L. Glashow (1974).
IS UNIFICATION WRONG WITHIN SU(5)?*
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*H. Georgi and S.L. Glashow (1974).
50
M 1012
GeV
24 = (⌃8, ⌃3, ⌃(3,2), ⌃(¯3,2), ⌃24)
✏abcuT
a iCub j
3
3 c
10i 5i , i = 1, 2, 3
24 5 15
16i , i = 1, 2, 3
210 10 126 126
120
⌃3 = (1, 3, 0)
a = (1, 3, 1)
b = (3, 2, 1/6)
ADDRESSING NEUTRINO MASSES ALSO ADDRESSES UNIFICATION
IN A SATISFACTORY MANNER!
NEUTRINO MASSES WITHIN SU(5)?*
¶I. Doršner and P. Fileviez Pérez, Nucl. Phys. B 723:53-76, 2005, hep-ph/0504276.
‡B. Bajc and G. Senjanović, JHEP 0708 014, 2007, hep-ph/0612029.
‡¶
*See talk by Andrea Romanino.
UNIFICATION IN SU(5)*
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
1
↵ 1
1
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
ms(VUD)12
2
(p ! e+
⇡0
) ⇠
↵2
(VUD)11[mu +
3
md] +
1
(V †
UDU⇤
2 Mdiag
E U†
2 )11
2
UNIFICATION IN SU(5)*
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
1
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
↵ 1
3
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
*See talk by Andrea Romanino.
NOTATION
(MASS MATRICES AND UNITARY TRANSFORMATIONS)
MAJORANA NEUTRINOS:
QUALITATIVE ASPECTS OF NEUTRINO PHYSICS ARE NOT
RELEVANT FOR DISCUSSION OF p-DECAY!
HOW PREDICTIVE IS SU(5) FOR p-DECAY?*
*H. Georgi and S.L. Glashow (1974).
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
a6 ⇠
Y 2
m2
LQ
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
EXPERIMENTAL INPUT
(PROTON DECAY)
5
PROCESS ⌧p (1033
years)
p ! K+
¯⌫ 4.0
p ! ⇡+
¯⌫ 0.025
p ! ⇡0
e+
13.0
j = 1, 2, 3 j = 1, 2
La ⌘ (1, 2, 1/2)a = (⌫a ea)T
eC
a ⌘ (1, 1, 1)a
Qa ⌘ (3, 2, 1/6)a = (ua da)T
≡ Yukawa coupling(s) ≡ Leptoquark mass
*S. Weinberg, Phys. Rev. D 22:1694, 1980.
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS*)
IS AN ACCURATE LIMIT?
KEY QUESTION…
LEPTOQUARK IN SU(5)
(p-DECAY MEDIATING SCALAR LEPTOQUARK)
THERE IS ONLY ONE SET OF PROTON DECAY MEDIATING
SCALARS IN THE MINIMAL SU(5) SETUP!
1
↵ 1
1
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
(p ! µ+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)12m⌧ ms
2
(p ! e+
⇡0
) ⇠
↵2
v4
5m4 (VUD)11[mu +
3
4
md +
1
4
m⌧ ]
2
3
2
mb(VUD)13
2
(p ! µ+
⇡0
) ⇠
↵2
(V ) [m +
3
m +
1
m ]
2
3
m (V )
2
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS)
(3, 1, 1/3) 2 1/2
✏abcY 5
ijuC T
a i CdC
b j
⇤
c
⌘
2✏abc[Y 10
ij + Y 10
ji ]dT
a iCub j c
2 1/2
Y 5
ijuT
a iCej
⇤
a Y 1
ijdC T
a i C⌫C
j a2[Y 10
ij + Y 10
ji ]eC T
i CuC
a j a
2 1/2
Y 5
ijdT
a iC⌫j
⇤
a
SU(5) ⇥ U(1) Y 10
ij 10+1
i 10+1
j 50 2
(3, 1, 1/3) 2
⌘
12 1/2
✏abc[Y 10
ij + Y 10
ji ]uT
a iCdb j c
3 1/2
[Y 10
ij + Y 10
ji ]⌫C T
i CdC
a j a
↵, (= 1, 2)
↵ + < 4
L(= (1 5)/2)
MU,D,E ! Mdiag
U,D,E
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS*)
*P. Nath and P.F. Pérez, Phys. Rept. 441 (2007) 191-317.
WE WILL TAKE NEUTRINOS TO BE MAJORANA
PARTICLES IN WHAT FOLLOWS.
SU(5) Y 1
ij10i1j10⇤
Y 5
ij5i5j10
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
d = 6 PROTON DECAY OPERATORS
(SCALAR CONTRIBUTIONS)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH (d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH (d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH (dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH (dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH (d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH (d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH (d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH (dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
