Dragoljub D. Dimitrijevic, Neven Bilic,
Goran Djordjevic, and Milan Milosevic
FSM, University of Nis, Serbia and RBI, Zagreb, Croatia
Tachyon Inflation in the RSII
Framework
SEENET-MTP Balkan Workshop BW2018:
Field Theory and the Early Universe
June 10-14, 2018, Niš, Serbia
1 Introduction
2 Tachyon field cosmology
3 Tachyon inflation in an AdS braneworld
4 Final remarks
Introduction
• We study (real) scalar field in cosmological context.
• General Lagrangian action:
• Lagrangian (Lagrangian density) of the standard form:
• Non-standard Lagrangian:
( , ) ( ) 1 2 ( )tach T X V T X T   
( , ) ( ) ( )X V      
4
( ( ), )S d x g X    
1
2
X g T T
   
Introduction
• The action:
• In cosmology, scalar fields can be connected with a perfect
fluid which describes (dominant) matter in the Universe.
• Components of the energy-momentum tensor:
4
( , )S d x g X T 
2 S
T
gg
 


 

( )T P u u Pg     
Introduction
• Pressure, matter density and velocity 4-vector, respectively:
( , ) ( , )P X T X T
( , ) 2 ( , )X T X X T
X


 

2
T
u
X




( )T P u u Pg     
Introduction
• Total action: term which describes gravity (Ricci scalar,
Einstein-Hilbert action) plus term that describes cosmological
fluid (scalar field Lagrangian):
• Einstein equations:
 4
( , )S d x g R X T  
1
2
R Rg T   
Tachyon field cosmology
• Tachyon lagrangian:
• EoM:
( , ) ( ) 1tach T X V T g T T
     
2
2
1
(1 ( ) )
1 ( ) ( )
T T dV
g T T T
T V T dT
 

 
  
       
  
Tachyon field cosmology
• Tachyon lagrangian:
• Friedmann equations for spatially homogenous scalar field:
2
2
2 2 1/2
1
3 (1 )Pl
a V
H
a M T
( , ) ( ) 1tach T X V T g T T
     
2
3 0
1
T V
HT
VT
Tachyon field cosmology
• Rescaling:
• EoM:
• Hubble parameter rescaling:
0
T
x
T 0
1 ( )
( )
T V x
U x V
T 0
t
t
3 2
0
'( ) '( )
3 3 0
( ) ( )o
U x U x
x HT x x HT x
U x U x
0
H T H
Tachyon field cosmology
• Dimensionless equations:
2
2 0
2
2
2 3/2
0
( )
3 1
(1 ) ( )
3 ( )(1 ) 0
( )
X U x
H
x
x dU x
x X U x x x
U x dx
2 4
0
0 2 3
,
(2 )
s
Pl s
T M
X
M g
The Inflation
• Slow-roll regime, slow-roll parameters:
• Number of e-folds:
*
1 0
ln | |
, 0,i
i
d H
i
dN H
1 2 12
2
1 2
1
, 2
3
, 2
2
H H
H HH
x
x
Hx
( ) ( )
e
i
t
t
N t H t dt
The Inflation
• Number of e-folds:
• The scalar spectral index:
• The tensor-to-scalar ratio:
2
2
0 1
( )
( ) , where ( ) 1
| ( ) |
e
i
x
e
x
U x
N x X dx x
U x
1
16 ( )i
r x
1 2
1 2 ( ) ( )s i i
n x x
The Inflation
• Numerical results:
0
4
60 120, 1 12
1
( )
N X
U x
x
Tachyon inflation in an AdS braneworld
• Randall–Sundrum models (1999) imagine that the real world
is a higher-dimensional universe described by warped
geometry. More concretely, our universe is a five-dimensional
anti-de Sitter space and the elementary particles except for the
graviton are localized on a (3+1)-dimensional brane(s).
• A simple cosmological model of this kind is based on the RSII
model.
Tachyon inflation in an AdS braneworld
• Cosmology on the brane is obtained by allowing the brane to
move in the bulk. Equivalently, the brane is kept fixed at z=0
while making the metric in the bulk time dependent.
• The fluctuation of the interbrane distance implies the existence
of the radion.
• Radion – a massless scalar field that causes a distortion of the
bulk geometry.
Tachyon inflation in an AdS braneworld
• The bulk spacetime of the extended RSII model in Fefferman-
Graham coordinates is described by the metric
• Inverse of the AdS curvature radius – k
• Radion field –
• Fifth coordinate – z
 
