SlideShare a Scribd company logo
1 of 7
Download to read offline
10
International Journal of Applied Sciences and Innovation
Vol. 2015, no. 1, pp. 10-16
ISSN: 2458-6501
Copyright © Infinity Sciences
Derivative Free Cubic Convergent
Extrapolated Newton’s Method
V.B. Kumar Vatti1
, Shouri Dominic1
and Sahanica,V2
1
Department of Engineering Mathematics, Visakhapatnam, Andhra Pradesh, India
2
ROLTA India Ltd3
, Mumbai, India
Email: drvattivbk@yahoo.co.in
Abstract- In this paper we consider the two step process cubic convergent extrapolated Newton’s method
which requires the evaluation of the first derivative and suggest a two-step process of the same method free
from the derivatives by using backward difference approximation. It is shown that the new method has a cubic
rate of convergence as that of Extrapolated Newton’s method and the efficiency index of this method is 3 3 .
Few examples are given to illustrate the efficiency of this method compared to Newton’s method and
extrapolated Newton’s method.
Keywords: Nonlinear equations ; Iterative method ; Convergence Criteria ; Newton’s Method ;
Cubic Convergence ;.
I. INTRODUCTION
We consider finding the zeros of a nonlinear equation
( ) 0f x  (1.1)
Where :f D R R  is a scalar function on an open interval D and ( )f x may be algebraic,
transcendental or combined of both.
The famous well known quadratic convergent Newton’s method for finding the root ' ' of (1.1) is given by
1
( )
( )
n
n n
n
f x
x x
f x  

(n = 0, 1, 2,…) (1.2)
Starting from the initial approximation 0' 'x which is in the vicinity of the exact root, V.B. Kumar, Vatti et. al.
[15] suggested a cubic convergent method by extrapolating the newton’s method (1.2) known as extrapolated
Newton’s method which requires three functional evaluations i.e;  ( ), ( ) and ( )f x f x f x in each
iteration, defined by
1
( )
.
( )
n
n n
n
f x
x x
f x
  

(n= 0, 1, 2...) (1.3)
Here ' ' is the relaxation parameter and its optimal choice given by
2
2 n




(1.4)
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
11
where
2
( ) ( )
( )
n n
n
n
f x f x
f x




(1.5)
A variant of Newton’s method suggested by Fernando and Weerakon [13] which is a two step iterative process,
defined by
1 *
1
2 ( )
( ) ( )
n
n n
n n
f x
x x
f x f x


 
 
(n= 0, 1, 2...) (1.6)
where *
1
( )
( )
n
n n
n
f x
x x
f x  

This method (1.6) has a third order convergence.
It is to note that the efficiency indexes of the methods (1.2), (1.3), and (1.6) are 32, 3 and 3 3 respectively.
In this paper, we present the method (1.3) as a two-step iterative process free from all the derivatives in section
2. In section 3, the convergence criteria of the new method is discussed where as in the concluding section
several numerical examples are considered to exhibit the efficiency of the developed method.
II. DERIVATIVE FREE EXTRAPOLATED NEWTON’S METHOD
The cubic convergent extrapolated Newton’s method free from second derivative suggested by V.B.
Kumar,Vatti et. al. [16] is given as:
For a given 0x , compute the approximate solution 1nx  by iterative scheme:
1
( ) ( )
( ) ( ) ( )
n n
n n
n n n
f x f x
x x
f x f y f x
 
   
  
(n=0, 1, 2...) (2.1)
Where
( )
( )
n
n n
n
f x
y x
f x
 

(2.2)
As it is known that the backward difference approximation for the first derivative for ( )f x at x is
( ) ( )
( )
f x f x h
f x
h
 
  (2.3)
Replacing ‘h’ by ( )nf x , the backward difference approximation for the derivative ( )nf x at nx is
( ) ( ( ))
( )
( )
n n n
n
n
f x f x f x
f x
f x
 
  (2.4)
Now the method (2.1) takes the form
2
1
( ) ( )
( ) ( ( )) ( ) ( )
n n
n n
n n n n n
f x f x
x x
f x f x f x f x f y
 
   
    
(n=0, 1, 2...) (2.5)
where
2
( )
( ) ( ( ))
n
n n
n n n
f x
y x
f x f x f x
 
 
We now define the following algorithm.
Algorithm 2.1: For a given 0x , compute the approximate solution 1nx  by iterative scheme:
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
12
2
1
( ) ( )
( ) ( ( )) ( ) ( )
n n
n n
n n n n n
f x f x
x x
f x f x f x f x f y
 
   
    
