SlideShare a Scribd company logo
1 of 292
Download to read offline
Technology Assessment
for
Forming and Fabricating
Machine Tools and Accessories
AMT – The Association For Manufacturing Technology
July 2002
Published by:
AMT - The Association For Manufacturing Technology
7901 Westpark Drive, McLean, VA 22102
Printed in the United States of America
Copyright 2002 AMT - The Association For Manufacturing Technology all
rights reserved. No part of this publication may be reproduced in any form, in an
electronic retrieval system or otherwise, without prior written permission of the
publisher.
ii
FOREWORD
This document has been prepared for AMT – The Association For Manufacturing
Technology by the Engineering Research Center for Net Shape Manufacturing
(ERC/NSM) at Ohio State University1
. This Center was established on May 1,
1986 and works with companies interested in advanced manufacturing research.
The focus of the ERC/NSM is net shape manufacturing with emphasis on cost-
effective production of discrete parts. The research concentrates on
manufacturing from engineering materials to finish or near-finish dimensions via
processes that use dies and molds. In addition to conducting industrially relevant
engineering research on a contractual basis for interested companies, the
ERC/NSM has the objectives to a) establish close cooperation between industry
and the university, b) train students, and c) transfer the research results to
interested companies.
This report entitled “TECHNOLOGY ASSESSMENT FOR FORMING AND
FABRICATING MACHINE TOOLS AND ACCESSORIES” identifies new
developments, customer/user requirements, relevant and practice oriented R&D
activities related to the metal forming machinery industry. A literature review was
conducted using U.S., German, and Japanese resources. The scope of the study
focused on the following points a) metal forming and fabricating machine tools, b)
dies and tools for metal forming, c) software for process modeling, die design
and manufacture, and d) new materials for advanced forming applications. The
emphasis of the study was placed on R&D related topics.
1
Information about the ERC/NSM can be obtained from the office of the Director, Taylan
Altan, located at 339 Baker Systems Engineering Building, 1971 Neil Avenue,
Columbus, Ohio 43210-1271, phone: (614) 292-9267, fax: (614) 292-7219, email:
altan.1@osu.edu, web page: http://www.ercnsm.org. This report is Report No.
ERC/NSM-01-40
iii
Contributors to this report include:
Patrick Wenning, Graduate Research Associate
Hariharasudhan Palaniswamy, Graduate Research Associate
Prashant Soman, Graduate Research Associate
Mark Gariety, Graduate Research Associate
Taylan Altan, Professor and Director
iv
TECHNOLOGY ASSESSMENT FOR FORMING AND
FABRICATING MACHINE TOOLS AND ACCESSORIES
EXECUTIVE SUMMARY
The ERC/NSM has completed a technology assessment on forming and
fabricating machine tools and accessories for AMT - The Association For
Manufacturing Technology. The scope of the study focused on the following
points:
Metal forming and fabricating machine tools (Bending Machines, Forming
Cells and Systems, Hot and Cold Forming Machines, Presses, Press
Brakes and Shears and Special Purpose Forming Equipment).
Dies and tools for metal forming.
Software for process modeling, die design and manufacture.
New materials for advanced forming applications.
Worldwide survey with emphasis on U.S., Germany and Japan.
The emphasis was placed on R&D related activities. Thus, information that is
easily available in company brochures, web sites and trade shows was not
covered. In conducting this study we relied heavily on personal contacts with
individuals in universities (especially in Germany).
The study was conducted as follows:
Review of relevant technical literature from the U.S., Germany and Japan.
Contact selected high technology oriented companies, world wide, that
manufacture metal forming equipment.
Contact selected European research laboratories and universities that
work closely with industry.
v
The objectives of this work are:
Identify new developments, customer/user requirements, relevant and
practice oriented R&D activities related to the metal forming machinery
industry.
Assess the significance and relevance of the identified activities and
trends for manufacturers of metal forming equipment and accessories.
Chapter 1 of this report gives recent developments in Sheet and Tube Forming
Machines and Tooling. Sheet bending and shearing, blanking and forming cells,
progressive die blanking and forming, stamping and transfer die forming, sheet
hydroforming, and tube forming are all discussed. Research work for machines,
tools, and process variations for the aforementioned categories is included.
Chapter 2 discusses recent developments in Billet and Rod Forming Machines
and Tooling. Wire and rod drawing, forming and shearing, cold and warm forging
and extrusion, and hot forging and extrusion are all discussed. Research work for
machines, tools, and process variations for the aforementioned categories is
included.
Chapter 3 provides recent research on advanced forming applications for new
materials such as high strength steels, aluminum and magnesium.
Chapter 4 gives practical examples of the Finite Element Method used in
industrial applications. Research results for FEM modeling of sheet forming, tube
hydroforming, and forging are discussed.
Chapter 5 describes research efforts for Other Supporting Technologies in metal
forming (e.g. tool coatings, process monitoring and control, and prototyping and
rapid tooling).
vi
TABLE OF CONTENTS
FOREWORD ....................................................................................................... iii
EXECUTIVE SUMMARY ......................................................................................v
TABLE OF CONTENTS...................................................................................... vii
LIST OF FIGURES ........................................................................................... xxv
1. Sheet and Tube Forming Machines and Tooling ...........................................1
1.1 Sheet Bending and Shearing..................................................................1
1.1.1 Machines.........................................................................................1
1.1.1.1 Otsu, M., Fujii, M., Osakada, K., (1999) “Three-Dimensional
Laser Bending of Sheet Metal” Proceedings of 6th
ICTP, Vol. II, pp. 1025-
1030. .................................................................................................1
1.1.1.2 Arnet, H., (1999) “Section Bending with Kinematic Shaping”
Proceedings of 6th
ICTP, Vol. III, pp. 2349-2354........................................2
1.1.1.3 Harrer, O., Lu, J., Schwenzfeier, W., Fischer, F., (1999)
”Asymmetric Rolling” Proceedings of 6th
ICTP, Vol. III, pp. 1885-1890......3
1.1.1.4 “Roll Forming of Parts with Variable Sections along the Length
(Research)” Prof. P. Groche / PtU – Institute for Production Technology
and Forming Machines...............................................................................4
1.1.2 Tools................................................................................................5
1.1.2.1 “Development of Tooling and Process for Hemming of
Aluminum Sheet (Ongoing Research)” Prof. K. Siegert / IFU – Institute for
Metal Forming, Technical University Stuttgart, Germany. ..........................5
1.1.2.2 Ogawa, H., Makinouchi, A., (1999) “Small Radius Bending of
Sheet Metal by Indentation with V-shape Punch” Proceedings of 6th
ICTP,
Vol. II, pp. 1059-1064.................................................................................5
1.1.2.3 Kleiner, M. and Wellendorf, A. (2000), “CNC-Two Roll Round
Bending,” LFU – University of Dortmund, Annual Report, pp. 31 (ongoing
research). .................................................................................................6
1.1.2.4 Aomura, S., Koguchi, A., (2002) “Optimized bending
sequences of sheet metal bending by robot” Robotics and Computer-
Integrated Manufacturing, Vol. 18, pp. 29-39. ............................................7
1.1.2.5 Yang, M., Manabe, K., Nishimura, H., (1998) “Development of
an intelligent tool system for flexible L-bending process of metal sheets”
Smart Materials and Structures, Vol. 7, pp. 530-536..................................8
1.1.2.6 Elkins, K., Sturges, R., (2001) “Design of a sensor for on-line
measurement of loaded bend angle for pressbrake control” Robotics and
Computer-Integrated Manufacturing, Vol. 17, pp. 329-340. .......................8
1.1.2.7 “Laser-assisted roll forming (Research)” Prof. M. Geiger –
Institute for Manufacturing Science, University of Erlangen-Nuremberg,
Germany. .................................................................................................9
1.1.3 Process Variations...........................................................................9
1.1.3.1 Hua, M., Baines, K.,
Cole, I., (1999) “Continuous four-roll plate
bending: a production process for the manufacture of single seamed tubes
of large and medium diameters” International Journal of Machine Tools
and Manufacture, Vol. 39, pp. 905-935. .....................................................9
vii
1.1.3.2 Otsu, M., Wada, T., Osakada, K., (2001) “Micro-bending of thin
spring by laser forming and spark forming” Annals of the CIRP, Vol.
50/1/2001, pp. 141-144. .............................................................................9
1.2 Blanking and Forming Cells..................................................................10
1.2.1 Machines.......................................................................................10
1.2.2 Tools..............................................................................................10
1.2.2.1 Li, W., Yao, Y., Lawrence, (2001) “Laser Forming with
Constant Line Energy” International Journal of Advanced Manufacturing
Technology, Vol. 17, pp. 196-203. ...........................................................10
1.2.2.2 Li, L., (2000) “The advances and characteristics of high-power
diode laser materials processing” Optics and Lasers in Engineering, Vol.
34, pp. 231-253........................................................................................11
1.2.3 Process Variations.........................................................................11
1.3 Progressive Die Blanking and Forming ................................................11
1.3.1 Machines.......................................................................................11
1.3.1.1 Tso, P., Liang, K., (2002) “A nine-bar linkage for mechanical
forming presses” International Journal of Machine Tools and Manufacture,
Vol. 42, pp. 139-145.................................................................................11
1.3.1.2 “Innovative Press Concept for the Manufacture of Precision
Microcomponents (Research)” Prof. P. Groche / PtU – Institute for
Production Technology and Forming Machines, Technical University
Darmstadt, Germany................................................................................12
1.3.1.3 “Investigation of the Dynamic Behavior of Linear Guides in
Forming Presses (Research)” Prof. P. Groche / PtU – Institute for
Production Technology and Forming Machines, Technical University
Darmstadt, Germany................................................................................12
1.3.1.4 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov,
A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002)
“Practice Oriented Developments at IFUM – Eccentric press with non-
round gear drive” (in German) Proceedings of 17th
UKH, Hannover, pp.
63-100. ...............................................................................................13
1.3.1.5 Volbers, Th., (2002) “Flexible Drives of an Eccentric Shaft –
Programmable Drives Control the Slide Velocity of Mechanical Presses”
(in German) Proceedings of 17th
UKH, Hannover, pp. 119-128. ..............14
1.3.1.6 Nakagawa, T., Higuchi, T., Sato, R., (1999) “Linear motor drive
CNC press using learning control” Annals of the CIRP, Vol. 48/1/1999, pp.
199-202. ...............................................................................................15
1.3.2 Tools..............................................................................................18
1.3.2.1 Murakawa, M., Mo, J., Wakatsuki, Y., Koga, N., (2001)
“Investigation of blanking noise reduction using a hydraulic inertia damper”
Journal of Materials Processing Technology, Vol. 112, pp. 205-213........18
1.3.2.2 Haller, D., (2000) “Controllable Nitrogen Gas Spring Systems
for Stamping Applications” New Developments in Sheet Metal Forming,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 249-276. ............................................................................18
viii
1.3.2.3 Kocov, A., Lazarev, J., (1999) “A New Approach in Die Set’s
Design” Proceedings of 6th
ICTP, Vol. I, pp. 719-722...............................22
1.3.2.4 “Controllable Nitrogen and Hydraulic Cylinder Systems for
Deep Drawing (Research)” Prof. K. Siegert / IFU – Institute for Metal
Forming, Technical University Stuttgart, Germany...................................23
1.3.2.5 Siegert, Haller, (2001) “Controllable Nitrogen Gas Spring
Systems” WGP Production Engineering, Germany, Vol. VIII/1, pp. 63-66. ..
...............................................................................................23
1.3.2.6 Altan, T., (2000) “Improving progressive stamping die design
with simulations”, STAMPING Journal, September/October 2000, pp. 98-
99. ...............................................................................................25
1.3.3 Process Variations.........................................................................27
1.3.3.1 Schweitzer, M., Hoffmann, H., (1999) “Rotary Blanking”
Proceedings of 6th
ICTP, Vol. III, pp. 2219-2224......................................27
1.3.3.2 Knaupp, M., Schulte-Beckhausen, J., (2001) “The Applications
and Limitations of Water Jet Cutting for the Trimming of Single and
Double-Walled Parts” Hydroforming of Tubes, Extrusions and Sheet
Metals, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 439-454..............................................................28
1.3.3.3 Joo, B., Oh, S., Jeon, B., (2001) “Development of micro
punching system” Annals of the CIRP, Vol. 50/1/2001, pp. 191-194........31
1.3.3.4 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov,
A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002)
“Practice Oriented Developments at IFUM – The controllable straightening
system” (in German) Proceedings of 17th
UKH, Hannover, pp. 63-100....32
1.4 Stamping and Transfer Die Forming.....................................................33
1.4.1 Machines.......................................................................................33
1.4.1.1 Hinderer, U., (2000) “Press Shop Concepts for the Future”
New Developments in Sheet Metal Forming, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 19-38................33
1.4.1.2 “Hydraulic Deep Drawing Press with CNC Controlled 10-Point
Cushion (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming,
Technical University Stuttgart, Germany..................................................34
1.4.1.3 Konnerth, U., (2001) “A hydraulic high-speed tryout press for
the simulation of mechanical forming processes” Journal of Materials
Processing Technology, Vol. 111, pp. 159-163........................................35
1.4.1.4 Voelkner, W., (2000) “Present and future developments of
metal forming: selected examples” Journal of Materials Processing
Technology, Vol. 106, pp. 236-242. .........................................................36
1.4.1.5 Siegert, K., Häussermann, M., Haller, D., Wagner, S., Ziegler,
M., (2000) “Tendencies in presses and dies for sheet metal forming
processes” Journal of Materials Processing Technology, Vol. 98, pp. 259-
264. ...............................................................................................37
1.4.1.6 VanderZee, A., (2000) “Transfer Presses with Electronic Feed”
New Developments in Sheet Metal Forming, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 67-76................40
ix
1.4.1.7 Kurzinger, F., (2000) “New Concepts for Hydraulic Production