 
2 2 2 2
(5) 22 2 2 2
1 1
1 ( )
1 ( )
a b
abds G dX dX k z x g dx dx dz
k z k z x
  


 
    
  
( )x
Tachyon inflation in an AdS braneworld
• Add dynamical 3-brane, i.e. tachyon field (in terms of induced
metric).
• The action, after integrating out fifth coordinate z:
• Radion field (canonical) –
• Tachyon field –
, ,4 4 2 2 2
, , 4 4 2 2 3
1
(1 ) 1
16 2 (1 )
gR
S d x g g d x g k
G k k

 
 


 
  
           
    


 2
sinh 4 / 3 G  
Tachyon inflation in an AdS braneworld
• In the absence of radion – tachyon condenzate:
• Going back, lagrangian we are playing with:
(0) 4
br , ,4
1S d x g g
2 2
1 k   
2
, ,
, , 4 3
1
1
2
g
g

 
 


 
    

Tachyon inflation in an AdS braneworld
• Hubble expansion rate H in standard cosmology (without
brane):
• Hubble expansion rate H in RS cosmology:
8
3
a G
H
a

 
2
8 2
1
3 3
a G G
H
a k
  
   
 
Tachyon inflation in an AdS braneworld
• Hamilton’s equation:
3
3
H
H
Tachyon inflation in an AdS braneworld
• Dimensionless:
2 4
/ , / ( ),
/ ( )), , / ( )
h H k k
k k k
4
8 2
8 2
2 8 2
10 2
5 8 2
1 /
4 3 /
3
2 1 /
4 3 /
3
1 /
h
h




 


 

 
 

  
  
  
   
  
 
   




  


  

2 2
( ) 1
2 6
h p
N h
 
 
 
    
 

2 2
8 Gk 
Tachyon inflation in an AdS braneworld
• Slow-roll parameters:
• Observational parameters:
1 i 1 i 2 i
2
s 1 i 2 i 1 i 1 i 2 i 2 i 3 i
1
16 ( ) 1 ( ) ( )
6
8
1 2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( ) ( )
3
r C
n C C
  
      
 
    
  
        
  
22 2 2
1 2 4 4
2 12 2 2 2 2
2 2 4 4 4 4
8
1 1
6 12
8
1 1 1
12 4 6 6
Tachyon inflation in an AdS braneworld
• Some numerical results:
0
60 120, 1 12 and 0 0.5N
Final remarks
• The ns/r relation here is substantially different from the
standard one and is closer to the best observational value.
• The model is based on the brane dynamics which results in a
definite potential with one free parameter only.
• We have analized the simplest tachyon model. In principle, the
same mechanism could lead to a more general tachyon
potential if the AdS5 background metric is deformed by the
presence of matter in the bulk.
References
• N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic and M. Milosevic, Int. J. Mod.
Phys. A32, 1750039 (2017).
• D.A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527 (2004).
• A. Sen, JHEP 04, 048 (2002).
• L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
• G.S. Djordjevic, D.D. Dimitrijevic and M. Milosevic, Rom. Rep. Phys. 68, No.
1, 1 (2016).
• M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Serb.
Astron. J. 192, 1-8 (2016).
• N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, M. Stojanovic, AIP
Conf. Proc. 1722, 050002 (2016).
• N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys.
12 (2014) 147–159.
• This work is supported by the SEENET-MTP
Network under the ICTP grant NT-03.
• The financial support of the Serbian Ministry for
Education and Science, Projects OI 174020 and OI
176021 is also kindly acknowledged.
T H A N K Y O U!
Х В А Л А !

Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"

  • 1.
    Dragoljub D. Dimitrijevic,Neven Bilic, Goran Djordjevic, and Milan Milosevic FSM, University of Nis, Serbia and RBI, Zagreb, Croatia Tachyon Inflation in the RSII Framework SEENET-MTP Balkan Workshop BW2018: Field Theory and the Early Universe June 10-14, 2018, Niš, Serbia
  • 2.
    1 Introduction 2 Tachyonfield cosmology 3 Tachyon inflation in an AdS braneworld 4 Final remarks
  • 3.
    Introduction • We study(real) scalar field in cosmological context. • General Lagrangian action: • Lagrangian (Lagrangian density) of the standard form: • Non-standard Lagrangian: ( , ) ( ) 1 2 ( )tach T X V T X T    ( , ) ( ) ( )X V       4 ( ( ), )S d x g X     1 2 X g T T    
  • 4.
    Introduction • The action: •In cosmology, scalar fields can be connected with a perfect fluid which describes (dominant) matter in the Universe. • Components of the energy-momentum tensor: 4 ( , )S d x g X T  2 S T gg        ( )T P u u Pg     
  • 5.
    Introduction • Pressure, matterdensity and velocity 4-vector, respectively: ( , ) ( , )P X T X T ( , ) 2 ( , )X T X X T X      2 T u X     ( )T P u u Pg     
  • 6.
    Introduction • Total action:term which describes gravity (Ricci scalar, Einstein-Hilbert action) plus term that describes cosmological fluid (scalar field Lagrangian): • Einstein equations:  4 ( , )S d x g R X T   1 2 R Rg T   
  • 7.
    Tachyon field cosmology •Tachyon lagrangian: • EoM: ( , ) ( ) 1tach T X V T g T T       2 2 1 (1 ( ) ) 1 ( ) ( ) T T dV g T T T T V T dT                   
  • 8.
    Tachyon field cosmology •Tachyon lagrangian: • Friedmann equations for spatially homogenous scalar field: 2 2 2 2 1/2 1 3 (1 )Pl a V H a M T ( , ) ( ) 1tach T X V T g T T       2 3 0 1 T V HT VT
  • 9.
    Tachyon field cosmology •Rescaling: • EoM: • Hubble parameter rescaling: 0 T x T 0 1 ( ) ( ) T V x U x V T 0 t t 3 2 0 '( ) '( ) 3 3 0 ( ) ( )o U x U x x HT x x HT x U x U x 0 H T H
  • 10.
    Tachyon field cosmology •Dimensionless equations: 2 2 0 2 2 2 3/2 0 ( ) 3 1 (1 ) ( ) 3 ( )(1 ) 0 ( ) X U x H x x dU x x X U x x x U x dx 2 4 0 0 2 3 , (2 ) s Pl s T M X M g
  • 11.
    The Inflation • Slow-rollregime, slow-roll parameters: • Number of e-folds: * 1 0 ln | | , 0,i i d H i dN H 1 2 12 2 1 2 1 , 2 3 , 2 2 H H H HH x x Hx ( ) ( ) e i t t N t H t dt
  • 12.
    The Inflation • Numberof e-folds: • The scalar spectral index: • The tensor-to-scalar ratio: 2 2 0 1 ( ) ( ) , where ( ) 1 | ( ) | e i x e x U x N x X dx x U x 1 16 ( )i r x 1 2 1 2 ( ) ( )s i i n x x
  • 13.
    The Inflation • Numericalresults: 0 4 60 120, 1 12 1 ( ) N X U x x
  • 14.
    Tachyon inflation inan AdS braneworld • Randall–Sundrum models (1999) imagine that the real world is a higher-dimensional universe described by warped geometry. More concretely, our universe is a five-dimensional anti-de Sitter space and the elementary particles except for the graviton are localized on a (3+1)-dimensional brane(s). • A simple cosmological model of this kind is based on the RSII model.
  • 15.
    Tachyon inflation inan AdS braneworld • Cosmology on the brane is obtained by allowing the brane to move in the bulk. Equivalently, the brane is kept fixed at z=0 while making the metric in the bulk time dependent. • The fluctuation of the interbrane distance implies the existence of the radion. • Radion – a massless scalar field that causes a distortion of the bulk geometry.