(n=0, 1, 2...)
where
2
( )
( ) ( ( ))
n
n n
n n n
f x
y x
f x f x f x
 
 
This algorithm can be called as a two step derivative free extrapolated Newton’s method and requires three
functional evaluations. The efficiency index of this method is 3 3 .
III. CONVERGENCE CRITERIA
Theorem 3.1: Let D  be a simple zero of the function :f D R R  for an open interval D. If 0x
is in the vicinity of exact root , then the algorithm (2.1) has third order convergence and it satisfies the error
equation.
2
32
1
1 1
1
1n n
c
e e
c c
  
       
where n ne x   .
Proof: If  be the root of ( ) 0f x  and
n ne x   (3.1)
be the error at nth
iteration. Then by Taylor’s series, we have
( ) ( )n nf x f e 
2 3 4 5 6( ) ( ) ( ) ( )
( ) ( ) ( )
2! 3! 4! 5!
iv v
n n n n n n
f f f f
f f e e e e e O e
   
 
 
      
2 3 4 5 6
1 2 3 4 5 ( )n n n n n nc e c e c e c e c e O e      (3.2)
Where
( )
!
j
j
f
c
j

 (3.3)
and,
            
          
2 2 2 3 2 2 2 3
1 1 2 1 2 1 2 3 1 3 1 1 2 3 1 2 3
2 2 3 4 2 4 5
4 2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3
( ) ( 3 ) ( 3 2 4 2 )
( ( 2 ) 5 5 6 4 6 3 ) ( )
n n n
n n
c c e c c c c c e c c c c c c c c c c e
c c c c c c c c c c c c c c c c c c c c c e O e
(3.4)
Subtracting (3.2) from (3.4) we get
( ) ( ( ))n n nf x f x f x 
2 2 2 3 2 2 2 3
1 2 1 2 1 3 1 3 1 1 2 3 1 2( 3 ) ( 3 2 4 2 )n n nc e c c c c e c c c c c c c c c e        
2 2 3 4 2 4 5
2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3( ( 2 ) 5 5 6 4 6 3 ) ( )n nc c c c c c c c c c c c c c c c c c c c e O e          
(3.5)
Also 2 2 3 4 5 6 2
1 2 3 4 5[ ( )] [ ( )]n n n n n n nf x c e c e c e c e c e O e     
2 2 3 2 4 5
1 1 2 2 1 3 2 3 1 42 ( 2 ) (2 2 )n n n nc e c c e c c c e c c c c e      (3.6)
From (3.5) and (3.6) we get
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
13
2
[ ( )]
( ) ( ( ))
n
n n n
f x
f x f x f x 
     

       
          
2 2 3 2 4 5 6
1 1 2 2 1 3 2 3 1 4
2 2 2 3 2 2 2 3
1 2 1 2 1 3 1 3 1 1 2 3 1 2
2 2 3 4 2 4 5
2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3
2 ( 2 ) (2 2 ) ( )
{ ( 3 ) ( 3 2 4 2 )
( ( 2 ) 5 5 6 4 6 3 ) ( )}
n n n n n
n n n
n n
c e c c e c c c e c c c c e O e
c e c c c c e c c c c c c c c c e
c c c c c c c c c c c c c c c c c c c c e O e
 
  



     
  



         

2
2 3 42 1 3 2 3 1 42
2 2
1 1 1
3 2 2 22
23 1 3 1 1 2 3 1 22 1 2 1
2 2
1 1
2 2 3 4 2
3 42 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3
2
1
( 2 ) (2 2 )
2
( 3 2 4 2 )( 3 )
1
( ( 2 ) 5 5 6 4 6 3 )
[ ] ( )
n n n n
n n
n n
c c c c c c cc
e e e e
c c c
c c c c c c c c cc c c c
e e
c c
c c c c c c c c c c c c c c c c c c c c
e O e
c








 
 

  
    
  
      
  
  
      
 
2
2 3 42 1 3 2 3 1 42
2 2
1 1 1
3 2 2 22
23 1 3 1 1 2 3 1 22 1 2 1
2 2
1 1
2 3 2 2 22 2
2 2 1 2 1 3 1 3 1 1 2 3 1 22 1 2 1
4
1
( 2 ) (2 2 )
2
( 3 2 4 2 )( 3 )
1
( 3 )( 3 2 4 2 )( 3 )
2
n n n n
n n
n
c c c c c c cc
e e e e
c c c
c c c c c c c c cc c c c
e e
c c
c c c c c c c c c c c c cc c c c
e
c c
 
 
 
 
 
 
 
 
 
 
 
3
4
1
ne
    
  
   