Presses” New Developments in Sheet Metal Forming, Institute for Metal
Forming Technology of the University of Stuttgart, Germany, pp. 77-92..42
1.4.1.8 Walkinshaw, S., Hashimoto, M., (2000) “New Multi-Action
Press for Panel Manufacturer” New Developments in Sheet Metal
Forming, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 93-100................................................................45
1.4.1.9 Neugebauer, R., Pabler, T., Droos, J., (2000) “Tryout Press –
Requirements, Aspects of Design and Prototype” New Developments in
Sheet Metal Forming, Institute for Metal Forming Technology of the
University of Stuttgart, Germany, pp. 101-118. ........................................47
1.4.1.10 Dingle, M., Hodgson, P., Cardew-Hall, M., (2001) “Analysis of
the Elastic Behavior of the Press System” Innovations in Processing and
Manufacturing of Sheet Materials, pp. 405-414........................................47
1.4.1.11 Neugebauer, R. and Putz, M. (2000), “Innovation in Light
Structures for Body and Drive Train,” Proceedings of the Conference on
“Lightweight Construction by Forming Technology,” October 2000,
Chemnitz, pp. 43-68.................................................................................49
1.4.1.12 Tentrine, J. “Press Installations for the Light Construction in
Automotive Body Parts Manufacturing,” Proceedings of the Conference on
“Lightweight Construction by Forming Technology,” October 2000,
Chemnitz, pp. 287-305.............................................................................49
1.4.1.13 Grill, H. "What is Important is the Proper Tilt", Schuler
News/inside - Issue 2. 2001, p. 10. ..........................................................51
1.4.1.14 Kochan, A., (2001) “Dieless forming” Assembly Automation,
Vol. 21, pp. 321-323.................................................................................52
1.4.2 Tools..............................................................................................53
1.4.2.1 “Vibrating Blank Holder in Deep Drawing (Ongoing Research)”
Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University
Stuttgart, Germany...................................................................................53
1.4.2.2 “Control of Blank Holder Force to Reduce Wrinkling in Deep
Drawing (Ongoing Research)” Prof. K. Siegert / IFU – Institute for Metal
Forming, Technical University Stuttgart, Germany...................................54
1.4.2.3 “Optimum Design of Stamping Dies (Research)” Prof. K.
Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart,
Germany. ...............................................................................................54
1.4.2.4 “Forming of Tailored Blanks (Research)” Prof. K. Siegert / IFU
– Institute for Metal Forming, Technical University Stuttgart, Germany. ..55
1.4.2.5 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov,
A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002)
“Practice Oriented Developments at IFUM – The elastic blank holder” (in
German) Proceedings of 17th
UKH, Hannover, pp. 63-100. .....................56
1.4.2.6 Gunnarsson, L., Schedin, E., (2001) “Improving the properties
of exterior body panels in automobiles using variable blank holder force”
Journal of Materials Processing Technology, Vol. 114, pp. 168-173........57
x
1.4.2.7 Doege, E., Elend, L., (2001) “Design and application of pliable
blank holder systems for the optimization of process conditions in sheet
metal forming” Journal of Materials Processing Technology, Vol: 111, pp.
182-187. ...............................................................................................58
1.4.2.8 Obermeyer, E., Majlessi, S., (1998) “A review of recent
advances in the application of blank-holder force towards improving the
forming limits of sheet metal parts” Journal of Materials Processing
Technology, Vol. 75, pp. 222-234. ...........................................................59
1.4.2.9 Walczyk, D., Lakshmikanthan, J., Kirk, D. (1998) “Development
of a Reconfigurable Tool for Forming Aircraft Body Panels” Journal of
Manufacturing Systems, Vol. 17, pp. 287-296..........................................59
1.4.2.10 Herron, J., Hodgson, P., (1998) “Defining the operating window
for an automotive sheet pressing operation” Journal of Materials
Processing Technology, Vol. 80-81, pp. 68-75.........................................60
1.4.2.11 Liu, L., Sawada, T., Sakamoto, M., (2000) “Evaluation of the
surface deflections in pressed automobile panels by an optical reflection
method” Journal of Materials Processing Technology, Vol. 103, pp. 280-
287. ...............................................................................................60
1.4.2.12 Cartwright, D., Drake, P., Godwin, M., (1999) “A method for
comparing the performance of low-cost press tools for sheet forming”
Journal of Materials Processing Technology, Vol. 95, pp. 49-54..............61
1.4.2.13 Pepelnjak, T., Kuzman, K., (1998) “Adaptable tooling sets for
metal forming of geometrically similar products” Journal of Materials
Processing Technology, Vol. 80-81, pp. 413-420.....................................61
1.4.2.14 Li, M. Liu, Y. Su, S. Li, G., (1999) “Multi-point forming: a
flexible manufacturing method for a 3-d surface sheet” Journal of Materials
Processing Technology, Vol. 87, pp. 277-280..........................................62
1.4.2.15 “Drawing of light weight materials with locally optimized
properties (Research)” Prof. M. Geiger – Institute for Manufacturing
Science, University of Erlangen-Nuremberg, Germany............................63
1.4.2.16 Beck, S., (2000) “Control of the Deep Drawing Process through
Active Draw beads” New Developments in Sheet Metal Forming, Institute
for Metal Forming Technology of the University of Stuttgart, Germany, pp.
195-212. ...............................................................................................63
1.4.2.17 Haussermann, M., (2000) “Multipoint-Cushion-Technology
(Advances and Die Design)” New Developments in Sheet Metal Forming,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 341-366. ............................................................................65
1.4.2.18 Tanaka, S., Nakamura, T., Hayakawa, K., (1999) “Incremental
Sheet Metal Forming Using Elastic Tools” Proceedings of 6th
ICTP, Vol. II,
pp. 1477-1482..........................................................................................68
1.4.2.19 Li, R., Weinmann, K., (1999) “Formability of non-symmetric
aluminum panel drawing using active draw beads” Annals of the CIRP,
Vol. 48/1/1999, pp. 209-212.....................................................................69
1.4.2.20 Muller, J., Heinze, R., (2000) “Use of Ceramic in Tools for
Sheet Metal Forming” New Developments in Sheet Metal Forming,
xi
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 467-492. ............................................................................71
1.4.2.21 Siegert, K., Beck, S., “Deep drawing with segmented-elastic
binders”, WGP Production Engineering, Germany, Vol. VIII/2, pp 35-40,
2001. ...............................................................................................73
1.4.2.22 Descamps, R., Chamont, B., Kergen, R., (2000) “Blankholder
Force Control in Deep Drawing” New Developments in Sheet metal
Forming, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 229-248..............................................................75
1.4.2.23 Doege, E., Elend, L., Ropers, C., (1999) “Pliable Blank Holder
Systems for the Optimization of Process Conditions in Deep Drawing”
Proceedings of 6th
ICTP, Vol. I, pp. 177-182............................................77
1.4.2.24 Chalmers, R.E. (2001) "Rapid Tooling from Ford",
Manufacturing Engineering, Nr. 11, p. 36.................................................78
1.4.2.25 Cherrill, A., Zhang, S., Ousterhout, K., (1998) “A variable force
binder for a draw press” Journal of Materials Processing Technology, Vol.
73, pp. 7-17..............................................................................................78
1.4.2.26 Thomas, V. et al “Use of Forming Technology in Mechanical
Joining for Lightweight Design,” Proceedings of the Conference on
“Lightweight Construction by Forming Technology,” October 2000,
Chemnitz, pp. 247-276.............................................................................80
1.4.2.27 Altan T., Lilly B., Yen Y. (2001) “Manufacturing of Dies and
Molds” Annals of CIRP Vol. 50/2/2001, pp. 405-423................................80
1.4.2.28 Shulkin, L., Rowan, J., Altan, T., & Kinzel, G.L., (2000)
“Experimenting with flexible blank holder force control”, STAMPING
Journal, March/April 2000, pp. 36-41. ......................................................81
1.4.2.29 Altan, T., (2000) “Using sheet metal inserts for die repair”,
STAMPING Journal, March/April 2000, pp. 96.........................................83
1.4.2.30 Papazian, J.M., Anagnostou, E.L., Christ, R.J., Hoitsma, D.,
Melnichuk, J., Nardiello, J., Ogilvie, P., Pifko, A.B., and Schwarz, R.C.,
(2001) “Innovative tooling for sheet metal forming”, “Innovations in
processing and manufacturing of sheet materials”, Edited by Demeri,
M.Y., 2001, pp. 17-31...............................................................................84
1.4.3 Process Variations.........................................................................86
1.4.3.1 Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito,
K., Hatano, H., (1998) “An application of ultrasonic vibration to the deep
drawing process” Journal of Materials Processing Technology, Vol. 80-81,
pp. 406-412..............................................................................................86
1.4.3.2 Kleiner, M., Homberg, W., Gobel, R., & Klimmek, C., (2002)
“Process optimization in sheet metal spinning”, WGP Production
Engineering, Germany, (In Print)..............................................................87
1.4.3.3 Daehn, G., Vohnout, V., “Improved Formability with
Electromagnetic Forming: Fundamentals and a Practical Example”
http://www.er6.eng.ohio-state.edu/~daehn/overview/index.htm...............88
1.5 Sheet Hydroforming..............................................................................89
1.5.1 Machines.......................................................................................89
xii
1.5.1.1 Dachang, K., Lihui, L., Xiaofeng, M., Jingquan, X., (2000) “A
study on hydrodynamic deep drawing equipment” Journal of Materials
Processing Technology, Vol. 101, pp. 21-24............................................89
1.5.1.2 Beyer, J., (1999) “New Machine Concepts for Sheet Metal
Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 325-334. ............................................................................89
1.5.1.3 Cherek, H., Kolleck, R., Palm, D., (2002) “AHM Forming Cell –
The Way to Economical Series Production” (in German) Proceedings of
17th
UKH, Hannover, pp. 223-232............................................................91
1.5.1.4 Friebe, E., Langhammer, T., Birkert, A., Neubert, J., Kleiner,
M., Wellendorf, A., (2001) “Hydromechanical Deep Drawing of Passenger
Car Fuel Tanks” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 181-200. ............................................................................92
1.5.1.5 Kleiner, M., Homberg, W., (2001) “New 100,000 kN Press for
Sheet Metal Hydroforming” Hydroforming of Tubes, Extrusions and Sheet
Metals, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 351-362..............................................................94
1.5.1.6 Boehm, A. and Erras, M. (2001) "Two Column Press Concept
for Hydroforming and other Innovative Press Systems" Presented at the
International Conference on Hydroforming, Stuttgart, Germany, Nov.
6/7/2001. ...............................................................................................96
1.5.2 Tools..............................................................................................97
1.5.2.1 Thiruvarudchelvan, S., Wang, H., (2001) “Investigations into
the hydraulic-pressure augmented deep drawing process” Journal of
Materials Processing Technology, Vol. 110, pp. 112-126. .......................97
1.5.2.2 Siegert, K., Aust, M., (2000) “Hydromechanical Deep-Drawing”
WGP Production Engineering, Germany, Vol. VII/2, pp. 7-12. .................98
1.5.2.3 Geiger, M., Celeghini, M., (2002) “Double sheet hydroforming
of complex hollow bodies” WGP Production Engineering, Germany, (In
Print). ...............................................................................................99
1.5.2.4 Zhang, S., Danckert, J., (1998) “Development of hydro-
mechanical deep drawing” Journal of Materials Processing Technology,
Vol. 83, pp. 14-25...................................................................................100
1.5.2.5 Thiruvarudchelvan, S., Travis, F., Poh, T., (1999) “On the deep
drawing of cups with punch and blank-holding forces proportional to a
hydraulic pressure” Journal of Materials Processing Technology, Vol. 92,
pp. 375-380............................................................................................103
1.5.2.6 Siegert, K., Häussermann, M., Lösch, B., Rieger, R., (2000)
“Recent developments in hydroforming technology” Journal of Materials
Processing Technology, Vol. 98, pp. 251-258........................................104
1.5.2.7 Zhang, S., (1999) “Developments in hydroforming” Journal of
Materials Processing Technology, Vol. 91, pp. 236-244. .......................105
xiii
1.5.2.8 Hein, P., Vollertsen, F., (1999) “Hydroforming of sheet metal
pairs” Journal of Materials Processing Technology, Vol. 87, pp. 154-164....
.............................................................................................107
1.5.2.9 Amino, H., Makita, K., Maki, T., (2000) “Sheet Fluid Forming
and Sheet Dieless NC Forming” New Developments in Sheet Metal
Forming, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 39-66................................................................108
1.5.2.10 Birkert, A., Nuebert, J., Gruszka, T., (1999) “Parallel Plate
Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 283-296. ..........................................................................113
1.5.2.11 Dick, P., AUDI AG, Neckarsulm, (1999) “Hydroforming of
Aluminum Sheets” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 261-282. ..........................................................................116
1.5.2.12 “Hydroforming of Sheet Metal (Research)” Prof. P. Groche /
PtU – Institute for Production Technology and Forming Machines,
Technical University Darmstadt, Germany.............................................117
1.5.2.13 “Hydroforming of Sheet (Research)” Prof. K. Siegert / IFU –
Institute for Metal Forming, Technical University Stuttgart, Germany. ...118
1.5.2.14 “High Pressure Hydroforming of Sheet Metal (Research)”
University of Dortmund and Siempelkamp Press Systems (Germany). .119
1.5.2.15 Kleiner, M., Homberg, W., Brosius, A., (1999) “Processes and
Control of Sheet Metal Hydroforming” Proceedings of 6th
ICTP, Vol. II, pp.
1243-1252..............................................................................................120
1.5.2.16 Krei, M., (1999) “State of the Art of Sealing Techniques for
Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 441-462. ..........................................................................122
1.5.2.17 Wagner, S., Jager, S., Frank, H., (2001) “Combination of the
Conventional Deep Drawing with Hydroforming” Hydroforming of Tubes,
Extrusions and Sheet Metals, Institute for Metal Forming Technology of
the University of Stuttgart, Germany, pp. 201-214. ................................127
1.5.2.18 Friebe, E., Langhammer, T., Birkert, A., Neubert, J., Kleiner,
M., Wellendorf, A., (2001) “Hydromechanical Deep Drawing of Passenger
Car Fuel Tanks” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 181-200. ..........................................................................130
1.5.2.19 Leibinger, B., (2001) “New Technologies Secure Tomorrow’s
Competitive Lead” Hydroforming of Tubes, Extrusions and Sheet Metals,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 1-4. ..................................................................................133