  • 16.
    Tachyon inflation inan AdS braneworld • The bulk spacetime of the extended RSII model in Fefferman- Graham coordinates is described by the metric • Inverse of the AdS curvature radius – k • Radion field – • Fifth coordinate – z     2 2 2 2 (5) 22 2 2 2 1 1 1 ( ) 1 ( ) a b abds G dX dX k z x g dx dx dz k z k z x                ( )x
  • 17.
    Tachyon inflation inan AdS braneworld • Add dynamical 3-brane, i.e. tachyon field (in terms of induced metric). • The action, after integrating out fifth coordinate z: • Radion field (canonical) – • Tachyon field – , ,4 4 2 2 2 , , 4 4 2 2 3 1 (1 ) 1 16 2 (1 ) gR S d x g g d x g k G k k                                 2 sinh 4 / 3 G  
  • 18.
    Tachyon inflation inan AdS braneworld • In the absence of radion – tachyon condenzate: • Going back, lagrangian we are playing with: (0) 4 br , ,4 1S d x g g 2 2 1 k    2 , , , , 4 3 1 1 2 g g               
  • 19.
    Tachyon inflation inan AdS braneworld • Hubble expansion rate H in standard cosmology (without brane): • Hubble expansion rate H in RS cosmology: 8 3 a G H a    2 8 2 1 3 3 a G G H a k         
  • 20.
    Tachyon inflation inan AdS braneworld • Hamilton’s equation: 3 3 H H
  • 21.
    Tachyon inflation inan AdS braneworld • Dimensionless: 2 4 / , / ( ), / ( )), , / ( ) h H k k k k k 4 8 2 8 2 2 8 2 10 2 5 8 2 1 / 4 3 / 3 2 1 / 4 3 / 3 1 / h h                                                    2 2 ( ) 1 2 6 h p N h               2 2 8 Gk 
  • 22.
    Tachyon inflation inan AdS braneworld • Slow-roll parameters: • Observational parameters: 1 i 1 i 2 i 2 s 1 i 2 i 1 i 1 i 2 i 2 i 3 i 1 16 ( ) 1 ( ) ( ) 6 8 1 2 ( ) ( ) 2 ( ) 2 ( ) ( ) ( ) ( ) 3 r C n C C                                 22 2 2 1 2 4 4 2 12 2 2 2 2 2 2 4 4 4 4 8 1 1 6 12 8 1 1 1 12 4 6 6
  • 23.
    Tachyon inflation inan AdS braneworld • Some numerical results: 0 60 120, 1 12 and 0 0.5N
  • 24.
    Final remarks • Thens/r relation here is substantially different from the standard one and is closer to the best observational value. • The model is based on the brane dynamics which results in a definite potential with one free parameter only. • We have analized the simplest tachyon model. In principle, the same mechanism could lead to a more general tachyon potential if the AdS5 background metric is deformed by the presence of matter in the bulk.
  • 25.
    References • N. Bilic,D.D. Dimitrijevic, G.S. Djordjevic and M. Milosevic, Int. J. Mod. Phys. A32, 1750039 (2017). • D.A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527 (2004). • A. Sen, JHEP 04, 048 (2002). • L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). • G.S. Djordjevic, D.D. Dimitrijevic and M. Milosevic, Rom. Rep. Phys. 68, No. 1, 1 (2016). • M. Milosevic, D.D. Dimitrijevic, G.S. Djordjevic, M.D. Stojanovic, Serb. Astron. J. 192, 1-8 (2016). • N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, M. Stojanovic, AIP Conf. Proc. 1722, 050002 (2016). • N. Bilic, G.B. Tupper, AdS braneworld with backreaction, Cent. Eur. J. Phys. 12 (2014) 147–159.
  • 26.
    • This workis supported by the SEENET-MTP Network under the ICTP grant NT-03. • The financial support of the Serbian Ministry for Education and Science, Projects OI 174020 and OI 176021 is also kindly acknowledged.
  • 27.
    T H AN K Y O U! Х В А Л А !