i(= 1, 2, 3)
↵, (= 1, 2)
↵ + < 4
L(= (1 5)/2)
p-DECAY WIDTHS
(SCALAR CONTRIBUTIONS)
(p ! ¯⌫i⇡+
) =
(m2
p m2
⇡+ )2
32⇡f2
⇡m3
p
|↵ a(d1, dC
1 , ⌫i) + a(d1, d1, ⌫i)|2
(1 + D + F)2
(3, 1, 1/3)
(3, 3, 1/3)
(3, 1, 4/3)
(3, 1, 2/3)
SU(5) Y 10
ij 10i10j50
(3, 1, 1/3) 12 1/2
✏abc[Y 10
ij + Y 10
ji ]dT
a iCub j c
⌧ ⇠ 1
m > 1.0 ⇥ 1012
✓
↵
0.0112 GeV3
◆1/2
GeV
(p ! ⇡+
¯⌫)
(p ! K+ ¯⌫)
= 9.0
1
⌧ ⌘
⌧ ⇠ 1
PARTIAL LIFETIME
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS)
SU(5) ⇥ U(1) Y 1
ij10+1
i 1+5
j 10⇤ 6
Y 5
ij5i 5j 10+6
(3, 1, 2/3)+6
⌘ Y 1
ijdC T
a i CeC
j
⇤
a 2 1/2
✏abcY 5
ijuC T
a i CuC
b j c
Y 5
= Y 5 T
a(d↵, e ) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (UT
Y 5
E)1
a(d↵, eC
) =
4
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(dC
↵ , e ) =
1
2m2 (D†
CY 5 †
U⇤
C)↵1 (UT
Y 5
E)1
a(dC
↵ , eC
) =
p
2
m2 (D†
CY 5 †
U⇤
C)↵1 (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(d↵, d , ⌫i) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (DT
Y 5
N) i
a(d↵, dC
, ⌫i) =
1
2m2 (D†
CY 5 †
U⇤
C) 1 (DT
Y 5
N)↵i
a(d↵, dC
, ⌫C
i ) =
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (N†
CY 1 †
D⇤
C)i
a(dC
↵ , dC
, ⌫C
i ) =
1
p
2m2
(D†
CY 5 †
U⇤
C) 1 (N†
CY 1 †
D⇤
C)i↵
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
SU(5) ⇥ U(1) Y 1
ij10+1
i 1+5
j 10⇤ 6
Y 5
ij5i 5j 10+6
(3, 1, 2/3)+6
⌘ Y 1
ijdC T
a i CeC
j
⇤
a 2 1/2
✏abcY 5
ijuC T
a i CuC
b j c
Y 5
= Y 5 T
a(d↵, e ) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (UT
Y 5
E)1
a(d↵, eC
) =
4
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(dC
↵ , e ) =
1
2m2 (D†
CY 5 †
U⇤
C)↵1 (UT
Y 5
E)1
a(dC
↵ , eC
) =
p
2
m2 (D†
CY 5 †
U⇤
C)↵1 (E†
C(Y 10
+ Y 10 T
)†
U⇤
C) 1
a(d↵, d , ⌫i) =
p
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (DT
Y 5
N) i
a(d↵, dC
, ⌫i) =
1
2m2 (D†
CY 5 †
U⇤
C) 1 (DT
Y 5
N)↵i
a(d↵, dC
, ⌫C
i ) =
2
m2 (UT
(Y 10
+ Y 10 T
)D)1↵ (N†
CY 1 †
D⇤
C)i
a(dC
↵ , dC
, ⌫C
i ) =
1
p
2m2
(D†
CY 5 †
U⇤
C) 1 (N†
CY 1 †
D⇤
C)i↵
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
1
E = DC
D = EC
U = UC
N = I U†
D = VCKM
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
E = DC
D = EC
U = UC
U†
D = VCKM
N = I
E = I
D = I
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
MINIMAL SU(5) IS VERY PREDICTIVE BECAUSE IT IS NOT VIABLE!
d = 6 PROTON DECAY COEFFICIENTS
(SCALAR CONTRIBUTIONS*)
*R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
MINIMAL VIABLE SU(5)
(CHARGED FERMION MASSES)
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
1
⇤ ⌘
✏↵ ⌘Yij 10↵
i 10j 5⌘
Yij 10↵
i 5j 5⇤
↵
Yij 10↵
i
24
⇤
5j 5⇤
↵
X
i
(DT
YDN)↵i(DT
YDN)⇤
i =
1
v2
5
((Mdiag
D )2
)↵
X
i
(DT
YU N)↵i(DT
YU N)⇤
i =
4
v2
5
(V T
UD(Mdiag
U )2
V ⇤
UD)↵
CUTOFF
Y 10
ij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5 T
v⇤
45⇤
MD =
1
2
Y 5 T
v⇤
5
ME = 3Y 5
v⇤
45
ME =
1
2
Y 5
v⇤
5
Yij 10i10j45
Y 5
ij10i5j45⇤
Y 10
ij 10i10j5
Y 5
ij10i5j5⇤
MD = Y 5 T
v⇤
45⇤
MD =
1
2
Y 5 T
v⇤
5
ME = 3Y 5
v⇤
45
ME =
1
2
Y 5
v⇤
5
MU = 2
p
2(Y 5
Y 5 T
)v
MU =
p
2(Y 10
+ Y 10 T
)v
10 ⇥ 10 = 5 45 : MU
10 ⇥ 5 = 5 45 : ME, M
10+1
⇥ 10+1
= 5
+2
45
+2
PREDICTIONS*
(MINIMAL VIABLE SU(5))
(3, 1, 2/3)
⌘ Y 1
ijuC T
a i C⌫C
j
⇤
a 2 1/2
✏abcY 5
ijdC T
a i CdC
b j c
Y 5
= Y 5 T
OH(d↵, e ) = a(d↵, e ) uT
L C 1
d↵ uT
L C 1
e
OH(d↵, eC
) = a(d↵, eC
) uT
L C 1
d↵ eC†
L C 1
uC⇤