1.5.2.20 Danckert, J., Nielsen, K., (2000) “Hydromechanical deep
drawing with uniform pressure on the flange” Annals of the CIRP, Vol.
49/1/2000, pp. 217-220. .........................................................................133
xiv
1.5.2.21 Schmoeckel, D., Geiger, M., Hielscher, C., Huber, R., (1999)
“Metal forming of tubes and sheets with liquid and other flexible media”
Annals of the CIRP, Vol. 48/2/1999, pp. 497-514...................................135
1.5.2.22 “Sheet hydroforming for the automotive industry (Research)”
Prof. M. Geiger – Institute for Manufacturing Science, University of
Erlangen-Nuremberg, Germany.............................................................139
1.5.3 Process Variations.......................................................................139
1.5.3.1 “Hydroforming with local workpiece heating by laser radiation
(Research)” Prof. M. Geiger – Institute for Manufacturing Science,
University of Erlangen-Nuremberg, Germany. .......................................139
1.5.3.2 “Hydroforming of deep drawn preforms starting from
homogenous sheet material possessing locally different flow properties
(Research)” Prof. M. Geiger – Institute for Manufacturing Science,
University of Erlangen-Nuremberg, Germany. .......................................140
1.5.3.3 Kleiner, M., Homberg, W. and Beerwald, C. “Aspects of Sheet
Hydroforming,” Proceedings of the Conference on “Lightweight
Construction by Forming Technology,” October 2000, Chemnitz, pp. 439-
444. .............................................................................................140
1.5.3.4 Ahmetoglu, M., Hua, J., Kulukuru, S., Altan, T., (2000)
“Hydroforming of Sheet Metal Using Viscous Pressure Medium” Journal of
Materials Processing Technology, November, 2000..............................141
1.6 Tube Forming (Bending, End Forming and Hydroforming).................142
1.6.1 Machines.....................................................................................142
1.6.1.1 Lücke, H., Hartl, C., Abbey, T., (2001) “Hydroforming” Journal
of Materials Processing Technology, Vol. 115, pp. 87-91. .....................142
1.6.1.2 Breckner, M., Mannesmann Rexroth GmbH, Lohr am Main,
(1999) “Hydraulic Systems for Hydroforming” Hydroforming of Tubes,
Extrusions and Sheet Metals, Institute for Metal Forming Technology of
the University of Stuttgart, Germany, pp. 173-190. ................................142
1.6.1.3 Boehm, A. and Erras, M. (2001) "Two Column Press Concept
for Hydroforming and other Innovate Press Systems" presented at the Int.
Conf. on Hydroforming, Stuttgart, Nov. 6/7/2001. ..................................144
1.6.1.4 Otto, A., Brandt, V., (1999) “Closed Control Loop System for
Laser Bending of Extrusion” Proceedings of 6th
ICTP, Vol. II, pp. 1019-
1024. .............................................................................................145
1.6.1.5 Neugebauer, R. and Putz, M. (2000), “Innovation in Light
Structures for Body and Drive Train,” Proceedings of the Conference on
“Lightweight Construction by Forming Technology,” October 2000,
Chemnitz, pp. 43-68...............................................................................146
1.6.2 Tools............................................................................................147
1.6.2.1 Vollertsen, F., (2000) “Accuracy in process chains using
hydroforming” Journal of Materials Processing Technology, Vol. 103, pp.
424-433. .............................................................................................147
1.6.2.2 “Reduction of CO2-impact by weight reduction achieved by
bending and hydroforming of steel and aluminum tubular parts for body
xv
and chassis applications (Research)” Prof. M. Geiger – Institute for
Manufacturing Science, University of Erlangen-Nuremberg, Germany. .148
1.6.2.3 Siegert, K., (1999) “Hydroforming of Tubes with External High
Pressure” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute
for Metal Forming Technology of the University of Stuttgart, Germany, pp.
463-480. .............................................................................................148
1.6.2.4 Birkert, A., Neubert, J., (2001) “Dies and Die-Tryout for the
Hydromorming of Tubes and Profiles” Hydroforming of Tubes, Extrusions
and Sheet Metals, Institute for Metal Forming Technology of the University
of Stuttgart, Germany, pp. 271-288........................................................150
1.6.2.5 Hoffmann, A., Birkert, A., (2001) “Design Guidelines for
Hydroformed Structural Components of Aluminum” Hydroforming of
Tubes, Extrusions and Sheet Metals, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 323-338..........151
1.6.2.6 Flehmig, T., Blumel, K., Kibben, M., “Investigation to Bending
Boundaries of Circular Tube Cross Sections” Hydroforming of Tubes,
Extrusions and Sheet Metals, Institute for Metal Forming Technology of
the University of Stuttgart, Germany, pp. 41-62. ....................................153
1.6.2.7 Hartl, C., Abbey, T., (1999) “Product Development of Complex
Hydroformed Parts and Requirements Regarding Tool Manufacture”
Proceedings of 6th
ICTP, Vol. II, pp. 1183-1188.....................................154
1.6.2.8 Arendes, D., Chatti, S., Kleiner, M., (1999) “Forming of
Aluminum Extrusions for Structural Elements” Proceedings of 6th
ICTP,
Vol. III, pp. 2337-2342............................................................................155
1.6.2.9 Koc,M., and Altan, T., (2002) "Prediction of Forming Limits and
Parameters in the Tube Hydroforming Process", International Journal of
Machine Tools and Manufacture, Vol. 42, pp. 123-138..........................156
1.6.3 Process Variations.......................................................................157
1.6.3.1 Eichhorn, A. and Motsch, S. (2000), “Hydroforming of Tailored
Tubes,” Proceedings of the Conference on “Lightweight Construction by
Forming Technology,” October 2000, Chemnitz, pp. 403-410................157
2. Billet and Rod Forming Machines and Tooling ..........................................159
2.1 Wire and Rod Drawing, Forming and Shearing ..................................159
2.1.1 Machines.....................................................................................159
2.1.1.1 Hiroguchi, K., Fujita, K., Kodama, M., Onodera, N., (1999)
“Development of Flexible-size Technology for Sections with a Skewed Roll
Mill, a Pre-Forming Rolling Mill” Proceedings of 6th
ICTP, Vol. II, pp. 1563-
1568. .............................................................................................159
2.1.2 Tools............................................................................................160
2.1.3 Process Variations.......................................................................160
2.1.3.1 Murakawa, M., Jin, M., (2001) “The utility of radially and
ultrasonically vibrated dies in the wire drawing process” Journal of
Materials Processing Technology, Vol. 113, pp. 81-86. .........................160
2.1.3.2 Siegert, K., Ulmer, J., (1999) “Superimposing Ultrasonic
Waves on Tube and Wire Drawing” Proceedings of 6th
ICTP, Vol. III, pp.
1763-1774..............................................................................................160
xvi
2.1.3.3 Altan, T. (2001), "High Speed or Adiabatic Shearing
Technology" review prepared by ERC/NSM. .........................................161
2.1.3.4 “Manufacturing of Internal Gear Teeth using a Combined
Rolling / Ironing Process (Research)” Prof. P. Groche / PtU – Institute for
Production Technology and Forming Machines, Technical University
Darmstadt, Germany..............................................................................162
2.2 Cold and Warm Forging and Extrusion...............................................162
2.2.1 Machines.....................................................................................162
2.2.1.1 Strauch, A., Korner, E., (1999) “Recent Process Developments
and Press Type Criteria” Proceedings of 6th
ICTP, Vol. I, pp. 171-176. .162
2.2.1.2 Aida, K., Walkinshaw, S., (2001) “Multi Slide and Servo
Presses for Accurate Forming” New Developments in Forging Technology,
Institute for Metal Forming Technology of the University of Stuttgart,
Germany, pp. 41-50. ..............................................................................164
2.2.1.3 Doege, E., Bohnsack, R., (1999) “Press Concept for the Future
in Precision Forging” Proceedings of 6th
ICTP, Vol. I, pp. 203-210. .......165
2.2.1.4 Weib, K., Schilling, R., Carper, J., (1999) “Integration of
Advanced Engineering with New Production Machinery for Net Shape
Cold Forming” Proceedings of 6th
ICTP, Vol. I, pp. 211-220. .................166
2.2.1.5 Osman, F., Ferreira, J., (1999) “Implementation of Metal
Forming Analysis in the Design of Forging Machines” Proceedings of 6th
ICTP, Vol. I, pp. 227-230........................................................................167
2.2.2 Tools............................................................................................168
2.2.2.1 Sheljaskow, S., (2001) “Tool lubricating systems in warm
forging” Journal of Materials Processing Technology, Vol. 113, pp. 16-21. .
.............................................................................................168
2.2.2.2 Groenbaek, J., Birker, T., (2000) “Innovations in cold forging
die design” Journal of Materials Processing Technology, Vol. 98, pp. 155-
161. .............................................................................................169
2.2.2.3 Berezhnoy, V., (2000) “Non-Traditional Process Techniques of
Extrusion and Pressing” International Journal of Advanced Manufacturing
Technology, Vol. 16, pp. 19-22. .............................................................170
2.2.2.4 DaChang, K., HongYi, S., Yu, C., HongLiang, Y., (2001)
“Research on the “shear-extrusion” process to form large-scale cut-off
valve bodies” Journal of Materials Processing Technology, Vol. 117, pp.
15-20. .............................................................................................171
2.2.2.5 Kuzman, K., (2001) “Problems of Accuracy Control in Cold
Forming” Journal of Materials Processing Technology, Vol. 113, pp. 10-15.
.............................................................................................171
2.2.2.6 Yoshimura, H., Tanaka, K., (2000) “Precision forging of
aluminum and steel” Journal of Materials Processing Technology, Vol. 98,
pp. 196-204............................................................................................172
2.2.2.7 Monroe, L., (2001) “Achieving Precision Forming Capability”
Fastener Technology International, Dec. 2001, pp. 32...........................172
2.2.2.8 Remppis, M., Dytert, C., (2001) “Manufacture of Shaft
Components on Long stroke Knuckle-Joint Presses” New Developments
xvii
in Forging Technology, Institute for Metal Forming Technology of the
University of Stuttgart, Germany, pp. 9-22. ............................................173
2.2.2.9 Neugebauer, R., Lorenz, B., Glab, R., (2001) “Hollow Shafts in
Lightweight Construction Realized by Cross Rolling and Spin Extrusion”
New Developments in Forging Technology, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 211-226..........174
2.2.2.10 Standring, P., (2001) “Rotary Forging – Current and Future
Developments” New Developments in Forging Technology, Institute for
Metal Forming Technology of the University of Stuttgart, Germany, pp.
329-350. .............................................................................................176
2.2.2.11 Sheu, J., (1999) “An Integrated Tool Design System in
Collaboration with the Displacement Adjustment of Forging Machine”
Proceedings of 6th
ICTP, Vol. I, pp. 235-242..........................................177
2.2.2.12 Hinsel, C., Celeghini, M., Engel, U., Geiger, M., (1999)
“Improved Fatigue Strength of Cold Forging Tools by Surface and Coating
Technologies” Proceedings of 6th
ICTP, Vol. I, pp. 271-280...................178
2.2.2.13 “Development of a system for the load oriented design and
evaluation of tool systems for bulk metal forming (Research)” Prof. M.
Geiger – Institute for Manufacturing Science, University of Erlangen-
Nuremberg, Germany. ...........................................................................179
2.2.2.14 “Improvement of service life and reliability of cold forging tools
with respect to fatigue damage due to cyclic plasticity (Research)” Prof. M.
Geiger – Institute for Manufacturing Science, University of Erlangen-
Nuremberg, Germany. ...........................................................................179
2.2.2.15 “Fundamental process knowledge of warm forming of shaft-
shaped workpieces with overhanging geometrical elements (Research)”
Prof. M. Geiger – Institute for Manufacturing Science, University of
Erlangen-Nuremberg, Germany.............................................................179
2.2.2.16 Schubert, R. and Sekreter, F. (1999), “Forming of T-Shapes
using Multiple-Action Tooling,” Presentation by Schuler, Inc..................180
2.2.2.17 Tiesler, N., (2001) “Fundamental investigations on the
extrusion of metal microparts (PhD Dissertation)” Prof. M. Geiger –
Institute for Manufacturing Science, University of Erlangen-Nuremberg,
Germany. .............................................................................................180
2.2.2.18 “Warm forming to improve the formability in the field of micro
forming (Research)” Prof. M. Geiger – Institute for Manufacturing Science,
University of Erlangen-Nuremberg, Germany. .......................................181
2.2.2.19 Hannan, D. and Altan, T. (2000) “Case Studies on Improving
the Tool Life of Cold Heading Operations,” Fastener Magazine, July 2000,
p. 56. .............................................................................................181
2.2.3 Process Variations.......................................................................182
2.3 Hot Forging and Extrusion..................................................................182
2.3.1 Machines.....................................................................................182
2.3.1.1 Bourkine, S., Babailov, N., Loginov, Y., Shimov, V., (1999)
“Energy analysis of a through-put radial forging machine” Journal of
Materials Processing Technology, Vol. 86, pp. 291-299. .......................182
xviii
2.3.1.2 “Double Acting High Speed Hot and Warm Forging Press”
SMS-Eumuco, Leverhusen, Germany (Product)....................................183
2.3.1.3 Wenzel, L., Gober, N., (2001) “Modern Forming Equipment for
Universal Application in the Field of Warm and Hot Forming” New
Developments in Forging Technology, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 23-40..............184
2.3.2 Tools............................................................................................185
2.3.2.1 Doege, E., Bohnsack, R., (2000) “Closed die technologies for
hot forging” Journal of Materials Processing Technology, Vol. 98, pp. 165-
170. .............................................................................................185
2.3.2.2 Ervasti, E., Stahlberg, U., (1999) “A New Closed-die Forging
Concept for the Manufacturing of Crown Wheels” Proceedings of 6th
ICTP,
Vol. III, pp. 1663-1668............................................................................186
2.3.2.3 Landgrebe, D., Naegele, H. and Lorenz, B. (2000),
“Innovations in Forming Technology to Product Tubular Transmission
Shafts,” Proceedings of the Conference on “Lightweight Construction by
Forming Technology,” October 2000, Chemnitz, pp. 357-370................187
2.3.2.4 Wolf, A., Baur, J., Gullo, C., (2001) “Thixoforging” New
Developments in Forging Technology, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 405-428..........189
2.3.2.5 Kwon, H., Bramley, A., (2000) “A development of ceramic
inserts for forging tools” Annals of the CIRP, Vol. 49/1/2000, pp. 173-176. .
.............................................................................................190
2.3.2.6 Doege, E., Huskic, A., Barnert, L., Gulde, M., Hornhardt, C.,
(2001) “Reduction of Wear on Forging Dies by use of New Technologies”
New Developments in Forging Technology, Institute for Metal Forming
