SlideShare a Scribd company logo
1 of 49
Download to read offline
Utilizando el metodo de sustitucion:
1. ∫
√π‘₯ arctan(√π‘₯3)
1 + π‘₯3
𝑑π‘₯
SoluciΓ³n:
Sea 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›ΰ΅«βˆšπ‘₯3ΰ΅― β†’ 𝑑𝑒 =
1
1+π‘₯3
3
2
√π‘₯ 𝑑π‘₯
β†’
2
3
𝑑𝑒 =
1
1+π‘₯3 √π‘₯ 𝑑π‘₯
Luego, reemplazando:
∫
√π‘₯ arctan࡫√π‘₯3ΰ΅―
1 + π‘₯3
𝑑π‘₯ =
2
3
∫ 𝑒 𝑑𝑒
=
2
3
𝑒2
2
+ 𝑐1
=
1
3
(π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›α‰€ΰΆ₯π‘₯3 )
ቁ
2
+ 𝐢
∴ ∫
√π‘₯ + arctan࡫√π‘₯3ΰ΅―
1 + π‘₯3
𝑑π‘₯ =
1
3
(π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ቀΰΆ₯π‘₯3 )
ቁ
2
+ 𝐢
2. ∫
𝑑π‘₯
√(1 + π‘₯2) 𝑙𝑛(π‘₯ + ΰΆ₯1 + π‘₯2 )
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea 𝑒 = 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― β†’ 𝑑𝑒 =
1
π‘₯+√1+π‘₯2
ቀ1 +
2π‘₯
2√1+π‘₯2
ቁ 𝑑π‘₯
𝑑𝑒 =
1
π‘₯ + √1 + π‘₯2
(1 +
π‘₯
√1 + π‘₯2
) 𝑑π‘₯
𝑑𝑒 =
1
π‘₯ + √1 + π‘₯2
ቆ
√1 + π‘₯2 + π‘₯
√1 + π‘₯2
ቇ 𝑑π‘₯
𝑑𝑒 =
√
1
1 + π‘₯2
𝑑π‘₯
π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘›π‘‘π‘œ π‘π‘Ÿπ‘œπ‘π‘–π‘’π‘‘π‘Žπ‘‘π‘’π‘  𝑑𝑒 π‘Ÿπ‘Žπ‘–π‘π‘’π‘  𝑒𝑛 𝑒𝑙 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ:
∫
𝑑π‘₯
√(1 + π‘₯2) 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅―
= ∫
𝑑π‘₯
ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅―
Sustituimos en la integral:
∫
𝑑π‘₯
ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅―
= ∫
𝑑𝑒
βˆšπ‘’
= 2βˆšπ‘’ + 𝐢
= 2βˆšπ‘™π‘› ቀπ‘₯ + ΰΆ₯1 + π‘₯2 ቁ + 𝐢
∴ ∫
𝑑π‘₯
ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅―
= 2βˆšπ‘™π‘› ቀπ‘₯ + ΰΆ₯1 + π‘₯2 ቁ + 𝐢
3. ∫
𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4
π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯
π‘π‘œπ‘ 3π‘₯
𝑑π‘₯
SoluciΓ³n:
π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™:
∫
𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4
π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯
π‘π‘œπ‘ 3π‘₯
𝑑π‘₯ = ∫
𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4
π‘₯
π‘π‘œπ‘ 3π‘₯
𝑑π‘₯ βˆ’ ∫
π‘‘π‘Žπ‘› π‘₯
π‘π‘œπ‘ 3π‘₯
𝑑π‘₯
= ∫ 𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘  π‘₯ 𝑑π‘₯ βˆ’ ∫
𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4π‘₯
𝑑π‘₯
π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = 𝑠𝑒𝑛 π‘₯ β†’ 𝑑𝑒 = π‘π‘œπ‘  π‘₯ 𝑑π‘₯
π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑧 = π‘π‘œπ‘  π‘₯ β†’ 𝑑𝑧 = βˆ’π‘ π‘’π‘› π‘₯ 𝑑π‘₯
β†’ βˆ’π‘‘π‘§ = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  𝑒𝑛 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™:
∫ 𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘  π‘₯ 𝑑π‘₯ βˆ’ ∫
𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4π‘₯
𝑑π‘₯ = ∫ 𝑒𝑒
𝑑𝑒 + ∫
𝑑𝑧
𝑧4
= ∫ 𝑒𝑒
𝑑𝑒 + ∫ π‘§βˆ’4
𝑑𝑧
= 𝑒𝑒
+ 𝑐1 βˆ’
π‘§βˆ’3
3
+ 𝑐2
= 𝑒𝑒
βˆ’
1
3𝑧3
+ 𝐢
= 𝑒𝑠𝑒𝑛 π‘₯
βˆ’
1
3π‘π‘œπ‘ 3 π‘₯
+ 𝐢
∴ ∫
𝑒𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘ 4
π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯
π‘π‘œπ‘ 3π‘₯
𝑑π‘₯ = 𝑒𝑠𝑒𝑛 π‘₯
βˆ’
1
3π‘π‘œπ‘ 3 π‘₯
+ 𝐢
π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  𝑒𝑛 π‘‘π‘œπ‘  π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™π‘’π‘ :
∫
𝑙𝑛(3π‘₯2
+ 3)π‘₯
βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯ = ∫
𝑙𝑛(3π‘₯2
+ 3)π‘₯
1 + π‘₯2
𝑑π‘₯ + ∫
βˆ’4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯
= ∫
π‘₯ 𝑙𝑛 3(π‘₯2
+ 1)
1 + π‘₯2
𝑑π‘₯ βˆ’ 4 ∫
𝑒5π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯
π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = ln 3(π‘₯2
+ 1) β†’ 𝑑𝑒 =
6π‘₯
3(π‘₯2 + 1)
𝑑π‘₯
𝑑𝑒 =
2π‘₯
(π‘₯2 + 1)
𝑑π‘₯
𝑑𝑒
2
=
π‘₯
(π‘₯2 + 1)
𝑑π‘₯
π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑣 = 5arcta n π‘₯ β†’ 𝑑𝑣 =
5
1 + π‘₯2
𝑑π‘₯
𝑑𝑣
5
=
1
1 + π‘₯2
𝑑π‘₯
π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  𝑒𝑛 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™:
∫
𝑙𝑛(3π‘₯2
+ 3)π‘₯
βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯ = ∫ 𝑒
𝑑𝑒
2
βˆ’ 4 ∫ 𝑒𝑣
𝑑𝑣
5
=
1
2
∫ 𝑒 𝑑𝑒 βˆ’
4
5
∫ 𝑒𝑣
𝑑𝑣
=
1
2
𝑒2
2
+ 𝑐1 βˆ’
4
5
𝑒𝑣
+ 𝑐2
=
1
4
𝑒2
βˆ’
4
5
𝑒𝑣
+ 𝑐3
=
1
4
ln2
3(π‘₯2
+ 1) βˆ’
4
5
𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
+ 𝐢
∴ ∫
𝑙𝑛(3π‘₯2
+ 3)π‘₯
βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯ =
1
4
ln2
3(π‘₯2
+ 1) βˆ’
4
5
𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
+ 𝐢
4. ∫
𝑙𝑛(3π‘₯2
+ 3)π‘₯
βˆ’ 4 π‘’π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯
1 + π‘₯2
𝑑π‘₯
SoluciΓ³n:
5. ∫
2π‘₯3
+ π‘₯2
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘‘π‘’π‘Ÿπ‘π‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = 2π‘₯2
βˆ’ π‘₯ + 4 β†’ 𝑑𝑒 = (4π‘₯ βˆ’ 1)𝑑π‘₯ (βˆ—βˆ—βˆ—)
∫
3π‘₯ + 4
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ = ∫
3 ቀπ‘₯ +
4
3
ቁ
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ = 3 ∫
π‘₯ +
4
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
3 ∫
π‘₯ +
4
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
4
4
=
3
4
∫
4π‘₯ +
16
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
=
3
4
∫
4π‘₯ +
16
3
+ 1 βˆ’ 1
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
=
3
4
∫
4π‘₯ βˆ’ 1 +
19
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
SoluciΓ³n:
Simplificaremos mediante divisiΓ³n de polinomios:
( 2π‘₯3
+ π‘₯2 ) ∢ (2π‘₯2
βˆ’ π‘₯ + 4) = π‘₯ + 1
βˆ’( 2π‘₯3
βˆ’ π‘₯2
+ 4π‘₯)
2π‘₯2
βˆ’ 4π‘₯
βˆ’( 2π‘₯2
βˆ’ π‘₯ + 4)
βˆ’3π‘₯ βˆ’ 4 Resto
Luego, reemplazando:
∫
2π‘₯3
+ π‘₯2
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ = ∫ (π‘₯ + 1 +
βˆ’3π‘₯ βˆ’ 4
2π‘₯2 βˆ’ π‘₯ + 4
) 𝑑π‘₯
π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™:
∫ (π‘₯ + 1 +
βˆ’3π‘₯ βˆ’ 4
2π‘₯2 βˆ’ π‘₯ + 4
) 𝑑π‘₯ = ∫ π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯ + ∫
βˆ’(3π‘₯ + 4)
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
=
π‘₯2
2
+ π‘₯ + 𝑐1 + 𝑐2 βˆ’ ∫
3π‘₯ + 4
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ (βˆ—βˆ—)
𝐴𝑛𝑑𝑒𝑠 𝑑𝑒 π‘Ÿπ‘’π‘Žπ‘™π‘–π‘§π‘Žπ‘Ÿ π‘™π‘Ž π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘π‘–π‘œπ‘› π‘Ÿπ‘’π‘Žπ‘™π‘–π‘§π‘Žπ‘‘π‘Ž π‘‘π‘’π‘π‘’π‘šπ‘œπ‘  π‘‘π‘Ÿπ‘Žπ‘π‘Žπ‘—π‘Žπ‘Ÿ π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™
π΄π‘šπ‘π‘™π‘–π‘“π‘–π‘π‘Žπ‘šπ‘œπ‘  π‘π‘œπ‘Ÿ 4 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ 𝑦 π‘™π‘’π‘’π‘”π‘œ π‘ π‘’π‘ π‘Žπ‘šπ‘Žπ‘šπ‘œπ‘  + 1 βˆ’ 1 para
π‘π‘œπ‘›π‘ π‘’π‘”π‘’π‘–π‘Ÿ 𝑒𝑙 𝑑𝑒 = (4π‘₯ βˆ’ 1)𝑑π‘₯
= 3 ∫
π‘₯ +
4
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™:
3
4
∫
4π‘₯ βˆ’ 1 +
19
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ =
3
4
∫
4π‘₯ βˆ’ 1
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ +
3
4
∫
19
3
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯
=
3
4
∫
4π‘₯ βˆ’ 1
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ +
3
4
19
3
∫
𝑑π‘₯
2π‘₯2 βˆ’ π‘₯ + 4
=
3
4
∫
4π‘₯ βˆ’ 1
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ +
19
4
∫
𝑑π‘₯
2π‘₯2 βˆ’ π‘₯ + 4
𝐸𝑛 π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  π‘™π‘Ž π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝑑𝑒 (βˆ—βˆ—βˆ—) 𝑦 π‘π‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž
π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ π‘Žπ‘Ÿπ‘šπ‘Žπ‘šπ‘œπ‘  π‘π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘œ 𝑑𝑒 π‘π‘–π‘›π‘œπ‘šπ‘–π‘œ:
=
3
4
∫
𝑑𝑒
𝑒
+
19
4
∫
𝑑π‘₯
2 ቀπ‘₯2 βˆ’
π‘₯
2
+ 2ቁ
=
3
4
ln | 𝑒 | + 𝑐3 +
19
8
∫
𝑑π‘₯
π‘₯2 βˆ’
π‘₯
2
+ 2
=
3
4
ln | 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
∫
𝑑π‘₯
π‘₯2 βˆ’
π‘₯
2
+ 2 +
1
16
βˆ’
1
16
=
3
4
ln | 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
∫
𝑑π‘₯
ቀπ‘₯ βˆ’
1
4ቁ
2
βˆ’
1
16 + 2
=
3
4
ln | 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
∫
𝑑π‘₯
ቀπ‘₯ βˆ’
1
4
ቁ
2
+
31
16
=
3
4
ln| 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
∫
𝑑π‘₯
ቀπ‘₯ βˆ’
1
4
ቁ
2
+ ቆ
√31
4
ቇ
2
=
3
4
ln | 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
1
√31
4
π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (
π‘₯ βˆ’
1
4
√31
4
) + 𝑐4
π‘‰π‘œπ‘™π‘£π‘–π‘’π‘›π‘‘π‘œ π‘Ž (βˆ—βˆ—) 𝑦 π‘Ÿπ‘’π‘’π‘šπ‘π‘™π‘Žπ‘§π‘Žπ‘›π‘‘π‘œ π‘™π‘œ π‘π‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘œ π‘Žπ‘›π‘‘π‘’π‘Ÿπ‘–π‘œπ‘Ÿπ‘šπ‘’π‘›π‘‘π‘’
=
π‘₯2
2
+ π‘₯ + 𝑐1 + 𝑐2 βˆ’ (
3
4
ln| 2π‘₯2
βˆ’ π‘₯ + 4 | + 𝑐3 +
19
8
1
√31
4
π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (
π‘₯ βˆ’
1
4
√31
4
) + 𝑐4)
=
π‘₯2
2
+ π‘₯ βˆ’
3
4
ln| 2π‘₯2
βˆ’ π‘₯ + 4 | βˆ’
19
2√31
π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (
4 ቀπ‘₯ βˆ’
1
4
ቁ
√31
) + 𝐢
∴ ∫
2π‘₯3
+ π‘₯2
2π‘₯2 βˆ’ π‘₯ + 4
𝑑π‘₯ =
π‘₯2
2
+ π‘₯ βˆ’
3
4
ln| 2π‘₯2
βˆ’ π‘₯ + 4 | βˆ’
19
2√31
π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (
4 ቀπ‘₯ βˆ’
1
4
ቁ
√31
) + 𝐢
∴ ∫
arctan(√π‘₯)
√π‘₯ + 2π‘₯2 + π‘₯3
𝑑π‘₯ = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2
√π‘₯ + 𝐢
6. ∫
arctan(√π‘₯)
√π‘₯ + 2π‘₯2 + π‘₯3
𝑑π‘₯
SoluciΓ³n:
Sea: 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›ΰ΅«βˆšπ‘₯ ΰ΅― β†’ 𝑑𝑒 =
1
1+π‘₯
1
2√π‘₯
𝑑π‘₯
β†’ 2𝑑𝑒 =
1
(1 + π‘₯)√π‘₯
𝑑π‘₯
Trabajamos el denominador de la integral para conseguir el du:
Por el mΓ©todo de sustituciΓ³n:
Sustituimos en la integral:
∫
arctan(√π‘₯)
√π‘₯ + 2π‘₯2 + π‘₯3
𝑑π‘₯ = ∫
arctan(√π‘₯)
ΰΆ₯π‘₯(1 + 2π‘₯ + π‘₯2)
𝑑π‘₯ = ∫
arctan(√π‘₯)
√π‘₯ √1 + 2π‘₯ + π‘₯2
𝑑π‘₯
= ∫
arctan(√π‘₯)
√π‘₯ ΰΆ₯(1 + π‘₯)2
𝑑π‘₯
= ∫
arctan(√π‘₯)
√π‘₯ (1 + π‘₯)
𝑑π‘₯
= ∫
arctan(√π‘₯)
√π‘₯ (1 + π‘₯)
𝑑π‘₯ = ∫ 𝑒 βˆ— 2𝑑𝑒
= 2
𝑒2
2
+ 𝐢
= 𝑒2
+ 𝐢
= ΰ΅«π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› √π‘₯ΰ΅―
2
+ 𝐢
= π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2
√π‘₯ + 𝐢
7. ∫
𝑑π‘₯
1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯
SoluciΓ³n:
Usamos la sustituciΓ³n universal o de Weierstrass:
𝑑 = π‘‘π‘Žπ‘›(
π‘₯
2
)
π‘π‘œπ‘  π‘₯ =
1 βˆ’ 𝑑2
1 + 𝑑2
; 𝑠𝑒𝑛 π‘₯ =
2𝑑
1 + 𝑑2
Despejando t para encontrar el 𝑑𝑑:
π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (𝑑) =
π‘₯
2
β†’ π‘₯ = 2π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (𝑑)
β†’ 𝑑π‘₯ =
2
1 + 𝑑2
𝑑𝑑
Sustituimos en la integral:
∫
𝑑π‘₯
1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯
= ∫
2
1 + 𝑑2 𝑑𝑑
1 βˆ’
2𝑑
1 + 𝑑2 +
1 βˆ’ 𝑑2
1 + 𝑑2
= ∫
2
1 + 𝑑2 𝑑𝑑
1 + 𝑑2 βˆ’ 2𝑑 + 1 βˆ’ 𝑑2
1 + 𝑑2
= ∫
2𝑑𝑑
2 βˆ’ 2𝑑
= 2 ∫
𝑑𝑑
βˆ’ 2(𝑑 βˆ’ 1)
= βˆ’ ∫
𝑑𝑑
(𝑑 βˆ’ 1)
= βˆ’ ln|𝑑 βˆ’ 1| + 𝐢
= βˆ’ ln |π‘‘π‘Žπ‘› ቀ
π‘₯
2
ቁ βˆ’ 1| + 𝐢
Importante:
Esta sustituciΓ³n se utiliza
generalmente para realizar
integrales en la cual veamos
funciones trigonomΓ©tricas en el
denominador
∴ ∫
𝑑π‘₯
1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯
= βˆ’ ln |π‘‘π‘Žπ‘› ቀ
π‘₯
2
ቁ βˆ’ 1| + 𝐢
∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
8. Determine la integral mediante el metodo de integracion por partes:
SoluciΓ³n:
∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
= ∫ 𝑒π‘₯
βˆ™
𝑒π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯
Utilizando el mΓ©todo de integraciΓ³n de partes:
𝑒 = 𝑒π‘₯
β†’ 𝑑𝑒 = 𝑒π‘₯
𝑑π‘₯
𝑑𝑣 =
𝑒π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯ β†’ 𝑣 = βˆ’2(1 βˆ’ 𝑒π‘₯ )
1
2 = βˆ’2√1 βˆ’ 𝑒π‘₯
Sustituimos:
∫ 𝑒π‘₯
βˆ™
𝑒π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯ = 𝑒π‘₯
βˆ— βˆ’2√1 βˆ’ 𝑒π‘₯ βˆ’ ∫ βˆ’2√1 βˆ’ 𝑒π‘₯ 𝑒π‘₯
𝑑π‘₯
= βˆ’2𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ + 2 ∫ 𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ 𝑑π‘₯
Resolvemos mediante el mΓ©todo de sustituciΓ³n la integral: ‫׬‬ 𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ 𝑑π‘₯