    
3 2 2 22
2 33 1 3 1 1 2 3 1 22 1 2 1
2 2
1 1
22 2 2
3 2 3 3 42 1 32 1 2 1 2 2 2 1 2 1
4 2 2
1 11 1 1
( 3 2 4 2 )( 3 )
( 2 )( 3 ) ( 3 )
2 2 ( )
n n n
n n n n n
c c c c c c c c cc c c c
e e e
c c
c c cc c c c c c c c c c
e e e e O e
c cc c c
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 12
2 4
1 1
(3 2 2 2 )
( )n n n n
c c c c c c c c c c c cc
e c e e O e
c c
       
          
(3.7)
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
14
Therefore,
2
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 12
2 4
1 1
( )
( ) ( ( ))
(3 2 2 2 )
( )
n
n n
n n n
n n n n n
f x
y x
f x f x f x
c c c c c c c c c c c cc
e e c e e O e
c c

 
 
       
            
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 12
2 4
1 1
(3 2 2 2 )
( )n n n n
c c c c c c c c c c c cc
y c e e O e
c c

      
      
 
(3.8)
From (3.8), we have
 
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 1
2 2 1 3
1
(3 2 2 2 )
( ) ( )n n n n
c c c c c c c c c c c c
f y c c c e e O e
c
    
    (3.9)
From (3.2) and (3.9) we have
2 3 4 5 6
1 2 3 4 5
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 1
1 2 1 3
1
( )( )
( ) ( ) (3 2 2 )
( )
n n n n n nn
n n
n n n n
c e c e c e c e c e O ef x
f x f y c c c c c c c c c c c c
c e c c e e O e
c
    

     
  
4 5 3 2 3 2 2
2 33 1 1 3 1 2 3 1 1 22
2 4
1 1
(3 2 2 )
1 ( )n n n
c c c c c c c c c cc
c e e O e
c c
     
      
 
(3.10)
Combining equations (3.7) and (3.10), we get
2
( ) ( )
( ) ( ( )) ( ) ( )
n n
n n n n n
f x f x
f x f x f x f x f y
 
 
    
4 5 3 2 3 2 2 2 4
2 3 43 1 1 3 1 2 3 1 1 2 2 12
2 4
1 1
4 5 3 2 3 2 2
2 33 1 1 3 1 2 3 1 1 22
2 4
1 1
(3 2 2 2 )
( )
(3 2 2 )
1 ( )
n n n n
n n n
c c c c c c c c c c c cc
e c e e O e
c c
c c c c c c c c c cc
c e e O e
c c
       
          
 
      
         
 
 
(3.11)
with (3.11), (3.1) and (2.5) one can have
2
32
1
1 1
1
1n n n n
c
e e e e
c c
 
  
           
(3.12)
which yields
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
15
3
1n ne e 
It shows the method (2.5) has cubic convergence.
IV. NUMERICAL EXAMPLES
We consider few numerical examples considered by Fernando and Weerakoon [13] and by Grewal [1] and the
method (2.5) is compared with the methods (1.2), (1.3), (1.6) and (2.1). The computational results are tabulated
below and the results are correct up to an error less than 0.5×10-20
.
Table 1: Numerical Comparison
CONCLUSION
With the number of iterations and the root of the respective equation tabulated for each of the methods, we
conclude that the method (2.5) which does not require evaluation of the derivatives of the function, has the same or
better rate of convergence compared to the methods considered in this paper.
REFERENCES
[1] GREWAL, B.S. Higher Engineering Mathematics 42nd
Edition, Khanna Publishers, 2012.
[2] MARCHUK, G.I. Methods of Numerical Mathematics, springer – Verlag, Newyork, 1982.
[3] ANTI, H.M. Numerical Methods for Scientists and Engineer, Tata McGraw – Hill Publishing Company Ltd.
New Delhi, 1991.
Function 0x number of iteration for each method ROOT
( )f x 1.2 1.3 1.6 2.1 2.5
(1) 3 2
4 10x x  1.8 6 6 4 3 3 1.365230013414097
(2)cos( )x x 4 41 7 8 5 4 0.739085133215161
(3) 3
( 1) 1x   1.8 6 4 4 3 3 2
(4) 1
3x
e x
  0 8 5 5 4 4 1.442854401002388
(5) 10log 1.2x x 
0.5
2.5
7
5
7
5
6
4
4
3
3
2
2.740646095973693
(6) 102 log 7x x 
3
4
5
4
4
3
4
3
2
2
2
2
3.789278248444742
(7) cosx
xe x 0 8 5 6 5 4 0.517757363682458
(8) sin 1x
e x  -0.2 8 5 6 5 5 0.588532743981861
(9) 1
1.5 tanx
e x
  -7 7 4 6 4 4 -14.101269772739964
V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation
16
[4] MATHEWS, J.H. FINK, K. D. Numerical Methods using Matlab. Pearson/Prentice Hall New Jersey, 2004.
[5] MATHEWS, J.H. Numerical Methods for Mathematics, Science and Engineering, Prentice Hall of India Pvt.
Ltd., New Delhi, 2001.
[6] RICE, J.R. Numerical Methods, Software and Analysis, McGraw – Hill International Editions, Singapore
Computer Science Series, 1987.
[7] JAIN, M.K. , IYENGAR, S.R.K., JAIN, R.K. Numerical Methods of Scientific and Engineering Computation,
New age international Publisher, New Delhi, India, 2004.
[8] JAIN, M.K. Numerical Solution of Differential Equations, 2nd
ed. Wiley Easterns Ltd., New Delhi, 1984.
[9] HERNÁNDEZ, M.A. Newton-Raphson's method and convexity Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., vol. 22,
no. 1, pp. 159-166, 1992.
[10] HAMMING, R.W. Introduction to Applied Numerical Analysis, International Student Edition, McGraw Hill
Koga Kusha, Ltd, 1971.
[11] SASTRY, S. S. Introductory Methods of Numerical Analysis, Prentice – Hall of India, New Delhi, 2005.
[12] RAO, S.S. Applied Numerical Methods for Engineers and Scientists, Prentice – Hall, New Jersey, 2002.
[13] T.G.I FERNANDO AND S. WEERAKOON. A Variant of Newton’s Method with Accelerated Third-Order
Convergence. Appli. Math. Lett. 13 87-93.(2000)
[14] KUMAR, V.B., VATTI , KONERU, S.R. Extrapolated Accelerated Gauss – Seidel Methods, Math. Comp,
vol.21, 1987.
[15] KUMAR VATTI, V.B., KUMAR MYLAPALLI, MR.M.S., KUMARI KATRAGADDA, MRS. A.
Extrapolated Newton – Raphson Method, Journal of Math Edu. Vol. XLIII, no.2, June, 2009.
[16] KUMAR VATTI, V. B., SHOURI DOMINIC AND MOUNICA, Extrapolated Newton’s Method Free from
Second Derivative. Acta Eng Intl, vol. no. 1, pp. 39- 43, 2014.