Technology of the University of Stuttgart, Germany, pp. 315-328..........191
2.3.2.7 Kleiner, M. Klaus, A. "Manufacturer of Bent Aluminum Profiles
During Hot Extrusion" (LFU - Univ. of Dortmund, Annual Report, p. 22
(ongoing research).................................................................................192
2.3.3 Process Variations.......................................................................192
2.3.3.1 “Thixoforging of Aluminum and Copper Alloys (Research)”
Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University
Stuttgart, Germany.................................................................................193
2.3.3.2 Hass, J., Abdelfattah, S., (2002) “Potential of Thixoforging of
Steel from an Industrial Perspective” (in German) Proceedings of 17th
UKH, Hannover, pp. 193-207.................................................................193
2.3.3.3 Siegert, K. et al (2000), “Thixoforging of Aluminum
Components,” Proceedings of the Conference on “Lightweight
Construction by Forming Technology,” October 2000, Chemnitz, pp. 309-
325. .............................................................................................194
3. Materials ....................................................................................................195
3.1 Steels (including stainless and high strength steels) ..........................195
3.1.1 Feindt, J., (2002) “Use of High Strength Steels for Weight
Reduction in Automotive Applications” (in German) Proceedings of 17th
UKH,
Hannover, pp. 259-267. .............................................................................195
xix
3.1.2 Kopp, R., Durr, O., (1999) “Innovative Metal Forming Processes to
Manufacture Future Sheet Metal Products” Proceedings of 6th
ICTP, Vol. I,
pp. 69-82....................................................................................................195
3.1.3 Kopp, R. et al “Sheet with Non-Uniform Thickness – Manufacturing
and Further Processing,” Proceedings of the Conference on “Lightweight
Construction by Forming Technology,” October 2000, Chemnitz, pp. 143-
156. ....................................................................................................198
3.2 Aluminum Alloys .................................................................................199
3.2.1 Bolt, P., Lamboo, N., Rozier, P., (2001) “Feasibility of warm
drawing of aluminium products” Journal of Materials Processing Technology,
Vol. 115, pp. 118-121.................................................................................199
3.2.2 Girschewski, B., Pfestorf, M., (2000) “Influence of Dry Film
Lubricants and Surface Structure on the Forming Behavior of Aluminum
Sheets” New Developments in Sheet Metal Forming, Institute for Metal
Forming Technology of the University of Stuttgart, Germany, pp 429-444.200
3.2.3 Girschewski, B., Pfestorf, M., (2000) “Influence of dry Film
Lubricants and Surface Structure on the Forming Behavior of Aluminum
Sheets” New Developments in Sheet Metal Forming, Institute for Metal
Forming Technology of the University of Stuttgart, Germany, pp. 429-444. ....
....................................................................................................201
3.2.4 Bolt, P.J., Werkhoven,R.J.,& Boogard van de A.H., (2001) “Effect of
elevated temperatures on the drawability of a aluminum sheet components”,
Proceedings of ESAFORM, Liege, pp. 769-772. .......................................202
3.2.5 Takata, K., Ohwe,T., Saga, M., & Kikuchi,M., (2000) “Formability of
Al-Mg alloy at warm temperature”, Materials Science Forum, Vols 331-337,
pp 631-636.................................................................................................203
3.2.6 Geiger, M., Merklein, M., (2002) “Adaptive design of aluminum
sheets for deep drawing process”, WGP Production Engineering, Germany,
(In Print).....................................................................................................203
3.2.7 Geiger, M. and Hennige, T. (2000), “Building Light Structures
Requires New Process Technology,” Proceedings of the Conference on
“Lightweight Construction by Forming Technology,” October 2000, Chemnitz,
p. 11-27. ....................................................................................................205
3.2.8 Bolt, P.J. et al (2000) “Warm Drawing of Aluminum Components,”
Proceedings of the Conference on “Lightweight Construction by Forming
Technology,” October 2000, Chemnitz, pp. 101-117. ................................205
3.2.9 Altan, T., (2002) “Warm forming of aluminum alloys – academic
exercise or practical opportunity” Stamping Journal, January/February 2002.
....................................................................................................206
3.2.10 Novotny, S., Hein, P., (2001) “Hydroforming of sheet metal pairs
from aluminium alloys” Journal of Materials Processing Technology, Vol.
115, pp. 65-69............................................................................................206
3.3 Magnesium Alloys and others.............................................................207
3.3.1 Juchmann, P., Wolff, S., Kurz, G., (2002) “Magnesium Sheet –
Material Alternative for Design of Light Structures” (in German) Proceedings
of 17th
UKH, Hannover, pp. 179-192..........................................................207
xx
3.3.2 Friedrich, H., Schumann, S., (2001) “Research for a “new age of
magnesium” in the automotive industry “Journal of Materials Processing
Technology, Vol. 117, pp. 276-281............................................................208
3.3.3 Doege, E., Droder, K., (2001) “Sheet metal forming of magnesium
wrought alloys — formability and process technology” Journal of Materials
Processing Technology, Vol. 115, pp. 14-19. ............................................209
3.3.4 Droder,K., St.Janssen, (1999) “Forming of Magnesium alloys – A
solution for light weight construction”, SAE Technical Paper No. 01-3172.209
3.3.5 Miha Nastran, Karl Kuzman, (2001) “Some contributions to the
problems of cold forming of magnesium alloys”, Journal for Technology of
Plasticity, Vol. 26, Number 1......................................................................210
3.3.6 Doege, E., Sebastian, W., Droder, K., Kurz, G., (2001) “Increased
Formability of Mg Sheets using Temperature Controlled Deep Drawing
Tools” Innovations in Processing and Manufacturing of Sheet Materials, pp.
53-60. ....................................................................................................212
3.3.7 Ogawa, N., Shiomi, M., and Osakada, K., (2002) “Forming limit of
magnesium alloy at elevated temperatures for precision forging”..............213
4. Software.....................................................................................................216
4.1 Sheet Forming....................................................................................216
4.1.1 “Simulation of the Dynamic Behavior of Transfer Presses
(Research)” Prof. P. Groche / PtU – Institute for Production Technology and
Forming Machines, Technical University Darmstadt, Germany. ................216
4.1.2 Tekkaya, A., (2000) “State-of-the-art of simulation of sheet metal
forming” Journal of Materials Processing Technology, Vol. 103, pp. 14-22. ....
....................................................................................................216
4.1.3 Huang, D., Lee, J., (2001) “On obtaining machine tool stiffness by
CAE techniques” International Journal of Machine Tools and Manufacture,
Vol. 41, pp. 1149-1163...............................................................................218
4.1.4 Altan T., Thomas W., Vazquez V. (1999) “Simulation of Metal
Forming Processes-Applications and Future Trends” Proceedings of 6th
ICTP, Vol I, pp. 23-40. ...............................................................................219
4.2 Tube Hydroforming.............................................................................220
4.2.1 Yang, J., Jeon, B., Oh, S., (2001) “The tube bending technology of
a hydroforming process for an automotive part“Journal of Materials
Processing Technology, Vol. 111, pp. 175-181. ........................................220
4.2.2 1.6.3.1 Strano, M., Jirathearanat, S., Altan, T., (2001) “Adaptive
FEM Simulation for Tube Hydroforming; A Geometry-Based Approach for
Wrinkle Detection” Annals of the CIRP, Vol. 50/1/2001, pp. 185-190. .......223
4.2.3 1.6.3.2 Ngaile G. et al (2001) "Progress in Tube Hydroforming R &
D - Materials, Friction and Process Modeling", Int. Conference on THF, Novi,
Michigan, Sept. 18-20, 2001......................................................................224
4.2.4 Jirathearanat S. and Altan T. (2001) "Determination of Proper
Loading Paths in Tube Hydroforming and Stamping using FEM Simulation",
prepared for Ameripam 2001, Oct. 24/25, Powerpoint presentation only. .227
4.3 Rod and Billet Forging ........................................................................228
xxi
4.3.1 Biba, N., Stebounov, S., Lishiny, A., (2001) “Cost effective
implementation of forging simulation” Journal of Materials Processing
Technology, Vol. 113, pp. 34-39................................................................228
4.3.2 Doeringer, M (2000) "The Application of DEFORM in Metal
Forming", technical paper provided by Schuler, Inc...................................230
4.3.3 “Development of a Software Module for the Determination of Tool
Life in Cold Forging (Research)” Prof. M. Geiger – Institute for Manufacturing
Science, University of Erlangen-Nuremberg, Germany. ............................231
4.3.4 Vazquez, V. and Altan T. (2000) “ Possibilities and Limits of
Simulation Massive Forming” 7th Umformtechnisches Kolloqium, Darmstadt,
GERMANY (UKD 2000) March 14/15, 2000..............................................232
5. Other Supporting Technologies .................................................................234
5.1 Tool Coatings .....................................................................................234
5.1.1 Sato, T., Besshi, T., (1998) “Anti-galling evaluation in aluminum
sheet forming” Journal of Materials Processing Technology, Vol. 83, pp. 185-
191. ....................................................................................................234
5.1.2 Sato, T., Besshi, T., Tsutsui, I., Morimoto, T., (2000) “Anti-galling
property of a diamond-like carbon coated tool in aluminum sheet forming”
Journal of Materials Processing Technology, Vol. 104, pp. 21-24. ............234
5.1.3 Schulz, A., Stock, H., Mayr, P., Staeves, J., Schmoeckel, D., (1997)
“Deposition and investigation of TiN PVD coatings on cast steel forming
tools” Surface and Coatings Technology, Vol. 94-95, pp. 446-450............236
5.1.4 Navinsek, B., Panjan, P., Gorenjak, F., (2001) “Improvement of hot
forging manufacturing with PVD and DUPLEX coatings” Surface and
Coatings Technology, Vol. 137, pp. 255-264.............................................236
5.1.5 Navinsek, B., Panjan, P., Urankar, I., Cvahte, P., Gorenjak, F.,
(2001) “Improvement of hot-working processes with PVD coatings and
duplex treatment” Surface and Coatings Technology, Vol. 142-144, pp.
1148-1154..................................................................................................237
5.1.6 Smolik, J., Walkowicz, J., Tacikowski, J., (2000) “Influence of the
structure of the composite: ‘nitrided layer/PVD coating’ on the durability of
tools for hot working” Surface and Coatings Technology, Vol. 125, pp. 134-
140. ....................................................................................................238
5.1.7 Geiger, M., Popp, U., Engel, U., (2002) “Improved Tribological
Behavior of Cold Forging Tool Surfaces by Excimer Laser Micro Texturing”
WGP Production Engineering, Germany, (In Print)....................................239
5.1.8 Groche, P., Tibari, K., (2002) “Performance of Coatings Against
Wear in Dry Blanking” WGP Production Engineering, Germany, (In Print)......
....................................................................................................239
5.1.9 Osakada, K., (2000) “Fundamental study of dry metal forming with
coated tools” Annals of the CIRP, Vol. 49/1/2000, pp. 161-164.................240
5.1.10 “Development of ceramic coatings by pyrolysis, especially laser
pyrolysis of organo-metallic polymers (Research)” Prof. M. Geiger – Institute
for Manufacturing Science, University of Erlangen-Nuremberg, Germany.241
xxii
5.1.11 “Advanced surface texturing of hard coated cold forging tools
(Research)” Prof. M. Geiger – Institute for Manufacturing Science, University
of Erlangen-Nuremberg, Germany.............................................................242
5.1.12 Roescher, A., Tinnemans, A., (2001) “A new coating for deep
drawing with preservation–lubricant–primer properties” Progress in Organic
Coatings, Vol. 43, pp. 111-122. .................................................................242
5.1.13 “Wear Test for Deep Drawing and Stretch Forming Dies
(Research)” Prof. P. Groche / PtU – Institute for Production Technology and
Forming Machines, Technical University Darmstadt, Germany. ................243
5.1.14 Bolt, P., Schaake, R., (1999) “Lubricant Reduction in Aluminum
Deep Drawing by Means of Tool Coatings or Lubricant Primers” Proceedings
of 6th
ICTP, Vol. I, pp. 627-632. .................................................................243
5.1.15 Neudecker, T., Popp, U., Schraml, T., Engel, U., Geiger, M., (1999)
“Towards Optimized Lubrication by Micro Texturing of Tool Surfaces”
Proceedings of 6th
ICTP, Vol. I, pp. 619-626..............................................244
5.2 Process Monitoring and Control .........................................................245
5.2.1 Tomov, B., Chodnikiewicz, K., (1998) “A mechanical device for
measuring the displacement and rotation of a blanking or forging press”
Journal of Materials Processing Technology, Vol. 77, pp. 70-72. ..............245
5.2.2 Breitling, J., Wallace, D., Altan, T., (1996) “Investigations of
different loading conditions in a high speed mechanical press” Journal of
Materials Processing Technology, Vol. 59, pp. 18-23................................246
5.2.3 Breitling, J., Pfeiffer, B., and Altan T., (1997) "Process Control in
Blanking", Journal of Materials Processing Technology, Vol. 71, pp. 187-192.
....................................................................................................247
5.3 Prototyping and Rapid Tooling ...........................................................249
5.3.1 Yarlagadda, P., Ilyas, I., Christodoulou, P., (2001) “Development of
rapid tooling for sheet metal drawing using nickel electroforming and
stereolithography processes” Journal of Materials Processing Technology,
Vol. 111, pp. 286-294.................................................................................249
5.3.2 Weaver, T., Thomas, J., Atre, S., German, R., (2000) “Time
compression-rapid steel tooling for an ever-changing world” Materials and
Design, Vol. 21, pp. 409-415. ....................................................................249
5.3.3 Nakagawa, T., (2000) “Advances in prototype and low volume
sheet forming and tooling” Journal of Materials Processing Technology, Vol.
98, pp. 244-250..........................................................................................250
5.3.4 Khaing, M., Fuh, J., Lu, L., (2001) “Direct metal laser sintering for
rapid tooling: processing and characterization of EOS parts” Journal of
Materials Processing Technology, Vol. 113, pp. 269-272..........................251
5.3.5 Dimov, S., Pham, D., Lacan, F., Dotchev, K., (2001) “Rapid tooling
applications of the selective laser sintering process” Assembly Automation,
Vol. 21, pp. 296-302. .................................................................................252
5.3.6 Choi, D., Lee, S., Shin, B., Whang, K., Song, Y., Park, S., Jee, H.,
(2001) “Development of a direct metal freeform fabrication technique using
CO2 laser welding and milling technology” Journal of Materials Processing
Technology, Vol. 113, pp. 273-279............................................................253
xxiii
5.3.7 Zhang, H., Wang, G., Luo, Y., Nakaga, T., (2001) “Rapid hard