𝑧 = 1 βˆ’ 𝑒π‘₯
β†’ 𝑑𝑧 = 𝑒π‘₯
𝑑π‘₯
Sustituyendo, se tiene:
∫ 𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = ∫ βˆšπ‘§ 𝑑𝑧
= ∫ 𝑧
1
2 𝑑𝑧 =
𝑧
3
2
3
2
+ 𝐢 =
𝑧
3
2
3
2
+ 𝐢 =
2
3
ΰΆ₯𝑧3 + 𝐢 =
2
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
Luego,
∫ 𝑒π‘₯
βˆ™
𝑒π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯ = βˆ’2𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ + 2 ∫ 𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ 𝑑π‘₯
= βˆ’2𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ + 2
2
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
= βˆ’2𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ +
4
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
∫ 𝒖 𝒅𝒗 = 𝒖 𝒗 βˆ’ ∫ 𝒗 𝒅𝒖
∴ ∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
= βˆ’2𝑒π‘₯
√1 βˆ’ 𝑒π‘₯ +
4
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
9. ∫
𝑙𝑛 π‘₯
π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3
𝑑π‘₯
SoluciΓ³n:
Por propiedad de potencias:
∫
𝑙𝑛 π‘₯
π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3
𝑑π‘₯ = ∫
𝑙𝑛 π‘₯
ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅―
3 𝑑π‘₯
Utilizando el mΓ©todo de sustituciΓ³n:
𝑒 = π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1) β†’ 𝑑𝑒 = (π‘₯ βˆ™
1
π‘₯
+ 𝑙𝑛π‘₯ βˆ’ 1) 𝑑π‘₯
𝑑𝑒 = 𝑙𝑛 π‘₯ 𝑑π‘₯
Sustituimos en la integral:
∫
𝑙𝑛 π‘₯
ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅―
3 𝑑π‘₯ = ∫
𝑑𝑒
𝑒3
= ∫ π‘’βˆ’3
𝑑𝑒
=
π‘’βˆ’2
βˆ’2
+ 𝐢
= βˆ’
1
2
1
𝑒2
+ 𝐢
= βˆ’
1
2
1
ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅―
2 + 𝐢
∴ ∫
𝑙𝑛 π‘₯
π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3
𝑑π‘₯ = βˆ’
1
2
1
ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅―
2 + 𝐢
10. ∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 𝑒π‘₯
β†’ 𝑑𝑒 = 𝑒π‘₯
𝑑π‘₯
Sustituimos en la integral:
∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯ = ∫
𝑒 𝑑𝑒
√1 βˆ’ 𝑒
Utilizando nuevamente el mΓ©todo de sustituciΓ³n:
Sea: 𝑧 √
= 1 βˆ’ 𝑒 β†’ 𝑒 = 1 βˆ’ 𝑧2
𝑑𝑧 =
βˆ’1
2√1 βˆ’ 𝑒
𝑑𝑒 β†’ βˆ’2𝑑𝑧 =
1
√1 βˆ’ 𝑒
𝑑𝑒
Sustituimos en la integral:
∫
𝑒 𝑑𝑒
√1 βˆ’ 𝑒
= ∫ βˆ’2(1 βˆ’ 𝑧 )
2
𝑑𝑧
= βˆ’2 ∫ 𝑑𝑧 + 2 ∫ 𝑧2
= βˆ’2𝑧 + 2
𝑧3
3
+ 𝑐1
= βˆ’2√1 βˆ’ 𝑒 +
2
3
࡫√1 βˆ’ 𝑒࡯
3
+ 𝑐2
= βˆ’2√1 βˆ’ 𝑒 +
2
3
ΰΆ₯(1 βˆ’ 𝑒)3 + 𝑐2
= βˆ’2√1 βˆ’ 𝑒π‘₯ +
2
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
∴ ∫
𝑒2π‘₯
𝑑π‘₯
√1 βˆ’ 𝑒π‘₯
𝑑π‘₯ = βˆ’2√1 βˆ’ 𝑒π‘₯ +
2
3
ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 2 + tan3
π‘₯ β†’ 𝑑𝑒 = 3 tan2
π‘₯ sec2
π‘₯ 𝑑π‘₯
Sustituimos:
∫
18 tan2
x sec2
x
(2 + tan3 π‘₯)
𝑑π‘₯ = ∫
18𝑑𝑒
𝑒
= 18 ∫
𝑑𝑒
𝑒
= 18 ln|𝑒| + 𝐢
= 18 ln|2 + tan3
π‘₯| + 𝐢
∴ ∫
18 tan2
x sec2
x
(2 + tan3 π‘₯)
𝑑π‘₯ = 18 ln|2 + tan3
π‘₯| + 𝐢
11. ∫
18 tan2
x sec2
x
(2 + tan3 π‘₯)
𝑑π‘₯
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) β†’ 𝑑𝑒 = 2𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯
β†’
𝑑𝑒
2
= 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯
Sustituimos:
12. ∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯
∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ = ∫ βˆšπ‘’
𝑑𝑒
2
=
1
2
∫ βˆšπ‘’ 𝑑𝑒
=
1
2
𝑒
3
2
3
2
+ 𝐢
= 3 𝑒
3
2 + 𝐢
= 3 ΰ΅«1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1)ΰ΅―
3
2 + 𝐢
∴ ∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ = 3 ΰ΅«1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1)ΰ΅―
3
2 + 𝐢
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 5π‘₯ + 8 β†’ 𝑑𝑒 = 5𝑑π‘₯ β†’
𝑑𝑒
5
= 𝑑π‘₯
Sustituimos:
∫
𝑑x
√5π‘₯ + 8
= ∫
𝑑𝑒
βˆšπ‘’
= ∫ π‘’βˆ’
1
2𝑑𝑒 =
π‘’βˆ’
1
2
+1
βˆ’
1
2
+ 1
+ 𝐢 =
𝑒
1
2
1
2
+ 𝐢 = 2 𝑒
1
2 + 𝐢
= 2(5π‘₯ + 8)
1
2 + 𝐢
∴ ∫
𝑑x
√5π‘₯ + 8
= 2(5π‘₯ + 8)
1
2 + 𝐢
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea:
𝑒 =
𝑦3
18
βˆ’ 1 β†’ 𝑑𝑒 =
3𝑦2
18
𝑑𝑦 β†’
18𝑑𝑒
3
= 𝑦2
𝑑𝑦 β†’ 6𝑑𝑒 = 𝑦2
𝑑𝑦
Sustituimos:
∫ 𝑦2
ቆ
𝑦3
18
βˆ’ 1ቇ
5
𝑑𝑦 = ∫ 𝑒5
6𝑑𝑒 = 6 ∫ 𝑒5
𝑑𝑒 = 6
𝑒5+1
5 + 1
+ 𝐢 = 6
𝑒6
6
+ 𝐢
= 𝑒6
+ 𝐢
= ቆ
𝑦3
18
βˆ’ 1ቇ
6
+ 𝐢
∴ ∫ 𝑦2
ቆ
𝑦3
18
βˆ’ 1ቇ
5
𝑑𝑦 = ቆ
𝑦3
18
βˆ’ 1ቇ
6
+ 𝐢
13. ∫
𝑑x
√5π‘₯ + 8
14. ∫ 𝑦2
ቆ
𝑦3
18
βˆ’ 1ቇ
5
𝑑𝑦
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 5π‘₯ + 8 β†’ 𝑑𝑒 = 5𝑑π‘₯ β†’
𝑑𝑒
5
= 𝑑π‘₯
Sustituimos:
∫
𝑑x
√5π‘₯ + 8
= ∫
𝑑𝑒
βˆšπ‘’
= ∫ π‘’βˆ’
1
2𝑑𝑒 =
π‘’βˆ’
1
2
+1
βˆ’
1
2
+ 1
+ 𝐢 =
𝑒
1
2
1
2
+ 𝐢 = 2 𝑒
1
2 + 𝐢
= 2(5π‘₯ + 8)
1
2 + 𝐢
∴ ∫
𝑑x
√5π‘₯ + 8
= 2(5π‘₯ + 8)
1
2 + 𝐢
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 1 + √π‘₯ β†’ 𝑑𝑒 =
1
2 √π‘₯
𝑑π‘₯ β†’ 2𝑑𝑒 =
𝑑π‘₯
√π‘₯
Sustituimos:
∫
ΰ΅«1 + √π‘₯ΰ΅―
3
𝑑x
√π‘₯
= ∫ 𝑒3
𝑑𝑒 =
𝑒3+1
3 + 1
+ 𝐢 =
𝑒4
4
+ 𝐢 =
ΰ΅«1 + √π‘₯ΰ΅―
4
4
+ 𝐢
∴ ∫
ΰ΅«1 + √π‘₯ΰ΅―
3
𝑑x
√π‘₯
=
ΰ΅«1 + √π‘₯ΰ΅―
4
4
+ 𝐢
15. ∫
𝑑x
π‘₯√9π‘₯4 βˆ’ 4
16. ∫
ΰ΅«1 + √π‘₯ΰ΅―
3
𝑑x
√π‘₯
SoluciΓ³n:
Utilizando el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 𝑒π‘₯
+ 1 β†’ 𝑑𝑒 = 𝑒π‘₯
𝑑π‘₯
Sustituimos:
∫ 𝑒π‘₯
π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯
+ 1)𝑑π‘₯ = ∫ cosec 𝑒 𝑑𝑒
∴ ∫ 𝑒π‘₯
π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯
+ 1)𝑑π‘₯ = βˆ’ ln|π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯
+ 1) + π‘π‘œπ‘‘π‘Žπ‘› (𝑒π‘₯
+ 1)| + 𝐢
SoluciΓ³n:
Desarrollando el binomio al cuadrado:
∫(sec 𝑑 + tan 𝑑)2
𝑑𝑑 = ∫(sec2
𝑑 + 2 sec 𝑑 tan 𝑑 + tan2
𝑑)𝑑𝑑
∴ ∫(sec 𝑑 + tan 𝑑)2
𝑑𝑑 = 2 tan 𝑑 + 2sec 𝑑 βˆ’ 𝑑 + 𝐢
17. ∫ 𝑒π‘₯
π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯
+ 1)𝑑π‘₯
18. ∫(sec 𝑑 + tan 𝑑)2
𝑑𝑑
= βˆ’ ln|π‘π‘œπ‘ π‘’π‘ 𝑒 + π‘π‘œπ‘‘π‘Žπ‘› 𝑒| + 𝐢
= βˆ’ ln|π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯
+ 1) + π‘π‘œπ‘‘π‘Žπ‘› (𝑒π‘₯
+ 1)| + 𝐢
= ∫ sec2
𝑑 𝑑𝑑 + ∫ 2 sec 𝑑 tan 𝑑 𝑑𝑑 + ∫ tan2
𝑑𝑑𝑑
= ∫ sec2
𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 + ∫(𝑠𝑒𝑐2
𝑑 βˆ’ 1) 𝑑𝑑
= ∫ sec2
𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 + ∫ 𝑠𝑒𝑐2
𝑑 𝑑𝑑 βˆ’ ∫ 𝑑𝑑
= 2 ∫ sec2
𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 βˆ’ ∫ 𝑑𝑑
= 2 tan 𝑑 + 2sec 𝑑 βˆ’ 𝑑 + 𝐢
πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘ π‘π‘–π‘‘π‘Žπ‘”π‘œπ‘Ÿπ‘–π‘π‘Ž:
𝑠𝑒𝑛2
π‘₯ + cos2
π‘₯ = 1
SoluciΓ³n:
Amplificando por el conjugado
∴ ∫
𝑑π‘₯
1 + 𝑠𝑒𝑛 π‘₯
= tan π‘₯ + sec π‘₯ + 𝐢
∫
𝑑π‘₯
1 + 𝑠𝑒𝑛 π‘₯
βˆ™ (
1 βˆ’ 𝑠𝑒𝑛 π‘₯
1 βˆ’ 𝑠𝑒𝑛π‘₯
) = ∫
1 βˆ’ 𝑠𝑒𝑛 π‘₯
1 βˆ’ 𝑠𝑒𝑛2 π‘₯
𝑑π‘₯
19. ∫
𝑑π‘₯
1 + 𝑠𝑒𝑛 π‘₯
= ∫
1 βˆ’ 𝑠𝑒𝑛 π‘₯
cos2 π‘₯
𝑑π‘₯
= ∫
1
cos2 π‘₯
𝑑π‘₯ βˆ’ ∫
𝑠𝑒𝑛 π‘₯
cos2 π‘₯
𝑑π‘₯
= ∫ sec2
π‘₯ 𝑑π‘₯ βˆ’ ∫
1
cos π‘₯
𝑠𝑒𝑛 π‘₯
π‘π‘œπ‘  π‘₯
𝑑π‘₯
= ∫ sec2
π‘₯ 𝑑π‘₯ βˆ’ ∫ sec π‘₯ tan π‘₯ 𝑑π‘₯
= tan π‘₯ + sec π‘₯ + 𝐢
SoluciΓ³n:
Separando la integral:
∫
𝑒π‘₯
βˆ’ 1
𝑒π‘₯ + 1
𝑑π‘₯ = ∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ + ∫
βˆ’1
𝑒π‘₯ + 1
𝑑π‘₯
= ∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ βˆ’ ∫
1
𝑒π‘₯ + 1
𝑑π‘₯ (βˆ—βˆ—)
Para la primera integral hacemos la sustituciΓ³n:
𝑒 = 𝑒π‘₯
+ 1 β†’ 𝑑𝑒 = 𝑒π‘₯
𝑑π‘₯
Sustituimos:
∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ = ∫
𝑑𝑒
𝑒
= ln|𝑒| + 𝑐1 = ln|𝑒π‘₯
+ 1| + 𝑐1
Para le segunda integral sumamos y restando 𝑒π‘₯
en el numerador:
∫
1
𝑒π‘₯ + 1
𝑑π‘₯ = ∫
1 + 𝑒π‘₯
βˆ’ 𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯
= ∫
1 + 𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ + ∫
βˆ’π‘’π‘₯
𝑒π‘₯ + 1
𝑑π‘₯
= ∫ 𝑑π‘₯ βˆ’ ∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯
= π‘₯ + 𝑐2 βˆ’ ∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯
Para la integral hacemos: 𝑒 = 𝑒π‘₯
+ 1 β†’ 𝑑𝑒 = 𝑒π‘₯
𝑑π‘₯
Sustituimos:
20. ∫
𝑒π‘₯
βˆ’ 1
𝑒π‘₯ + 1
𝑑π‘₯
π‘₯ + 𝑐2 βˆ’ ∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ = π‘₯ + 𝑐2 βˆ’ ∫
𝑑𝑒
𝑒
= π‘₯ + c2 βˆ’ ln|𝑒| + 𝑐3
= π‘₯ + c2 βˆ’ ln|𝑒π‘₯
+ 1| + 𝑐3
πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘π‘’π‘  π‘Ÿπ‘’π‘π‘–π‘π‘Ÿπ‘œπ‘π‘Žπ‘ :
π‘π‘œπ‘ π‘’π‘ π‘₯ =
1
𝑠𝑒𝑛 π‘₯
; sec π‘₯ =
1
π‘π‘œπ‘ π‘₯
πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘ π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™:
tan π‘₯ =
𝑠𝑒𝑛 π‘₯
cos π‘₯
Luego, reemplazando en (βˆ—βˆ—):
∫
𝑒π‘₯
𝑒π‘₯ + 1
𝑑π‘₯ βˆ’ ∫
1
𝑒π‘₯ + 1
𝑑π‘₯ = ln|𝑒π‘₯
+ 1| + 𝑐1 βˆ’ π‘₯ + 𝑐2 + ln|𝑒π‘₯
+ 1| + 𝑐3
= 2 ln|𝑒π‘₯
+ 1| + x + C
∴ ∫
𝑒π‘₯
βˆ’ 1
𝑒π‘₯ + 1
𝑑π‘₯ = 2 ln|𝑒π‘₯
+ 1| + x + C
21. ∫
sec3
π‘₯
π‘π‘œπ‘ π‘’π‘ π‘₯
𝑑π‘₯
SoluciΓ³n:
Reescribimos la integral:
Hacemos: 𝑒 = tan π‘₯ β†’ 𝑑𝑒 = sec2
π‘₯
Sustituimos:
∴ ∫
sec3
π‘₯
π‘π‘œπ‘ π‘’π‘ π‘₯
𝑑π‘₯ =
tan2
π‘₯
2
+ 𝐢
∫
sec3
π‘₯
π‘π‘œπ‘ π‘’π‘ π‘₯
𝑑π‘₯ = ∫ 𝑠𝑒𝑛π‘₯ sec x sec2
π‘₯ 𝑑π‘₯
= ∫
𝑠𝑒𝑛π‘₯
cos π‘₯
sec2
π‘₯ 𝑑π‘₯
= ∫ tan π‘₯ sec2
π‘₯ 𝑑π‘₯
∫ tan π‘₯ sec2
π‘₯ 𝑑π‘₯ = ∫ u 𝑑𝑒 =
𝑒1+1
1 + 1
+ 𝐢 =
𝑒2
2
+ 𝐢 =
tan2
π‘₯
2
+ 𝐢
𝑒 = 𝑠𝑒𝑛(ln π‘₯) β†’ 𝑑𝑒 = cos (ln π‘₯)
1
π‘₯
𝑑π‘₯ =
cos(lnx)
π‘₯
𝑑π‘₯
𝑑𝑣 = 𝑑π‘₯ β†’ 𝑣 = π‘₯
∫ 𝑠𝑒𝑛 (ln π‘₯)𝑑π‘₯ = π‘₯ 𝑠𝑒𝑛(ln π‘₯) βˆ’ ∫ π‘₯
cos(ln π‘₯)
π‘₯
𝑑π‘₯
= π‘₯ 𝑠𝑒𝑛(ln π‘₯) βˆ’ ∫ cos(ln π‘₯) 𝑑π‘₯
𝑒 = π‘π‘œπ‘ (𝑙𝑛 π‘₯) β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘› (𝑙𝑛 π‘₯)
1
π‘₯
𝑑π‘₯ =
βˆ’π‘ π‘’π‘›(𝑙𝑛π‘₯)
π‘₯
𝑑π‘₯
𝑑𝑣 = 𝑑π‘₯ β†’ 𝑣 = π‘₯
∫ 𝒖 𝒅𝒗 = 𝒖 𝒗 βˆ’ ∫ 𝒗 𝒅𝒖
SoluciΓ³n:
Mediante integraciΓ³n por partes:
Sea:
Luego,
Integrando nuevamente por partes:
Sea:
Sustituimos:
Nos queda la integral inicial por lo tanto reemplazando:
∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) βˆ’ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯
Despejando la integral, nos queda:
2 ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) + 𝑐1
∴ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ =
1
2
(π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯)) + 𝐢
22. ∫ 𝑠𝑒𝑛 (ln π‘₯)𝑑π‘₯
π‘₯ 𝑠𝑒𝑛(𝑙𝑛 π‘₯) βˆ’ ∫ π‘π‘œπ‘ (𝑙𝑛 π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) + ∫ π‘₯
βˆ’π‘ π‘’π‘›(𝑙𝑛π‘₯)
π‘₯
𝑑π‘₯
= π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) βˆ’ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯
𝑒 = arctan π‘₯ β†’ 𝑑𝑒 =
1
1 + π‘₯2
𝑑π‘₯
𝑑𝑣 = π‘₯𝑑π‘₯ β†’ 𝑣 =
π‘₯2
2
SoluciΓ³n:
Separando las integrales:
∫ ቆ
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
+ π‘₯ arctan π‘₯ቇ 𝑑π‘₯ = ∫
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
𝑑π‘₯ + ∫ π‘₯ arctan π‘₯ 𝑑π‘₯
La primera integral realizamos mediante sustituciΓ³n, hacemos:
𝑒 = π‘₯ βˆ’ 1 β†’ π‘₯ = 𝑒 + 1
𝑑𝑒 = 𝑑π‘₯
Luego,
Luego,
∫
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
𝑑π‘₯ = βˆ’ 2(π‘₯ βˆ’ 1)βˆ’
1
2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’
3
2 + 𝑐1 (1)
Para la segunda integral utilizamos el mΓ©todo de integraciΓ³n por partes:
Sea:
23. ∫ ቆ
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
+ π‘₯ arctan π‘₯ቇ 𝑑π‘₯
∫
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
𝑑π‘₯ = ∫
𝑒 + 1 + 5
βˆšπ‘’5
𝑑𝑒
= ∫
𝑒 + 6
βˆšπ‘’5
𝑑𝑒
= ∫
𝑒
βˆšπ‘’5
𝑑𝑒 + ∫
6
βˆšπ‘’5
𝑑𝑒
= ∫ 𝑒1βˆ’
5
2𝑑𝑒 + 6 ∫ π‘’βˆ’
5
2𝑑𝑒
= ∫ π‘’βˆ’
3
2𝑑𝑒 + 6 ∫ π‘’βˆ’
5
2𝑑𝑒
=
π‘’βˆ’
1
2
βˆ’
1
2
+ 6
π‘’βˆ’
3
2
βˆ’
3
2
+ 𝑐1
= βˆ’2π‘’βˆ’
1
2 βˆ’ 4π‘’βˆ’
3
2 + 𝑐1
= βˆ’2(π‘₯ βˆ’ 1)βˆ’
1
2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’
3
2 + 𝑐1
Reemplazamos:
Luego,
∫ π‘₯ arctan π‘₯ 𝑑π‘₯ =
π‘₯2
2
arctan π‘₯ βˆ’
1
2
π‘₯ +
1
2
arctan π‘₯ + 𝑐2 (2)
AsΓ­, de (1) y (2) se tiene:
SoluciΓ³n:
Por el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ΰ΅― β†’ 𝑑𝑒 =
1
√1βˆ’π‘₯
1
2√π‘₯
𝑑π‘₯ =
1
2ΰΆ₯(1βˆ’π‘₯)π‘₯
𝑑π‘₯ =
1
2√π‘₯βˆ’π‘₯2
𝑑π‘₯
Sustituimos:
∴ ∫
π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ )
√π‘₯ βˆ’ π‘₯2
𝑑π‘₯ = α‰€π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ࡯ቁ
2
+ 𝐢
∫ π‘₯ arctan π‘₯ 𝑑π‘₯ =
π‘₯2
2
arctan π‘₯ βˆ’
1
2
∫
π‘₯2
1 + π‘₯2
𝑑π‘₯
=
π‘₯2
2
arctan π‘₯ βˆ’
1
2
∫ (1 βˆ’
1
π‘₯2 + 1
) 𝑑π‘₯
=
π‘₯2