More Related Content

What's hot

IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET Journal
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlineareSAT Publishing House
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
POTENCIAS Y RADICALES
POTENCIAS Y RADICALESPOTENCIAS Y RADICALES
POTENCIAS Y RADICALESEducación
 
Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013Huynh ICT
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...mathsjournal
 
กระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศกระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศJL'mind Chutimon
 
Powerpoint ประกอบการบรรยาย
Powerpoint ประกอบการบรรยายPowerpoint ประกอบการบรรยาย
Powerpoint ประกอบการบรรยายevaluation47
 
12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on functionNigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence ofeSAT Publishing House
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log lawsNigel Simmons
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculoFavian Flores
 

What's hot (19)

IRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An ApplicationIRJET- On Certain Subclasses of Univalent Functions: An Application
IRJET- On Certain Subclasses of Univalent Functions: An Application
 
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
algebra
algebraalgebra
algebra
 
A study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinearA study on mhd boundary layer flow over a nonlinear
A study on mhd boundary layer flow over a nonlinear
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
Ae04605217226
Ae04605217226Ae04605217226
Ae04605217226
 
Cryptographic system in polynomial residue classes for channels with noise an...
Cryptographic system in polynomial residue classes for channels with noise an...Cryptographic system in polynomial residue classes for channels with noise an...
Cryptographic system in polynomial residue classes for channels with noise an...
 
POTENCIAS Y RADICALES
POTENCIAS Y RADICALESPOTENCIAS Y RADICALES
POTENCIAS Y RADICALES
 
D028036046
D028036046D028036046
D028036046
 
Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
กระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศกระบวนการเทคโนโลยีสารสนเทศ
กระบวนการเทคโนโลยีสารสนเทศ
 
Powerpoint ประกอบการบรรยาย
Powerpoint ประกอบการบรรยายPowerpoint ประกอบการบรรยาย
Powerpoint ประกอบการบรรยาย
 
12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function12X1 T01 03 integrating derivative on function
12X1 T01 03 integrating derivative on function
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 

Viewers also liked

Factores de la comunicación
Factores de la comunicaciónFactores de la comunicación
Factores de la comunicaciónyoelbarra
 
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-tri
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-triQuyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-tri
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-triVanBanMuaBanNhanh
 
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bégiangcdby01
 
International journal of engineering issues vol 2015 - no 2 - paper2
International journal of engineering issues   vol 2015 - no 2 - paper2International journal of engineering issues   vol 2015 - no 2 - paper2
International journal of engineering issues vol 2015 - no 2 - paper2sophiabelthome
 