tooling by plasma spraying for injection molding and sheet metal forming”
Thin Solid Films, Vol. 390, pp. 7-12. ..........................................................253
5.3.8 Huhn, S., Haller, B., Ismailoglu, Y., (2000) “Manufacturing of
Prototype Tools for Sheet Metal Forming” New Developments in Sheet Metal
Forming, Institute for Metal Forming Technology of the University of
Stuttgart, Germany, pp. 445-466. ..............................................................254
5.3.9 Yang, B., Leu, M., (1999) “Integration of rapid prototyping and
electroforming for tooling applications” Annals of the CIRP, Vol. 48/1/1999,
pp. 119-122................................................................................................256
5.3.10 Doege, Frank, (2000) “Polymers as Tooling Materials for Deep
Drawing of Sheet Metal with Organic Coatings” WGP Production
Engineering, Germany, Vol. VII/2, pp. 103-106. ........................................257
5.3.11 Kleiner, M. and Krux, R. (2000), “Rapid Tooling with laminated dies
for drawing and stretching,” LFU – University of Dortmund, Annual Report, p.
22 (ongoing research)................................................................................260
5.3.12 Kleiner, M., Kolleck, R., Rauer, J., Weidner, T., (2000) “Die-less
forming of sheet metal parts” Journal of Materials Processing Technology,
Vol. 103, pp. 109-113.................................................................................260
xxiv
LIST OF FIGURES
Figure 1.1.1.1-1: Experimental apparatus for laser bending .................................1
Figure 1.1.1.1-2: Scanning paths of laser and measured height distributions.......2
Figure 1.1.1.2-1: Principle of Section Bending......................................................3
Figure 1.1.1.3-1: New Rolling System...................................................................4
Figure 1.1.1.4-1: Roll forming of a part with variable sections along length..........5
Figure 1.1.2.2-1: Simulation and experimental result of the bent part after
springback .....................................................................................................6
Figure 1.1.2.3-1: CNC-two roll round bending ......................................................7
Figure 1.1.3.2-1: Apparatus for laser and spark forming of thin plate springs.....10
Figure 1.3.1.2-1: Linear motor drive press for precision forming.........................12
Figure 1.3.1.3-1: Investigation of the dynamic behavior of linear guides ............13
Figure 1.3.1.4-1: Press with non-round gear drive..............................................14
Figure 1.3.1.5-1: Eccentric shaft flexible drive using planetary gearbox .............15
Figure 1.3.1.5-2: Velocity versus stroke for flexible drive system .......................15
Figure 1.3.1.6-1: Underdrive structure of linear motor press...............................16
Figure 1.3.1.6-2: External view of linear motor press..........................................16
Figure 1.3.1.6-3: Linear scale for learning control...............................................17
Figure 1.3.1.6-4: Various press ram movements ................................................17
Figure 1.3.2.2-1: Comparison of nitrogen and mechanical springs.....................19
Figure 1.3.2.2-2: Self-contained nitrogen gas spring system..............................19
Figure 1.3.2.2-3: Hosed nitrogen gas spring system...........................................20
Figure 1.3.2.2-4: Manifold nitrogen gas spring system .......................................20
Figure 1.3.2.2-5: Tank nitrogen gas spring system.............................................20
Figure 1.3.2.2-6: One-chamber system ..............................................................21
Figure 1.3.2.2-7: Two-chamber system ..............................................................21
Figure 1.3.2.2-8: Modified/sealed two-chamber system......................................22
Figure 1.3.2.4-1: Controllable nitrogen spring systems.......................................23
Figure 1.3.2.5-1: One-chamber system (a), two-chamber system (b), and
modified two-chamber system (c)................................................................24
Figure 1.3.2.5-2: Tank system (a) and autonomous spring (b) ...........................24
Figure 1.3.2.5-3: Operation principle (a) and sample force behavior (b).............25
Figure 1.3.2.5-4: Side member die with controllable nitrogen springs.................25
Figure 1.3.2.6-1: Damage distribution in the sheet at the second stage of the
process predicted by finite element simulation ............................................26
Figure 1.3.2.6-2: Thickness distribution at the last stage in the operation as
predicted by FEM simulation for optimized process conditions....................26
Figure 1.3.3.1-1: Roller assembly for rotary blanking..........................................27
Figure 1.3.3.1-2: Rotary blanking tool.................................................................27
Figure 1.3.3.2-1: Schematic of water jet cutting a) pure water b) abrasive .........29
Figure 1.3.3.2-2: Pressure intensifier principle of operation................................29
Figure 1.3.3.2-3: Water jet machining center ......................................................30
Figure 1.3.3.2-4: Water jet machining center for automotive industry.................30
Figure 1.3.3.2-5: Sample water jet cut parts .......................................................31
Figure 1.3.3.3-1: Schematic of micro punch tooling............................................31
Figure 1.3.3.3-2: Punched micro-hole on brass (upper and lower sides)............32
xxv
Figure 1.3.3.4-1: Controllable straightening system............................................33
Figure 1.4.1.1-1: Hydro-kinematic press concept ...............................................34
Figure 1.4.1.2-1: CNC controlled 10-point cushion system.................................35
Figure 1.4.1.4-1: Hybrid (hydraulic-mechanical) press........................................36
Figure 1.4.1.4-2: Non-circular geared mechanical press and optimized stroke vs.
time curves ..................................................................................................37
Figure 1.4.1.5-1: Multi-point cushion system ......................................................37
Figure 1.4.1.5-2: Multi-point cushion system with 10 height adjustable pins.......38
Figure 1.4.1.5-3: Segmented elastic blank holder...............................................38
Figure 1.4.1.5-4: Prismatic die design.................................................................39
Figure 1.4.1.5-5: Hydraulic multi-point cushion contained in the die...................39
Figure 1.4.1.5-6: Closed loop control system......................................................40
Figure 1.4.1.6-1: Electronic transfer system attached to the press .....................41
Figure 1.4.1.6-2: Multimode transfer feed system attached to the press ............41
Figure 1.4.1.6-3: Degrees of motion of DOS.......................................................42
Figure 1.4.1.7-1: Multiple slide cylinders to increase the press speed................43
Figure 1.4.1.7-2: Schematic view of ECO- cushion system ................................44
Figure 1.4.1.7-3: Schematic view of Force- neutral parallelism control...............45
Figure 1.4.1.8-1: Operation sequence of MPF press ..........................................46
Figure 1.4.1.12-1: Multi-point blank holder cushion ............................................50
Figure 1.4.1.12-2: Active slide parallelism control...............................................51
Figure 1.4.1.13-1: Stamping press under off-center loading...............................52
Figure 1.4.1.14-1: 3 axis CNC machine tool with rounded tool ...........................53
Figure 1.4.1.14-2: Movement of tool forms the component.................................53
Figure 1.4.2.2-1: Blank holder force control........................................................54
Figure 1.4.2.3-1: Segmented elastic blank holder...............................................55
Figure 1.4.2.4-1: Forming of tailored blanks .......................................................56
Figure 1.4.2.5-1: Thin plate elastic blank holder .................................................57
Figure 1.4.2.7-1: Pliable blank holder system.....................................................58
Figure 1.4.2.11-1: Image sensing camera system ..............................................61
Figure 1.4.2.14-1: Four methods of multi-point forming ......................................63
Figure 1.4.2.16-1: Active draw bead mechanism used in dies............................64
Figure 1.4.2.17-1: Conventional blank holder with box type or C-profile castings
.....................................................................................................................65
Figure 1.4.2.17-2: Pressure distribution in conventional blank holder due to
uniform cushion force ..................................................................................66
Figure 1.4.2.17-3: Principle of segmented elastic blank holder...........................66
Figure 1.4.2.17-4: Prismatic draw ring construction and possible sections.........67
Figure 1.4.2.17-5: Pressure distribution in the segmented elastic blank holder
due to cushion force. ...................................................................................67
Figure 1.4.2.17-6: Experimental setup for multi point cushion system................68
Figure 1.4.2.17-7: Optimum blank holder force used in multipoint system to draw
a rectangular pan.........................................................................................68
Figure 1.4.2.18-1: Principle of incremental forming.............................................69
Figure 1.4.2.18-2: Forming path and definition of forming parameters ...............69
xxvi
Figure 1.4.2.19-1: Asymmetric panel formed from aluminum alloy using active
draw beads ..................................................................................................70
Figure 1.4.2.19-2: Trajectories for active draw bead in experiment and simulation
.....................................................................................................................70
Figure 1.4.2.20-1: Example ceramic inserts used in tooling................................72
Figure 1.4.2.20-2: Tool life of TiC / TiN coated tool in the experiment ................73
Figure 1.4.2.20-3: Surface roughness of the ceramic tool in the experiment......73
Figure 1.4.2.21-1: Conventional and segmented elastic binder ..........................74
Figure 1.4.2.21-2: Binder system for four-pin hydraulic cushion press ...............74
Figure 1.4.2.21-3: Segmented-elastic die with uniform stiffness.........................75
Figure 1.4.2.22-1: Blank holder force control scheme.........................................76
Figure 1.4.2.23-1: Tool system with pliable blank holder ....................................77
Figure 1.4.2.25-1: Three point force actuator......................................................79
Figure 1.4.2.25-2: Three point actuator configured for axisymmetric part...........79
Figure 1.4.2.25-3: Five point actuator configured for rectangular part ................79
Figure 1.4.2.28-1: Schematic view of hydraulic/nitrogen cylinder blank holder
force control system.....................................................................................82
Figure 1.4.2.28-2: System response to step reference signal.............................83
Figure 1.4.2.28-3: System response to ramp reference signal ...........................83
Figure 1.4.2.29-1: Sheet insert in dies to reduce wear........................................84
Figure 1.4.2.30-1: Schematic view of the pin, module and full-scale model of the
reconfigurable tooling ..................................................................................86
Figure 1.4.3.2-1: Closed loop fuzzy logic control system for optimizing spinning
process ........................................................................................................87
Figure 1.5.1.1-1: Hydrodynamic deep drawing system.......................................89
Figure 1.5.1.2-1: Hydromechanical deep drawing press.....................................90
Figure 1.5.1.2-2: Hydromechanical deep drawing operating sequence ..............91
Figure 1.5.1.3-1: Sheet hydroforming with stretching prior to deep drawing.......92
Figure 1.5.1.4-1: Triple-action hydromechanical deep drawing press.................93
Figure 1.5.1.4-2: Hydromechanical deep drawing press principle of operation...93
Figure 1.5.1.5-1: High-pressure sheet metal forming process ............................94
Figure 1.5.1.5-2: Multi-point blank holder system with flange draw-in sensors ...95
Figure 1.5.1.5-3: High-pressure sheet metal forming press requirements ..........95
Figure 1.5.1.5-4: 100,000 kN hydroforming press system components..............96
Figure 1.5.1.6-1: 10,000 MN horizontal sheet hydroforming press .....................97
Figure 1.5.2.1-1: Hydraulic-pressure augmented deep drawing system.............97
Figure 1.5.2.2-1: Hydromechanical deep drawing tool........................................99
Figure 1.5.2.2-2: Process limits of hydromechanical deep drawing ....................99
Figure 1.5.2.3-1: Double sheet hydroforming process steps.............................100
Figure 1.5.2.4-1: Deep drawing with fluid assisted blank holding .....................101
Figure 1.5.2.4-2: Hydroforming with pressure and rubber diaphragm...............101
Figure 1.5.2.4-3: Hydromechanical deep drawing.............................................102
Figure 1.5.2.4-4: Hydrodynamic deep drawing .................................................102
Figure 1.5.2.4-5: Radial pressure deep drawing ...............................................102
Figure 1.5.2.5-1: Short-stroke device used in experiments...............................103
Figure 1.5.2.6-1: Hydraulic multipoint cushion included in die ..........................104
xxvii
Figure 1.5.2.6-2: Combination of conventional deep drawing with hydroforming
...................................................................................................................105
Figure 1.5.2.6-3: Conventional deep drawing with hydroforming of double blanks
...................................................................................................................105
Figure 1.5.2.8-1: Hydroforming of unwelded sheet metal pairs.........................107
Figure 1.5.2.8-2: Docking systems for hydroforming.........................................107
Figure 1.5.2.8-3: Design guidelines for hydroformed parts ...............................108
Figure 1.5.2.9-1: Comparison of conventional drawing and sheet hydroforming
...................................................................................................................109
Figure 1.5.2.9-2: Front section of a Mitsuoka Viewt vehicle..............................110
Figure 1.5.2.9-3: Roof and fender hydroformed from 1.1 mm aluminum sheet.110
Figure 1.5.2.9-4: Hydroformed aluminum reflectors and parabolic antenna .....110
Figure 1.5.2.9-5: Stainless steel sinks hydroformed in one step (t = 0.7 mm)...111
Figure 1.5.2.9-6: Radial pressure deep drawing ...............................................111
Figure 1.5.2.9-7: Pre-painted train panel (t = 1.2 mm) and range hood (t = 0.6
mm) ...........................................................................................................111
Figure 1.5.2.9-8: NC dieless forming equipment setup.....................................112
Figure 1.5.2.9-9: Dieless NC formed automotive fenders (t = 0.8 mm).............112
Figure 1.5.2.9-10: Aluminum bath unit (t = 2.0 mm) and soaker tub (t = 4.0mm)
...................................................................................................................113
Figure 1.5.2.10-1: Comparison of conventional forming to plate hydroforming.113
Figure 1.5.2.10-2: Parallel plate hydroforming process schematic ...................114
Figure 1.5.2.10-3: Sealing lance (top) and hemispherical (bottom) docking
systems .....................................................................................................114