2
arctan π‘₯ βˆ’
1
2
∫ 𝑑π‘₯ +
1
2
∫
1
π‘₯2 + 1
𝑑π‘₯
∫ ቆ
π‘₯ + 5
ΰΆ₯(π‘₯ βˆ’ 1)5
+ π‘₯ arctanπ‘₯ቇ𝑑π‘₯ = βˆ’2(π‘₯ βˆ’ 1)βˆ’
1
2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’
3
2 +
π‘₯2
2
arctan π‘₯ βˆ’
1
2
π‘₯ +
1
2
arctan π‘₯ + 𝐢
24. ∫
π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ )
√π‘₯ βˆ’ π‘₯2
𝑑π‘₯
∫
π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ )
√π‘₯ βˆ’ π‘₯2
𝑑π‘₯ = ∫ 2
π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ )
2√π‘₯ βˆ’ π‘₯2
𝑑π‘₯
= 2 ∫ 𝑒 𝑑𝑒
= 2
𝑒2
2
+ 𝐢
=α‰€π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ࡯ቁ
2
+ 𝐢
SoluciΓ³n:
Mediante el mΓ©todo de sustituciΓ³n:
π‘†π‘’π‘Ž: 𝑒 = ln(3π‘₯) β†’ 𝑑𝑒 =
1
3π‘₯
3𝑑π‘₯ =
𝑑π‘₯
π‘₯
Sustituimos:
∫
𝑑π‘₯
2π‘₯ ln (3π‘₯)
=
1
2
∫
𝑑𝑒
𝑒
=
1
2
ln|𝑒| + 𝐢
=
1
2
ln|ln(3π‘₯)| +𝐢
25. ∫
𝑑π‘₯
2π‘₯ ln (3π‘₯)
∴ ∫
𝑑π‘₯
2π‘₯ ln (3π‘₯)
=
1
2
ln|ln(3π‘₯)| +𝐢
cos2
π‘₯ =
1 + cos (2π‘₯)
2
SoluciΓ³n:
Podemos escribir:
Reemplazando:
∫ cos2
π‘₯ 𝑑π‘₯ = ∫ (
1 + π‘π‘œπ‘  (2π‘₯)
2
) 𝑑π‘₯ = ∫ (
1
2
+
π‘π‘œπ‘  (2π‘₯)
2
) 𝑑π‘₯
= ∫
1
2
𝑑π‘₯ + ∫
π‘π‘œπ‘ 2π‘₯
2
𝑑π‘₯
=
1
2
∫ 𝑑π‘₯ +
1
2
∫ cos 2π‘₯ 𝑑π‘₯
=
1
2
π‘₯ + 𝑐1 +
1
2
∫ cos 2π‘₯ 𝑑π‘₯
Para la segunda integral realizamos el mΓ©todo de sustituciΓ³n
Sea: 𝑒 = 2π‘₯ β†’ 𝑑𝑒 = 2𝑑π‘₯
β†’
𝑑𝑒
2
= 𝑑π‘₯
Sustituimos:
1
2
π‘₯ + 𝑐1 +
1
2
∫ cos 2π‘₯ 𝑑π‘₯ =
1
2
π‘₯ + 𝑐1 +
1
2
∫ cos u
𝑑𝑒
2
=
1
2
π‘₯ + 𝑐1 +
1
4
∫ cos u 𝑑𝑒
=
1
2
π‘₯ + 𝑐1 +
1
4
𝑠𝑒𝑛(𝑒) + 𝑐2
=
1
2
π‘₯ +
1
4
𝑠𝑒𝑛(2π‘₯) + 𝐢
∴ ∫ cos2
π‘₯ 𝑑π‘₯ =
1
2
π‘₯ +
1
2
𝑠𝑒𝑛(2π‘₯) + 𝐢
26. ∫ cos2 π‘₯ 𝑑π‘₯
SoluciΓ³n:
π‘ƒπ‘œπ‘Ÿ 𝑒𝑙 π‘šπ‘’π‘‘π‘œπ‘‘π‘œ 𝑑𝑒 π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘π‘–π‘œπ‘›:
π‘†π‘’π‘Ž: 𝑒 = 1 βˆ’ cos π‘₯ β†’ 𝑑𝑒 = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ :
∫ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯ = ∫ βˆšπ‘’ 𝑑𝑒 = ∫ 𝑒
1
2 𝑑𝑒 =
𝑒
1
2
+1
1
2
+ 1
+ 𝐢
=
𝑒
3
2
3
2
+ 𝐢
=
2
3
𝑒
3
2 + 𝐢
=
2
3
(1 βˆ’ cos π‘₯)
3
2 + 𝐢
∴ ∫ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯ =
2
3
(1 βˆ’ cos π‘₯)
3
2 + 𝐢
27. ‫׬‬ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯
28. ∫ π‘₯ cos π‘₯2
𝑑π‘₯
SoluciΓ³n:
Por el metodo de sustitucion:
π‘†π‘’π‘Ž: 𝑒 = π‘₯2
β†’ 𝑑𝑒 = 2π‘₯ 𝑑π‘₯
β†’
du
2
= π‘₯ 𝑑π‘₯
π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ :
∫ π‘₯ cos π‘₯2
𝑑π‘₯ = ∫ cos 𝑒
du
2
=
1
2
∫ cos 𝑒 𝑑𝑒
=
1
2
sen 𝑒 + 𝐢
=
1
2
𝑠𝑒𝑛 (π‘₯2) + 𝐢
∴ ∫ π‘₯ cos π‘₯2
𝑑π‘₯ =
1
2
𝑠𝑒𝑛 (π‘₯2) + 𝐢
29. ∫(tan2
π‘₯ + cotan2
π‘₯ + 4)𝑑π‘₯
SoluciΓ³n:
Separando las integrales:
∫(tan2
π‘₯ + cotan2
π‘₯ + 4)𝑑π‘₯ = ∫ tan2
π‘₯ 𝑑π‘₯ + ∫ π‘π‘œπ‘‘π‘Žπ‘›2
π‘₯ 𝑑π‘₯ + ∫ 4𝑑π‘₯
= ∫(sec2
π‘₯ βˆ’ 1 )𝑑π‘₯ + ∫(π‘π‘œπ‘ π‘’π‘2
π‘₯ βˆ’ 1) 𝑑π‘₯ + 4 ∫ 𝑑π‘₯
= ∫ sec2
π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ + ∫ π‘π‘œπ‘ π‘’π‘2
π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ + 4 ∫ 𝑑π‘₯
= ∫ sec2
π‘₯ 𝑑π‘₯ + ∫ π‘π‘œπ‘ π‘’π‘2
π‘₯ 𝑑π‘₯ + 2 ∫ 𝑑π‘₯
= tan π‘₯ βˆ’ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ + 2π‘₯ + 𝐢
∴ ∫(tan2
π‘₯ + cotan2
π‘₯ + 4)𝑑π‘₯ = tan π‘₯ βˆ’ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ + 2π‘₯ + 𝐢
30. ∫
2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2
π‘₯
𝑠𝑒𝑛 π‘₯
𝑑π‘₯
SoluciΓ³n:
Separando las integrales
∫
2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2
π‘₯
𝑠𝑒𝑛 π‘₯
𝑑π‘₯ = ∫
2π‘π‘œπ‘‘π‘Žπ‘› π‘₯
𝑠𝑒𝑛 π‘₯
βˆ’ ∫
3𝑠𝑒𝑛2
π‘₯
𝑠𝑒𝑛 π‘₯
𝑑π‘₯
= 2 ∫ π‘π‘œπ‘ π‘’π‘ π‘₯ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3 ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
Las dos integrales son inmediatas, por lo tanto, integrando:
2 ∫ π‘π‘œπ‘ π‘’π‘ π‘₯ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3 ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = 2(βˆ’π‘π‘œπ‘ π‘’π‘ π‘₯) βˆ’ 3(βˆ’ cos π‘₯) + 𝐢
= βˆ’2π‘π‘œπ‘ π‘’π‘ π‘₯ + 3 cos π‘₯ + 𝐢
∴ ∫
2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2
π‘₯
𝑠𝑒𝑛 π‘₯
𝑑π‘₯ = βˆ’2π‘π‘œπ‘ π‘’π‘ π‘₯ + 3 cos π‘₯ + 𝐢
31. ∫
(𝑒𝑑
+ 1)3
𝑒𝑑
𝑑𝑑
SoluciΓ³n:
Desarrollamos el binomio al cubo:
∫
(𝑒𝑑
+ 1)3
𝑒𝑑
𝑑𝑑 = ∫ ቆ
𝑒3𝑑
+ 3𝑒2𝑑
+ 3𝑒𝑑
+ 1
𝑒𝑑
ቇ 𝑑𝑑
Separando la integral:
∫ ቆ
𝑒3𝑑
+ 3𝑒2𝑑
+ 3𝑒𝑑
+ 1
𝑒𝑑
ቇ 𝑑𝑑 = ∫
𝑒3𝑑
𝑒𝑑
𝑑𝑑 + ∫
𝑒2𝑑
𝑒𝑑
𝑑𝑑 + ∫
𝑒𝑑
𝑒𝑑
𝑑𝑑 + ∫
1
𝑒𝑑
𝑑𝑑
= ∫ 𝑒3π‘‘βˆ’π‘‘
𝑑𝑑 + ∫ 𝑒2π‘‘βˆ’π‘‘
𝑑𝑑 + ∫ 𝑑𝑑 + ∫ π‘’βˆ’π‘‘
𝑑𝑑
= ∫ 𝑒2𝑑
𝑑𝑑 + ∫ 𝑒𝑑
𝑑𝑑 + ∫ 𝑑𝑑 + ∫ π‘’βˆ’π‘‘
𝑑𝑑
= 𝑒2𝑑
+ 𝑒𝑑
+ 𝑑 βˆ’ π‘’βˆ’π‘‘
+ 𝐢
∴ ∫ ቆ
𝑒3𝑑
+ 3𝑒2𝑑
+ 3𝑒𝑑
+ 1
𝑒𝑑
ቇ 𝑑𝑑 = 𝑒2𝑑
+ 𝑒𝑑
+ 𝑑 βˆ’ π‘’βˆ’π‘‘
+ 𝐢
32. ∫ √π‘₯ (π‘₯ +
1
π‘₯
) 𝑑π‘₯ =
SoluciΓ³n:
∫ √π‘₯ (π‘₯ +
1
π‘₯
) 𝑑π‘₯ = ∫ √π‘₯ (π‘₯ + π‘₯βˆ’1)𝑑π‘₯
= ∫࡫√π‘₯ βˆ— π‘₯ + √π‘₯ βˆ— π‘₯βˆ’1
࡯𝑑π‘₯
= ∫ π‘₯
3
2 𝑑π‘₯ + ∫ π‘₯βˆ’
1
2 𝑑π‘₯
=
π‘₯
3
2
+1
3
2
+ 1
+
π‘₯βˆ’
1
2
+1
βˆ’
1
2
+ 1
+ 𝐢
=
π‘₯
5
2
5
2
+
π‘₯
1
2
1
2
+ 𝐢
=
2
5
π‘₯
5
2 + 2π‘₯
1
2 + 𝐢
∴ ∫ √π‘₯ (π‘₯ +
1
π‘₯
) 𝑑π‘₯ =
2
5
π‘₯
5
2 + 2π‘₯
1
2 + 𝐢
33. ∫(2π‘₯ + 1)3
𝑑π‘₯
SoluciΓ³n:
Desarrollamos el binomio al cubo:
∫(2π‘₯ + 1)3
𝑑π‘₯ = ∫(8π‘₯3
+ 12π‘₯2
+ 6π‘₯ + 1) 𝑑π‘₯
Separando la integral:
∫(8π‘₯3
+ 12π‘₯2
+ 6π‘₯ + 1) 𝑑π‘₯ = ∫ 8π‘₯3
𝑑π‘₯ + ∫ 12π‘₯2
𝑑π‘₯ + ∫ 6π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯
= 8 ∫ π‘₯3
𝑑π‘₯ + 12 ∫ π‘₯2
𝑑π‘₯ + 6 ∫ π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯
= 8
π‘₯4
4
+ 12
π‘₯3
3
+ 6
π‘₯2
2
+ π‘₯ + 𝐢
= 2π‘₯4
+ 4π‘₯3
+ 3π‘₯2
+ π‘₯ + 𝐢
∴ ∫(2π‘₯ + 1)3
𝑑π‘₯ = 2π‘₯4
+ 4π‘₯3
+ 3π‘₯2
+ π‘₯ + 𝐢
∫
5𝑑2
+ 7
𝑑
4
3
d𝑑 = ∫
5𝑑2
𝑑
4
3
d𝑑 + ∫
7 d𝑑
𝑑
4
3
34. ∫
5𝑑2
+ 7
𝑑
4
3
d𝑑
SoluciΓ³n:
= 5 ∫ 𝑑2βˆ’
4
3 d𝑑 + 7 ∫ π‘‘βˆ’
4
3𝑑𝑑
= 5 ∫ 𝑑
2
3 d𝑑 + 7 ∫ π‘‘βˆ’
4
3𝑑𝑑
= 5
𝑑
2
3+1
2
3
+ 1
+ 7
π‘‘βˆ’
4
3+1
βˆ’
4
3
+ 1
+ 𝐢
= 5
𝑑
5
3
5
3
+ 7
π‘‘βˆ’
1
3
βˆ’
1
3
+ 𝐢
= 3 𝑑
5
3 βˆ’ 21
1
𝑑
1
3
+ 𝐢
∴ ∫
5𝑑2
+ 7
𝑑
4
3
d𝑑 = 3 𝑑
5
3 βˆ’ 21
1
𝑑
1
3
+ 𝐢
35. ∫ π‘₯4
𝐿𝑛(3π‘₯)𝑑π‘₯
Solucion:
Integrando por partes, se tiene:
𝑒 = 𝐿𝑛(3π‘₯) β†’ 𝑑𝑒 =
1
3π‘₯
3𝑑π‘₯ =
1
π‘₯
𝑑π‘₯
𝑣 =
π‘₯5
5
β†’ 𝑑𝑣 = π‘₯4
∫ π‘₯4
𝐿𝑛(3π‘₯)𝑑π‘₯ =
π‘₯5
5
𝐿𝑛(3π‘₯) βˆ’ ∫
π‘₯5
5
βˆ—
1
π‘₯
𝑑π‘₯
=
π‘₯5
5
𝐿𝑛(3π‘₯) βˆ’
1
5
∫ π‘₯4
𝑑π‘₯
=
π‘₯5
5
𝐿𝑛(3π‘₯) βˆ’
1
5
ቆ
π‘₯5
5
ቇ + 𝐢
=
π‘₯5
5
𝐿𝑛(3π‘₯) βˆ’
π‘₯5
25
+ 𝐢
∫
∴ π‘₯4
𝐿𝑛(3π‘₯)𝑑π‘₯ =
π‘₯5
5
𝐿𝑛(3π‘₯) βˆ’
π‘₯5
25
+ 𝐢
∴ ∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯ =
π‘‘π‘Žπ‘›5
(π‘₯)
5
βˆ’
π‘‘π‘Žπ‘›3(π‘₯)
3
+ tan(π‘₯) βˆ’ π‘₯ + 𝐢
36. ∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯
Solucion:
∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯ = ∫ π‘‘π‘Žπ‘›2
(π‘₯) βˆ— π‘‘π‘Žπ‘›4(π‘₯)𝑑π‘₯
= ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘‘π‘Žπ‘›4(π‘₯) 𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘‘π‘Žπ‘›2(π‘₯) π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1) π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1)𝑑π‘₯
= ∫ 𝑠𝑒𝑐2
(π‘₯)π‘‘π‘Žπ‘›4
(π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯
Para la primera integral hacemos: 𝑒 = tan(π‘₯) β†’ 𝑑𝑒 = 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯
Para la segunda integral hacemos: 𝑧 = tan(π‘₯) β†’ 𝑑𝑧 = 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯
Sustituimos:
= ∫ 𝑒4
𝑑𝑒 βˆ’ ∫ 𝑧2
𝑑𝑧 + ∫ 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯
=
𝑒5
5
βˆ’
𝑧3
3
+ tan(π‘₯) βˆ’ π‘₯ + 𝐢
=
π‘‘π‘Žπ‘›5
(π‘₯)
5
βˆ’
π‘‘π‘Žπ‘›3(π‘₯)
3
+ tan(π‘₯) βˆ’ π‘₯ + 𝐢
∴ ∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯ = βˆ’ cos(π‘₯) +
cos3
(π‘₯)
3
+ 𝑐
37. ∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯
Solucion:
∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑛2
(π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯
= ∫ 𝑠𝑒𝑛2
(π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯
= ∫࡫1 βˆ’ π‘π‘œπ‘ 2(π‘₯)ΰ΅― βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯
= ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘π‘œπ‘ 2(π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯)𝑑π‘₯
Para la segunda integral hacemos: 𝑒 = cos π‘₯ β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘›(π‘₯)𝑑π‘₯
= ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ + ∫ π‘π‘œπ‘ 2(π‘₯) βˆ— (βˆ’π‘ π‘’π‘›(π‘₯)𝑑π‘₯)
= ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ + ∫ 𝑒2
𝑑𝑒
= βˆ’ cos(π‘₯) +
𝑒3
3
+ 𝑐
= βˆ’ cos(π‘₯) +
cos3
(π‘₯)
3
+ 𝑐
∴ ∫ ln(cos π‘₯) tan π‘₯𝑑π‘₯ = βˆ’
ln2
(cos π‘₯)
2
+ 𝐢
∴ ∫
𝑑π‘₯
cos2 π‘₯ ΰΆ₯1 + tan π‘₯
= 2ΰΆ₯1 + tan π‘₯ + 𝐢
38. ∫ ln(cos π‘₯) tan π‘₯𝑑π‘₯
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = ln(cos π‘₯) β†’ 𝑑𝑒 =
βˆ’π‘ π‘’π‘› π‘₯
π‘π‘œπ‘  π‘₯
𝑑π‘₯ = βˆ’ tan π‘₯ 𝑑π‘₯
β†’ βˆ’ 𝑑𝑒 = tan π‘₯ 𝑑π‘₯
Sustituimos:
∫ ln(cos π‘₯) tan π‘₯ 𝑑π‘₯ = βˆ’ ∫ 𝑒 𝑑𝑒 = βˆ’
𝑒2
2
+ 𝐢 = βˆ’
ln2
(cos π‘₯)
2
+ 𝐢
39. ∫
𝑑π‘₯
cos2 π‘₯ √1 + tan π‘₯
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 1 + tan π‘₯ β†’ 𝑑𝑒 = sec2
π‘₯ 𝑑π‘₯
∫
𝑑π‘₯
cos2 π‘₯ √1 + tan π‘₯
= ∫
sec2
π‘₯ 𝑑π‘₯
√1 + tan π‘₯
Sustituimos:
∫
sec2
π‘₯ 𝑑π‘₯
√1 + tan π‘₯
= ∫
𝑑𝑒
βˆšπ‘’
= ∫ π‘’βˆ’
1
2 𝑑𝑒 =
𝑒
1
2
1
2
+ 𝐢 = 2√1 + tan π‘₯ + 𝐢
∴ ∫
1 βˆ’ π‘₯ ln π‘₯
π‘₯ 𝑒π‘₯
𝑑π‘₯ =
ln π‘₯
𝑒π‘₯
+ 𝐢
∴ ∫
𝑠𝑒𝑛 2π‘₯
ΰΆ₯1 βˆ’ cos 2π‘₯
𝑑π‘₯ = 2ΰΆ₯1 βˆ’ cos 2π‘₯ + 𝐢
40. ∫
1 βˆ’ π‘₯ ln π‘₯
π‘₯ 𝑒π‘₯
𝑑π‘₯
Solucion:
Multiplicamos por 𝑒π‘₯
numerador y denominador
∫
1 βˆ’ π‘₯ ln π‘₯
π‘₯ 𝑒π‘₯
𝑑π‘₯
𝑒π‘₯
𝑒π‘₯
= ∫
𝑒π‘₯
βˆ’ 𝑒π‘₯
π‘₯ ln π‘₯
π‘₯ 𝑒2π‘₯
𝑑π‘₯
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 =
ln π‘₯
𝑒π‘₯
β†’ 𝑑𝑒 =
𝑒π‘₯βˆ—
1
π‘₯
βˆ’ln π‘₯ 𝑒π‘₯
𝑒2π‘₯
𝑑π‘₯ =
𝑒π‘₯
π‘₯
βˆ’ 𝑒π‘₯ ln π‘₯
𝑒2π‘₯
𝑑π‘₯ =
𝑒π‘₯ βˆ’ 𝑒π‘₯ ln π‘₯
π‘₯
𝑒2π‘₯
𝑑π‘₯ =
𝑒π‘₯ βˆ’ 𝑒π‘₯ ln π‘₯
π‘₯ 𝑒2π‘₯
𝑑π‘₯
Sustituimos:
∫
𝑒π‘₯
βˆ’ 𝑒π‘₯
π‘₯ ln π‘₯
π‘₯ 𝑒2π‘₯
𝑑π‘₯ = ∫ 𝑑𝑒 = 𝑒 + 𝐢 =
ln π‘₯
𝑒π‘₯
+ 𝐢
41. ∫
𝑠𝑒𝑛 2π‘₯
√1 βˆ’ cos 2π‘₯
𝑑π‘₯
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 1 βˆ’ cos 2π‘₯ β†’ 𝑑𝑒 = 𝑠𝑒𝑛 2π‘₯ 𝑑π‘₯
Sustituimos:
∫
𝑠𝑒𝑛 2π‘₯
√1 βˆ’ cos 2π‘₯
𝑑π‘₯ = ∫
𝑑𝑒
βˆšπ‘’
= ∫ π‘’βˆ’
1
2 𝑑𝑒 =
𝑒
1
2
1
2
+ 𝐢 = 2√1 βˆ’ cos 2π‘₯ + 𝐢
42. ∫
𝑑π‘₯
𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯
3
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 β†’ 𝑑𝑒 = βˆ’π‘π‘œπ‘ π‘’π‘2
π‘₯ 𝑑π‘₯ = βˆ’
1
𝑠𝑒𝑛2π‘₯
𝑑π‘₯
β†’ βˆ’π‘‘π‘’ =
1
𝑠𝑒𝑛2π‘₯
𝑑π‘₯
Sustituimos:
∫
𝑑π‘₯
𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯
3
= βˆ’ ∫
𝑑𝑒
√ 𝑒
3
= βˆ’ ∫ π‘’βˆ’
1
3𝑑𝑒
= βˆ’
𝑒
2
3
2
3
+ 𝑐1
= βˆ’
3
2
𝑒
2
3 + 𝑐1
= βˆ’
3
2
(π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 )
2
3 + 𝐢
∫
𝑑π‘₯
𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯
3
= βˆ’
3
2
(π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 )
2
3 + 𝐢
43. ∫
𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯
cos3 π‘₯
𝑑π‘₯
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = 𝑒tan2 π‘₯
β†’ 𝑑𝑒 = 𝑒tan2 π‘₯
2 tan π‘₯ sec2
π‘₯ 𝑑π‘₯
β†’
𝑑𝑒
2
= 𝑒tan2 π‘₯
𝑠𝑒𝑛 π‘₯
cos π‘₯
1
cos2 π‘₯
𝑑π‘₯
β†’
𝑑𝑒
2
= 𝑒tan2 π‘₯
𝑠𝑒𝑛 π‘₯
cos3 π‘₯
𝑑π‘₯
Sustituimos:
∫
𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯
𝑑π‘₯
cos3 π‘₯
=
1
2
∫ 𝑑𝑒
=
1
2
𝑒 + 𝑐1
=
1
2
𝑒tan2 π‘₯
+ 𝐢
∴ ∫
𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯
𝑑π‘₯
cos3 π‘₯
=
1
2
𝑒tan2
π‘₯
+ 𝐢
44. ∫
𝑒arctan π‘₯
+ π‘₯ ln(π‘₯2
+ 1) + 1
1 + π‘₯2
𝑑π‘₯
Solucion:
Separando la integral:
∫
𝑒arctan π‘₯
+ ln(π‘₯2
+ 1) + 1
1 + π‘₯2
𝑑π‘₯ = ∫
𝑒arctan π‘₯
1 + π‘₯2
𝑑π‘₯ + ∫
π‘₯ ln(π‘₯2
+ 1)
1 + π‘₯2
𝑑π‘₯ + ∫
1
1 + π‘₯2
𝑑π‘₯
Para la primera integral hacemos: 𝑒 = 𝑒arctan π‘₯
β†’ 𝑑𝑒 =
1
1+π‘₯2
𝑑π‘₯
Para la segunda integral hacemos: 𝑧 = ln(π‘₯2
+ 1) β†’ 𝑑𝑧 =
2π‘₯
1+π‘₯2 𝑑π‘₯
β†’
𝑑𝑧
2
=
π‘₯
1 + π‘₯2
𝑑π‘₯
Sustituimos:
∫
𝑒arctan π‘₯
+ ln(π‘₯2
+ 1) + 1
1 + π‘₯2
𝑑π‘₯ = ∫ 𝑒 𝑑𝑒 + ∫ 𝑧
𝑑𝑧
2
+ arctan π‘₯ + 𝑐3
=
𝑒2
2
+ 𝑐1 +
1
2
𝑧2
2
+ 𝑐2 + arctan π‘₯ + 𝑐3
=
𝑒arctan2 π‘₯
2
+
1
4
ln2(π‘₯2