OH(dC
↵ , e ) = a(dC
↵ , e ) dC
↵
†
L C 1
uC⇤
uT
L C 1
e
OH(dC
↵ , eC
) = a(dC
↵ , eC
) dC
↵
†
L C 1
uC⇤
eC†
L C 1
uC⇤
OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT
L C 1
d↵ dT
L C 1
⌫i
OH(d↵, dC
, ⌫i) = a(d↵, dC
, ⌫i) dC†
L C 1
uC⇤
dT
↵ L C 1
⌫i
OH(d↵, dC
, ⌫C
i ) = a(d↵, dC
, ⌫C
i ) uT
L C 1
d↵ ⌫C
i
†
L C 1
dC⇤
OH(dC
↵ , dC
, ⌫C
i ) = a(dC
↵ , dC
, ⌫C
i ) dC†
L C 1
uC⇤
⌫C
i
†
L C 1
dC
↵
⇤
*I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
PREDICTIONS*
(MINIMAL VIABLE SU(5))
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
*I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998.
PREDICTIONS
(MINIMAL VIABLE SU(5))UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
MU = MT
U
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
2
PREDICTIONS
(MINIMAL VIABLE SU(5))
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
5
a(dj, dC
k , ⌫i) =
2
m2 v2
5
(VUDMdiag
D )1k(DT
MDN)ji
X
i=1,2,3
(DT
MDN)↵i(DT
MDN)⇤
i = (Mdiag 2
D )↵
MU = MT
U
U†
D ⌘ VUD
U = UCK0
(K0)11 = ei
5 =
0
@
H
1
A
(p ! e+
⇡0
) ⇠
↵2
v4
5m4
3
8
(VUD)11(VUD)13m⌧ mb
2
PREDICTIONS
(MINIMAL VIABLE SU(5))
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
a(dj, dk, ⌫i) =
2
m2 v2
5
(Mdiag
U K0VUD)1j(DT
MDN)ki
a(dj, dC
, ⌫i) =
2
(VUDMdiag
)1k(DT
MDN)ji
PREDICTIONS
(MINIMAL VIABLE SU(5))
3 2 1 0 1 2 3
1.2
1.4
1.6
1.8
2.0
2.2
Φ
m1011
GeV
p K Ν
PREDICTIONS
(MINIMAL VIABLE SU(5))
ut of the way we are ready to
proton decay mediating scalar
o in the next section.
AY LEPTOQUARK
scalar that contributes to pro-
imensional scalar representa-
number violating dimension-
es are [8]
L C−1
dj dT
k L C−1
νi,
C
k
†
L C−1
uC∗
dT
j L C−1
νi,
1, 2) (j + k < 4) represent
γ5)/2. Our notation is such
for the d (s) quark. The color
tensor in the SU(3) space is
i) operators contribute exclu-
with anti-neutrinos in the fi-
ents for the p → π+
¯ν (p →
i=1,2,3
D
Clearly, the lepton mixing matrix does not affect proton decay
signatures through scalar exchange. It is also clear that the
p → π+
¯ν decay rate is significantly suppressed compared to
the p → K+
¯ν one. The suppression factor, as inferred from
Eq. (11), is proportional to (md/ms)2
.
For the decay widths for p → π+
¯ν and p → K+
¯ν channels
we find
Γp→π+ ¯ν = Cπ+ A (m2
u + m2
d + 2mumd cos φ)m2
d,
Γp→K+ ¯ν ≈ CK+ A (m2
u + m2
d + 2mumd cos φ)m2
s,
where we neglect terms suppressed by either (md/ms)2
or
|(VUD)12|2
in the expression for Γp→K+ ¯ν . Here, A =
4|α|2
|(VUD)11|2
/v4
, eiφ
= (K0)11 and we introduce
CK+ =
(m2
p − m2
K+ )2
32πf2
πm3
p
1 +
mp
3mΛ
(D + 3F)
2
. (12)
After we insert all low-energy parameters we find
Γp→π+ ¯ν /Γp→K+ ¯ν = 10−2
. (13)
m > 2.2 ⇥ 1011
✓
|↵|
0.0112 GeV3
◆1/2
GeV
m > 2.2 ⇥ 1011
GeV
p!⇡+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
d
p!K+ ¯⌫ ⇠ (m2
u + m2
d + 2mumd cos )m2
s
UT
MU UC = Mdiag
U DT
MDDC = Mdiag
D ET
MEEC = Mdiag
E
↵ 1
1
↵ 1
2
CONCLUSIONS
Predictions of the minimal viable version of
SU(5) for the two-body p-decay modes induced
through scalar leptoquark exchange exhibit
minimal (one-phase only) model dependence for
p → K+ ν and p → π+ ν channels.
There exists an accurate limit on the mass of the
scalar leptoquark.
The ratio of p-decay widths for channels with π+
and K+ in the final state is phase independent and
predicts strong suppression of the former width
with respect to the latter one.
THANK YOU!
CONTACT E-MAIL:
ILJA.DORSNER@IJS.SI