Figure 1.5.2.10-4: Example sheet geometry for parallel plate hydroforming.....115
Figure 1.5.2.10-5: Examples of producible and non-producible cross sections 115
Figure 1.5.2.10-6: Examples of feasible and non-feasible flange geometries...116
Figure 1.5.2.10-7: Vertical component offset ....................................................116
Figure 1.5.2.10-8: Symmetrical and asymmetrical flange draw in.....................116
Figure 1.5.2.12-1: Hydroforming of hollow component from sheet metal..........118
Figure 1.5.2.13-1: Sheet hydroforming process................................................119
Figure 1.5.2.14-1: Horizontal hydroforming press.............................................120
Figure 1.5.2.15-1: High-pressure sheet metal forming process (HBU) .............121
Figure 1.5.2.15-2: University of Dortmund multi-point blank holder system......121
Figure 1.5.2.15-3: Pneumomechanical deep drawing process .........................122
Figure 1.5.2.16-1: Docking system using spherical projection on lower die......123
Figure 1.5.2.16-2: Splitting chisel docking system ............................................124
Figure 1.5.2.16-3: Inserted connecting branch docking system........................124
Figure 1.5.2.16-4: Ring channel docking system ..............................................125
Figure 1.5.2.16-5: Attached connecting branch docking system.......................126
Figure 1.5.2.16-6: Distance plate docking system ............................................126
Figure 1.5.2.16-7: Docking system using hollow-drilled axial plunger...............127
Figure 1.5.2.16-8: Docking system using pressure plate in flange area............127
Figure 1.5.2.17-1: Deep drawing and hydroforming process combination........128
Figure 1.5.2.17-2: “Hishida” geometry used in investigations ...........................128
Figure 1.5.2.17-3: Thickness distribution after deep drawing to 70 mm............128
xxviii
Figure 1.5.2.17-4: Strain distribution after hydroforming cavity.........................129
Figure 1.5.2.17-5: Experimental tooling ............................................................129
Figure 1.5.2.17-6: Deep drawing process limits................................................129
Figure 1.5.2.17-7: Hydroforming process limits ................................................130
Figure 1.5.2.18-1: Hydromechanical deep drawing process.............................131
Figure 1.5.2.18-2: Plastic fuel tank versus steel fuel tank variant .....................131
Figure 1.5.2.18-3: Fuel tank split into upper and lower shell.............................131
Figure 1.5.2.18-4: Upper shell formed by conventional deep drawing ..............132
Figure 1.5.2.18-5: Lower shell formed by hydromechanical deep drawing .......132
Figure 1.5.2.18-6: Comparison of plastic and steel fuel tanks ..........................133
Figure 1.5.2.20-1: Modified hydromechanical deep drawing tooling .................134
Figure 1.5.2.20-2: Cup drawn from Al 1050 HO (draw ratio = 2.86)..................134
Figure 1.5.2.20-3: Drawn cup from Al 6016 (draw ratio = 2.29) ........................135
Figure 1.5.2.21-1: Docking systems used for internal high-pressure forming ...136
Figure 1.5.2.21-2: Bursting pressure as a function of draw depth.....................137
Figure 1.5.2.21-3: Process limits diagram for internal high-pressure forming...137
Figure 1.5.2.21-4: Combined deep drawing and internal high-pressure forming
...................................................................................................................138
Figure 1.5.2.21-5: “Active Hydro-Mec” process ................................................138
Figure 1.5.2.21-6: Engine hood formed by “Active Hydro-Mec” process...........139
Figure 1.5.3.3-1: Sheet hydroforming with electro hydraulic forming ................141
Figure 1.6.1.2-1: Hydraulic closing device ........................................................143
Figure 1.6.1.2-2: Pressure intensifier barrel designs.........................................144
Figure 1.6.1.2-3: Forming medium treatment system .......................................144
Figure 1.6.1.3-1: Two-column press system .....................................................145
Figure 1.6.1.3-2: 5000 ton double-ram press system........................................145
Figure 1.6.1.4-1: Principle of section bending...................................................146
Figure 1.6.1.5-1: Tubular part bent with “Hexabend” ........................................147
Figure 1.6.2.3-1: External high-pressure forming..............................................149
Figure 1.6.2.3-2: Incorporation of buckling modes and mandrel design............150
Figure 1.6.2.5-1: Outside inwards punching .....................................................152
Figure 1.6.2.5-2: Inside outwards punching ......................................................152
Figure 1.6.2.5-3: Axial sealing system for multi-cavity sections ........................153
Figure 1.6.2.6-1: Proposed mandrel design......................................................154
Figure 1.6.2.8-1: Influencing parameters in profile bending..............................156
Figure 1.6.3.1-1: Tailor welded tubes................................................................158
Figure 2.1.1.1-1: Shape of SKM .......................................................................159
Figure 2.1.3.2-1: Die Mounting and Oscillation System ....................................161
Figure 2.1.3.4-1: Gear teeth manufacture using combined rolling/ironing.........162
Figure 2.2.1.1-1: Comparison of new drive to eccentric and modified knuckle joint
...................................................................................................................164
Figure 2.2.1.2-1: Servo former designated ASF with screw drive .....................165
Figure 2.2.1.3-1: Press concept with non-circular gear.....................................166
Figure 2.2.1.5-1: Principle of Open Die Forging................................................168
Figure 2.2.2.8-1: Time motion diagram with transfer.........................................174
Figure 2.2.2.9-1: Process chains used to manufacture hollow shafts ...............175
xxix
Figure 2.2.2.10-1: Nutation/spin machine concept............................................176
Figure 2.2.2.11-1: System structure..................................................................178
Figure 2.2.2.16-1: Cold forging of T-shaped parts ............................................180
Figure 2.3.1.2-1: Double-acting forging press...................................................184
Figure 2.3.1.3-1: Schematic representation of hydraulic clutch / brake.............185
Figure 2.3.2.2-1: Experimental results ..............................................................186
Figure 2.3.2.3-1: Sample parts with internal contours.......................................187
Figure 2.3.2.3-2: Hot and warm cross rolling with mandrels .............................188
Figure 2.3.2.3-3: Example part delivered ready to assemble............................189
Figure 2.3.2.5-1: Material flow pattern from analysis and experiments.............190
Figure 2.3.2.6-1: Forging dies used in testing...................................................191
Figure 2.3.2.6-2: Electro Static Powder Coating Technology............................191
Figure 2.3.2.7-1: Manufacture of bent aluminum profiles during extrusion .......192
Figure 2.3.3.1-1: Examples of thixoforged parts ...............................................193
Figure 2.3.3.2-1: Examples of thixoforged parts ...............................................194
Figure 3.1.1-1: Sample part formed from MSW 1200 martensitic steel.............195
Figure 3.1.2-1: Process shortening in strip fabrication......................................196
Figure 3.1.2-2: Flexible manufacturing processes ............................................197
Figure 3.1.2-3: Innovative semi finished products from sheet and tube............197
Figure 3.1.2-4: Influence of laser beam on the curvature of sheets ..................198
Figure 3.1.3-1: Tailor rolled blanks....................................................................199
Figure 3.2.2-1: M3 outer bonnet die and sensors .............................................200
Figure 3.2.6-1: Laser irradiation strategy for round cup deep drawn blanks .....204
Figure 3.2.6-2: Laser irradiation to improve the drawbility of a conventional blank
and tailor welded blank in an automotive application.................................204
Figure 3.3.1-1: Hydroforming heated magnesium sheet metal .........................208
Figure 3.3.5-1: Experimental setup for upsetting magnesium alloy billets in a
hydrostatic stress state..............................................................................211
Figure 3.3.5-2: Experimental setup for cold forward extrusion of magnesium alloy
billet in a hydrostatic stress state...............................................................211
Figure 3.3.5-3: Experimental setup for combined upsetting and backward
extrusion ....................................................................................................212
Figure 3.3.6-1: Tool setup for partial die heating in warm forming of magnesium
alloy ...........................................................................................................213
Figure 3.3.7-1: Results of upsetting test on magnesium alloy ZK60 .................214
Figure 3.3.7-2: Results of backward cup extrusion test on magnesium alloy ZK60
at 300o
C.....................................................................................................215
Figure 4.1.1-1: FEM modeling of press vibration during blanking .....................216
Figure 4.1.2-1: Simulation of a wheel cover......................................................217
Figure 4.1.3-1: Vertical machining center consisting of five modules................218
Figure 4.1.3-2: FEM models showing fine column and table mesh...................219
Figure 4.2.1-1: Shape and cross-sections of the tie bar....................................221
Figure 4.2.1-2: Rotary draw bending machine geometry and mesh density .....221
Figure 4.2.1-3: Predicted thickness distribution after bending ..........................222
Figure 4.2.1-4: FEM model of hydroforming dies and prebent tube..................222
Figure 4.2.1-5: Predicted thickness distribution after hydroforming ..................223
xxx
Figure 4.2.2-1: ERC/NSM tube hydroforming adaptive FEM methodology.......224
Figure 4.2.3-1: ERC/NSM hydraulic formability tooling.....................................225
Figure 4.2.3-2: Friction zones in tube hydroforming..........................................225
Figure 4.2.3-3: ERC/NSM guiding zone tooling ................................................226
Figure 4.2.3-4: ERC/NSM limiting dome height tooling.....................................226
Figure 4.2.3-5: ERC/NSM pear-shaped expansion tooling ...............................227
Figure 4.2.4-1: ERC/NSM blank holder force optimization methodology ..........228
Figure 4.3.1-1: Flow-through defect occurring at end of stroke.........................229
Figure 4.3.1-2: Elastic deflection of upper and lower dies (magnified)..............230
Figure 4.3.2-1: Simulation of shaft shoulder forming in DEFORM ....................231
Figure 5.1.2-1: Schematic view of bending test ................................................235
Figure 5.1.2-2: Schematic view of bent specimen.............................................235
Figure 5.1.4-1: Production part used for testing................................................237
Figure 5.1.6-1: Results of maintenance tracking...............................................239
Figure 5.1.9-1: Effect of reduction in height on coefficient of friction.................241
Figure 5.1.9-2: Effect of oxide layer on friction with coated tools ......................241
Figure 5.1.12-1: Conventional deep drawing vs. PLP deep drawing.................242
Figure 5.1.14-1: TNO slider on sheet tribometer...............................................244
Figure 5.1.15-1: Excimer laser material processing..........................................245
Figure 5.1.15-2: Strip drawing testing device....................................................245
Figure 5.2.3-1: In-die sensor locations..............................................................248
Figure 5.3.2-1: Picture of final tool set ..............................................................250
Figure 5.3.3-1: Low melting point alloy casting process....................................251
Figure 5.3.5-1: Die casting tool produced from RapidTool inserts .................252
Figure 5.3.7-1: Heat resistant mold manufacturing process..............................254
Figure 5.3.8-1: V-process for sand mold production .........................................255
Figure 5.3.9-1: EDM tooling process.................................................................256
Figure 5.3.9-2: Mold tooling process.................................................................256
Figure 5.3.10-1: Set up for making polyurethane mold making.........................258
Figure 5.3.10-2: Manufacturing of polymeric die by gel-coat technique............258
Figure 5.3.10-3: Manufacture of polymeric die by cast front technique.............258
Figure 5.3.10-4: Prototype tool for drawing of aluminum components..............259
Figure 5.3.11-1: Die assembled from laser cut sheet material..........................260
Figure 5.3.11-2: Use of a rubber or plastic layer material .................................260
xxxi
1. Sheet and Tube Forming Machines and Tooling
1.1 Sheet Bending and Shearing
1.1.1 Machines
1.1.1.1 Otsu, M., Fujii, M., Osakada, K., (1999) “Three-Dimensional
Laser Bending of Sheet Metal” Proceedings of 6th
ICTP, Vol.
II, pp. 1025-1030.
Laser has been utilized as an easy-controllable heat source of high
power density in sheet metal bending.
In the present paper, three-dimensional laser bending of sheet
metals is studied using a pulsed YAG laser. The laser beam is
guided through an optical fiber cable and irradiated on an 18Cr-8Ni
stainless steel sheet, which is bent by thermal stress.
Supporting pins hold the sheet while the laser is scanned by x-y
table, which is numerically controlled via a personal computer.
Experiments are performed by changing working conditions such
as scanning speed, pitch and path of the laser. The three-
dimensional shape of the formed sheet is measured. Figure
1.1.1.1-1 shows the experimental apparatus.
Figure 1.1.1.1-1: Experimental apparatus for laser bending
1
Figure 1.1.1.1-2: Scanning paths of laser and measured height distributions
Grids, concentric circular and radial paths for scanning the laser
are used, as shown in Figure 1.1.1.1-2, and the formed shapes are
investigated. The sheet is formed into a conical shape in the case
of scanning the laser in radial path and into a spherical shape by
radial scanning with many stages.
To improve the accuracy of the final shape, it is necessary that the
three-dimensional shape of the deformed sheet is measured
during irradiating laser beam and the obtained shape is used for
controlling the working conditions.
The need for development of a database for storing the working
conditions for the typical deformed work shape and an intelligent
system for determination of working conditions is stressed.
1.1.1.2 Arnet, H., (1999) “Section Bending with Kinematic Shaping”
Proceedings of 6th
ICTP, Vol. III, pp. 2349-2354.
Aluminum sections are being increasingly used in cars, in rail
vehicles, airplanes etc. constructive requirements regarding cross
sectional shape of the section and the curvature necessitate a high
expenditure of tools in bending technology.
The new section bending technology presented in this paper
combines kinematic shaping with the advantages of elastic tools in
order to achieve a maximum of bending (see Figure 1.1.1.2-1).
Hereby the sections are bent using a rigid collar and a flexible
polyurethane pad that is embedded in a solid steel retainer
installed on linear tracks.
2
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled
Formingand fabricatingmachinetools 0208_tech_distilled