+ 1) + arctan π‘₯ + 𝐢
∴ ∫
𝑒arctanπ‘₯
+ π‘₯ ln(π‘₯2
+ 1) + 1
1 + π‘₯2
𝑑π‘₯ =
𝑒arctan2 π‘₯
2
+
1
4
ln2(π‘₯2
+ 1) + arctan π‘₯ + 𝐢
45. ∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯
Solucion:
Integrando por partes, se tiene:
𝑒 = ln(1 + 𝑠𝑒𝑛 π‘₯) β†’ 𝑑𝑒 =
cos π‘₯
1 + 𝑠𝑒𝑛 π‘₯
𝑑π‘₯
𝑣 = βˆ’ cos π‘₯ β†’ 𝑑𝑣 = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
Luego,
∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) βˆ’ ∫ βˆ’ cos π‘₯
cos π‘₯
1 + 𝑠𝑒𝑛 π‘₯
𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫
cos2
π‘₯
1 + 𝑠𝑒𝑛 π‘₯
𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫
1 βˆ’ 𝑠𝑒𝑛2
π‘₯
1 + 𝑠𝑒𝑛 π‘₯
𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫
(1 + 𝑠𝑒𝑛 π‘₯)(1 βˆ’ 𝑠𝑒𝑛 π‘₯)
1 + 𝑠𝑒𝑛 π‘₯
𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫(1 βˆ’ 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫ 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + 𝑐1 βˆ’ (βˆ’ cos π‘₯) + 𝑐2
= βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + cos π‘₯ + 𝐢
∴ ∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + cos π‘₯ + 𝐢
𝑧
√2
π‘₯ ΰΆ₯π‘₯2 βˆ’ 2
√2 tan 𝑧 = ΰΆ₯π‘₯2 βˆ’ 2
√2 sec 𝑧 = π‘₯ β†’ 𝑑π‘₯ = √2 sec 𝑧 tan 𝑧 𝑑𝑧
46. ∫
𝑑π‘₯
(π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2
Solucion:
Mediante sustituciΓ³n trigonomΓ©trica:
Sustituimos:
∫
𝑑π‘₯
(π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2
= ∫
√2 sec 𝑧 tan 𝑧 𝑑𝑧
(2 sec 𝑧 βˆ’ 1)√2 tan 𝑧
= ∫
sec 𝑧 𝑑𝑧
(2 sec 𝑧 βˆ’ 1)
= ∫
sec 𝑧 𝑑𝑧
2 (tan2 𝑧 + 1) βˆ’ 1
= ∫
sec 𝑧 𝑑𝑧
2 tan2 𝑧 + 1
= ∫
1
cos 𝑧
𝑑𝑧
2
𝑠𝑒𝑛2 𝑧
cos2 𝑧
+ 1
= ∫
1
cos 𝑧
𝑑𝑧
2𝑠𝑒𝑛2 𝑧 + cos2 𝑧
cos2 𝑧
= ∫
cos 𝑧 𝑑𝑧
2𝑠𝑒𝑛2 𝑧 + cos2 𝑧
= ∫
cos 𝑧 𝑑𝑧
2𝑠𝑒𝑛2 𝑧 + 1 βˆ’ 𝑠𝑒𝑛2𝑧
= ∫
cos 𝑧 𝑑𝑧
1 + 𝑠𝑒𝑛2𝑧
Sea: 𝑒 = 𝑠𝑒𝑛 𝑧 β†’ 𝑑𝑒 = cos 𝑧 𝑑𝑧
𝑧
√3
ΰΆ₯(𝑒 + 2)2 βˆ’ 3
tan 𝑧 =
ΰΆ₯(𝑒 + 2)2 βˆ’ 3
√3
β†’ ΰΆ₯(𝑒 + 2)2 βˆ’ 3 = √3 tan 𝑧
sec 𝑧 =
𝑒 + 2
√3
β†’ 𝑒 = √3 sec 𝑧 βˆ’ 2
β†’ 𝑑𝑒 = √3 sec 𝑧 tan 𝑧 𝑑𝑧
Sustituimos
∫
cos 𝑧 𝑑𝑧
1 + 𝑠𝑒𝑛2𝑧
= ∫
𝑑𝑒
1 + 𝑒2
= arctan 𝑒 + 𝐢
= arctan 𝑠𝑒𝑛 𝑧 + 𝐢
= arctan ቆ
√π‘₯2 βˆ’ 2
π‘₯
ቇ +𝐢
∴ ∫
𝑑π‘₯
(π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2
= arctan ቆ
√π‘₯2 βˆ’ 2
π‘₯
ቇ +𝐢
47. ∫
𝑠𝑒𝑛 π‘₯
√cos2 π‘₯ + 4 cos π‘₯ + 1
𝑑π‘₯
Solucion:
Mediante el mΓ©todo se sustituciΓ³n:
Sea: 𝑒 = cos π‘₯ β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘› π‘₯ 𝑑π‘₯ β†’ βˆ’π‘‘π‘’ = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯
Sustituimos:
∫
𝑠𝑒𝑛 π‘₯
√cos2 π‘₯ + 4 cos π‘₯ + 1
𝑑π‘₯ = βˆ’ ∫
𝑑𝑒
βˆšπ‘’2 + 4𝑒 + 1
Hacemos completacion de cuadrados:
βˆ’ ∫
𝑑𝑒
βˆšπ‘’2 + 4𝑒 + 1
= βˆ’ ∫
𝑑𝑒
ΰΆ₯(𝑒 + 2)2 βˆ’ 3
Utilizamos sustituciΓ³n trigonomΓ©trica:
Sustituimos:
βˆ’ ∫
𝑑𝑒
ΰΆ₯(𝑒 + 2)2 βˆ’ 3
= βˆ’ ∫
√3 sec 𝑧 tan 𝑧 𝑑𝑧
√3 tan 𝑧
= βˆ’ ∫ sec 𝑧 𝑑𝑧
= βˆ’ ln | sec 𝑧 + tan 𝑧| + 𝐢
= βˆ’ ln |
𝑒 + 2
√3
+
ΰΆ₯(𝑒 + 2)2 βˆ’ 3
√3
| + 𝐢
= βˆ’ ln |
cos π‘₯ + 2
√3
+
ΰΆ₯(cos π‘₯ + 2)2 βˆ’ 3
√3
| + 𝐢
∴ ∫
𝑠𝑒𝑛 π‘₯
√cos2 π‘₯ + 4 cos π‘₯ + 1
𝑑π‘₯ = βˆ’ ln |
cos π‘₯ + 2
√3
+
ΰΆ₯(cos π‘₯ + 2)2 βˆ’ 3
√3
| + 𝐢
48. ∫
3 cos π‘₯
(𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯)
𝑑π‘₯
Solucion:
Mediante el mΓ©todo se sustituciΓ³n:
Sea: 𝑒 = 𝑠𝑒𝑛 π‘₯ β†’ 𝑑𝑒 = cos π‘₯ 𝑑π‘₯
Sustituimos:
∫
3 cos π‘₯
(𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯)
𝑑π‘₯ = ∫
3𝑑𝑒
(𝑒 + 1)(4 βˆ’ 𝑒2)
= ∫
3𝑑𝑒
(𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒)
Descomponemos por fracciones parciales:
3
(𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒)
=
𝐴
𝑒 + 1
+
𝐡
2 βˆ’ 𝑒
+
𝐢
2 + 𝑒
=
𝐴(2 βˆ’ 𝑒)(2 + 𝑒) + 𝐡(𝑒 + 1)(2 + 𝑒) + 𝐢(𝑒 + 1)(2 βˆ’ 𝑒)
(𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒)
Igualando numeradores, se tiene:
Si 𝑒 = βˆ’1 β†’ 3 = 𝐴 (3)(1) β†’ 𝐴 = 1
Si 𝑒 = 2 β†’ 3 = 𝐡(3)(4) β†’ 𝐡 =
1
4
Si 𝑒 = βˆ’2 β†’ 3 = 𝐢(βˆ’1)(4) β†’ 𝐢 = βˆ’
3
4
Luego,
∫
3 cos π‘₯
(𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯)
𝑑π‘₯ = ∫ (
𝐴
𝑒 + 1
+
𝐡
2 βˆ’ 𝑒
+
𝐢
2 + 𝑒
) 𝑑𝑒
= ∫ (
1
𝑒 + 1
+
1
4
2 βˆ’ 𝑒
+
βˆ’
3
4
2 + 𝑒
) 𝑑𝑒
= ∫
𝑑𝑒
𝑒 + 1
+
1
4
∫
𝑑𝑒
2 βˆ’ 𝑒
βˆ’
3
4
∫
𝑑𝑒
2 + 𝑒
Para la primera integral hacemos: 𝑧 = 𝑒 + 1 β†’ 𝑑𝑧 = 𝑑𝑒
Para la segunda integral hacemos: 𝑑 = 2 βˆ’ 𝑒 β†’ 𝑑𝑑 = βˆ’π‘‘π‘’ β†’ βˆ’π‘‘π‘‘ = 𝑑𝑒
Para la tercera integral hacemos: 𝑝 = 2 + 𝑒 β†’ 𝑑𝑧 = 𝑑𝑒
π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ :
= ∫
𝑑𝑒
𝑧
+
1
4
∫
βˆ’π‘‘π‘‘
𝑑
βˆ’
3
4
∫
𝑑𝑝
𝑝
= ln |𝑧| + 𝑐1 βˆ’
1
4
ln |𝑑| + 𝑐2 βˆ’
3
4
ln |𝑝| + 𝑐3
= ln |𝑒 + 1| βˆ’
1
4
ln |2 βˆ’ 𝑒| βˆ’
3
4
ln |2 + 𝑒| + 𝐢
= ln |𝑠𝑒𝑛 π‘₯ + 1| βˆ’
1
4
ln |2 βˆ’ 𝑠𝑒𝑛 π‘₯| βˆ’
3
4
ln |2 + 𝑠𝑒𝑛 π‘₯| + 𝐢
∴ ∫
3 cos π‘₯
(𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯)
𝑑π‘₯ = ln |𝑠𝑒𝑛 π‘₯ + 1| βˆ’
1
4
ln |2 βˆ’ 𝑠𝑒𝑛 π‘₯| βˆ’
3
4
ln |2 + 𝑠𝑒𝑛 π‘₯| + 𝐢
𝑧
1
tan 𝑧 = π‘₯ βˆ’ 1 β†’ π‘₯ = tan 𝑧 + 1 β†’ 𝑑π‘₯ = sec2
𝑧 𝑑𝑧
sec 𝑧 = ΰΆ₯(π‘₯ βˆ’ 1)2 + 1
π‘₯ βˆ’ 1
49. ∫
4π‘₯ + 5
(π‘₯2 βˆ’ 2π‘₯ + 2)
3
2
𝑑π‘₯
Solucion:
Hacemos completacion de cuadrados:
∫
4π‘₯ + 5
(π‘₯2 βˆ’ 2π‘₯ + 2)
3
2
𝑑π‘₯ = ∫
4π‘₯ + 5
[ΰΆ₯(π‘₯ βˆ’ 1)2 + 1]
3
Sustituimos:
∫
4π‘₯ + 5
[ΰΆ₯(π‘₯ βˆ’ 1)2 + 1]
3 𝑑π‘₯ = ∫
4(tan 𝑧 + 1) + 5
[sec 𝑧]3
sec2
𝑧 𝑑𝑧
= ∫
4 tan 𝑧 + 9
𝑠𝑒𝑐 𝑧
𝑑𝑧
= 4 ∫
tan 𝑧
𝑠𝑒𝑐 𝑧
𝑑𝑧 + ∫
9
𝑠𝑒𝑐 𝑧
𝑑𝑧
= 4 ∫
𝑠𝑒𝑛 𝑧
cos 𝑧
1
cos 𝑧
𝑑𝑧 + 9 ∫
1
1
cos 𝑧
𝑑𝑧
= 4 ∫ 𝑠𝑒𝑛 𝑧 𝑑𝑧 + 9 ∫ cos 𝑧 𝑑𝑧
= βˆ’4 cos 𝑧 + 9𝑠𝑒𝑛 𝑧 + 𝐢
= βˆ’4 cos
1
ΰΆ₯(π‘₯ βˆ’ 1)2 + 1
+ 9𝑠𝑒𝑛
π‘₯ βˆ’ 1
ΰΆ₯(π‘₯ βˆ’ 1)2 + 1
+ 𝐢
∴ ∫
4π‘₯ + 5
(π‘₯2 βˆ’ 2π‘₯ + 2)
3
2
𝑑π‘₯ = βˆ’4 cos
1
ΰΆ₯(π‘₯ βˆ’ 1)2 + 1
+ 9𝑠𝑒𝑛
π‘₯ βˆ’ 1
ΰΆ₯(π‘₯ βˆ’ 1)2 + 1
+ 𝐢
50. ∫
𝑑π‘₯
π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅―
Solucion:
Mediante el mΓ©todo de sustituciΓ³n:
Sea: 𝑒 = √1 + π‘₯ β†’ π‘₯ = 𝑒2
βˆ’ 1
𝑑𝑒 =
𝑑π‘₯
2√1 + π‘₯
β†’ 2√1 + π‘₯ 𝑑𝑒 = 𝑑π‘₯
Sustituimos:
∫
𝑑π‘₯
π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅―
= ∫
2√1 + π‘₯ 𝑑𝑒
(𝑒2 βˆ’ 1)(𝑒 βˆ’ 1)
= 2 ∫
𝑒 𝑑𝑒
(𝑒2 βˆ’ 1)(𝑒 βˆ’ 1)
= 2 ∫
𝑒 𝑑𝑒
(𝑒 + 1)(𝑒 βˆ’ 1)2
Descomponemos por fracciones parciales:
𝑒
(𝑒 + 1)(𝑒 βˆ’ 1)2
=
𝐴
𝑒 + 1
+
𝐡
𝑒 βˆ’ 1
+
𝐢
(𝑒 βˆ’ 1)2
=
𝐴(𝑒 βˆ’ 1)2
+ 𝐡(𝑒 + 1)(𝑒 βˆ’ 1) + 𝐢(𝑒 + 1)
(𝑒 + 1)(𝑒 βˆ’ 1)2
Igualando los numeradores, se tiene:
Si 𝑒 = βˆ’1 β†’ βˆ’1 = 𝐴 (4) β†’ 𝐴 = βˆ’
1
4
Si 𝑒 = 1 β†’ 1 = 𝐢 (2) β†’ 𝐢 =
1
2
Si 𝑒 = 0 β†’ 0 = 𝐴(βˆ’1)2
+ 𝐡(1)(βˆ’1) + 𝐢 β†’ 𝐡 = 𝐴 + 𝐢 = βˆ’
1
4
+
1
2
β†’ 𝐡 =
1
4
Luego,
𝑒
(𝑒 + 1)(𝑒 βˆ’ 1)2
=
βˆ’
1
4
𝑒 + 1
+
1
4
𝑒 βˆ’ 1
+
1
2
(𝑒 βˆ’ 1)2
∫
𝑑π‘₯
π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅―
= 2 ∫ (
βˆ’
1
4
𝑒 + 1
+
1
4
𝑒 βˆ’ 1
+
1
2
(𝑒 βˆ’ 1)2
) 𝑑𝑒
= βˆ’
1
2
∫
𝑑𝑒
𝑒 + 1
+
1
2
∫
𝑑𝑒
𝑒 βˆ’ 1
+ ∫
𝑑𝑒
(𝑒 βˆ’ 1)2
Para la primera integral hacemos: 𝑑 = 𝑒 + 1 β†’ 𝑑𝑑 = 𝑑𝑒
Para la segunda integral hacemos: 𝑝 = 𝑒 βˆ’ 1 β†’ 𝑑𝑝 = 𝑑𝑒
Para la tercera integral hacemos: 𝑣 = 𝑒 βˆ’ 1 β†’ 𝑑𝑣 = 𝑑𝑒
= βˆ’
1
2
∫
𝑑𝑑
𝑑
+
1
2
∫
𝑑𝑝
𝑝
+ ∫
𝑑𝑣
𝑣2
= βˆ’
1
2
∫
𝑑𝑑
𝑑
+
1
2
∫
𝑑𝑝
𝑝
+ ∫ π‘£βˆ’2
𝑑𝑣
= βˆ’
1
2
ln |𝑑| + 𝑐1 +
1
2
ln |𝑝| + 𝑐2 +
1
2
π‘£βˆ’1
βˆ’1
+ 𝑐3
= βˆ’
1
2
ln |𝑒 + 1 | +
1
2
ln |𝑒 βˆ’ 1 | βˆ’
1
(𝑒 βˆ’ 1)
+ 𝑐4
= βˆ’
1
2
ln |√1 + π‘₯ + 1 | +
1
2
ln |√1 + π‘₯ βˆ’ 1 | βˆ’
1
(√1 + π‘₯ βˆ’ 1)
+ 𝐢
∴ ∫
𝑑π‘₯
π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅―
= βˆ’
1
2
ln |√1 + π‘₯ + 1 | +
1
2
ln |√1 + π‘₯ βˆ’ 1 | βˆ’
1
(√1 + π‘₯ βˆ’ 1)
+ 𝐢
51. ∫
π‘₯ ln π‘₯ 𝑑π‘₯
√1 βˆ’ π‘₯2
Solucion:
Integrando por partes, se tiene:
𝑒 = 𝑙𝑛 π‘₯ β†’ 𝑑𝑒 =
1
π‘₯
𝑑π‘₯
𝑑𝑣 =
π‘₯
(1 βˆ’ x2)
1
2
𝑑π‘₯ β†’ 𝑣 = ∫
π‘₯
(1 βˆ’ x2)
1
2
𝑑π‘₯
Para hallar v, Hacemos 𝑧 = 1 βˆ’ π‘₯2
β†’ 𝑑𝑧 = βˆ’2π‘₯𝑑π‘₯ β†’ βˆ’2𝑑𝑧 = π‘₯𝑑π‘₯
𝑑𝑣 =
π‘₯
(1 βˆ’ x2)
1
2
𝑑π‘₯ β†’ 𝑣 = ∫
βˆ’2𝑑𝑧
𝑧
1
2
= βˆ’2 ∫ π‘§βˆ’
1
2 𝑑𝑒 = βˆ’2
𝑧
1
2
1
2
= βˆ’(1 βˆ’ x2)
1
2
Luego,
∫
π‘₯ ln π‘₯ 𝑑π‘₯
√1 βˆ’ π‘₯2
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ βˆ’ ∫ βˆ’(1 βˆ’ x2)
1
2
1
π‘₯
𝑑π‘₯
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ∫
√1 βˆ’ x2
π‘₯
𝑑π‘₯
Sea: 𝑒2
= 1 βˆ’ π‘₯2
β†’ π‘₯2
= 1 βˆ’ 𝑒2
β†’ 𝑒 = √1 βˆ’ π‘₯2
β†’ 2𝑒 𝑑𝑒 = βˆ’2π‘₯𝑑π‘₯ β†’ 𝑒 𝑑𝑒 = βˆ’π‘₯ 𝑑π‘₯ β†’
𝑒 𝑑𝑒
βˆ’π‘₯
= 𝑑π‘₯
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ∫
𝑒
π‘₯
𝑒 𝑑𝑒
βˆ’π‘₯
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ βˆ’ ∫
𝑒2
π‘₯2
𝑑𝑒
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ∫
βˆ’π‘’2
+ 1 βˆ’ 1
1 βˆ’ 𝑒2
𝑑𝑒
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ∫
1 βˆ’ 𝑒2
1 βˆ’ 𝑒2
𝑑𝑒 βˆ’ ∫
1
1 βˆ’ 𝑒2
𝑑𝑒
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ∫ 𝑑𝑒 βˆ’ ∫
1
1 βˆ’ 𝑒2
𝑑𝑒
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + 𝑒 + 𝑐1 βˆ’
1
2
ln |
𝑒 + 1
𝑒 βˆ’ 1
| + 𝑐2
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + 𝑒 + 𝑐1 βˆ’
1
2
ln |
𝑒 + 1
𝑒 βˆ’ 1
| + 𝑐2
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ΰΆ₯1 βˆ’ x2 βˆ’
1
2
ln |
√1 βˆ’ x2 + 1
√1 βˆ’ x2 βˆ’ 1
| + 𝐢
∴ ∫
π‘₯ ln π‘₯ 𝑑π‘₯
√1 βˆ’ π‘₯2
= βˆ’(1 βˆ’ x2)
1
2 ln π‘₯ + ΰΆ₯1 βˆ’ x2 βˆ’
1
2
ln |
√1 βˆ’ x2 + 1
√1 βˆ’ x2 βˆ’ 1
| + 𝐢

More Related Content

What's hot

BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein PolynomialsIOSR Journals
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4MAY NURHAYATI
Β 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalezRuben Gonzalez
Β 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
Β 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
Β 
Z transforms
Z transformsZ transforms
Z transformssujathavvv
Β 
Radiation
RadiationRadiation
RadiationSoumith V
Β 
Vector calculus
Vector calculusVector calculus
Vector calculussujathavvv
Β 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleLiang Kai Hu
Β 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-IIKundan Kumar
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
Β 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengthsMaxim Eingorn
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision cardPuna Ripiye
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision cardPuna Ripiye
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
Β 

What's hot (20)

BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
Β 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalez
Β 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
Β 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
Β 
Z transforms
Z transformsZ transforms
Z transforms
Β 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
Β 
Radiation
RadiationRadiation
Radiation
Β 
Vector calculus
Vector calculusVector calculus
Vector calculus
Β 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
Β 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
Β 
285 294
285 294285 294
285 294
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 
Duel of cosmological screening lengths
Duel of cosmological screening lengthsDuel of cosmological screening lengths
Duel of cosmological screening lengths
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Β 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Β 

Similar to Integrales solucionario

Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralNurkhalifah Anwar
Β 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
Β 
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)ShelbistarMarbaniang
Β 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
Β 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones linealesJHANDRYALCIVARGUAJAL
Β 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
Β 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sourcesSoumith V
Β 
Semana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionSemana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionandres cuellar