More Related Content

What's hot

An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of driftijcsa
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ssusere0a682
 
19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdtkhangnd82
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )iosrjce
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...IRJET Journal
 
Ejercicios combinados
Ejercicios combinadosEjercicios combinados
Ejercicios combinadosCinty Fuchs
 
The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210Mahmoud Samir Fayed
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Lina Manriquez
 

What's hot (19)

E024033041
E024033041E024033041
E024033041
 
Key pat1 3-52 math
Key pat1 3-52 mathKey pat1 3-52 math
Key pat1 3-52 math
 
An approach to decrease dimensions of drift
An approach to decrease dimensions of driftAn approach to decrease dimensions of drift
An approach to decrease dimensions of drift
 
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
ゲーム理論BASIC 第18回 -完全ベイジアン均衡-
 
End sem solution
End sem solutionEnd sem solution
End sem solution
 
Hn3414011407
Hn3414011407Hn3414011407
Hn3414011407
 
19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt19 phuong phap_chung_minh_bdt
19 phuong phap_chung_minh_bdt
 
Sub1567
Sub1567Sub1567
Sub1567
 
I034051056
I034051056I034051056
I034051056
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
Maths ms
Maths msMaths ms
Maths ms
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
E1 f9 bộ binh
E1 f9 bộ binhE1 f9 bộ binh
E1 f9 bộ binh
 
E2 f6 bộ binh
E2 f6 bộ binhE2 f6 bộ binh
E2 f6 bộ binh
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
Ejercicios combinados
Ejercicios combinadosEjercicios combinados
Ejercicios combinados
 
The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210The Ring programming language version 1.9 book - Part 69 of 210
The Ring programming language version 1.9 book - Part 69 of 210
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
 

Viewers also liked

Indenização das empresas urbs
Indenização das empresas   urbsIndenização das empresas   urbs
Indenização das empresas urbsProfessora Josete
 
Cuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustroCuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustroMaria Moguel Herrera
 
Mediabrand presents all
Mediabrand presents allMediabrand presents all
Mediabrand presents allUsanov Aleksey
 
Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)ABANCA
 
Driving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient AgricultureDriving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient AgricultureCIAT
 
DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1Bryan Davila
 
Diploma in Digital Marketing
Diploma in Digital MarketingDiploma in Digital Marketing
Diploma in Digital MarketingKelly Bath
 
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다crowdfundingtimes
 

Viewers also liked (20)

Indenização das empresas urbs
Indenização das empresas   urbsIndenização das empresas   urbs
Indenização das empresas urbs
 
Тема 13
Тема 13Тема 13
Тема 13
 
VuFlo
VuFloVuFlo
VuFlo
 
Cuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustroCuadro de la temporalidad de un lustro
Cuadro de la temporalidad de un lustro
 
Mascotas
MascotasMascotas
Mascotas
 
Libro Digital
Libro Digital Libro Digital
Libro Digital
 
Mediabrand presents all
Mediabrand presents allMediabrand presents all
Mediabrand presents all
 
KBR Cert3.PDF
KBR Cert3.PDFKBR Cert3.PDF
KBR Cert3.PDF
 
Trading StocksSemanal03/02/2012
Trading StocksSemanal03/02/2012Trading StocksSemanal03/02/2012
Trading StocksSemanal03/02/2012
 
Cultura sexo
Cultura sexoCultura sexo
Cultura sexo
 
Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)Triptico oficinas pensión (GAL)
Triptico oficinas pensión (GAL)
 
5
55
5
 
Presentazione Areatel Srl
Presentazione Areatel SrlPresentazione Areatel Srl
Presentazione Areatel Srl
 
Driving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient AgricultureDriving discovery and delivery for an Eco Efficient Agriculture
Driving discovery and delivery for an Eco Efficient Agriculture
 
Mezcla Promociones
Mezcla PromocionesMezcla Promociones
Mezcla Promociones
 
4229_001
4229_0014229_001
4229_001
 
DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1DISA HBSS 201 Adimn eP05.1
DISA HBSS 201 Adimn eP05.1
 
Diploma in Digital Marketing
Diploma in Digital MarketingDiploma in Digital Marketing
Diploma in Digital Marketing
 
Estereotipos: Mujeres-hombres
Estereotipos: Mujeres-hombresEstereotipos: Mujeres-hombres
Estereotipos: Mujeres-hombres
 
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
2014.04.10 건전 벤처생태계 위한 투자회수시스템 개선 시급하다
 

Similar to I. Doršner, Leptoquark Mass Limit in SU(5)

ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-ssusere0a682
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54S'kae Nfc
 
Espacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptxEspacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptxJosé Manuel
 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalezRuben Gonzalez
 
Metodologia de la programación - expresiones
Metodologia de la programación - expresionesMetodologia de la programación - expresiones
Metodologia de la programación - expresionesMar_Angeles
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualamirhosseinozgoli
 
Tugas Kalkulus
Tugas KalkulusTugas Kalkulus
Tugas Kalkulussitikecit
 
Tugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationTugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationSirilus Oki
 
Tugas kalkulus
Tugas kalkulusTugas kalkulus
Tugas kalkulusandekiorek
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 