International journal of engineering issues vol 2015 - no 1 - paper3
International journal of engineering issues   vol 2015 - no 1 - paper3International journal of engineering issues   vol 2015 - no 1 - paper3
International journal of engineering issues vol 2015 - no 1 - paper3sophiabelthome
 
International journal of computer science and innovation vol 2015-n2-paper5
International journal of computer science and innovation  vol 2015-n2-paper5International journal of computer science and innovation  vol 2015-n2-paper5
International journal of computer science and innovation vol 2015-n2-paper5sophiabelthome
 
Animales en peligro de extincion
Animales en peligro de extincionAnimales en peligro de extincion
Animales en peligro de extincionMaria Belen
 

Viewers also liked (8)

Factores de la comunicación
Factores de la comunicaciónFactores de la comunicación
Factores de la comunicación
 
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-tri
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-triQuyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-tri
Quyet dinh-so-11-2014-qd-ubnd-cua-ubnd-tinh-quang-tri
 
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé
15 bữa ăn phụ làm siêu nhanh và siêu bổ dưỡng cho bé
 
International journal of engineering issues vol 2015 - no 2 - paper2
International journal of engineering issues   vol 2015 - no 2 - paper2International journal of engineering issues   vol 2015 - no 2 - paper2
International journal of engineering issues vol 2015 - no 2 - paper2
 
The Proven AdWords Strategy
The Proven AdWords StrategyThe Proven AdWords Strategy
The Proven AdWords Strategy
 
International journal of engineering issues vol 2015 - no 1 - paper3
International journal of engineering issues   vol 2015 - no 1 - paper3International journal of engineering issues   vol 2015 - no 1 - paper3
International journal of engineering issues vol 2015 - no 1 - paper3
 
International journal of computer science and innovation vol 2015-n2-paper5
International journal of computer science and innovation  vol 2015-n2-paper5International journal of computer science and innovation  vol 2015-n2-paper5
International journal of computer science and innovation vol 2015-n2-paper5
 
Animales en peligro de extincion
Animales en peligro de extincionAnimales en peligro de extincion
Animales en peligro de extincion
 

Similar to International journal of applied sciences and innovation vol 2015 - no 1 - paper2

Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableAlexander Decker
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...ijtsrd
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variablerahulmonikasharma
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...IOSR Journals
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletScientific Review SR
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.pptJasmin679773
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptElmabethDelaCruz2
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Alexander Decker
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )iosrjce
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangiansorajjournal
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
08 - 25 Jan - Divide and Conquer
08 - 25 Jan - Divide and Conquer08 - 25 Jan - Divide and Conquer
08 - 25 Jan - Divide and ConquerNeeldhara Misra
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 

Similar to International journal of applied sciences and innovation vol 2015 - no 1 - paper2 (20)

Boundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariableBoundary value problem and its application in i function of multivariable
Boundary value problem and its application in i function of multivariable
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
I034051056
I034051056I034051056
I034051056
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Some Special Functions of Complex Variable
Some Special Functions of Complex VariableSome Special Functions of Complex Variable
Some Special Functions of Complex Variable
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.ppt
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.ppt
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )
 
E024033041
E024033041E024033041
E024033041
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
08 - 25 Jan - Divide and Conquer
08 - 25 Jan - Divide and Conquer08 - 25 Jan - Divide and Conquer
08 - 25 Jan - Divide and Conquer
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 

Recently uploaded

Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 

Recently uploaded (20)

Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 

International journal of applied sciences and innovation vol 2015 - no 1 - paper2