Β 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation IIJazz Michele Pasaribu
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
Β 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raicesHipΓ³lito Aguilar
Β 
Raices de un polinomio 11
Raices de un polinomio 11Raices de un polinomio 11
Raices de un polinomio 11NestOr Pancca
Β 
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptx
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptxUNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptx
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptxbestmorfingamer
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
Β 

Similar to Integrales solucionario (20)

Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Β 
Calculo
CalculoCalculo
Calculo
Β 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
Β 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
Β 
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Β 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Β 
Formulas
FormulasFormulas
Formulas
Β 
Logarithma
LogarithmaLogarithma
Logarithma
Β 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
Β 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
Β 
Alternative enery sources
Alternative enery sourcesAlternative enery sources
Alternative enery sources
Β 
Semana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionSemana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacion
Β 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation II
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
Β 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
Β 
Raices de un polinomio 11
Raices de un polinomio 11Raices de un polinomio 11
Raices de un polinomio 11
Β 
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptx
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptxUNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptx
UNEC__1709djdjejsjdjdjsjsjsjsjΓΌjsj657487.pptx
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Β 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
Β 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
Β 

Integrales solucionario

  • 1. Utilizando el metodo de sustitucion: 1. ∫ √π‘₯ arctan(√π‘₯3) 1 + π‘₯3 𝑑π‘₯ SoluciΓ³n: Sea 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›ΰ΅«βˆšπ‘₯3ΰ΅― β†’ 𝑑𝑒 = 1 1+π‘₯3 3 2 √π‘₯ 𝑑π‘₯ β†’ 2 3 𝑑𝑒 = 1 1+π‘₯3 √π‘₯ 𝑑π‘₯ Luego, reemplazando: ∫ √π‘₯ arctan࡫√π‘₯3ΰ΅― 1 + π‘₯3 𝑑π‘₯ = 2 3 ∫ 𝑒 𝑑𝑒 = 2 3 𝑒2 2 + 𝑐1 = 1 3 (π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›α‰€ΰΆ₯π‘₯3 ) ቁ 2 + 𝐢 ∴ ∫ √π‘₯ + arctan࡫√π‘₯3ΰ΅― 1 + π‘₯3 𝑑π‘₯ = 1 3 (π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ቀΰΆ₯π‘₯3 ) ቁ 2 + 𝐢
  • 2. 2. ∫ 𝑑π‘₯ √(1 + π‘₯2) 𝑙𝑛(π‘₯ + ΰΆ₯1 + π‘₯2 ) SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea 𝑒 = 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― β†’ 𝑑𝑒 = 1 π‘₯+√1+π‘₯2 ቀ1 + 2π‘₯ 2√1+π‘₯2 ቁ 𝑑π‘₯ 𝑑𝑒 = 1 π‘₯ + √1 + π‘₯2 (1 + π‘₯ √1 + π‘₯2 ) 𝑑π‘₯ 𝑑𝑒 = 1 π‘₯ + √1 + π‘₯2 ቆ √1 + π‘₯2 + π‘₯ √1 + π‘₯2 ቇ 𝑑π‘₯ 𝑑𝑒 = √ 1 1 + π‘₯2 𝑑π‘₯ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘›π‘‘π‘œ π‘π‘Ÿπ‘œπ‘π‘–π‘’π‘‘π‘Žπ‘‘π‘’π‘  𝑑𝑒 π‘Ÿπ‘Žπ‘–π‘π‘’π‘  𝑒𝑛 𝑒𝑙 π‘‘π‘’π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘‘π‘œπ‘Ÿ: ∫ 𝑑π‘₯ √(1 + π‘₯2) 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― = ∫ 𝑑π‘₯ ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― Sustituimos en la integral: ∫ 𝑑π‘₯ ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― = ∫ 𝑑𝑒 βˆšπ‘’ = 2βˆšπ‘’ + 𝐢 = 2βˆšπ‘™π‘› ቀπ‘₯ + ΰΆ₯1 + π‘₯2 ቁ + 𝐢 ∴ ∫ 𝑑π‘₯ ΰΆ₯(1 + π‘₯2) √ 𝑙𝑛࡫π‘₯ + √1 + π‘₯2 ΰ΅― = 2βˆšπ‘™π‘› ቀπ‘₯ + ΰΆ₯1 + π‘₯2 ቁ + 𝐢
  • 3. 3. ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4 π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯ π‘π‘œπ‘ 3π‘₯ 𝑑π‘₯ SoluciΓ³n: π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™: ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4 π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯ π‘π‘œπ‘ 3π‘₯ 𝑑π‘₯ = ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4 π‘₯ π‘π‘œπ‘ 3π‘₯ 𝑑π‘₯ βˆ’ ∫ π‘‘π‘Žπ‘› π‘₯ π‘π‘œπ‘ 3π‘₯ 𝑑π‘₯ = ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘  π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4π‘₯ 𝑑π‘₯ π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = 𝑠𝑒𝑛 π‘₯ β†’ 𝑑𝑒 = π‘π‘œπ‘  π‘₯ 𝑑π‘₯ π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑧 = π‘π‘œπ‘  π‘₯ β†’ 𝑑𝑧 = βˆ’π‘ π‘’π‘› π‘₯ 𝑑π‘₯ β†’ βˆ’π‘‘π‘§ = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  𝑒𝑛 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™: ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘  π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4π‘₯ 𝑑π‘₯ = ∫ 𝑒𝑒 𝑑𝑒 + ∫ 𝑑𝑧 𝑧4 = ∫ 𝑒𝑒 𝑑𝑒 + ∫ π‘§βˆ’4 𝑑𝑧 = 𝑒𝑒 + 𝑐1 βˆ’ π‘§βˆ’3 3 + 𝑐2 = 𝑒𝑒 βˆ’ 1 3𝑧3 + 𝐢 = 𝑒𝑠𝑒𝑛 π‘₯ βˆ’ 1 3π‘π‘œπ‘ 3 π‘₯ + 𝐢 ∴ ∫ 𝑒𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘ 4 π‘₯ βˆ’ π‘‘π‘Žπ‘› π‘₯ π‘π‘œπ‘ 3π‘₯ 𝑑π‘₯ = 𝑒𝑠𝑒𝑛 π‘₯ βˆ’ 1 3π‘π‘œπ‘ 3 π‘₯ + 𝐢
  • 4. π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  𝑒𝑛 π‘‘π‘œπ‘  π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™π‘’π‘ : ∫ 𝑙𝑛(3π‘₯2 + 3)π‘₯ βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ = ∫ 𝑙𝑛(3π‘₯2 + 3)π‘₯ 1 + π‘₯2 𝑑π‘₯ + ∫ βˆ’4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ = ∫ π‘₯ 𝑙𝑛 3(π‘₯2 + 1) 1 + π‘₯2 𝑑π‘₯ βˆ’ 4 ∫ 𝑒5π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = ln 3(π‘₯2 + 1) β†’ 𝑑𝑒 = 6π‘₯ 3(π‘₯2 + 1) 𝑑π‘₯ 𝑑𝑒 = 2π‘₯ (π‘₯2 + 1) 𝑑π‘₯ 𝑑𝑒 2 = π‘₯ (π‘₯2 + 1) 𝑑π‘₯ π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑣 = 5arcta n π‘₯ β†’ 𝑑𝑣 = 5 1 + π‘₯2 𝑑π‘₯ 𝑑𝑣 5 = 1 1 + π‘₯2 𝑑π‘₯ π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  𝑒𝑛 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™: ∫ 𝑙𝑛(3π‘₯2 + 3)π‘₯ βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ = ∫ 𝑒 𝑑𝑒 2 βˆ’ 4 ∫ 𝑒𝑣 𝑑𝑣 5 = 1 2 ∫ 𝑒 𝑑𝑒 βˆ’ 4 5 ∫ 𝑒𝑣 𝑑𝑣 = 1 2 𝑒2 2 + 𝑐1 βˆ’ 4 5 𝑒𝑣 + 𝑐2 = 1 4 𝑒2 βˆ’ 4 5 𝑒𝑣 + 𝑐3 = 1 4 ln2 3(π‘₯2 + 1) βˆ’ 4 5 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ + 𝐢 ∴ ∫ 𝑙𝑛(3π‘₯2 + 3)π‘₯ βˆ’ 4 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ = 1 4 ln2 3(π‘₯2 + 1) βˆ’ 4 5 𝑒5 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ + 𝐢 4. ∫ 𝑙𝑛(3π‘₯2 + 3)π‘₯ βˆ’ 4 π‘’π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› π‘₯ 1 + π‘₯2 𝑑π‘₯ SoluciΓ³n:
  • 5. 5. ∫ 2π‘₯3 + π‘₯2 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ π‘ƒπ‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘‘π‘’π‘Ÿπ‘π‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ β„Žπ‘Žπ‘π‘’π‘šπ‘œπ‘ : 𝑒 = 2π‘₯2 βˆ’ π‘₯ + 4 β†’ 𝑑𝑒 = (4π‘₯ βˆ’ 1)𝑑π‘₯ (βˆ—βˆ—βˆ—) ∫ 3π‘₯ + 4 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = ∫ 3 ቀπ‘₯ + 4 3 ቁ 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = 3 ∫ π‘₯ + 4 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ 3 ∫ π‘₯ + 4 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ 4 4 = 3 4 ∫ 4π‘₯ + 16 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = 3 4 ∫ 4π‘₯ + 16 3 + 1 βˆ’ 1 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = 3 4 ∫ 4π‘₯ βˆ’ 1 + 19 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ SoluciΓ³n: Simplificaremos mediante divisiΓ³n de polinomios: ( 2π‘₯3 + π‘₯2 ) ∢ (2π‘₯2 βˆ’ π‘₯ + 4) = π‘₯ + 1 βˆ’( 2π‘₯3 βˆ’ π‘₯2 + 4π‘₯) 2π‘₯2 βˆ’ 4π‘₯ βˆ’( 2π‘₯2 βˆ’ π‘₯ + 4) βˆ’3π‘₯ βˆ’ 4 Resto Luego, reemplazando: ∫ 2π‘₯3 + π‘₯2 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = ∫ (π‘₯ + 1 + βˆ’3π‘₯ βˆ’ 4 2π‘₯2 βˆ’ π‘₯ + 4 ) 𝑑π‘₯ π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™: ∫ (π‘₯ + 1 + βˆ’3π‘₯ βˆ’ 4 2π‘₯2 βˆ’ π‘₯ + 4 ) 𝑑π‘₯ = ∫ π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯ + ∫ βˆ’(3π‘₯ + 4) 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = π‘₯2 2 + π‘₯ + 𝑐1 + 𝑐2 βˆ’ ∫ 3π‘₯ + 4 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ (βˆ—βˆ—) 𝐴𝑛𝑑𝑒𝑠 𝑑𝑒 π‘Ÿπ‘’π‘Žπ‘™π‘–π‘§π‘Žπ‘Ÿ π‘™π‘Ž π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘π‘–π‘œπ‘› π‘Ÿπ‘’π‘Žπ‘™π‘–π‘§π‘Žπ‘‘π‘Ž π‘‘π‘’π‘π‘’π‘šπ‘œπ‘  π‘‘π‘Ÿπ‘Žπ‘π‘Žπ‘—π‘Žπ‘Ÿ π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ π΄π‘šπ‘π‘™π‘–π‘“π‘–π‘π‘Žπ‘šπ‘œπ‘  π‘π‘œπ‘Ÿ 4 π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ 𝑦 π‘™π‘’π‘’π‘”π‘œ π‘ π‘’π‘ π‘Žπ‘šπ‘Žπ‘šπ‘œπ‘  + 1 βˆ’ 1 para π‘π‘œπ‘›π‘ π‘’π‘”π‘’π‘–π‘Ÿ 𝑒𝑙 𝑑𝑒 = (4π‘₯ βˆ’ 1)𝑑π‘₯ = 3 ∫ π‘₯ + 4 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯
  • 6. π‘†π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘šπ‘œπ‘  π‘™π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™: 3 4 ∫ 4π‘₯ βˆ’ 1 + 19 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = 3 4 ∫ 4π‘₯ βˆ’ 1 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ + 3 4 ∫ 19 3 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = 3 4 ∫ 4π‘₯ βˆ’ 1 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ + 3 4 19 3 ∫ 𝑑π‘₯ 2π‘₯2 βˆ’ π‘₯ + 4 = 3 4 ∫ 4π‘₯ βˆ’ 1 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ + 19 4 ∫ 𝑑π‘₯ 2π‘₯2 βˆ’ π‘₯ + 4 𝐸𝑛 π‘™π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’π‘Ÿπ‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  π‘™π‘Ž π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝑑𝑒 (βˆ—βˆ—βˆ—) 𝑦 π‘π‘Žπ‘Ÿπ‘Ž π‘™π‘Ž π‘ π‘’π‘”π‘’π‘›π‘‘π‘Ž π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™ π‘Žπ‘Ÿπ‘šπ‘Žπ‘šπ‘œπ‘  π‘π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘œ 𝑑𝑒 π‘π‘–π‘›π‘œπ‘šπ‘–π‘œ: = 3 4 ∫ 𝑑𝑒 𝑒 + 19 4 ∫ 𝑑π‘₯ 2 ቀπ‘₯2 βˆ’ π‘₯ 2 + 2ቁ = 3 4 ln | 𝑒 | + 𝑐3 + 19 8 ∫ 𝑑π‘₯ π‘₯2 βˆ’ π‘₯ 2 + 2 = 3 4 ln | 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 ∫ 𝑑π‘₯ π‘₯2 βˆ’ π‘₯ 2 + 2 + 1 16 βˆ’ 1 16 = 3 4 ln | 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 ∫ 𝑑π‘₯ ቀπ‘₯ βˆ’ 1 4ቁ 2 βˆ’ 1 16 + 2 = 3 4 ln | 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 ∫ 𝑑π‘₯ ቀπ‘₯ βˆ’ 1 4 ቁ 2 + 31 16 = 3 4 ln| 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 ∫ 𝑑π‘₯ ቀπ‘₯ βˆ’ 1 4 ቁ 2 + ቆ √31 4 ቇ 2 = 3 4 ln | 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 1 √31 4 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ( π‘₯ βˆ’ 1 4 √31 4 ) + 𝑐4 π‘‰π‘œπ‘™π‘£π‘–π‘’π‘›π‘‘π‘œ π‘Ž (βˆ—βˆ—) 𝑦 π‘Ÿπ‘’π‘’π‘šπ‘π‘™π‘Žπ‘§π‘Žπ‘›π‘‘π‘œ π‘™π‘œ π‘π‘Žπ‘™π‘π‘’π‘™π‘Žπ‘‘π‘œ π‘Žπ‘›π‘‘π‘’π‘Ÿπ‘–π‘œπ‘Ÿπ‘šπ‘’π‘›π‘‘π‘’ = π‘₯2 2 + π‘₯ + 𝑐1 + 𝑐2 βˆ’ ( 3 4 ln| 2π‘₯2 βˆ’ π‘₯ + 4 | + 𝑐3 + 19 8 1 √31 4 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ( π‘₯ βˆ’ 1 4 √31 4 ) + 𝑐4) = π‘₯2 2 + π‘₯ βˆ’ 3 4 ln| 2π‘₯2 βˆ’ π‘₯ + 4 | βˆ’ 19 2√31 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ( 4 ቀπ‘₯ βˆ’ 1 4 ቁ √31 ) + 𝐢 ∴ ∫ 2π‘₯3 + π‘₯2 2π‘₯2 βˆ’ π‘₯ + 4 𝑑π‘₯ = π‘₯2 2 + π‘₯ βˆ’ 3 4 ln| 2π‘₯2 βˆ’ π‘₯ + 4 | βˆ’ 19 2√31 π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› ( 4 ቀπ‘₯ βˆ’ 1 4 ቁ √31 ) + 𝐢