More Related Content

Viewers also liked (7)

Engineering Drawing: Chapter 13 roles of engineering drawing
Engineering Drawing: Chapter 13  roles of engineering drawingEngineering Drawing: Chapter 13  roles of engineering drawing
Engineering Drawing: Chapter 13 roles of engineering drawing
 
Chapter 1: Hand Tools
Chapter 1:  Hand ToolsChapter 1:  Hand Tools
Chapter 1: Hand Tools
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertia
 
Metrology and Measurements unit 2
Metrology and Measurements unit 2Metrology and Measurements unit 2
Metrology and Measurements unit 2
 
LINEAR and ANGULAR Measurement
LINEAR and ANGULAR MeasurementLINEAR and ANGULAR Measurement
LINEAR and ANGULAR Measurement
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
 
Engineering Drawing
Engineering DrawingEngineering Drawing
Engineering Drawing
 

Similar to Formingand fabricatingmachinetools 0208_tech_distilled

Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSEFinal Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
Jonathan Ambrose
 
Web based e manufacturing of prototypes by using rapid prototyping technology
Web based e  manufacturing of prototypes by using rapid prototyping technologyWeb based e  manufacturing of prototypes by using rapid prototyping technology
Web based e manufacturing of prototypes by using rapid prototyping technology
IAEME Publication
 
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
YogeshIJTSRD
 
DESIGN AND FABRICATION OF WELDING FIXTURES AND POSITIONERS
DESIGN AND FABRICATION OF WELDING FIXTURES  AND POSITIONERSDESIGN AND FABRICATION OF WELDING FIXTURES  AND POSITIONERS
DESIGN AND FABRICATION OF WELDING FIXTURES AND POSITIONERS
vivatechijri
 
Feasibility study on stereolithography apparatus sla and selective laser si...
Feasibility study on stereolithography apparatus  sla  and selective laser si...Feasibility study on stereolithography apparatus  sla  and selective laser si...
Feasibility study on stereolithography apparatus sla and selective laser si...
IAEME Publication
 

Similar to Formingand fabricatingmachinetools 0208_tech_distilled (20)

Incremental sheet metal forming - Incremental Single Point
Incremental sheet metal forming - Incremental Single PointIncremental sheet metal forming - Incremental Single Point
Incremental sheet metal forming - Incremental Single Point
 
Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSEFinal Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
Final Report Functional Coatings for 3D Printed Parts_JONATHANAMBROSE
 
Experimental and Analytical Investigations of Friction Stir Welding of Variou...
Experimental and Analytical Investigations of Friction Stir Welding of Variou...Experimental and Analytical Investigations of Friction Stir Welding of Variou...
Experimental and Analytical Investigations of Friction Stir Welding of Variou...
 
Web based e manufacturing of prototypes by using rapid prototyping technology
Web based e  manufacturing of prototypes by using rapid prototyping technologyWeb based e  manufacturing of prototypes by using rapid prototyping technology
Web based e manufacturing of prototypes by using rapid prototyping technology
 
A review of soft computing techniques in materials engineering
A review of soft computing techniques in materials engineeringA review of soft computing techniques in materials engineering
A review of soft computing techniques in materials engineering
 
20141110_111627 (1)
20141110_111627 (1)20141110_111627 (1)
20141110_111627 (1)
 
FE Analysis for Investment Casting and Computer Simulation: A Review
FE Analysis for Investment Casting and Computer Simulation: A ReviewFE Analysis for Investment Casting and Computer Simulation: A Review
FE Analysis for Investment Casting and Computer Simulation: A Review
 
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
General Formula for Optimum Location of Chip Breaker in Tool Inserts for Indu...
 
DESIGN AND FABRICATION OF PORTABLE DRILLING AND BORING MACHINE
DESIGN AND FABRICATION OF PORTABLE DRILLING  AND BORING MACHINEDESIGN AND FABRICATION OF PORTABLE DRILLING  AND BORING MACHINE
DESIGN AND FABRICATION OF PORTABLE DRILLING AND BORING MACHINE
 
2-Copper_Springer
2-Copper_Springer2-Copper_Springer
2-Copper_Springer
 
A study of professional advantages to manufacturing organizations by the way ...
A study of professional advantages to manufacturing organizations by the way ...A study of professional advantages to manufacturing organizations by the way ...
A study of professional advantages to manufacturing organizations by the way ...
 
DESIGN AND FABRICATION OF WELDING FIXTURES AND POSITIONERS
DESIGN AND FABRICATION OF WELDING FIXTURES  AND POSITIONERSDESIGN AND FABRICATION OF WELDING FIXTURES  AND POSITIONERS
DESIGN AND FABRICATION OF WELDING FIXTURES AND POSITIONERS
 
A Review on Finite Element Analysis of Automobile roof header Manufactured By...
A Review on Finite Element Analysis of Automobile roof header Manufactured By...A Review on Finite Element Analysis of Automobile roof header Manufactured By...
A Review on Finite Element Analysis of Automobile roof header Manufactured By...
 
Feasibility study on stereolithography apparatus sla and selective laser si...
Feasibility study on stereolithography apparatus  sla  and selective laser si...Feasibility study on stereolithography apparatus  sla  and selective laser si...
Feasibility study on stereolithography apparatus sla and selective laser si...
 
Thesis
ThesisThesis
Thesis
 
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
 
Introduction OF PRODUCTION TECHNOLOGY
Introduction OF PRODUCTION TECHNOLOGYIntroduction OF PRODUCTION TECHNOLOGY
Introduction OF PRODUCTION TECHNOLOGY
 
Holo-Krome catalog
Holo-Krome catalogHolo-Krome catalog
Holo-Krome catalog
 
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANELDESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
 
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANELDESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
DESIGN OF MOULD TOOL & COOLING CHANNEL OPTIMIZATION OF REMOTE CONTROL TOP PANEL
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
 

Recently uploaded (20)

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Introduction to TechSoup’s Digital Marketing Services and Use Cases
Introduction to TechSoup’s Digital Marketing  Services and Use CasesIntroduction to TechSoup’s Digital Marketing  Services and Use Cases
Introduction to TechSoup’s Digital Marketing Services and Use Cases
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