  • 1. 10 International Journal of Applied Sciences and Innovation Vol. 2015, no. 1, pp. 10-16 ISSN: 2458-6501 Copyright © Infinity Sciences Derivative Free Cubic Convergent Extrapolated Newton’s Method V.B. Kumar Vatti1 , Shouri Dominic1 and Sahanica,V2 1 Department of Engineering Mathematics, Visakhapatnam, Andhra Pradesh, India 2 ROLTA India Ltd3 , Mumbai, India Email: drvattivbk@yahoo.co.in Abstract- In this paper we consider the two step process cubic convergent extrapolated Newton’s method which requires the evaluation of the first derivative and suggest a two-step process of the same method free from the derivatives by using backward difference approximation. It is shown that the new method has a cubic rate of convergence as that of Extrapolated Newton’s method and the efficiency index of this method is 3 3 . Few examples are given to illustrate the efficiency of this method compared to Newton’s method and extrapolated Newton’s method. Keywords: Nonlinear equations ; Iterative method ; Convergence Criteria ; Newton’s Method ; Cubic Convergence ;. I. INTRODUCTION We consider finding the zeros of a nonlinear equation ( ) 0f x  (1.1) Where :f D R R  is a scalar function on an open interval D and ( )f x may be algebraic, transcendental or combined of both. The famous well known quadratic convergent Newton’s method for finding the root ' ' of (1.1) is given by 1 ( ) ( ) n n n n f x x x f x    (n = 0, 1, 2,…) (1.2) Starting from the initial approximation 0' 'x which is in the vicinity of the exact root, V.B. Kumar, Vatti et. al. [15] suggested a cubic convergent method by extrapolating the newton’s method (1.2) known as extrapolated Newton’s method which requires three functional evaluations i.e;  ( ), ( ) and ( )f x f x f x in each iteration, defined by 1 ( ) . ( ) n n n n f x x x f x     (n= 0, 1, 2...) (1.3) Here ' ' is the relaxation parameter and its optimal choice given by 2 2 n     (1.4)
  • 2. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 11 where 2 ( ) ( ) ( ) n n n n f x f x f x     (1.5) A variant of Newton’s method suggested by Fernando and Weerakon [13] which is a two step iterative process, defined by 1 * 1 2 ( ) ( ) ( ) n n n n n f x x x f x f x       (n= 0, 1, 2...) (1.6) where * 1 ( ) ( ) n n n n f x x x f x    This method (1.6) has a third order convergence. It is to note that the efficiency indexes of the methods (1.2), (1.3), and (1.6) are 32, 3 and 3 3 respectively. In this paper, we present the method (1.3) as a two-step iterative process free from all the derivatives in section 2. In section 3, the convergence criteria of the new method is discussed where as in the concluding section several numerical examples are considered to exhibit the efficiency of the developed method. II. DERIVATIVE FREE EXTRAPOLATED NEWTON’S METHOD The cubic convergent extrapolated Newton’s method free from second derivative suggested by V.B. Kumar,Vatti et. al. [16] is given as: For a given 0x , compute the approximate solution 1nx  by iterative scheme: 1 ( ) ( ) ( ) ( ) ( ) n n n n n n n f x f x x x f x f y f x          (n=0, 1, 2...) (2.1) Where ( ) ( ) n n n n f x y x f x    (2.2) As it is known that the backward difference approximation for the first derivative for ( )f x at x is ( ) ( ) ( ) f x f x h f x h     (2.3) Replacing ‘h’ by ( )nf x , the backward difference approximation for the derivative ( )nf x at nx is ( ) ( ( )) ( ) ( ) n n n n n f x f x f x f x f x     (2.4) Now the method (2.1) takes the form 2 1 ( ) ( ) ( ) ( ( )) ( ) ( ) n n n n n n n n n f x f x x x f x f x f x f x f y            (n=0, 1, 2...) (2.5) where 2 ( ) ( ) ( ( )) n n n n n n f x y x f x f x f x     We now define the following algorithm. Algorithm 2.1: For a given 0x , compute the approximate solution 1nx  by iterative scheme:
  • 3. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 12 2 1 ( ) ( ) ( ) ( ( )) ( ) ( ) n n n n n n n n n f x f x x x f x f x f x f x f y            (n=0, 1, 2...) where 2 ( ) ( ) ( ( )) n n n n n n f x y x f x f x f x     This algorithm can be called as a two step derivative free extrapolated Newton’s method and requires three functional evaluations. The efficiency index of this method is 3 3 . III. CONVERGENCE CRITERIA Theorem 3.1: Let D  be a simple zero of the function :f D R R  for an open interval D. If 0x is in the vicinity of exact root , then the algorithm (2.1) has third order convergence and it satisfies the error equation. 2 32 1 1 1 1 1n n c e e c c            where n ne x   . Proof: If  be the root of ( ) 0f x  and n ne x   (3.1) be the error at nth iteration. Then by Taylor’s series, we have ( ) ( )n nf x f e  2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( ) ( ) 2! 3! 4! 5! iv v n n n n n n f f f f f f e e e e e O e                2 3 4 5 6 1 2 3 4 5 ( )n n n n n nc e c e c e c e c e O e      (3.2) Where ( ) ! j j f c j   (3.3) and,                         2 2 2 3 2 2 2 3 1 1 2 1 2 1 2 3 1 3 1 1 2 3 1 2 3 2 2 3 4 2 4 5 4 2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3 ( ) ( 3 ) ( 3 2 4 2 ) ( ( 2 ) 5 5 6 4 6 3 ) ( ) n n n n n c c e c c c c c e c c c c c c c c c c e c c c c c c c c c c c c c c c c c c c c c e O e (3.4) Subtracting (3.2) from (3.4) we get ( ) ( ( ))n n nf x f x f x  2 2 2 3 2 2 2 3 1 2 1 2 1 3 1 3 1 1 2 3 1 2( 3 ) ( 3 2 4 2 )n n nc e c c c c e c c c c c c c c c e         2 2 3 4 2 4 5 2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3( ( 2 ) 5 5 6 4 6 3 ) ( )n nc c c c c c c c c c c c c c c c c c c c e O e           (3.5) Also 2 2 3 4 5 6 2 1 2 3 4 5[ ( )] [ ( )]n n n n n n nf x c e c e c e c e c e O e      2 2 3 2 4 5 1 1 2 2 1 3 2 3 1 42 ( 2 ) (2 2 )n n n nc e c c e c c c e c c c c e      (3.6) From (3.5) and (3.6) we get
  • 4. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 13 2 [ ( )] ( ) ( ( )) n n n n f x f x f x f x                            2 2 3 2 4 5 6 1 1 2 2 1 3 2 3 1 4 2 2 2 3 2 2 2 3 1 2 1 2 1 3 1 3 1 1 2 3 1 2 2 2 3 4 2 4 5 2 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3 2 ( 2 ) (2 2 ) ( ) { ( 3 ) ( 3 2 4 2 ) ( ( 2 ) 5 5 6 4 6 3 ) ( )} n n n n n n n n n n c e c c e c c c e c c c c e O e c e c c c c e c c c c c c c c c e c c c c c c c c c c c c c c c c c c c c e O e                                2 2 3 42 1 3 2 3 1 42 2 2 1 1 1 3 2 2 22 23 1 3 1 1 2 3 1 22 1 2 1 2 2 1 1 2 2 3 4 2 3 42 2 1 3 1 4 2 3 1 4 1 4 1 4 1 2 3 1 2 3 2 1 ( 2 ) (2 2 ) 2 ( 3 2 4 2 )( 3 ) 1 ( ( 2 ) 5 5 6 4 6 3 ) [ ] ( ) n n n n n n n n c c c c c c cc e e e e c c c c c c c c c c c cc c c c e e c c c c c c c c c c c c c c c c c c c c c c e O e c                                               2 2 3 42 1 3 2 3 1 42 2 2 1 1 1 3 2 2 22 23 1 3 1 1 2 3 1 22 1 2 1 2 2 1 1 2 3 2 2 22 2 2 2 1 2 1 3 1 3 1 1 2 3 1 22 1 2 1 4 1 ( 2 ) (2 2 ) 2 ( 3 2 4 2 )( 3 ) 1 ( 3 )( 3 2 4 2 )( 3 ) 2 n n n n n n n c c c c c c cc e e e e c c c c c c c c c c c cc c c c e e c c c c c c c c c c c c c c cc c c c e c c                       3 4 1 ne                  3 2 2 22 2 33 1 3 1 1 2 3 1 22 1 2 1 2 2 1 1 22 2 2 3 2 3 3 42 1 32 1 2 1 2 2 2 1 2 1 4 2 2 1 11 1 1 ( 3 2 4 2 )( 3 ) ( 2 )( 3 ) ( 3 ) 2 2 ( ) n n n n n n n n c c c c c c c c cc c c c e e e c c c c cc c c c c c c c c c e e e e O e c cc c c 4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 12 2 4 1 1 (3 2 2 2 ) ( )n n n n c c c c c c c c c c c cc e c e e O e c c                    (3.7)
  • 5. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 14 Therefore, 2 4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 12 2 4 1 1 ( ) ( ) ( ( )) (3 2 2 2 ) ( ) n n n n n n n n n n n f x y x f x f x f x c c c c c c c c c c c cc e e c e e O e c c                           4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 12 2 4 1 1 (3 2 2 2 ) ( )n n n n c c c c c c c c c c c cc y c e e O e c c                  (3.8) From (3.8), we have   4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 1 2 2 1 3 1 (3 2 2 2 ) ( ) ( )n n n n c c c c c c c c c c c c f y c c c e e O e c          (3.9) From (3.2) and (3.9) we have 2 3 4 5 6 1 2 3 4 5 4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 1 1 2 1 3 1 ( )( ) ( ) ( ) (3 2 2 ) ( ) n n n n n nn n n n n n n c e c e c e c e c e O ef x f x f y c c c c c c c