  • 7. ∴ ∫ arctan(√π‘₯) √π‘₯ + 2π‘₯2 + π‘₯3 𝑑π‘₯ = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2 √π‘₯ + 𝐢 6. ∫ arctan(√π‘₯) √π‘₯ + 2π‘₯2 + π‘₯3 𝑑π‘₯ SoluciΓ³n: Sea: 𝑒 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›ΰ΅«βˆšπ‘₯ ΰ΅― β†’ 𝑑𝑒 = 1 1+π‘₯ 1 2√π‘₯ 𝑑π‘₯ β†’ 2𝑑𝑒 = 1 (1 + π‘₯)√π‘₯ 𝑑π‘₯ Trabajamos el denominador de la integral para conseguir el du: Por el mΓ©todo de sustituciΓ³n: Sustituimos en la integral: ∫ arctan(√π‘₯) √π‘₯ + 2π‘₯2 + π‘₯3 𝑑π‘₯ = ∫ arctan(√π‘₯) ΰΆ₯π‘₯(1 + 2π‘₯ + π‘₯2) 𝑑π‘₯ = ∫ arctan(√π‘₯) √π‘₯ √1 + 2π‘₯ + π‘₯2 𝑑π‘₯ = ∫ arctan(√π‘₯) √π‘₯ ΰΆ₯(1 + π‘₯)2 𝑑π‘₯ = ∫ arctan(√π‘₯) √π‘₯ (1 + π‘₯) 𝑑π‘₯ = ∫ arctan(√π‘₯) √π‘₯ (1 + π‘₯) 𝑑π‘₯ = ∫ 𝑒 βˆ— 2𝑑𝑒 = 2 𝑒2 2 + 𝐢 = 𝑒2 + 𝐢 = ΰ΅«π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› √π‘₯ΰ΅― 2 + 𝐢 = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›2 √π‘₯ + 𝐢
  • 8. 7. ∫ 𝑑π‘₯ 1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯ SoluciΓ³n: Usamos la sustituciΓ³n universal o de Weierstrass: 𝑑 = π‘‘π‘Žπ‘›( π‘₯ 2 ) π‘π‘œπ‘  π‘₯ = 1 βˆ’ 𝑑2 1 + 𝑑2 ; 𝑠𝑒𝑛 π‘₯ = 2𝑑 1 + 𝑑2 Despejando t para encontrar el 𝑑𝑑: π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (𝑑) = π‘₯ 2 β†’ π‘₯ = 2π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› (𝑑) β†’ 𝑑π‘₯ = 2 1 + 𝑑2 𝑑𝑑 Sustituimos en la integral: ∫ 𝑑π‘₯ 1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯ = ∫ 2 1 + 𝑑2 𝑑𝑑 1 βˆ’ 2𝑑 1 + 𝑑2 + 1 βˆ’ 𝑑2 1 + 𝑑2 = ∫ 2 1 + 𝑑2 𝑑𝑑 1 + 𝑑2 βˆ’ 2𝑑 + 1 βˆ’ 𝑑2 1 + 𝑑2 = ∫ 2𝑑𝑑 2 βˆ’ 2𝑑 = 2 ∫ 𝑑𝑑 βˆ’ 2(𝑑 βˆ’ 1) = βˆ’ ∫ 𝑑𝑑 (𝑑 βˆ’ 1) = βˆ’ ln|𝑑 βˆ’ 1| + 𝐢 = βˆ’ ln |π‘‘π‘Žπ‘› ቀ π‘₯ 2 ቁ βˆ’ 1| + 𝐢 Importante: Esta sustituciΓ³n se utiliza generalmente para realizar integrales en la cual veamos funciones trigonomΓ©tricas en el denominador ∴ ∫ 𝑑π‘₯ 1 βˆ’ 𝑠𝑒𝑛 π‘₯ + π‘π‘œπ‘  π‘₯ = βˆ’ ln |π‘‘π‘Žπ‘› ቀ π‘₯ 2 ቁ βˆ’ 1| + 𝐢
  • 9. ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ 8. Determine la integral mediante el metodo de integracion por partes: SoluciΓ³n: ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ = ∫ 𝑒π‘₯ βˆ™ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ Utilizando el mΓ©todo de integraciΓ³n de partes: 𝑒 = 𝑒π‘₯ β†’ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ 𝑑𝑣 = 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ β†’ 𝑣 = βˆ’2(1 βˆ’ 𝑒π‘₯ ) 1 2 = βˆ’2√1 βˆ’ 𝑒π‘₯ Sustituimos: ∫ 𝑒π‘₯ βˆ™ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = 𝑒π‘₯ βˆ— βˆ’2√1 βˆ’ 𝑒π‘₯ βˆ’ ∫ βˆ’2√1 βˆ’ 𝑒π‘₯ 𝑒π‘₯ 𝑑π‘₯ = βˆ’2𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ + 2 ∫ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ Resolvemos mediante el mΓ©todo de sustituciΓ³n la integral: ‫׬‬ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ 𝑧 = 1 βˆ’ 𝑒π‘₯ β†’ 𝑑𝑧 = 𝑒π‘₯ 𝑑π‘₯ Sustituyendo, se tiene: ∫ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = ∫ βˆšπ‘§ 𝑑𝑧 = ∫ 𝑧 1 2 𝑑𝑧 = 𝑧 3 2 3 2 + 𝐢 = 𝑧 3 2 3 2 + 𝐢 = 2 3 ΰΆ₯𝑧3 + 𝐢 = 2 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢 Luego, ∫ 𝑒π‘₯ βˆ™ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = βˆ’2𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ + 2 ∫ 𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = βˆ’2𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ + 2 2 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢 = βˆ’2𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ + 4 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢 ∫ 𝒖 𝒅𝒗 = 𝒖 𝒗 βˆ’ ∫ 𝒗 𝒅𝒖 ∴ ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ = βˆ’2𝑒π‘₯ √1 βˆ’ 𝑒π‘₯ + 4 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
  • 10. 9. ∫ 𝑙𝑛 π‘₯ π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3 𝑑π‘₯ SoluciΓ³n: Por propiedad de potencias: ∫ 𝑙𝑛 π‘₯ π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3 𝑑π‘₯ = ∫ 𝑙𝑛 π‘₯ ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅― 3 𝑑π‘₯ Utilizando el mΓ©todo de sustituciΓ³n: 𝑒 = π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1) β†’ 𝑑𝑒 = (π‘₯ βˆ™ 1 π‘₯ + 𝑙𝑛π‘₯ βˆ’ 1) 𝑑π‘₯ 𝑑𝑒 = 𝑙𝑛 π‘₯ 𝑑π‘₯ Sustituimos en la integral: ∫ 𝑙𝑛 π‘₯ ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅― 3 𝑑π‘₯ = ∫ 𝑑𝑒 𝑒3 = ∫ π‘’βˆ’3 𝑑𝑒 = π‘’βˆ’2 βˆ’2 + 𝐢 = βˆ’ 1 2 1 𝑒2 + 𝐢 = βˆ’ 1 2 1 ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅― 2 + 𝐢 ∴ ∫ 𝑙𝑛 π‘₯ π‘₯3(𝑙𝑛 π‘₯ βˆ’ 1)3 𝑑π‘₯ = βˆ’ 1 2 1 ΰ΅«π‘₯( 𝑙𝑛 π‘₯ βˆ’ 1)ΰ΅― 2 + 𝐢
  • 11. 10. ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 𝑒π‘₯ β†’ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ Sustituimos en la integral: ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = ∫ 𝑒 𝑑𝑒 √1 βˆ’ 𝑒 Utilizando nuevamente el mΓ©todo de sustituciΓ³n: Sea: 𝑧 √ = 1 βˆ’ 𝑒 β†’ 𝑒 = 1 βˆ’ 𝑧2 𝑑𝑧 = βˆ’1 2√1 βˆ’ 𝑒 𝑑𝑒 β†’ βˆ’2𝑑𝑧 = 1 √1 βˆ’ 𝑒 𝑑𝑒 Sustituimos en la integral: ∫ 𝑒 𝑑𝑒 √1 βˆ’ 𝑒 = ∫ βˆ’2(1 βˆ’ 𝑧 ) 2 𝑑𝑧 = βˆ’2 ∫ 𝑑𝑧 + 2 ∫ 𝑧2 = βˆ’2𝑧 + 2 𝑧3 3 + 𝑐1 = βˆ’2√1 βˆ’ 𝑒 + 2 3 ࡫√1 βˆ’ 𝑒࡯ 3 + 𝑐2 = βˆ’2√1 βˆ’ 𝑒 + 2 3 ΰΆ₯(1 βˆ’ 𝑒)3 + 𝑐2 = βˆ’2√1 βˆ’ 𝑒π‘₯ + 2 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢 ∴ ∫ 𝑒2π‘₯ 𝑑π‘₯ √1 βˆ’ 𝑒π‘₯ 𝑑π‘₯ = βˆ’2√1 βˆ’ 𝑒π‘₯ + 2 3 ΰΆ₯(1 βˆ’ 𝑒π‘₯)3 + 𝐢
  • 12. SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 2 + tan3 π‘₯ β†’ 𝑑𝑒 = 3 tan2 π‘₯ sec2 π‘₯ 𝑑π‘₯ Sustituimos: ∫ 18 tan2 x sec2 x (2 + tan3 π‘₯) 𝑑π‘₯ = ∫ 18𝑑𝑒 𝑒 = 18 ∫ 𝑑𝑒 𝑒 = 18 ln|𝑒| + 𝐢 = 18 ln|2 + tan3 π‘₯| + 𝐢 ∴ ∫ 18 tan2 x sec2 x (2 + tan3 π‘₯) 𝑑π‘₯ = 18 ln|2 + tan3 π‘₯| + 𝐢 11. ∫ 18 tan2 x sec2 x (2 + tan3 π‘₯) 𝑑π‘₯
  • 13. SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) β†’ 𝑑𝑒 = 2𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ β†’ 𝑑𝑒 2 = 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ Sustituimos: 12. ∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ ∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ = ∫ βˆšπ‘’ 𝑑𝑒 2 = 1 2 ∫ βˆšπ‘’ 𝑑𝑒 = 1 2 𝑒 3 2 3 2 + 𝐢 = 3 𝑒 3 2 + 𝐢 = 3 ΰ΅«1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1)ΰ΅― 3 2 + 𝐢 ∴ ∫ ΰΆ₯1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1) 𝑠𝑒𝑛(π‘₯ βˆ’ 1) cos(π‘₯ βˆ’ 1) 𝑑π‘₯ = 3 ΰ΅«1 + 𝑠𝑒𝑛2(π‘₯ βˆ’ 1)ΰ΅― 3 2 + 𝐢
  • 14. SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 5π‘₯ + 8 β†’ 𝑑𝑒 = 5𝑑π‘₯ β†’ 𝑑𝑒 5 = 𝑑π‘₯ Sustituimos: ∫ 𝑑x √5π‘₯ + 8 = ∫ 𝑑𝑒 βˆšπ‘’ = ∫ π‘’βˆ’ 1 2𝑑𝑒 = π‘’βˆ’ 1 2 +1 βˆ’ 1 2 + 1 + 𝐢 = 𝑒 1 2 1 2 + 𝐢 = 2 𝑒 1 2 + 𝐢 = 2(5π‘₯ + 8) 1 2 + 𝐢 ∴ ∫ 𝑑x √5π‘₯ + 8 = 2(5π‘₯ + 8) 1 2 + 𝐢 SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 𝑦3 18 βˆ’ 1 β†’ 𝑑𝑒 = 3𝑦2 18 𝑑𝑦 β†’ 18𝑑𝑒 3 = 𝑦2 𝑑𝑦 β†’ 6𝑑𝑒 = 𝑦2 𝑑𝑦 Sustituimos: ∫ 𝑦2 ቆ 𝑦3 18 βˆ’ 1ቇ 5 𝑑𝑦 = ∫ 𝑒5 6𝑑𝑒 = 6 ∫ 𝑒5 𝑑𝑒 = 6 𝑒5+1 5 + 1 + 𝐢 = 6 𝑒6 6 + 𝐢 = 𝑒6 + 𝐢 = ቆ 𝑦3 18 βˆ’ 1ቇ 6 + 𝐢 ∴ ∫ 𝑦2 ቆ 𝑦3 18 βˆ’ 1ቇ 5 𝑑𝑦 = ቆ 𝑦3 18 βˆ’ 1ቇ 6 + 𝐢 13. ∫ 𝑑x √5π‘₯ + 8 14. ∫ 𝑦2 ቆ 𝑦3 18 βˆ’ 1ቇ 5 𝑑𝑦
  • 15. SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 5π‘₯ + 8 β†’ 𝑑𝑒 = 5𝑑π‘₯ β†’ 𝑑𝑒 5 = 𝑑π‘₯ Sustituimos: ∫ 𝑑x √5π‘₯ + 8 = ∫ 𝑑𝑒 βˆšπ‘’ = ∫ π‘’βˆ’ 1 2𝑑𝑒 = π‘’βˆ’ 1 2 +1 βˆ’ 1 2 + 1 + 𝐢 = 𝑒 1 2 1 2 + 𝐢 = 2 𝑒 1 2 + 𝐢 = 2(5π‘₯ + 8) 1 2 + 𝐢 ∴ ∫ 𝑑x √5π‘₯ + 8 = 2(5π‘₯ + 8) 1 2 + 𝐢 SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 1 + √π‘₯ β†’ 𝑑𝑒 = 1 2 √π‘₯ 𝑑π‘₯ β†’ 2𝑑𝑒 = 𝑑π‘₯ √π‘₯ Sustituimos: ∫ ΰ΅«1 + √π‘₯ΰ΅― 3 𝑑x √π‘₯ = ∫ 𝑒3 𝑑𝑒 = 𝑒3+1 3 + 1 + 𝐢 = 𝑒4 4 + 𝐢 = ΰ΅«1 + √π‘₯ΰ΅― 4 4 + 𝐢 ∴ ∫ ΰ΅«1 + √π‘₯ΰ΅― 3 𝑑x √π‘₯ = ΰ΅«1 + √π‘₯ΰ΅― 4 4 + 𝐢 15. ∫ 𝑑x π‘₯√9π‘₯4 βˆ’ 4 16. ∫ ΰ΅«1 + √π‘₯ΰ΅― 3 𝑑x √π‘₯
  • 16. SoluciΓ³n: Utilizando el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 𝑒π‘₯ + 1 β†’ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑒π‘₯ π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯ + 1)𝑑π‘₯ = ∫ cosec 𝑒 𝑑𝑒 ∴ ∫ 𝑒π‘₯ π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯ + 1)𝑑π‘₯ = βˆ’ ln|π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯ + 1) + π‘π‘œπ‘‘π‘Žπ‘› (𝑒π‘₯ + 1)| + 𝐢 SoluciΓ³n: Desarrollando el binomio al cuadrado: ∫(sec 𝑑 + tan 𝑑)2 𝑑𝑑 = ∫(sec2 𝑑 + 2 sec 𝑑 tan 𝑑 + tan2 𝑑)𝑑𝑑 ∴ ∫(sec 𝑑 + tan 𝑑)2 𝑑𝑑 = 2 tan 𝑑 + 2sec 𝑑 βˆ’ 𝑑 + 𝐢 17. ∫ 𝑒π‘₯ π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯ + 1)𝑑π‘₯ 18. ∫(sec 𝑑 + tan 𝑑)2 𝑑𝑑 = βˆ’ ln|π‘π‘œπ‘ π‘’π‘ 𝑒 + π‘π‘œπ‘‘π‘Žπ‘› 𝑒| + 𝐢 = βˆ’ ln|π‘π‘œπ‘ π‘’π‘ (𝑒π‘₯ + 1) + π‘π‘œπ‘‘π‘Žπ‘› (𝑒π‘₯ + 1)| + 𝐢 = ∫ sec2 𝑑 𝑑𝑑 + ∫ 2 sec 𝑑 tan 𝑑 𝑑𝑑 + ∫ tan2 𝑑𝑑𝑑 = ∫ sec2 𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 + ∫(𝑠𝑒𝑐2 𝑑 βˆ’ 1) 𝑑𝑑 = ∫ sec2 𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 + ∫ 𝑠𝑒𝑐2 𝑑 𝑑𝑑 βˆ’ ∫ 𝑑𝑑 = 2 ∫ sec2 𝑑 𝑑𝑑 + 2 ∫ sec 𝑑 tan 𝑑 𝑑𝑑 βˆ’ ∫ 𝑑𝑑 = 2 tan 𝑑 + 2sec 𝑑 βˆ’ 𝑑 + 𝐢
  • 17. πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘ π‘π‘–π‘‘π‘Žπ‘”π‘œπ‘Ÿπ‘–π‘π‘Ž: 𝑠𝑒𝑛2 π‘₯ + cos2 π‘₯ = 1 SoluciΓ³n: Amplificando por el conjugado ∴ ∫ 𝑑π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ = tan π‘₯ + sec π‘₯ + 𝐢 ∫ 𝑑π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ βˆ™ ( 1 βˆ’ 𝑠𝑒𝑛 π‘₯ 1 βˆ’ 𝑠𝑒𝑛π‘₯ ) = ∫ 1 βˆ’ 𝑠𝑒𝑛 π‘₯ 1 βˆ’ 𝑠𝑒𝑛2 π‘₯ 𝑑π‘₯ 19. ∫ 𝑑π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ = ∫ 1 βˆ’ 𝑠𝑒𝑛 π‘₯ cos2 π‘₯ 𝑑π‘₯ = ∫ 1 cos2 π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑛 π‘₯ cos2 π‘₯ 𝑑π‘₯ = ∫ sec2 π‘₯ 𝑑π‘₯ βˆ’ ∫ 1 cos π‘₯ 𝑠𝑒𝑛 π‘₯ π‘π‘œπ‘  π‘₯ 𝑑π‘₯ = ∫ sec2 π‘₯ 𝑑π‘₯ βˆ’ ∫ sec π‘₯ tan π‘₯ 𝑑π‘₯ = tan π‘₯ + sec π‘₯ + 𝐢
  • 18. SoluciΓ³n: Separando la integral: ∫ 𝑒π‘₯ βˆ’ 1 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ + ∫ βˆ’1 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ βˆ’ ∫ 1 𝑒π‘₯ + 1 𝑑π‘₯ (βˆ—βˆ—) Para la primera integral hacemos la sustituciΓ³n: 𝑒 = 𝑒π‘₯ + 1 β†’ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 𝑑𝑒 𝑒 = ln|𝑒| + 𝑐1 = ln|𝑒π‘₯ + 1| + 𝑐1 Para le segunda integral sumamos y restando 𝑒π‘₯ en el numerador: ∫ 1 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 1 + 𝑒π‘₯ βˆ’ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 1 + 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ + ∫ βˆ’π‘’π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ = ∫ 𝑑π‘₯ βˆ’ ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ = π‘₯ + 𝑐2 βˆ’ ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ Para la integral hacemos: 𝑒 = 𝑒π‘₯ + 1 β†’ 𝑑𝑒 = 𝑒π‘₯ 𝑑π‘₯ Sustituimos: 20. ∫ 𝑒π‘₯ βˆ’ 1 𝑒π‘₯ + 1 𝑑π‘₯ π‘₯ + 𝑐2 βˆ’ ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ = π‘₯ + 𝑐2 βˆ’ ∫ 𝑑𝑒 𝑒 = π‘₯ + c2 βˆ’ ln|𝑒| + 𝑐3 = π‘₯ + c2 βˆ’ ln|𝑒π‘₯ + 1| + 𝑐3
  • 19. πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘π‘’π‘  π‘Ÿπ‘’π‘π‘–π‘π‘Ÿπ‘œπ‘π‘Žπ‘ : π‘π‘œπ‘ π‘’π‘ π‘₯ = 1 𝑠𝑒𝑛 π‘₯ ; sec π‘₯ = 1 π‘π‘œπ‘ π‘₯ πΌπ‘‘π‘’π‘›π‘‘π‘–π‘‘π‘Žπ‘‘ π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™: tan π‘₯ = 𝑠𝑒𝑛 π‘₯ cos π‘₯ Luego, reemplazando en (βˆ—βˆ—): ∫ 𝑒π‘₯ 𝑒π‘₯ + 1 𝑑π‘₯ βˆ’ ∫ 1 𝑒π‘₯ + 1 𝑑π‘₯ = ln|𝑒π‘₯ + 1| + 𝑐1 βˆ’ π‘₯ + 𝑐2 + ln|𝑒π‘₯ + 1| + 𝑐3 = 2 ln|𝑒π‘₯ + 1| + x + C ∴ ∫ 𝑒π‘₯ βˆ’ 1 𝑒π‘₯ + 1 𝑑π‘₯ = 2 ln|𝑒π‘₯ + 1| + x + C 21. ∫ sec3 π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯ 𝑑π‘₯ SoluciΓ³n: Reescribimos la integral: Hacemos: 𝑒 = tan π‘₯ β†’ 𝑑𝑒 = sec2 π‘₯ Sustituimos: ∴ ∫ sec3 π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯ 𝑑π‘₯ = tan2 π‘₯ 2 + 𝐢 ∫ sec3 π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯ 𝑑π‘₯ = ∫ 𝑠𝑒𝑛π‘₯ sec x sec2 π‘₯ 𝑑π‘₯ = ∫ 𝑠𝑒𝑛π‘₯ cos π‘₯ sec2 π‘₯ 𝑑π‘₯ = ∫ tan π‘₯ sec2 π‘₯ 𝑑π‘₯ ∫ tan π‘₯ sec2 π‘₯ 𝑑π‘₯ = ∫ u 𝑑𝑒 = 𝑒1+1 1 + 1 + 𝐢 = 𝑒2 2 + 𝐢 = tan2 π‘₯ 2 + 𝐢