Similar to I. Doršner, Leptoquark Mass Limit in SU(5) (18)

ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
ゲーム理論BASIC 演習24 -公理から求めるナッシュ交渉解-
 
6
66
6
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54
 
Espacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptxEspacios de Trabajo - ROBOKIDS.pptx
Espacios de Trabajo - ROBOKIDS.pptx
 
Key pat1 3-52
Key pat1 3-52Key pat1 3-52
Key pat1 3-52
 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalez
 
Metodologia de la programación - expresiones
Metodologia de la programación - expresionesMetodologia de la programación - expresiones
Metodologia de la programación - expresiones
 
Change of subject
Change of subjectChange of subject
Change of subject
 
ความน่า
ความน่าความน่า
ความน่า
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Tugas Kalkulus
Tugas KalkulusTugas Kalkulus
Tugas Kalkulus
 
Tugas Kalkulus Diferentiation
Tugas Kalkulus DiferentiationTugas Kalkulus Diferentiation
Tugas Kalkulus Diferentiation
 
Tugas kalkulus
Tugas kalkulusTugas kalkulus
Tugas kalkulus
 
Chapter 2 sequencess and series
Chapter 2 sequencess and seriesChapter 2 sequencess and series
Chapter 2 sequencess and series
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
final19
final19final19
final19
 

More from SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...SEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"SEENET-MTP
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...SEENET-MTP
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...SEENET-MTP
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"SEENET-MTP
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...SEENET-MTP
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"SEENET-MTP
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"SEENET-MTP
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...SEENET-MTP
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...SEENET-MTP
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"SEENET-MTP
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...SEENET-MTP
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"SEENET-MTP
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"SEENET-MTP
 

More from SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Recently uploaded (20)

Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

I. Doršner, Leptoquark Mass Limit in SU(5)

  • 1. LEPTOQUARK MASS LIMIT IN SU(5)* Ilja Doršner University of Sarajevo, Bosnia and Herzegovina BALKAN WORKSHOP 2013 — BW2013 Vrnjačka Banja, Serbia April 28, 2013 I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998; I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674. *
  • 2. • MINIMAL UNIFICATION OF MATTER THE GEORGI-GLASHOW SU(5) SCENARIO • d = 6 PROTON DECAY OPERATORS SCALAR CONTRIBUTIONS • MINIMAL VIABLE SU(5) UNIFICATION • p-DECAY PREDICTIONS SCALAR CONTRIBUTIONS OUTLINE
  • 3. THE STANDARD MODEL COMPRISES 15 FERMIONS. THE GEORGI-GLASHOW SU(5) MODEL* *See talk by Borut Bajc.
  • 4. SU(5) SCENARIO* *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS FIFTEEN FERMIONS OF THE STANDARD MODEL:
  • 5. *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS SU(5) SCENARIO* FIFTEEN FERMIONS OF THE STANDARD MODEL:
  • 6. *H. Georgi and S.L. Glashow (1974). LEPTONS QUARKS FIFTEEN FERMIONS OF THE STANDARD MODEL: SU(5) SCENARIO*
  • 7. FERMION MASSES (SCALAR REPRESENTATIONS IN THE MINIMAL SU(5)) & UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1
  • 8. NOTATION (VACUUM EXPECTATION VALUE) MD = Y1v⇤ 45 1 2 Y3v⇤ 5 ME = 3Y T 1 v⇤ 45 1 2 Y T 3 v⇤ 5 (Y1)ij10i5j45⇤ (Y3)ij10i5j5⇤ h4515 1 i = h4525 2 i = h4535 3 i = v45/ p 2 E† RDLMdiag D Mdiag E ET L D⇤ R = 4Y1v45 h55 i = v5/ p 2 |v5|2 /2 + 12|v45|2 = v2 t ¯t (g 2)µ 45 2 126 &
  • 9. *H. Georgi and S.L. Glashow (1974). WHAT GOES WRONG WITH SU(5)?*
  • 10. FERMION MASSES* v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6 *See talk by Borut Bajc.
  • 11. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 12. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 13. FERMION MASSES v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 1 5 T ⇤ 1 |v5|2 /2 + 12|v45|2 = v2 v = 246 GeV Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 p 5 5 T Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 v⇤ 45⇤ MD = 1 2 Y 5 v⇤ 5 ME = 3Y 5 T v⇤ 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 p 10 10 T 45 ME = 1 2 Y 5 T v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v45 MU = p 2(Y 10 + Y 10 T )v5 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, MD 10+1 ⇥ 10+1 = 5 +2 45 +2 : MD 10+1 ⇥ 5 3 = 5 2 45 2 : MU 3 3 6 6
  • 14. NOTATION (MASS MATRICES AND UNITARY TRANSFORMATIONS) UP-TYPE QUARKS, DOWN-TYPE QUARKS AND CHARGED LEPTONS: UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2
  • 15. *H. Georgi and S.L. Glashow (1974). IS UNIFICATION WRONG WITHIN SU(5)?* 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵
  • 16. *H. Georgi and S.L. Glashow (1974). 50 M 1012 GeV 24 = (⌃8, ⌃3, ⌃(3,2), ⌃(¯3,2), ⌃24) ✏abcuT a iCub j 3 3 c 10i 5i , i = 1, 2, 3 24 5 15 16i , i = 1, 2, 3 210 10 126 126 120 ⌃3 = (1, 3, 0) a = (1, 3, 1) b = (3, 2, 1/6) ADDRESSING NEUTRINO MASSES ALSO ADDRESSES UNIFICATION IN A SATISFACTORY MANNER! NEUTRINO MASSES WITHIN SU(5)?* ¶I. Doršner and P. Fileviez Pérez, Nucl. Phys. B 723:53-76, 2005, hep-ph/0504276. ‡B. Bajc and G. Senjanović, JHEP 0708 014, 2007, hep-ph/0612029. ‡¶
  • 17. *See talk by Andrea Romanino. UNIFICATION IN SU(5)* 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵
  • 18. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 19. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 20. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 21. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 22. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 23. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 24. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 25. 1 ↵ 1 1 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 ms(VUD)12 2 (p ! e+ ⇡0 ) ⇠ ↵2 (VUD)11[mu + 3 md] + 1 (V † UDU⇤ 2 Mdiag E U† 2 )11 2 UNIFICATION IN SU(5)* p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ 1 p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2 ↵ 1 3 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ *See talk by Andrea Romanino.
  • 26. NOTATION (MASS MATRICES AND UNITARY TRANSFORMATIONS) MAJORANA NEUTRINOS: QUALITATIVE ASPECTS OF NEUTRINO PHYSICS ARE NOT RELEVANT FOR DISCUSSION OF p-DECAY!
  • 27. HOW PREDICTIVE IS SU(5) FOR p-DECAY?* *H. Georgi and S.L. Glashow (1974).
  • 28. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 29. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 30. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*) a6 ⇠ Y 2 m2 LQ E = DC D = EC U = UC U† D = VCKM N = I E = I D = I