c c c c c c e c c e e O e c                4 5 3 2 3 2 2 2 33 1 1 3 1 2 3 1 1 22 2 4 1 1 (3 2 2 ) 1 ( )n n n c c c c c c c c c cc c e e O e c c                (3.10) Combining equations (3.7) and (3.10), we get 2 ( ) ( ) ( ) ( ( )) ( ) ( ) n n n n n n n f x f x f x f x f x f x f y          4 5 3 2 3 2 2 2 4 2 3 43 1 1 3 1 2 3 1 1 2 2 12 2 4 1 1 4 5 3 2 3 2 2 2 33 1 1 3 1 2 3 1 1 22 2 4 1 1 (3 2 2 2 ) ( ) (3 2 2 ) 1 ( ) n n n n n n n c c c c c c c c c c c cc e c e e O e c c c c c c c c c c c cc c e e O e c c                                           (3.11) with (3.11), (3.1) and (2.5) one can have 2 32 1 1 1 1 1n n n n c e e e e c c                  (3.12) which yields
  • 6. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 15 3 1n ne e  It shows the method (2.5) has cubic convergence. IV. NUMERICAL EXAMPLES We consider few numerical examples considered by Fernando and Weerakoon [13] and by Grewal [1] and the method (2.5) is compared with the methods (1.2), (1.3), (1.6) and (2.1). The computational results are tabulated below and the results are correct up to an error less than 0.5×10-20 . Table 1: Numerical Comparison CONCLUSION With the number of iterations and the root of the respective equation tabulated for each of the methods, we conclude that the method (2.5) which does not require evaluation of the derivatives of the function, has the same or better rate of convergence compared to the methods considered in this paper. REFERENCES [1] GREWAL, B.S. Higher Engineering Mathematics 42nd Edition, Khanna Publishers, 2012. [2] MARCHUK, G.I. Methods of Numerical Mathematics, springer – Verlag, Newyork, 1982. [3] ANTI, H.M. Numerical Methods for Scientists and Engineer, Tata McGraw – Hill Publishing Company Ltd. New Delhi, 1991. Function 0x number of iteration for each method ROOT ( )f x 1.2 1.3 1.6 2.1 2.5 (1) 3 2 4 10x x  1.8 6 6 4 3 3 1.365230013414097 (2)cos( )x x 4 41 7 8 5 4 0.739085133215161 (3) 3 ( 1) 1x   1.8 6 4 4 3 3 2 (4) 1 3x e x   0 8 5 5 4 4 1.442854401002388 (5) 10log 1.2x x  0.5 2.5 7 5 7 5 6 4 4 3 3 2 2.740646095973693 (6) 102 log 7x x  3 4 5 4 4 3 4 3 2 2 2 2 3.789278248444742 (7) cosx xe x 0 8 5 6 5 4 0.517757363682458 (8) sin 1x e x  -0.2 8 5 6 5 5 0.588532743981861 (9) 1 1.5 tanx e x   -7 7 4 6 4 4 -14.101269772739964
  • 7. V.B.K. Vatti1et al. / International Journal of Applied Sciences and Innovation 16 [4] MATHEWS, J.H. FINK, K. D. Numerical Methods using Matlab. Pearson/Prentice Hall New Jersey, 2004. [5] MATHEWS, J.H. Numerical Methods for Mathematics, Science and Engineering, Prentice Hall of India Pvt. Ltd., New Delhi, 2001. [6] RICE, J.R. Numerical Methods, Software and Analysis, McGraw – Hill International Editions, Singapore Computer Science Series, 1987. [7] JAIN, M.K. , IYENGAR, S.R.K., JAIN, R.K. Numerical Methods of Scientific and Engineering Computation, New age international Publisher, New Delhi, India, 2004. [8] JAIN, M.K. Numerical Solution of Differential Equations, 2nd ed. Wiley Easterns Ltd., New Delhi, 1984. [9] HERNÁNDEZ, M.A. Newton-Raphson's method and convexity Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., vol. 22, no. 1, pp. 159-166, 1992. [10] HAMMING, R.W. Introduction to Applied Numerical Analysis, International Student Edition, McGraw Hill Koga Kusha, Ltd, 1971. [11] SASTRY, S. S. Introductory Methods of Numerical Analysis, Prentice – Hall of India, New Delhi, 2005. [12] RAO, S.S. Applied Numerical Methods for Engineers and Scientists, Prentice – Hall, New Jersey, 2002. [13] T.G.I FERNANDO AND S. WEERAKOON. A Variant of Newton’s Method with Accelerated Third-Order Convergence. Appli. Math. Lett. 13 87-93.(2000) [14] KUMAR, V.B., VATTI , KONERU, S.R. Extrapolated Accelerated Gauss – Seidel Methods, Math. Comp, vol.21, 1987. [15] KUMAR VATTI, V.B., KUMAR MYLAPALLI, MR.M.S., KUMARI KATRAGADDA, MRS. A. Extrapolated Newton – Raphson Method, Journal of Math Edu. Vol. XLIII, no.2, June, 2009. [16] KUMAR VATTI, V. B., SHOURI DOMINIC AND MOUNICA, Extrapolated Newton’s Method Free from Second Derivative. Acta Eng Intl, vol. no. 1, pp. 39- 43, 2014.