  • 20. 𝑒 = 𝑠𝑒𝑛(ln π‘₯) β†’ 𝑑𝑒 = cos (ln π‘₯) 1 π‘₯ 𝑑π‘₯ = cos(lnx) π‘₯ 𝑑π‘₯ 𝑑𝑣 = 𝑑π‘₯ β†’ 𝑣 = π‘₯ ∫ 𝑠𝑒𝑛 (ln π‘₯)𝑑π‘₯ = π‘₯ 𝑠𝑒𝑛(ln π‘₯) βˆ’ ∫ π‘₯ cos(ln π‘₯) π‘₯ 𝑑π‘₯ = π‘₯ 𝑠𝑒𝑛(ln π‘₯) βˆ’ ∫ cos(ln π‘₯) 𝑑π‘₯ 𝑒 = π‘π‘œπ‘ (𝑙𝑛 π‘₯) β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘› (𝑙𝑛 π‘₯) 1 π‘₯ 𝑑π‘₯ = βˆ’π‘ π‘’π‘›(𝑙𝑛π‘₯) π‘₯ 𝑑π‘₯ 𝑑𝑣 = 𝑑π‘₯ β†’ 𝑣 = π‘₯ ∫ 𝒖 𝒅𝒗 = 𝒖 𝒗 βˆ’ ∫ 𝒗 𝒅𝒖 SoluciΓ³n: Mediante integraciΓ³n por partes: Sea: Luego, Integrando nuevamente por partes: Sea: Sustituimos: Nos queda la integral inicial por lo tanto reemplazando: ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) βˆ’ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ Despejando la integral, nos queda: 2 ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) + 𝑐1 ∴ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯ = 1 2 (π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯)) + 𝐢 22. ∫ 𝑠𝑒𝑛 (ln π‘₯)𝑑π‘₯ π‘₯ 𝑠𝑒𝑛(𝑙𝑛 π‘₯) βˆ’ ∫ π‘π‘œπ‘ (𝑙𝑛 π‘₯) 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) + ∫ π‘₯ βˆ’π‘ π‘’π‘›(𝑙𝑛π‘₯) π‘₯ 𝑑π‘₯ = π‘₯𝑠𝑒𝑛(𝑙𝑛π‘₯) βˆ’ π‘₯ π‘π‘œπ‘ (𝑙𝑛π‘₯) βˆ’ ∫ 𝑠𝑒𝑛(𝑙𝑛π‘₯) 𝑑π‘₯
  • 21. 𝑒 = arctan π‘₯ β†’ 𝑑𝑒 = 1 1 + π‘₯2 𝑑π‘₯ 𝑑𝑣 = π‘₯𝑑π‘₯ β†’ 𝑣 = π‘₯2 2 SoluciΓ³n: Separando las integrales: ∫ ቆ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 + π‘₯ arctan π‘₯ቇ 𝑑π‘₯ = ∫ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 𝑑π‘₯ + ∫ π‘₯ arctan π‘₯ 𝑑π‘₯ La primera integral realizamos mediante sustituciΓ³n, hacemos: 𝑒 = π‘₯ βˆ’ 1 β†’ π‘₯ = 𝑒 + 1 𝑑𝑒 = 𝑑π‘₯ Luego, Luego, ∫ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 𝑑π‘₯ = βˆ’ 2(π‘₯ βˆ’ 1)βˆ’ 1 2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’ 3 2 + 𝑐1 (1) Para la segunda integral utilizamos el mΓ©todo de integraciΓ³n por partes: Sea: 23. ∫ ቆ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 + π‘₯ arctan π‘₯ቇ 𝑑π‘₯ ∫ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 𝑑π‘₯ = ∫ 𝑒 + 1 + 5 βˆšπ‘’5 𝑑𝑒 = ∫ 𝑒 + 6 βˆšπ‘’5 𝑑𝑒 = ∫ 𝑒 βˆšπ‘’5 𝑑𝑒 + ∫ 6 βˆšπ‘’5 𝑑𝑒 = ∫ 𝑒1βˆ’ 5 2𝑑𝑒 + 6 ∫ π‘’βˆ’ 5 2𝑑𝑒 = ∫ π‘’βˆ’ 3 2𝑑𝑒 + 6 ∫ π‘’βˆ’ 5 2𝑑𝑒 = π‘’βˆ’ 1 2 βˆ’ 1 2 + 6 π‘’βˆ’ 3 2 βˆ’ 3 2 + 𝑐1 = βˆ’2π‘’βˆ’ 1 2 βˆ’ 4π‘’βˆ’ 3 2 + 𝑐1 = βˆ’2(π‘₯ βˆ’ 1)βˆ’ 1 2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’ 3 2 + 𝑐1
  • 22. Reemplazamos: Luego, ∫ π‘₯ arctan π‘₯ 𝑑π‘₯ = π‘₯2 2 arctan π‘₯ βˆ’ 1 2 π‘₯ + 1 2 arctan π‘₯ + 𝑐2 (2) AsΓ­, de (1) y (2) se tiene: SoluciΓ³n: Por el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ΰ΅― β†’ 𝑑𝑒 = 1 √1βˆ’π‘₯ 1 2√π‘₯ 𝑑π‘₯ = 1 2ΰΆ₯(1βˆ’π‘₯)π‘₯ 𝑑π‘₯ = 1 2√π‘₯βˆ’π‘₯2 𝑑π‘₯ Sustituimos: ∴ ∫ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ ) √π‘₯ βˆ’ π‘₯2 𝑑π‘₯ = α‰€π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ࡯ቁ 2 + 𝐢 ∫ π‘₯ arctan π‘₯ 𝑑π‘₯ = π‘₯2 2 arctan π‘₯ βˆ’ 1 2 ∫ π‘₯2 1 + π‘₯2 𝑑π‘₯ = π‘₯2 2 arctan π‘₯ βˆ’ 1 2 ∫ (1 βˆ’ 1 π‘₯2 + 1 ) 𝑑π‘₯ = π‘₯2 2 arctan π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ + 1 2 ∫ 1 π‘₯2 + 1 𝑑π‘₯ ∫ ቆ π‘₯ + 5 ΰΆ₯(π‘₯ βˆ’ 1)5 + π‘₯ arctanπ‘₯ቇ𝑑π‘₯ = βˆ’2(π‘₯ βˆ’ 1)βˆ’ 1 2 βˆ’ 4(π‘₯ βˆ’ 1)βˆ’ 3 2 + π‘₯2 2 arctan π‘₯ βˆ’ 1 2 π‘₯ + 1 2 arctan π‘₯ + 𝐢 24. ∫ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ ) √π‘₯ βˆ’ π‘₯2 𝑑π‘₯ ∫ π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ ) √π‘₯ βˆ’ π‘₯2 𝑑π‘₯ = ∫ 2 π‘Žπ‘Ÿπ‘π‘ π‘’π‘›(√π‘₯ ) 2√π‘₯ βˆ’ π‘₯2 𝑑π‘₯ = 2 ∫ 𝑒 𝑑𝑒 = 2 𝑒2 2 + 𝐢 =α‰€π‘Žπ‘Ÿπ‘π‘ π‘’π‘› ࡫√π‘₯ ࡯ቁ 2 + 𝐢
  • 23. SoluciΓ³n: Mediante el mΓ©todo de sustituciΓ³n: π‘†π‘’π‘Ž: 𝑒 = ln(3π‘₯) β†’ 𝑑𝑒 = 1 3π‘₯ 3𝑑π‘₯ = 𝑑π‘₯ π‘₯ Sustituimos: ∫ 𝑑π‘₯ 2π‘₯ ln (3π‘₯) = 1 2 ∫ 𝑑𝑒 𝑒 = 1 2 ln|𝑒| + 𝐢 = 1 2 ln|ln(3π‘₯)| +𝐢 25. ∫ 𝑑π‘₯ 2π‘₯ ln (3π‘₯) ∴ ∫ 𝑑π‘₯ 2π‘₯ ln (3π‘₯) = 1 2 ln|ln(3π‘₯)| +𝐢
  • 24. cos2 π‘₯ = 1 + cos (2π‘₯) 2 SoluciΓ³n: Podemos escribir: Reemplazando: ∫ cos2 π‘₯ 𝑑π‘₯ = ∫ ( 1 + π‘π‘œπ‘  (2π‘₯) 2 ) 𝑑π‘₯ = ∫ ( 1 2 + π‘π‘œπ‘  (2π‘₯) 2 ) 𝑑π‘₯ = ∫ 1 2 𝑑π‘₯ + ∫ π‘π‘œπ‘ 2π‘₯ 2 𝑑π‘₯ = 1 2 ∫ 𝑑π‘₯ + 1 2 ∫ cos 2π‘₯ 𝑑π‘₯ = 1 2 π‘₯ + 𝑐1 + 1 2 ∫ cos 2π‘₯ 𝑑π‘₯ Para la segunda integral realizamos el mΓ©todo de sustituciΓ³n Sea: 𝑒 = 2π‘₯ β†’ 𝑑𝑒 = 2𝑑π‘₯ β†’ 𝑑𝑒 2 = 𝑑π‘₯ Sustituimos: 1 2 π‘₯ + 𝑐1 + 1 2 ∫ cos 2π‘₯ 𝑑π‘₯ = 1 2 π‘₯ + 𝑐1 + 1 2 ∫ cos u 𝑑𝑒 2 = 1 2 π‘₯ + 𝑐1 + 1 4 ∫ cos u 𝑑𝑒 = 1 2 π‘₯ + 𝑐1 + 1 4 𝑠𝑒𝑛(𝑒) + 𝑐2 = 1 2 π‘₯ + 1 4 𝑠𝑒𝑛(2π‘₯) + 𝐢 ∴ ∫ cos2 π‘₯ 𝑑π‘₯ = 1 2 π‘₯ + 1 2 𝑠𝑒𝑛(2π‘₯) + 𝐢 26. ∫ cos2 π‘₯ 𝑑π‘₯
  • 25. SoluciΓ³n: π‘ƒπ‘œπ‘Ÿ 𝑒𝑙 π‘šπ‘’π‘‘π‘œπ‘‘π‘œ 𝑑𝑒 π‘ π‘’π‘ π‘‘π‘–π‘‘π‘’π‘π‘–π‘œπ‘›: π‘†π‘’π‘Ž: 𝑒 = 1 βˆ’ cos π‘₯ β†’ 𝑑𝑒 = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ : ∫ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯ = ∫ βˆšπ‘’ 𝑑𝑒 = ∫ 𝑒 1 2 𝑑𝑒 = 𝑒 1 2 +1 1 2 + 1 + 𝐢 = 𝑒 3 2 3 2 + 𝐢 = 2 3 𝑒 3 2 + 𝐢 = 2 3 (1 βˆ’ cos π‘₯) 3 2 + 𝐢 ∴ ∫ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯ = 2 3 (1 βˆ’ cos π‘₯) 3 2 + 𝐢 27. ‫׬‬ 𝑠𝑒𝑛 π‘₯ √1 βˆ’ cos π‘₯ 𝑑π‘₯
  • 26. 28. ∫ π‘₯ cos π‘₯2 𝑑π‘₯ SoluciΓ³n: Por el metodo de sustitucion: π‘†π‘’π‘Ž: 𝑒 = π‘₯2 β†’ 𝑑𝑒 = 2π‘₯ 𝑑π‘₯ β†’ du 2 = π‘₯ 𝑑π‘₯ π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ : ∫ π‘₯ cos π‘₯2 𝑑π‘₯ = ∫ cos 𝑒 du 2 = 1 2 ∫ cos 𝑒 𝑑𝑒 = 1 2 sen 𝑒 + 𝐢 = 1 2 𝑠𝑒𝑛 (π‘₯2) + 𝐢 ∴ ∫ π‘₯ cos π‘₯2 𝑑π‘₯ = 1 2 𝑠𝑒𝑛 (π‘₯2) + 𝐢
  • 27. 29. ∫(tan2 π‘₯ + cotan2 π‘₯ + 4)𝑑π‘₯ SoluciΓ³n: Separando las integrales: ∫(tan2 π‘₯ + cotan2 π‘₯ + 4)𝑑π‘₯ = ∫ tan2 π‘₯ 𝑑π‘₯ + ∫ π‘π‘œπ‘‘π‘Žπ‘›2 π‘₯ 𝑑π‘₯ + ∫ 4𝑑π‘₯ = ∫(sec2 π‘₯ βˆ’ 1 )𝑑π‘₯ + ∫(π‘π‘œπ‘ π‘’π‘2 π‘₯ βˆ’ 1) 𝑑π‘₯ + 4 ∫ 𝑑π‘₯ = ∫ sec2 π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ + ∫ π‘π‘œπ‘ π‘’π‘2 π‘₯ 𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ + 4 ∫ 𝑑π‘₯ = ∫ sec2 π‘₯ 𝑑π‘₯ + ∫ π‘π‘œπ‘ π‘’π‘2 π‘₯ 𝑑π‘₯ + 2 ∫ 𝑑π‘₯ = tan π‘₯ βˆ’ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ + 2π‘₯ + 𝐢 ∴ ∫(tan2 π‘₯ + cotan2 π‘₯ + 4)𝑑π‘₯ = tan π‘₯ βˆ’ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ + 2π‘₯ + 𝐢
  • 28. 30. ∫ 2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2 π‘₯ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ SoluciΓ³n: Separando las integrales ∫ 2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2 π‘₯ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = ∫ 2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ 𝑠𝑒𝑛 π‘₯ βˆ’ ∫ 3𝑠𝑒𝑛2 π‘₯ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = 2 ∫ π‘π‘œπ‘ π‘’π‘ π‘₯ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3 ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ Las dos integrales son inmediatas, por lo tanto, integrando: 2 ∫ π‘π‘œπ‘ π‘’π‘ π‘₯ π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3 ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = 2(βˆ’π‘π‘œπ‘ π‘’π‘ π‘₯) βˆ’ 3(βˆ’ cos π‘₯) + 𝐢 = βˆ’2π‘π‘œπ‘ π‘’π‘ π‘₯ + 3 cos π‘₯ + 𝐢 ∴ ∫ 2π‘π‘œπ‘‘π‘Žπ‘› π‘₯ βˆ’ 3𝑠𝑒𝑛2 π‘₯ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’2π‘π‘œπ‘ π‘’π‘ π‘₯ + 3 cos π‘₯ + 𝐢
  • 29. 31. ∫ (𝑒𝑑 + 1)3 𝑒𝑑 𝑑𝑑 SoluciΓ³n: Desarrollamos el binomio al cubo: ∫ (𝑒𝑑 + 1)3 𝑒𝑑 𝑑𝑑 = ∫ ቆ 𝑒3𝑑 + 3𝑒2𝑑 + 3𝑒𝑑 + 1 𝑒𝑑 ቇ 𝑑𝑑 Separando la integral: ∫ ቆ 𝑒3𝑑 + 3𝑒2𝑑 + 3𝑒𝑑 + 1 𝑒𝑑 ቇ 𝑑𝑑 = ∫ 𝑒3𝑑 𝑒𝑑 𝑑𝑑 + ∫ 𝑒2𝑑 𝑒𝑑 𝑑𝑑 + ∫ 𝑒𝑑 𝑒𝑑 𝑑𝑑 + ∫ 1 𝑒𝑑 𝑑𝑑 = ∫ 𝑒3π‘‘βˆ’π‘‘ 𝑑𝑑 + ∫ 𝑒2π‘‘βˆ’π‘‘ 𝑑𝑑 + ∫ 𝑑𝑑 + ∫ π‘’βˆ’π‘‘ 𝑑𝑑 = ∫ 𝑒2𝑑 𝑑𝑑 + ∫ 𝑒𝑑 𝑑𝑑 + ∫ 𝑑𝑑 + ∫ π‘’βˆ’π‘‘ 𝑑𝑑 = 𝑒2𝑑 + 𝑒𝑑 + 𝑑 βˆ’ π‘’βˆ’π‘‘ + 𝐢 ∴ ∫ ቆ 𝑒3𝑑 + 3𝑒2𝑑 + 3𝑒𝑑 + 1 𝑒𝑑 ቇ 𝑑𝑑 = 𝑒2𝑑 + 𝑒𝑑 + 𝑑 βˆ’ π‘’βˆ’π‘‘ + 𝐢
  • 30. 32. ∫ √π‘₯ (π‘₯ + 1 π‘₯ ) 𝑑π‘₯ = SoluciΓ³n: ∫ √π‘₯ (π‘₯ + 1 π‘₯ ) 𝑑π‘₯ = ∫ √π‘₯ (π‘₯ + π‘₯βˆ’1)𝑑π‘₯ = ∫࡫√π‘₯ βˆ— π‘₯ + √π‘₯ βˆ— π‘₯βˆ’1 ࡯𝑑π‘₯ = ∫ π‘₯ 3 2 𝑑π‘₯ + ∫ π‘₯βˆ’ 1 2 𝑑π‘₯ = π‘₯ 3 2 +1 3 2 + 1 + π‘₯βˆ’ 1 2 +1 βˆ’ 1 2 + 1 + 𝐢 = π‘₯ 5 2 5 2 + π‘₯ 1 2 1 2 + 𝐢 = 2 5 π‘₯ 5 2 + 2π‘₯ 1 2 + 𝐢 ∴ ∫ √π‘₯ (π‘₯ + 1 π‘₯ ) 𝑑π‘₯ = 2 5 π‘₯ 5 2 + 2π‘₯ 1 2 + 𝐢
  • 31. 33. ∫(2π‘₯ + 1)3 𝑑π‘₯ SoluciΓ³n: Desarrollamos el binomio al cubo: ∫(2π‘₯ + 1)3 𝑑π‘₯ = ∫(8π‘₯3 + 12π‘₯2 + 6π‘₯ + 1) 𝑑π‘₯ Separando la integral: ∫(8π‘₯3 + 12π‘₯2 + 6π‘₯ + 1) 𝑑π‘₯ = ∫ 8π‘₯3 𝑑π‘₯ + ∫ 12π‘₯2 𝑑π‘₯ + ∫ 6π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯ = 8 ∫ π‘₯3 𝑑π‘₯ + 12 ∫ π‘₯2 𝑑π‘₯ + 6 ∫ π‘₯ 𝑑π‘₯ + ∫ 𝑑π‘₯ = 8 π‘₯4 4 + 12 π‘₯3 3 + 6 π‘₯2 2 + π‘₯ + 𝐢 = 2π‘₯4 + 4π‘₯3 + 3π‘₯2 + π‘₯ + 𝐢 ∴ ∫(2π‘₯ + 1)3 𝑑π‘₯ = 2π‘₯4 + 4π‘₯3 + 3π‘₯2 + π‘₯ + 𝐢
  • 32. ∫ 5𝑑2 + 7 𝑑 4 3 d𝑑 = ∫ 5𝑑2 𝑑 4 3 d𝑑 + ∫ 7 d𝑑 𝑑 4 3 34. ∫ 5𝑑2 + 7 𝑑 4 3 d𝑑 SoluciΓ³n: = 5 ∫ 𝑑2βˆ’ 4 3 d𝑑 + 7 ∫ π‘‘βˆ’ 4 3𝑑𝑑 = 5 ∫ 𝑑 2 3 d𝑑 + 7 ∫ π‘‘βˆ’ 4 3𝑑𝑑 = 5 𝑑 2 3+1 2 3 + 1 + 7 π‘‘βˆ’ 4 3+1 βˆ’ 4 3 + 1 + 𝐢 = 5 𝑑 5 3 5 3 + 7 π‘‘βˆ’ 1 3 βˆ’ 1 3 + 𝐢 = 3 𝑑 5 3 βˆ’ 21 1 𝑑 1 3 + 𝐢 ∴ ∫ 5𝑑2 + 7 𝑑 4 3 d𝑑 = 3 𝑑 5 3 βˆ’ 21 1 𝑑 1 3 + 𝐢
  • 33. 35. ∫ π‘₯4 𝐿𝑛(3π‘₯)𝑑π‘₯ Solucion: Integrando por partes, se tiene: 𝑒 = 𝐿𝑛(3π‘₯) β†’ 𝑑𝑒 = 1 3π‘₯ 3𝑑π‘₯ = 1 π‘₯ 𝑑π‘₯ 𝑣 = π‘₯5 5 β†’ 𝑑𝑣 = π‘₯4 ∫ π‘₯4 𝐿𝑛(3π‘₯)𝑑π‘₯ = π‘₯5 5 𝐿𝑛(3π‘₯) βˆ’ ∫ π‘₯5 5 βˆ— 1 π‘₯ 𝑑π‘₯ = π‘₯5 5 𝐿𝑛(3π‘₯) βˆ’ 1 5 ∫ π‘₯4 𝑑π‘₯ = π‘₯5 5 𝐿𝑛(3π‘₯) βˆ’ 1 5 ቆ π‘₯5 5 ቇ + 𝐢 = π‘₯5 5 𝐿𝑛(3π‘₯) βˆ’ π‘₯5 25 + 𝐢 ∫ ∴ π‘₯4 𝐿𝑛(3π‘₯)𝑑π‘₯ = π‘₯5 5 𝐿𝑛(3π‘₯) βˆ’ π‘₯5 25 + 𝐢
  • 34. ∴ ∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯ = π‘‘π‘Žπ‘›5 (π‘₯) 5 βˆ’ π‘‘π‘Žπ‘›3(π‘₯) 3 + tan(π‘₯) βˆ’ π‘₯ + 𝐢 36. ∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯ Solucion: ∫ π‘‘π‘Žπ‘›6(π‘₯)𝑑π‘₯ = ∫ π‘‘π‘Žπ‘›2 (π‘₯) βˆ— π‘‘π‘Žπ‘›4(π‘₯)𝑑π‘₯ = ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘‘π‘Žπ‘›4(π‘₯) 𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘‘π‘Žπ‘›2(π‘₯) π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1) π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ π‘‘π‘Žπ‘›2(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫(𝑠𝑒𝑐2(π‘₯) βˆ’ 1)𝑑π‘₯ = ∫ 𝑠𝑒𝑐2 (π‘₯)π‘‘π‘Žπ‘›4 (π‘₯) 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑐2(π‘₯)π‘‘π‘Žπ‘›2(π‘₯) 𝑑π‘₯ + ∫ 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ Para la primera integral hacemos: 𝑒 = tan(π‘₯) β†’ 𝑑𝑒 = 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ Para la segunda integral hacemos: 𝑧 = tan(π‘₯) β†’ 𝑑𝑧 = 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ Sustituimos: = ∫ 𝑒4 𝑑𝑒 βˆ’ ∫ 𝑧2 𝑑𝑧 + ∫ 𝑠𝑒𝑐2(π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑑π‘₯ = 𝑒5 5 βˆ’ 𝑧3 3 + tan(π‘₯) βˆ’ π‘₯ + 𝐢 = π‘‘π‘Žπ‘›5 (π‘₯) 5 βˆ’ π‘‘π‘Žπ‘›3(π‘₯) 3 + tan(π‘₯) βˆ’ π‘₯ + 𝐢
  • 35. ∴ ∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯ = βˆ’ cos(π‘₯) + cos3 (π‘₯) 3 + 𝑐 37. ∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯ Solucion: ∫ 𝑠𝑒𝑛3(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑛2 (π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ = ∫ 𝑠𝑒𝑛2 (π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ = ∫࡫1 βˆ’ π‘π‘œπ‘ 2(π‘₯)ΰ΅― βˆ— 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ = ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ βˆ’ ∫ π‘π‘œπ‘ 2(π‘₯) βˆ— 𝑠𝑒𝑛(π‘₯)𝑑π‘₯ Para la segunda integral hacemos: 𝑒 = cos π‘₯ β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘›(π‘₯)𝑑π‘₯ = ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ + ∫ π‘π‘œπ‘ 2(π‘₯) βˆ— (βˆ’π‘ π‘’π‘›(π‘₯)𝑑π‘₯) = ∫ 𝑠𝑒𝑛(π‘₯) 𝑑π‘₯ + ∫ 𝑒2 𝑑𝑒 = βˆ’ cos(π‘₯) + 𝑒3 3 + 𝑐 = βˆ’ cos(π‘₯) + cos3 (π‘₯) 3 + 𝑐
  • 36. ∴ ∫ ln(cos π‘₯) tan π‘₯𝑑π‘₯ = βˆ’ ln2 (cos π‘₯) 2 + 𝐢 ∴ ∫ 𝑑π‘₯ cos2 π‘₯ ΰΆ₯1 + tan π‘₯ = 2ΰΆ₯1 + tan π‘₯ + 𝐢 38. ∫ ln(cos π‘₯) tan π‘₯𝑑π‘₯ Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = ln(cos π‘₯) β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘› π‘₯ π‘π‘œπ‘  π‘₯ 𝑑π‘₯ = βˆ’ tan π‘₯ 𝑑π‘₯ β†’ βˆ’ 𝑑𝑒 = tan π‘₯ 𝑑π‘₯ Sustituimos: ∫ ln(cos π‘₯) tan π‘₯ 𝑑π‘₯ = βˆ’ ∫ 𝑒 𝑑𝑒 = βˆ’ 𝑒2 2 + 𝐢 = βˆ’ ln2 (cos π‘₯) 2 + 𝐢 39. ∫ 𝑑π‘₯ cos2 π‘₯ √1 + tan π‘₯ Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 1 + tan π‘₯ β†’ 𝑑𝑒 = sec2 π‘₯ 𝑑π‘₯ ∫ 𝑑π‘₯ cos2 π‘₯ √1 + tan π‘₯ = ∫ sec2 π‘₯ 𝑑π‘₯ √1 + tan π‘₯ Sustituimos: ∫ sec2 π‘₯ 𝑑π‘₯ √1 + tan π‘₯ = ∫ 𝑑𝑒 βˆšπ‘’ = ∫ π‘’βˆ’ 1 2 𝑑𝑒 = 𝑒 1 2 1 2 + 𝐢 = 2√1 + tan π‘₯ + 𝐢