  • 31. EXPERIMENTAL INPUT (PROTON DECAY) 5 PROCESS ⌧p (1033 years) p ! K+ ¯⌫ 4.0 p ! ⇡+ ¯⌫ 0.025 p ! ⇡0 e+ 13.0 j = 1, 2, 3 j = 1, 2 La ⌘ (1, 2, 1/2)a = (⌫a ea)T eC a ⌘ (1, 1, 1)a Qa ⌘ (3, 2, 1/6)a = (ua da)T
  • 32. ≡ Yukawa coupling(s) ≡ Leptoquark mass *S. Weinberg, Phys. Rev. D 22:1694, 1980. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS*)
  • 33. IS AN ACCURATE LIMIT? KEY QUESTION…
  • 34. LEPTOQUARK IN SU(5) (p-DECAY MEDIATING SCALAR LEPTOQUARK) THERE IS ONLY ONE SET OF PROTON DECAY MEDIATING SCALARS IN THE MINIMAL SU(5) SETUP! 1 ↵ 1 1 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 (p ! µ+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)12m⌧ ms 2 (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 (VUD)11[mu + 3 4 md + 1 4 m⌧ ] 2 3 2 mb(VUD)13 2 (p ! µ+ ⇡0 ) ⇠ ↵2 (V ) [m + 3 m + 1 m ] 2 3 m (V ) 2
  • 35. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS) (3, 1, 1/3) 2 1/2 ✏abcY 5 ijuC T a i CdC b j ⇤ c ⌘ 2✏abc[Y 10 ij + Y 10 ji ]dT a iCub j c 2 1/2 Y 5 ijuT a iCej ⇤ a Y 1 ijdC T a i C⌫C j a2[Y 10 ij + Y 10 ji ]eC T i CuC a j a 2 1/2 Y 5 ijdT a iC⌫j ⇤ a SU(5) ⇥ U(1) Y 10 ij 10+1 i 10+1 j 50 2 (3, 1, 1/3) 2 ⌘ 12 1/2 ✏abc[Y 10 ij + Y 10 ji ]uT a iCdb j c 3 1/2 [Y 10 ij + Y 10 ji ]⌫C T i CdC a j a ↵, (= 1, 2) ↵ + < 4 L(= (1 5)/2) MU,D,E ! Mdiag U,D,E
  • 36. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS*) *P. Nath and P.F. Pérez, Phys. Rept. 441 (2007) 191-317. WE WILL TAKE NEUTRINOS TO BE MAJORANA PARTICLES IN WHAT FOLLOWS.
  • 37. SU(5) Y 1 ij10i1j10⇤ Y 5 ij5i5j10 (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) d = 6 PROTON DECAY OPERATORS (SCALAR CONTRIBUTIONS) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH (d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH (d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH (dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH (dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH (d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH (d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH (d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH (dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ i(= 1, 2, 3) ↵, (= 1, 2) ↵ + < 4 L(= (1 5)/2)
  • 38. p-DECAY WIDTHS (SCALAR CONTRIBUTIONS) (p ! ¯⌫i⇡+ ) = (m2 p m2 ⇡+ )2 32⇡f2 ⇡m3 p |↵ a(d1, dC 1 , ⌫i) + a(d1, d1, ⌫i)|2 (1 + D + F)2 (3, 1, 1/3) (3, 3, 1/3) (3, 1, 4/3) (3, 1, 2/3) SU(5) Y 10 ij 10i10j50 (3, 1, 1/3) 12 1/2 ✏abc[Y 10 ij + Y 10 ji ]dT a iCub j c ⌧ ⇠ 1 m > 1.0 ⇥ 1012 ✓ ↵ 0.0112 GeV3 ◆1/2 GeV (p ! ⇡+ ¯⌫) (p ! K+ ¯⌫) = 9.0 1 ⌧ ⌘ ⌧ ⇠ 1 PARTIAL LIFETIME
  • 39. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS) SU(5) ⇥ U(1) Y 1 ij10+1 i 1+5 j 10⇤ 6 Y 5 ij5i 5j 10+6 (3, 1, 2/3)+6 ⌘ Y 1 ijdC T a i CeC j ⇤ a 2 1/2 ✏abcY 5 ijuC T a i CuC b j c Y 5 = Y 5 T a(d↵, e ) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (UT Y 5 E)1 a(d↵, eC ) = 4 m2 (UT (Y 10 + Y 10 T )D)1↵ (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(dC ↵ , e ) = 1 2m2 (D† CY 5 † U⇤ C)↵1 (UT Y 5 E)1 a(dC ↵ , eC ) = p 2 m2 (D† CY 5 † U⇤ C)↵1 (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(d↵, d , ⌫i) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (DT Y 5 N) i a(d↵, dC , ⌫i) = 1 2m2 (D† CY 5 † U⇤ C) 1 (DT Y 5 N)↵i a(d↵, dC , ⌫C i ) = 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (N† CY 1 † D⇤ C)i a(dC ↵ , dC , ⌫C i ) = 1 p 2m2 (D† CY 5 † U⇤ C) 1 (N† CY 1 † D⇤ C)i↵
  • 40. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) SU(5) ⇥ U(1) Y 1 ij10+1 i 1+5 j 10⇤ 6 Y 5 ij5i 5j 10+6 (3, 1, 2/3)+6 ⌘ Y 1 ijdC T a i CeC j ⇤ a 2 1/2 ✏abcY 5 ijuC T a i CuC b j c Y 5 = Y 5 T a(d↵, e ) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (UT Y 5 E)1 a(d↵, eC ) = 4 m2 (UT (Y 10 + Y 10 T )D)1↵ (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(dC ↵ , e ) = 1 2m2 (D† CY 5 † U⇤ C)↵1 (UT Y 5 E)1 a(dC ↵ , eC ) = p 2 m2 (D† CY 5 † U⇤ C)↵1 (E† C(Y 10 + Y 10 T )† U⇤ C) 1 a(d↵, d , ⌫i) = p 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (DT Y 5 N) i a(d↵, dC , ⌫i) = 1 2m2 (D† CY 5 † U⇤ C) 1 (DT Y 5 N)↵i a(d↵, dC , ⌫C i ) = 2 m2 (UT (Y 10 + Y 10 T )D)1↵ (N† CY 1 † D⇤ C)i a(dC ↵ , dC , ⌫C i ) = 1 p 2m2 (D† CY 5 † U⇤ C) 1 (N† CY 1 † D⇤ C)i↵ *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
  • 41. d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979). 1 E = DC D = EC U = UC N = I U† D = VCKM m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV E = DC D = EC U = UC U† D = VCKM N = I E = I D = I m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d E = DC D = EC U = UC U† D = VCKM N = I E = I D = I m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV
  • 42. MINIMAL SU(5) IS VERY PREDICTIVE BECAUSE IT IS NOT VIABLE! d = 6 PROTON DECAY COEFFICIENTS (SCALAR CONTRIBUTIONS*) *R.N. Mohapatra, Phys. Rev. Lett. 43, 893 (1979).
  • 43. MINIMAL VIABLE SU(5) (CHARGED FERMION MASSES) 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ 1 ⇤ ⌘ ✏↵ ⌘Yij 10↵ i 10j 5⌘ Yij 10↵ i 5j 5⇤ ↵ Yij 10↵ i 24 ⇤ 5j 5⇤ ↵ X i (DT YDN)↵i(DT YDN)⇤ i = 1 v2 5 ((Mdiag D )2 )↵ X i (DT YU N)↵i(DT YU N)⇤ i = 4 v2 5 (V T UD(Mdiag U )2 V ⇤ UD)↵ CUTOFF Y 10 ij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 T v⇤ 45⇤ MD = 1 2 Y 5 T v⇤ 5 ME = 3Y 5 v⇤ 45 ME = 1 2 Y 5 v⇤ 5 Yij 10i10j45 Y 5 ij10i5j45⇤ Y 10 ij 10i10j5 Y 5 ij10i5j5⇤ MD = Y 5 T v⇤ 45⇤ MD = 1 2 Y 5 T v⇤ 5 ME = 3Y 5 v⇤ 45 ME = 1 2 Y 5 v⇤ 5 MU = 2 p 2(Y 5 Y 5 T )v MU = p 2(Y 10 + Y 10 T )v 10 ⇥ 10 = 5 45 : MU 10 ⇥ 5 = 5 45 : ME, M 10+1 ⇥ 10+1 = 5 +2 45 +2
  • 44. PREDICTIONS* (MINIMAL VIABLE SU(5)) (3, 1, 2/3) ⌘ Y 1 ijuC T a i C⌫C j ⇤ a 2 1/2 ✏abcY 5 ijdC T a i CdC b j c Y 5 = Y 5 T OH(d↵, e ) = a(d↵, e ) uT L C 1 d↵ uT L C 1 e OH(d↵, eC ) = a(d↵, eC ) uT L C 1 d↵ eC† L C 1 uC⇤ OH(dC ↵ , e ) = a(dC ↵ , e ) dC ↵ † L C 1 uC⇤ uT L C 1 e OH(dC ↵ , eC ) = a(dC ↵ , eC ) dC ↵ † L C 1 uC⇤ eC† L C 1 uC⇤ OH(d↵, d , ⌫i) = a(d↵, d , ⌫i) uT L C 1 d↵ dT L C 1 ⌫i OH(d↵, dC , ⌫i) = a(d↵, dC , ⌫i) dC† L C 1 uC⇤ dT ↵ L C 1 ⌫i OH(d↵, dC , ⌫C i ) = a(d↵, dC , ⌫C i ) uT L C 1 d↵ ⌫C i † L C 1 dC⇤ OH(dC ↵ , dC , ⌫C i ) = a(dC ↵ , dC , ⌫C i ) dC† L C 1 uC⇤ ⌫C i † L C 1 dC ↵ ⇤ *I. Doršner, S. Fajfer and N. Košnik, Phys. Rev. D 86:015013, 2012, 1204.0674.
  • 45. PREDICTIONS* (MINIMAL VIABLE SU(5)) UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 *I. Doršner, Phys. Rev. D 86:055009, 2012, 1206.5998.
  • 46. PREDICTIONS (MINIMAL VIABLE SU(5))UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ MU = MT U U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A 2
  • 47. PREDICTIONS (MINIMAL VIABLE SU(5)) a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2 ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A 5 a(dj, dC k , ⌫i) = 2 m2 v2 5 (VUDMdiag D )1k(DT MDN)ji X i=1,2,3 (DT MDN)↵i(DT MDN)⇤ i = (Mdiag 2 D )↵ MU = MT U U† D ⌘ VUD U = UCK0 (K0)11 = ei 5 = 0 @ H 1 A (p ! e+ ⇡0 ) ⇠ ↵2 v4 5m4 3 8 (VUD)11(VUD)13m⌧ mb 2
  • 48. PREDICTIONS (MINIMAL VIABLE SU(5)) p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 a(dj, dk, ⌫i) = 2 m2 v2 5 (Mdiag U K0VUD)1j(DT MDN)ki a(dj, dC , ⌫i) = 2 (VUDMdiag )1k(DT MDN)ji
  • 49. PREDICTIONS (MINIMAL VIABLE SU(5)) 3 2 1 0 1 2 3 1.2 1.4 1.6 1.8 2.0 2.2 Φ m1011 GeV p K Ν
  • 50. PREDICTIONS (MINIMAL VIABLE SU(5)) ut of the way we are ready to proton decay mediating scalar o in the next section. AY LEPTOQUARK scalar that contributes to pro- imensional scalar representa- number violating dimension- es are [8] L C−1 dj dT k L C−1 νi, C k † L C−1 uC∗ dT j L C−1 νi, 1, 2) (j + k < 4) represent γ5)/2. Our notation is such for the d (s) quark. The color tensor in the SU(3) space is i) operators contribute exclu- with anti-neutrinos in the fi- ents for the p → π+ ¯ν (p → i=1,2,3 D Clearly, the lepton mixing matrix does not affect proton decay signatures through scalar exchange. It is also clear that the p → π+ ¯ν decay rate is significantly suppressed compared to the p → K+ ¯ν one. The suppression factor, as inferred from Eq. (11), is proportional to (md/ms)2 . For the decay widths for p → π+ ¯ν and p → K+ ¯ν channels we find Γp→π+ ¯ν = Cπ+ A (m2 u + m2 d + 2mumd cos φ)m2 d, Γp→K+ ¯ν ≈ CK+ A (m2 u + m2 d + 2mumd cos φ)m2 s, where we neglect terms suppressed by either (md/ms)2 or |(VUD)12|2 in the expression for Γp→K+ ¯ν . Here, A = 4|α|2 |(VUD)11|2 /v4 , eiφ = (K0)11 and we introduce CK+ = (m2 p − m2 K+ )2 32πf2 πm3 p 1 + mp 3mΛ (D + 3F) 2 . (12) After we insert all low-energy parameters we find Γp→π+ ¯ν /Γp→K+ ¯ν = 10−2 . (13) m > 2.2 ⇥ 1011 ✓ |↵| 0.0112 GeV3 ◆1/2 GeV m > 2.2 ⇥ 1011 GeV p!⇡+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 d p!K+ ¯⌫ ⇠ (m2 u + m2 d + 2mumd cos )m2 s UT MU UC = Mdiag U DT MDDC = Mdiag D ET MEEC = Mdiag E ↵ 1 1 ↵ 1 2
  • 51. CONCLUSIONS Predictions of the minimal viable version of SU(5) for the two-body p-decay modes induced through scalar leptoquark exchange exhibit minimal (one-phase only) model dependence for p → K+ ν and p → π+ ν channels. There exists an accurate limit on the mass of the scalar leptoquark. The ratio of p-decay widths for channels with π+ and K+ in the final state is phase independent and predicts strong suppression of the former width with respect to the latter one.