  • 37. ∴ ∫ 1 βˆ’ π‘₯ ln π‘₯ π‘₯ 𝑒π‘₯ 𝑑π‘₯ = ln π‘₯ 𝑒π‘₯ + 𝐢 ∴ ∫ 𝑠𝑒𝑛 2π‘₯ ΰΆ₯1 βˆ’ cos 2π‘₯ 𝑑π‘₯ = 2ΰΆ₯1 βˆ’ cos 2π‘₯ + 𝐢 40. ∫ 1 βˆ’ π‘₯ ln π‘₯ π‘₯ 𝑒π‘₯ 𝑑π‘₯ Solucion: Multiplicamos por 𝑒π‘₯ numerador y denominador ∫ 1 βˆ’ π‘₯ ln π‘₯ π‘₯ 𝑒π‘₯ 𝑑π‘₯ 𝑒π‘₯ 𝑒π‘₯ = ∫ 𝑒π‘₯ βˆ’ 𝑒π‘₯ π‘₯ ln π‘₯ π‘₯ 𝑒2π‘₯ 𝑑π‘₯ Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = ln π‘₯ 𝑒π‘₯ β†’ 𝑑𝑒 = 𝑒π‘₯βˆ— 1 π‘₯ βˆ’ln π‘₯ 𝑒π‘₯ 𝑒2π‘₯ 𝑑π‘₯ = 𝑒π‘₯ π‘₯ βˆ’ 𝑒π‘₯ ln π‘₯ 𝑒2π‘₯ 𝑑π‘₯ = 𝑒π‘₯ βˆ’ 𝑒π‘₯ ln π‘₯ π‘₯ 𝑒2π‘₯ 𝑑π‘₯ = 𝑒π‘₯ βˆ’ 𝑒π‘₯ ln π‘₯ π‘₯ 𝑒2π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑒π‘₯ βˆ’ 𝑒π‘₯ π‘₯ ln π‘₯ π‘₯ 𝑒2π‘₯ 𝑑π‘₯ = ∫ 𝑑𝑒 = 𝑒 + 𝐢 = ln π‘₯ 𝑒π‘₯ + 𝐢 41. ∫ 𝑠𝑒𝑛 2π‘₯ √1 βˆ’ cos 2π‘₯ 𝑑π‘₯ Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 1 βˆ’ cos 2π‘₯ β†’ 𝑑𝑒 = 𝑠𝑒𝑛 2π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑠𝑒𝑛 2π‘₯ √1 βˆ’ cos 2π‘₯ 𝑑π‘₯ = ∫ 𝑑𝑒 βˆšπ‘’ = ∫ π‘’βˆ’ 1 2 𝑑𝑒 = 𝑒 1 2 1 2 + 𝐢 = 2√1 βˆ’ cos 2π‘₯ + 𝐢
  • 38. 42. ∫ 𝑑π‘₯ 𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯ 3 Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 β†’ 𝑑𝑒 = βˆ’π‘π‘œπ‘ π‘’π‘2 π‘₯ 𝑑π‘₯ = βˆ’ 1 𝑠𝑒𝑛2π‘₯ 𝑑π‘₯ β†’ βˆ’π‘‘π‘’ = 1 𝑠𝑒𝑛2π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑑π‘₯ 𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯ 3 = βˆ’ ∫ 𝑑𝑒 √ 𝑒 3 = βˆ’ ∫ π‘’βˆ’ 1 3𝑑𝑒 = βˆ’ 𝑒 2 3 2 3 + 𝑐1 = βˆ’ 3 2 𝑒 2 3 + 𝑐1 = βˆ’ 3 2 (π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 ) 2 3 + 𝐢 ∫ 𝑑π‘₯ 𝑠𝑒𝑛2π‘₯ ΰΆ₯βˆ’1 + π‘π‘œπ‘‘π‘” π‘₯ 3 = βˆ’ 3 2 (π‘π‘œπ‘‘π‘” π‘₯ βˆ’ 1 ) 2 3 + 𝐢
  • 39. 43. ∫ 𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯ cos3 π‘₯ 𝑑π‘₯ Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = 𝑒tan2 π‘₯ β†’ 𝑑𝑒 = 𝑒tan2 π‘₯ 2 tan π‘₯ sec2 π‘₯ 𝑑π‘₯ β†’ 𝑑𝑒 2 = 𝑒tan2 π‘₯ 𝑠𝑒𝑛 π‘₯ cos π‘₯ 1 cos2 π‘₯ 𝑑π‘₯ β†’ 𝑑𝑒 2 = 𝑒tan2 π‘₯ 𝑠𝑒𝑛 π‘₯ cos3 π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯ 𝑑π‘₯ cos3 π‘₯ = 1 2 ∫ 𝑑𝑒 = 1 2 𝑒 + 𝑐1 = 1 2 𝑒tan2 π‘₯ + 𝐢 ∴ ∫ 𝑠𝑒𝑛 π‘₯ 𝑒tan2 π‘₯ 𝑑π‘₯ cos3 π‘₯ = 1 2 𝑒tan2 π‘₯ + 𝐢
  • 40. 44. ∫ 𝑒arctan π‘₯ + π‘₯ ln(π‘₯2 + 1) + 1 1 + π‘₯2 𝑑π‘₯ Solucion: Separando la integral: ∫ 𝑒arctan π‘₯ + ln(π‘₯2 + 1) + 1 1 + π‘₯2 𝑑π‘₯ = ∫ 𝑒arctan π‘₯ 1 + π‘₯2 𝑑π‘₯ + ∫ π‘₯ ln(π‘₯2 + 1) 1 + π‘₯2 𝑑π‘₯ + ∫ 1 1 + π‘₯2 𝑑π‘₯ Para la primera integral hacemos: 𝑒 = 𝑒arctan π‘₯ β†’ 𝑑𝑒 = 1 1+π‘₯2 𝑑π‘₯ Para la segunda integral hacemos: 𝑧 = ln(π‘₯2 + 1) β†’ 𝑑𝑧 = 2π‘₯ 1+π‘₯2 𝑑π‘₯ β†’ 𝑑𝑧 2 = π‘₯ 1 + π‘₯2 𝑑π‘₯ Sustituimos: ∫ 𝑒arctan π‘₯ + ln(π‘₯2 + 1) + 1 1 + π‘₯2 𝑑π‘₯ = ∫ 𝑒 𝑑𝑒 + ∫ 𝑧 𝑑𝑧 2 + arctan π‘₯ + 𝑐3 = 𝑒2 2 + 𝑐1 + 1 2 𝑧2 2 + 𝑐2 + arctan π‘₯ + 𝑐3 = 𝑒arctan2 π‘₯ 2 + 1 4 ln2(π‘₯2 + 1) + arctan π‘₯ + 𝐢 ∴ ∫ 𝑒arctanπ‘₯ + π‘₯ ln(π‘₯2 + 1) + 1 1 + π‘₯2 𝑑π‘₯ = 𝑒arctan2 π‘₯ 2 + 1 4 ln2(π‘₯2 + 1) + arctan π‘₯ + 𝐢
  • 41. 45. ∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ Solucion: Integrando por partes, se tiene: 𝑒 = ln(1 + 𝑠𝑒𝑛 π‘₯) β†’ 𝑑𝑒 = cos π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ 𝑣 = βˆ’ cos π‘₯ β†’ 𝑑𝑣 = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ Luego, ∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) βˆ’ ∫ βˆ’ cos π‘₯ cos π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫ cos2 π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫ 1 βˆ’ 𝑠𝑒𝑛2 π‘₯ 1 + 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫ (1 + 𝑠𝑒𝑛 π‘₯)(1 βˆ’ 𝑠𝑒𝑛 π‘₯) 1 + 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫(1 βˆ’ 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + ∫ 𝑑π‘₯ βˆ’ ∫ 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + 𝑐1 βˆ’ (βˆ’ cos π‘₯) + 𝑐2 = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + cos π‘₯ + 𝐢 ∴ ∫ 𝑠𝑒𝑛 π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) 𝑑π‘₯ = βˆ’cos π‘₯ ln(1 + 𝑠𝑒𝑛 π‘₯) + π‘₯ + cos π‘₯ + 𝐢
  • 42. 𝑧 √2 π‘₯ ΰΆ₯π‘₯2 βˆ’ 2 √2 tan 𝑧 = ΰΆ₯π‘₯2 βˆ’ 2 √2 sec 𝑧 = π‘₯ β†’ 𝑑π‘₯ = √2 sec 𝑧 tan 𝑧 𝑑𝑧 46. ∫ 𝑑π‘₯ (π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2 Solucion: Mediante sustituciΓ³n trigonomΓ©trica: Sustituimos: ∫ 𝑑π‘₯ (π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2 = ∫ √2 sec 𝑧 tan 𝑧 𝑑𝑧 (2 sec 𝑧 βˆ’ 1)√2 tan 𝑧 = ∫ sec 𝑧 𝑑𝑧 (2 sec 𝑧 βˆ’ 1) = ∫ sec 𝑧 𝑑𝑧 2 (tan2 𝑧 + 1) βˆ’ 1 = ∫ sec 𝑧 𝑑𝑧 2 tan2 𝑧 + 1 = ∫ 1 cos 𝑧 𝑑𝑧 2 𝑠𝑒𝑛2 𝑧 cos2 𝑧 + 1 = ∫ 1 cos 𝑧 𝑑𝑧 2𝑠𝑒𝑛2 𝑧 + cos2 𝑧 cos2 𝑧 = ∫ cos 𝑧 𝑑𝑧 2𝑠𝑒𝑛2 𝑧 + cos2 𝑧 = ∫ cos 𝑧 𝑑𝑧 2𝑠𝑒𝑛2 𝑧 + 1 βˆ’ 𝑠𝑒𝑛2𝑧 = ∫ cos 𝑧 𝑑𝑧 1 + 𝑠𝑒𝑛2𝑧 Sea: 𝑒 = 𝑠𝑒𝑛 𝑧 β†’ 𝑑𝑒 = cos 𝑧 𝑑𝑧
  • 43. 𝑧 √3 ΰΆ₯(𝑒 + 2)2 βˆ’ 3 tan 𝑧 = ΰΆ₯(𝑒 + 2)2 βˆ’ 3 √3 β†’ ΰΆ₯(𝑒 + 2)2 βˆ’ 3 = √3 tan 𝑧 sec 𝑧 = 𝑒 + 2 √3 β†’ 𝑒 = √3 sec 𝑧 βˆ’ 2 β†’ 𝑑𝑒 = √3 sec 𝑧 tan 𝑧 𝑑𝑧 Sustituimos ∫ cos 𝑧 𝑑𝑧 1 + 𝑠𝑒𝑛2𝑧 = ∫ 𝑑𝑒 1 + 𝑒2 = arctan 𝑒 + 𝐢 = arctan 𝑠𝑒𝑛 𝑧 + 𝐢 = arctan ቆ √π‘₯2 βˆ’ 2 π‘₯ ቇ +𝐢 ∴ ∫ 𝑑π‘₯ (π‘₯2 βˆ’ 1)√π‘₯2 βˆ’ 2 = arctan ቆ √π‘₯2 βˆ’ 2 π‘₯ ቇ +𝐢 47. ∫ 𝑠𝑒𝑛 π‘₯ √cos2 π‘₯ + 4 cos π‘₯ + 1 𝑑π‘₯ Solucion: Mediante el mΓ©todo se sustituciΓ³n: Sea: 𝑒 = cos π‘₯ β†’ 𝑑𝑒 = βˆ’π‘ π‘’π‘› π‘₯ 𝑑π‘₯ β†’ βˆ’π‘‘π‘’ = 𝑠𝑒𝑛 π‘₯ 𝑑π‘₯ Sustituimos: ∫ 𝑠𝑒𝑛 π‘₯ √cos2 π‘₯ + 4 cos π‘₯ + 1 𝑑π‘₯ = βˆ’ ∫ 𝑑𝑒 βˆšπ‘’2 + 4𝑒 + 1 Hacemos completacion de cuadrados: βˆ’ ∫ 𝑑𝑒 βˆšπ‘’2 + 4𝑒 + 1 = βˆ’ ∫ 𝑑𝑒 ΰΆ₯(𝑒 + 2)2 βˆ’ 3 Utilizamos sustituciΓ³n trigonomΓ©trica: Sustituimos:
  • 44. βˆ’ ∫ 𝑑𝑒 ΰΆ₯(𝑒 + 2)2 βˆ’ 3 = βˆ’ ∫ √3 sec 𝑧 tan 𝑧 𝑑𝑧 √3 tan 𝑧 = βˆ’ ∫ sec 𝑧 𝑑𝑧 = βˆ’ ln | sec 𝑧 + tan 𝑧| + 𝐢 = βˆ’ ln | 𝑒 + 2 √3 + ΰΆ₯(𝑒 + 2)2 βˆ’ 3 √3 | + 𝐢 = βˆ’ ln | cos π‘₯ + 2 √3 + ΰΆ₯(cos π‘₯ + 2)2 βˆ’ 3 √3 | + 𝐢 ∴ ∫ 𝑠𝑒𝑛 π‘₯ √cos2 π‘₯ + 4 cos π‘₯ + 1 𝑑π‘₯ = βˆ’ ln | cos π‘₯ + 2 √3 + ΰΆ₯(cos π‘₯ + 2)2 βˆ’ 3 √3 | + 𝐢 48. ∫ 3 cos π‘₯ (𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯) 𝑑π‘₯ Solucion: Mediante el mΓ©todo se sustituciΓ³n: Sea: 𝑒 = 𝑠𝑒𝑛 π‘₯ β†’ 𝑑𝑒 = cos π‘₯ 𝑑π‘₯ Sustituimos: ∫ 3 cos π‘₯ (𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯) 𝑑π‘₯ = ∫ 3𝑑𝑒 (𝑒 + 1)(4 βˆ’ 𝑒2) = ∫ 3𝑑𝑒 (𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒) Descomponemos por fracciones parciales: 3 (𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒) = 𝐴 𝑒 + 1 + 𝐡 2 βˆ’ 𝑒 + 𝐢 2 + 𝑒 = 𝐴(2 βˆ’ 𝑒)(2 + 𝑒) + 𝐡(𝑒 + 1)(2 + 𝑒) + 𝐢(𝑒 + 1)(2 βˆ’ 𝑒) (𝑒 + 1)(2 βˆ’ 𝑒)(2 + 𝑒) Igualando numeradores, se tiene:
  • 45. Si 𝑒 = βˆ’1 β†’ 3 = 𝐴 (3)(1) β†’ 𝐴 = 1 Si 𝑒 = 2 β†’ 3 = 𝐡(3)(4) β†’ 𝐡 = 1 4 Si 𝑒 = βˆ’2 β†’ 3 = 𝐢(βˆ’1)(4) β†’ 𝐢 = βˆ’ 3 4 Luego, ∫ 3 cos π‘₯ (𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯) 𝑑π‘₯ = ∫ ( 𝐴 𝑒 + 1 + 𝐡 2 βˆ’ 𝑒 + 𝐢 2 + 𝑒 ) 𝑑𝑒 = ∫ ( 1 𝑒 + 1 + 1 4 2 βˆ’ 𝑒 + βˆ’ 3 4 2 + 𝑒 ) 𝑑𝑒 = ∫ 𝑑𝑒 𝑒 + 1 + 1 4 ∫ 𝑑𝑒 2 βˆ’ 𝑒 βˆ’ 3 4 ∫ 𝑑𝑒 2 + 𝑒 Para la primera integral hacemos: 𝑧 = 𝑒 + 1 β†’ 𝑑𝑧 = 𝑑𝑒 Para la segunda integral hacemos: 𝑑 = 2 βˆ’ 𝑒 β†’ 𝑑𝑑 = βˆ’π‘‘π‘’ β†’ βˆ’π‘‘π‘‘ = 𝑑𝑒 Para la tercera integral hacemos: 𝑝 = 2 + 𝑒 β†’ 𝑑𝑧 = 𝑑𝑒 π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘ : = ∫ 𝑑𝑒 𝑧 + 1 4 ∫ βˆ’π‘‘π‘‘ 𝑑 βˆ’ 3 4 ∫ 𝑑𝑝 𝑝 = ln |𝑧| + 𝑐1 βˆ’ 1 4 ln |𝑑| + 𝑐2 βˆ’ 3 4 ln |𝑝| + 𝑐3 = ln |𝑒 + 1| βˆ’ 1 4 ln |2 βˆ’ 𝑒| βˆ’ 3 4 ln |2 + 𝑒| + 𝐢 = ln |𝑠𝑒𝑛 π‘₯ + 1| βˆ’ 1 4 ln |2 βˆ’ 𝑠𝑒𝑛 π‘₯| βˆ’ 3 4 ln |2 + 𝑠𝑒𝑛 π‘₯| + 𝐢 ∴ ∫ 3 cos π‘₯ (𝑠𝑒𝑛 π‘₯ + 1)(4 βˆ’ 𝑠𝑒𝑛2π‘₯) 𝑑π‘₯ = ln |𝑠𝑒𝑛 π‘₯ + 1| βˆ’ 1 4 ln |2 βˆ’ 𝑠𝑒𝑛 π‘₯| βˆ’ 3 4 ln |2 + 𝑠𝑒𝑛 π‘₯| + 𝐢
  • 46. 𝑧 1 tan 𝑧 = π‘₯ βˆ’ 1 β†’ π‘₯ = tan 𝑧 + 1 β†’ 𝑑π‘₯ = sec2 𝑧 𝑑𝑧 sec 𝑧 = ΰΆ₯(π‘₯ βˆ’ 1)2 + 1 π‘₯ βˆ’ 1 49. ∫ 4π‘₯ + 5 (π‘₯2 βˆ’ 2π‘₯ + 2) 3 2 𝑑π‘₯ Solucion: Hacemos completacion de cuadrados: ∫ 4π‘₯ + 5 (π‘₯2 βˆ’ 2π‘₯ + 2) 3 2 𝑑π‘₯ = ∫ 4π‘₯ + 5 [ΰΆ₯(π‘₯ βˆ’ 1)2 + 1] 3 Sustituimos: ∫ 4π‘₯ + 5 [ΰΆ₯(π‘₯ βˆ’ 1)2 + 1] 3 𝑑π‘₯ = ∫ 4(tan 𝑧 + 1) + 5 [sec 𝑧]3 sec2 𝑧 𝑑𝑧 = ∫ 4 tan 𝑧 + 9 𝑠𝑒𝑐 𝑧 𝑑𝑧 = 4 ∫ tan 𝑧 𝑠𝑒𝑐 𝑧 𝑑𝑧 + ∫ 9 𝑠𝑒𝑐 𝑧 𝑑𝑧 = 4 ∫ 𝑠𝑒𝑛 𝑧 cos 𝑧 1 cos 𝑧 𝑑𝑧 + 9 ∫ 1 1 cos 𝑧 𝑑𝑧 = 4 ∫ 𝑠𝑒𝑛 𝑧 𝑑𝑧 + 9 ∫ cos 𝑧 𝑑𝑧 = βˆ’4 cos 𝑧 + 9𝑠𝑒𝑛 𝑧 + 𝐢 = βˆ’4 cos 1 ΰΆ₯(π‘₯ βˆ’ 1)2 + 1 + 9𝑠𝑒𝑛 π‘₯ βˆ’ 1 ΰΆ₯(π‘₯ βˆ’ 1)2 + 1 + 𝐢 ∴ ∫ 4π‘₯ + 5 (π‘₯2 βˆ’ 2π‘₯ + 2) 3 2 𝑑π‘₯ = βˆ’4 cos 1 ΰΆ₯(π‘₯ βˆ’ 1)2 + 1 + 9𝑠𝑒𝑛 π‘₯ βˆ’ 1 ΰΆ₯(π‘₯ βˆ’ 1)2 + 1 + 𝐢
  • 47. 50. ∫ 𝑑π‘₯ π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅― Solucion: Mediante el mΓ©todo de sustituciΓ³n: Sea: 𝑒 = √1 + π‘₯ β†’ π‘₯ = 𝑒2 βˆ’ 1 𝑑𝑒 = 𝑑π‘₯ 2√1 + π‘₯ β†’ 2√1 + π‘₯ 𝑑𝑒 = 𝑑π‘₯ Sustituimos: ∫ 𝑑π‘₯ π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅― = ∫ 2√1 + π‘₯ 𝑑𝑒 (𝑒2 βˆ’ 1)(𝑒 βˆ’ 1) = 2 ∫ 𝑒 𝑑𝑒 (𝑒2 βˆ’ 1)(𝑒 βˆ’ 1) = 2 ∫ 𝑒 𝑑𝑒 (𝑒 + 1)(𝑒 βˆ’ 1)2 Descomponemos por fracciones parciales: 𝑒 (𝑒 + 1)(𝑒 βˆ’ 1)2 = 𝐴 𝑒 + 1 + 𝐡 𝑒 βˆ’ 1 + 𝐢 (𝑒 βˆ’ 1)2 = 𝐴(𝑒 βˆ’ 1)2 + 𝐡(𝑒 + 1)(𝑒 βˆ’ 1) + 𝐢(𝑒 + 1) (𝑒 + 1)(𝑒 βˆ’ 1)2 Igualando los numeradores, se tiene: Si 𝑒 = βˆ’1 β†’ βˆ’1 = 𝐴 (4) β†’ 𝐴 = βˆ’ 1 4 Si 𝑒 = 1 β†’ 1 = 𝐢 (2) β†’ 𝐢 = 1 2 Si 𝑒 = 0 β†’ 0 = 𝐴(βˆ’1)2 + 𝐡(1)(βˆ’1) + 𝐢 β†’ 𝐡 = 𝐴 + 𝐢 = βˆ’ 1 4 + 1 2 β†’ 𝐡 = 1 4 Luego, 𝑒 (𝑒 + 1)(𝑒 βˆ’ 1)2 = βˆ’ 1 4 𝑒 + 1 + 1 4 𝑒 βˆ’ 1 + 1 2 (𝑒 βˆ’ 1)2 ∫ 𝑑π‘₯ π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅― = 2 ∫ ( βˆ’ 1 4 𝑒 + 1 + 1 4 𝑒 βˆ’ 1 + 1 2 (𝑒 βˆ’ 1)2 ) 𝑑𝑒
  • 48. = βˆ’ 1 2 ∫ 𝑑𝑒 𝑒 + 1 + 1 2 ∫ 𝑑𝑒 𝑒 βˆ’ 1 + ∫ 𝑑𝑒 (𝑒 βˆ’ 1)2 Para la primera integral hacemos: 𝑑 = 𝑒 + 1 β†’ 𝑑𝑑 = 𝑑𝑒 Para la segunda integral hacemos: 𝑝 = 𝑒 βˆ’ 1 β†’ 𝑑𝑝 = 𝑑𝑒 Para la tercera integral hacemos: 𝑣 = 𝑒 βˆ’ 1 β†’ 𝑑𝑣 = 𝑑𝑒 = βˆ’ 1 2 ∫ 𝑑𝑑 𝑑 + 1 2 ∫ 𝑑𝑝 𝑝 + ∫ 𝑑𝑣 𝑣2 = βˆ’ 1 2 ∫ 𝑑𝑑 𝑑 + 1 2 ∫ 𝑑𝑝 𝑝 + ∫ π‘£βˆ’2 𝑑𝑣 = βˆ’ 1 2 ln |𝑑| + 𝑐1 + 1 2 ln |𝑝| + 𝑐2 + 1 2 π‘£βˆ’1 βˆ’1 + 𝑐3 = βˆ’ 1 2 ln |𝑒 + 1 | + 1 2 ln |𝑒 βˆ’ 1 | βˆ’ 1 (𝑒 βˆ’ 1) + 𝑐4 = βˆ’ 1 2 ln |√1 + π‘₯ + 1 | + 1 2 ln |√1 + π‘₯ βˆ’ 1 | βˆ’ 1 (√1 + π‘₯ βˆ’ 1) + 𝐢 ∴ ∫ 𝑑π‘₯ π‘₯࡫√1 + π‘₯ βˆ’ 1ΰ΅― = βˆ’ 1 2 ln |√1 + π‘₯ + 1 | + 1 2 ln |√1 + π‘₯ βˆ’ 1 | βˆ’ 1 (√1 + π‘₯ βˆ’ 1) + 𝐢 51. ∫ π‘₯ ln π‘₯ 𝑑π‘₯ √1 βˆ’ π‘₯2 Solucion: Integrando por partes, se tiene: 𝑒 = 𝑙𝑛 π‘₯ β†’ 𝑑𝑒 = 1 π‘₯ 𝑑π‘₯ 𝑑𝑣 = π‘₯ (1 βˆ’ x2) 1 2 𝑑π‘₯ β†’ 𝑣 = ∫ π‘₯ (1 βˆ’ x2) 1 2 𝑑π‘₯ Para hallar v, Hacemos 𝑧 = 1 βˆ’ π‘₯2 β†’ 𝑑𝑧 = βˆ’2π‘₯𝑑π‘₯ β†’ βˆ’2𝑑𝑧 = π‘₯𝑑π‘₯ 𝑑𝑣 = π‘₯ (1 βˆ’ x2) 1 2 𝑑π‘₯ β†’ 𝑣 = ∫ βˆ’2𝑑𝑧 𝑧 1 2 = βˆ’2 ∫ π‘§βˆ’ 1 2 𝑑𝑒 = βˆ’2 𝑧 1 2 1 2 = βˆ’(1 βˆ’ x2) 1 2 Luego,
  • 49. ∫ π‘₯ ln π‘₯ 𝑑π‘₯ √1 βˆ’ π‘₯2 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ βˆ’ ∫ βˆ’(1 βˆ’ x2) 1 2 1 π‘₯ 𝑑π‘₯ = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ∫ √1 βˆ’ x2 π‘₯ 𝑑π‘₯ Sea: 𝑒2 = 1 βˆ’ π‘₯2 β†’ π‘₯2 = 1 βˆ’ 𝑒2 β†’ 𝑒 = √1 βˆ’ π‘₯2 β†’ 2𝑒 𝑑𝑒 = βˆ’2π‘₯𝑑π‘₯ β†’ 𝑒 𝑑𝑒 = βˆ’π‘₯ 𝑑π‘₯ β†’ 𝑒 𝑑𝑒 βˆ’π‘₯ = 𝑑π‘₯ = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ∫ 𝑒 π‘₯ 𝑒 𝑑𝑒 βˆ’π‘₯ = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ βˆ’ ∫ 𝑒2 π‘₯2 𝑑𝑒 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ∫ βˆ’π‘’2 + 1 βˆ’ 1 1 βˆ’ 𝑒2 𝑑𝑒 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ∫ 1 βˆ’ 𝑒2 1 βˆ’ 𝑒2 𝑑𝑒 βˆ’ ∫ 1 1 βˆ’ 𝑒2 𝑑𝑒 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ∫ 𝑑𝑒 βˆ’ ∫ 1 1 βˆ’ 𝑒2 𝑑𝑒 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + 𝑒 + 𝑐1 βˆ’ 1 2 ln | 𝑒 + 1 𝑒 βˆ’ 1 | + 𝑐2 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + 𝑒 + 𝑐1 βˆ’ 1 2 ln | 𝑒 + 1 𝑒 βˆ’ 1 | + 𝑐2 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ΰΆ₯1 βˆ’ x2 βˆ’ 1 2 ln | √1 βˆ’ x2 + 1 √1 βˆ’ x2 βˆ’ 1 | + 𝐢 ∴ ∫ π‘₯ ln π‘₯ 𝑑π‘₯ √1 βˆ’ π‘₯2 = βˆ’(1 βˆ’ x2) 1 2 ln π‘₯ + ΰΆ₯1 βˆ’ x2 βˆ’ 1 2 ln | √1 βˆ’ x2 + 1 √1 βˆ’ x2 βˆ’ 1 | + 𝐢