Formingand fabricatingmachinetools 0208_tech_distilled

  • 1. Technology Assessment for Forming and Fabricating Machine Tools and Accessories AMT – The Association For Manufacturing Technology July 2002
  • 2. Published by: AMT - The Association For Manufacturing Technology 7901 Westpark Drive, McLean, VA 22102 Printed in the United States of America Copyright 2002 AMT - The Association For Manufacturing Technology all rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. ii
  • 3. FOREWORD This document has been prepared for AMT – The Association For Manufacturing Technology by the Engineering Research Center for Net Shape Manufacturing (ERC/NSM) at Ohio State University1 . This Center was established on May 1, 1986 and works with companies interested in advanced manufacturing research. The focus of the ERC/NSM is net shape manufacturing with emphasis on cost- effective production of discrete parts. The research concentrates on manufacturing from engineering materials to finish or near-finish dimensions via processes that use dies and molds. In addition to conducting industrially relevant engineering research on a contractual basis for interested companies, the ERC/NSM has the objectives to a) establish close cooperation between industry and the university, b) train students, and c) transfer the research results to interested companies. This report entitled “TECHNOLOGY ASSESSMENT FOR FORMING AND FABRICATING MACHINE TOOLS AND ACCESSORIES” identifies new developments, customer/user requirements, relevant and practice oriented R&D activities related to the metal forming machinery industry. A literature review was conducted using U.S., German, and Japanese resources. The scope of the study focused on the following points a) metal forming and fabricating machine tools, b) dies and tools for metal forming, c) software for process modeling, die design and manufacture, and d) new materials for advanced forming applications. The emphasis of the study was placed on R&D related topics. 1 Information about the ERC/NSM can be obtained from the office of the Director, Taylan Altan, located at 339 Baker Systems Engineering Building, 1971 Neil Avenue, Columbus, Ohio 43210-1271, phone: (614) 292-9267, fax: (614) 292-7219, email: altan.1@osu.edu, web page: http://www.ercnsm.org. This report is Report No. ERC/NSM-01-40 iii
  • 4. Contributors to this report include: Patrick Wenning, Graduate Research Associate Hariharasudhan Palaniswamy, Graduate Research Associate Prashant Soman, Graduate Research Associate Mark Gariety, Graduate Research Associate Taylan Altan, Professor and Director iv
  • 5. TECHNOLOGY ASSESSMENT FOR FORMING AND FABRICATING MACHINE TOOLS AND ACCESSORIES EXECUTIVE SUMMARY The ERC/NSM has completed a technology assessment on forming and fabricating machine tools and accessories for AMT - The Association For Manufacturing Technology. The scope of the study focused on the following points: Metal forming and fabricating machine tools (Bending Machines, Forming Cells and Systems, Hot and Cold Forming Machines, Presses, Press Brakes and Shears and Special Purpose Forming Equipment). Dies and tools for metal forming. Software for process modeling, die design and manufacture. New materials for advanced forming applications. Worldwide survey with emphasis on U.S., Germany and Japan. The emphasis was placed on R&D related activities. Thus, information that is easily available in company brochures, web sites and trade shows was not covered. In conducting this study we relied heavily on personal contacts with individuals in universities (especially in Germany). The study was conducted as follows: Review of relevant technical literature from the U.S., Germany and Japan. Contact selected high technology oriented companies, world wide, that manufacture metal forming equipment. Contact selected European research laboratories and universities that work closely with industry. v
  • 6. The objectives of this work are: Identify new developments, customer/user requirements, relevant and practice oriented R&D activities related to the metal forming machinery industry. Assess the significance and relevance of the identified activities and trends for manufacturers of metal forming equipment and accessories. Chapter 1 of this report gives recent developments in Sheet and Tube Forming Machines and Tooling. Sheet bending and shearing, blanking and forming cells, progressive die blanking and forming, stamping and transfer die forming, sheet hydroforming, and tube forming are all discussed. Research work for machines, tools, and process variations for the aforementioned categories is included. Chapter 2 discusses recent developments in Billet and Rod Forming Machines and Tooling. Wire and rod drawing, forming and shearing, cold and warm forging and extrusion, and hot forging and extrusion are all discussed. Research work for machines, tools, and process variations for the aforementioned categories is included. Chapter 3 provides recent research on advanced forming applications for new materials such as high strength steels, aluminum and magnesium. Chapter 4 gives practical examples of the Finite Element Method used in industrial applications. Research results for FEM modeling of sheet forming, tube hydroforming, and forging are discussed. Chapter 5 describes research efforts for Other Supporting Technologies in metal forming (e.g. tool coatings, process monitoring and control, and prototyping and rapid tooling). vi
  • 7. TABLE OF CONTENTS FOREWORD ....................................................................................................... iii EXECUTIVE SUMMARY ......................................................................................v TABLE OF CONTENTS...................................................................................... vii LIST OF FIGURES ........................................................................................... xxv 1. Sheet and Tube Forming Machines and Tooling ...........................................1 1.1 Sheet Bending and Shearing..................................................................1 1.1.1 Machines.........................................................................................1 1.1.1.1 Otsu, M., Fujii, M., Osakada, K., (1999) “Three-Dimensional Laser Bending of Sheet Metal” Proceedings of 6th ICTP, Vol. II, pp. 1025- 1030. .................................................................................................1 1.1.1.2 Arnet, H., (1999) “Section Bending with Kinematic Shaping” Proceedings of 6th ICTP, Vol. III, pp. 2349-2354........................................2 1.1.1.3 Harrer, O., Lu, J., Schwenzfeier, W., Fischer, F., (1999) ”Asymmetric Rolling” Proceedings of 6th ICTP, Vol. III, pp. 1885-1890......3 1.1.1.4 “Roll Forming of Parts with Variable Sections along the Length (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines...............................................................................4 1.1.2 Tools................................................................................................5 1.1.2.1 “Development of Tooling and Process for Hemming of Aluminum Sheet (Ongoing Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany. ..........................5 1.1.2.2 Ogawa, H., Makinouchi, A., (1999) “Small Radius Bending of Sheet Metal by Indentation with V-shape Punch” Proceedings of 6th ICTP, Vol. II, pp. 1059-1064.................................................................................5 1.1.2.3 Kleiner, M. and Wellendorf, A. (2000), “CNC-Two Roll Round Bending,” LFU – University of Dortmund, Annual Report, pp. 31 (ongoing research). .................................................................................................6 1.1.2.4 Aomura, S., Koguchi, A., (2002) “Optimized bending sequences of sheet metal bending by robot” Robotics and Computer- Integrated Manufacturing, Vol. 18, pp. 29-39. ............................................7 1.1.2.5 Yang, M., Manabe, K., Nishimura, H., (1998) “Development of an intelligent tool system for flexible L-bending process of metal sheets” Smart Materials and Structures, Vol. 7, pp. 530-536..................................8 1.1.2.6 Elkins, K., Sturges, R., (2001) “Design of a sensor for on-line measurement of loaded bend angle for pressbrake control” Robotics and Computer-Integrated Manufacturing, Vol. 17, pp. 329-340. .......................8 1.1.2.7 “Laser-assisted roll forming (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .................................................................................................9 1.1.3 Process Variations...........................................................................9 1.1.3.1 Hua, M., Baines, K., Cole, I., (1999) “Continuous four-roll plate bending: a production process for the manufacture of single seamed tubes of large and medium diameters” International Journal of Machine Tools and Manufacture, Vol. 39, pp. 905-935. .....................................................9 vii
  • 8. 1.1.3.2 Otsu, M., Wada, T., Osakada, K., (2001) “Micro-bending of thin spring by laser forming and spark forming” Annals of the CIRP, Vol. 50/1/2001, pp. 141-144. .............................................................................9 1.2 Blanking and Forming Cells..................................................................10 1.2.1 Machines.......................................................................................10 1.2.2 Tools..............................................................................................10 1.2.2.1 Li, W., Yao, Y., Lawrence, (2001) “Laser Forming with Constant Line Energy” International Journal of Advanced Manufacturing Technology, Vol. 17, pp. 196-203. ...........................................................10 1.2.2.2 Li, L., (2000) “The advances and characteristics of high-power diode laser materials processing” Optics and Lasers in Engineering, Vol. 34, pp. 231-253........................................................................................11 1.2.3 Process Variations.........................................................................11 1.3 Progressive Die Blanking and Forming ................................................11 1.3.1 Machines.......................................................................................11 1.3.1.1 Tso, P., Liang, K., (2002) “A nine-bar linkage for mechanical forming presses” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 139-145.................................................................................11 1.3.1.2 “Innovative Press Concept for the Manufacture of Precision Microcomponents (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany................................................................................12 1.3.1.3 “Investigation of the Dynamic Behavior of Linear Guides in Forming Presses (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany................................................................................12 1.3.1.4 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov, A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002) “Practice Oriented Developments at IFUM – Eccentric press with non- round gear drive” (in German) Proceedings of 17th UKH, Hannover, pp. 63-100. ...............................................................................................13 1.3.1.5 Volbers, Th., (2002) “Flexible Drives of an Eccentric Shaft – Programmable Drives Control the Slide Velocity of Mechanical Presses” (in German) Proceedings of 17th UKH, Hannover, pp. 119-128. ..............14 1.3.1.6 Nakagawa, T., Higuchi, T., Sato, R., (1999) “Linear motor drive CNC press using learning control” Annals of the CIRP, Vol. 48/1/1999, pp. 199-202. ...............................................................................................15 1.3.2 Tools..............................................................................................18 1.3.2.1 Murakawa, M., Mo, J., Wakatsuki, Y., Koga, N., (2001) “Investigation of blanking noise reduction using a hydraulic inertia damper” Journal of Materials Processing Technology, Vol. 112, pp. 205-213........18 1.3.2.2 Haller, D., (2000) “Controllable Nitrogen Gas Spring Systems for Stamping Applications” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 249-276. ............................................................................18 viii
  • 9. 1.3.2.3 Kocov, A., Lazarev, J., (1999) “A New Approach in Die Set’s Design” Proceedings of 6th ICTP, Vol. I, pp. 719-722...............................22 1.3.2.4 “Controllable Nitrogen and Hydraulic Cylinder Systems for Deep Drawing (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany...................................23 1.3.2.5 Siegert, Haller, (2001) “Controllable Nitrogen Gas Spring Systems” WGP Production Engineering, Germany, Vol. VIII/1, pp. 63-66. .. ...............................................................................................23 1.3.2.6 Altan, T., (2000) “Improving progressive stamping die design with simulations”, STAMPING Journal, September/October 2000, pp. 98- 99. ...............................................................................................25 1.3.3 Process Variations.........................................................................27 1.3.3.1 Schweitzer, M., Hoffmann, H., (1999) “Rotary Blanking” Proceedings of 6th ICTP, Vol. III, pp. 2219-2224......................................27 1.3.3.2 Knaupp, M., Schulte-Beckhausen, J., (2001) “The Applications and Limitations of Water Jet Cutting for the Trimming of Single and Double-Walled Parts” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 439-454..............................................................28 1.3.3.3 Joo, B., Oh, S., Jeon, B., (2001) “Development of micro punching system” Annals of the CIRP, Vol. 50/1/2001, pp. 191-194........31 1.3.3.4 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov, A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002) “Practice Oriented Developments at IFUM – The controllable straightening system” (in German) Proceedings of 17th UKH, Hannover, pp. 63-100....32 1.4 Stamping and Transfer Die Forming.....................................................33 1.4.1 Machines.......................................................................................33 1.4.1.1 Hinderer, U., (2000) “Press Shop Concepts for the Future” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 19-38................33 1.4.1.2 “Hydraulic Deep Drawing Press with CNC Controlled 10-Point Cushion (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany..................................................34 1.4.1.3 Konnerth, U., (2001) “A hydraulic high-speed tryout press for the simulation of mechanical forming processes” Journal of Materials Processing Technology, Vol. 111, pp. 159-163........................................35 1.4.1.4 Voelkner, W., (2000) “Present and future developments of metal forming: selected examples” Journal of Materials Processing Technology, Vol. 106, pp. 236-242. .........................................................36 1.4.1.5 Siegert, K., Häussermann, M., Haller, D., Wagner, S., Ziegler, M., (2000) “Tendencies in presses and dies for sheet metal forming processes” Journal of Materials Processing Technology, Vol. 98, pp. 259- 264. ...............................................................................................37 1.4.1.6 VanderZee, A., (2000) “Transfer Presses with Electronic Feed” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 67-76................40 ix
  • 10. 1.4.1.7 Kurzinger, F., (2000) “New Concepts for Hydraulic Production Presses” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 77-92..42 1.4.1.8 Walkinshaw, S., Hashimoto, M., (2000) “New Multi-Action Press for Panel Manufacturer” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 93-100................................................................45 1.4.1.9 Neugebauer, R., Pabler, T., Droos, J., (2000) “Tryout Press – Requirements, Aspects of Design and Prototype” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 101-118. ........................................47 1.4.1.10 Dingle, M., Hodgson, P., Cardew-Hall, M., (2001) “Analysis of the Elastic Behavior of the Press System” Innovations in Processing and Manufacturing of Sheet Materials, pp. 405-414........................................47 1.4.1.11 Neugebauer, R. and Putz, M. (2000), “Innovation in Light Structures for Body and Drive Train,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 43-68.................................................................................49 1.4.1.12 Tentrine, J. “Press Installations for the Light Construction in Automotive Body Parts Manufacturing,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 287-305.............................................................................49 1.4.1.13 Grill, H. "What is Important is the Proper Tilt", Schuler News/inside - Issue 2. 2001, p. 10. ..........................................................51 1.4.1.14 Kochan, A., (2001) “Dieless forming” Assembly Automation, Vol. 21, pp. 321-323.................................................................................52 1.4.2 Tools..............................................................................................53 1.4.2.1 “Vibrating Blank Holder in Deep Drawing (Ongoing Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany...................................................................................53 1.4.2.2 “Control of Blank Holder Force to Reduce Wrinkling in Deep Drawing (Ongoing Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany...................................54 1.4.2.3 “Optimum Design of Stamping Dies (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany. ...............................................................................................54 1.4.2.4 “Forming of Tailored Blanks (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany. ..55 1.4.2.5 Doege, E., Schaprian, M., Derenthal, M., Menz, R., Zacharov, A., Elend, L., Hubner, S., Barnert, L., Huskic, A., Abdelfattah, S., (2002) “Practice Oriented Developments at IFUM – The elastic blank holder” (in German) Proceedings of 17th UKH, Hannover, pp. 63-100. .....................56 1.4.2.6 Gunnarsson, L., Schedin, E., (2001) “Improving the properties of exterior body panels in automobiles using variable blank holder force” Journal of Materials Processing Technology, Vol. 114, pp. 168-173........57 x
  • 11. 1.4.2.7 Doege, E., Elend, L., (2001) “Design and application of pliable blank holder systems for the optimization of process conditions in sheet metal forming” Journal of Materials Processing Technology, Vol: 111, pp. 182-187. ...............................................................................................58 1.4.2.8 Obermeyer, E., Majlessi, S., (1998) “A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts” Journal of Materials Processing Technology, Vol. 75, pp. 222-234. ...........................................................59 1.4.2.9 Walczyk, D., Lakshmikanthan, J., Kirk, D. (1998) “Development of a Reconfigurable Tool for Forming Aircraft Body Panels” Journal of Manufacturing Systems, Vol. 17, pp. 287-296..........................................59 1.4.2.10 Herron, J., Hodgson, P., (1998) “Defining the operating window for an automotive sheet pressing operation” Journal of Materials Processing Technology, Vol. 80-81, pp. 68-75.........................................60 1.4.2.11 Liu, L., Sawada, T., Sakamoto, M., (2000) “Evaluation of the surface deflections in pressed automobile panels by an optical reflection method” Journal of Materials Processing Technology, Vol. 103, pp. 280- 287. ...............................................................................................60 1.4.2.12 Cartwright, D., Drake, P., Godwin, M., (1999) “A method for comparing the performance of low-cost press tools for sheet forming” Journal of Materials Processing Technology, Vol. 95, pp. 49-54..............61 1.4.2.13 Pepelnjak, T., Kuzman, K., (1998) “Adaptable tooling sets for metal forming of geometrically similar products” Journal of Materials Processing Technology, Vol. 80-81, pp. 413-420.....................................61 1.4.2.14 Li, M. Liu, Y. Su, S. Li, G., (1999) “Multi-point forming: a flexible manufacturing method for a 3-d surface sheet” Journal of Materials Processing Technology, Vol. 87, pp. 277-280..........................................62 1.4.2.15 “Drawing of light weight materials with locally optimized properties (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany............................63 1.4.2.16 Beck, S., (2000) “Control of the Deep Drawing Process through Active Draw beads” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 195-212. ...............................................................................................63 1.4.2.17 Haussermann, M., (2000) “Multipoint-Cushion-Technology (Advances and Die Design)” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 341-366. ............................................................................65 1.4.2.18 Tanaka, S., Nakamura, T., Hayakawa, K., (1999) “Incremental Sheet Metal Forming Using Elastic Tools” Proceedings of 6th ICTP, Vol. II, pp. 1477-1482..........................................................................................68 1.4.2.19 Li, R., Weinmann, K., (1999) “Formability of non-symmetric aluminum panel drawing using active draw beads” Annals of the CIRP, Vol. 48/1/1999, pp. 209-212.....................................................................69 1.4.2.20 Muller, J., Heinze, R., (2000) “Use of Ceramic in Tools for Sheet Metal Forming” New Developments in Sheet Metal Forming, xi
  • 12. Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 467-492. ............................................................................71 1.4.2.21 Siegert, K., Beck, S., “Deep drawing with segmented-elastic binders”, WGP Production Engineering, Germany, Vol. VIII/2, pp 35-40, 2001. ...............................................................................................73 1.4.2.22 Descamps, R., Chamont, B., Kergen, R., (2000) “Blankholder Force Control in Deep Drawing” New Developments in Sheet metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 229-248..............................................................75 1.4.2.23 Doege, E., Elend, L., Ropers, C., (1999) “Pliable Blank Holder Systems for the Optimization of Process Conditions in Deep Drawing” Proceedings of 6th ICTP, Vol. I, pp. 177-182............................................77 1.4.2.24 Chalmers, R.E. (2001) "Rapid Tooling from Ford", Manufacturing Engineering, Nr. 11, p. 36.................................................78 1.4.2.25 Cherrill, A., Zhang, S., Ousterhout, K., (1998) “A variable force binder for a draw press” Journal of Materials Processing Technology, Vol. 73, pp. 7-17..............................................................................................78 1.4.2.26 Thomas, V. et al “Use of Forming Technology in Mechanical Joining for Lightweight Design,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 247-276.............................................................................80 1.4.2.27 Altan T., Lilly B., Yen Y. (2001) “Manufacturing of Dies and Molds” Annals of CIRP Vol. 50/2/2001, pp. 405-423................................80 1.4.2.28 Shulkin, L., Rowan, J., Altan, T., & Kinzel, G.L., (2000) “Experimenting with flexible blank holder force control”, STAMPING Journal, March/April 2000, pp. 36-41. ......................................................81 1.4.2.29 Altan, T., (2000) “Using sheet metal inserts for die repair”, STAMPING Journal, March/April 2000, pp. 96.........................................83 1.4.2.30 Papazian, J.M., Anagnostou, E.L., Christ, R.J., Hoitsma, D., Melnichuk, J., Nardiello, J., Ogilvie, P., Pifko, A.B., and Schwarz, R.C., (2001) “Innovative tooling for sheet metal forming”, “Innovations in processing and manufacturing of sheet materials”, Edited by Demeri, M.Y., 2001, pp. 17-31...............................................................................84 1.4.3 Process Variations.........................................................................86 1.4.3.1 Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito, K., Hatano, H., (1998) “An application of ultrasonic vibration to the deep drawing process” Journal of Materials Processing Technology, Vol. 80-81, pp. 406-412..............................................................................................86 1.4.3.2 Kleiner, M., Homberg, W., Gobel, R., & Klimmek, C., (2002) “Process optimization in sheet metal spinning”, WGP Production Engineering, Germany, (In Print)..............................................................87 1.4.3.3 Daehn, G., Vohnout, V., “Improved Formability with Electromagnetic Forming: Fundamentals and a Practical Example” http://www.er6.eng.ohio-state.edu/~daehn/overview/index.htm...............88 1.5 Sheet Hydroforming..............................................................................89 1.5.1 Machines.......................................................................................89 xii
  • 13. 1.5.1.1 Dachang, K., Lihui, L., Xiaofeng, M., Jingquan, X., (2000) “A study on hydrodynamic deep drawing equipment” Journal of Materials Processing Technology, Vol. 101, pp. 21-24............................................89 1.5.1.2 Beyer, J., (1999) “New Machine Concepts for Sheet Metal Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 325-334. ............................................................................89 1.5.1.3 Cherek, H., Kolleck, R., Palm, D., (2002) “AHM Forming Cell – The Way to Economical Series Production” (in German) Proceedings of 17th UKH, Hannover, pp. 223-232............................................................91 1.5.1.4 Friebe, E., Langhammer, T., Birkert, A., Neubert, J., Kleiner, M., Wellendorf, A., (2001) “Hydromechanical Deep Drawing of Passenger Car Fuel Tanks” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 181-200. ............................................................................92 1.5.1.5 Kleiner, M., Homberg, W., (2001) “New 100,000 kN Press for Sheet Metal Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 351-362..............................................................94 1.5.1.6 Boehm, A. and Erras, M. (2001) "Two Column Press Concept for Hydroforming and other Innovative Press Systems" Presented at the International Conference on Hydroforming, Stuttgart, Germany, Nov. 6/7/2001. ...............................................................................................96 1.5.2 Tools..............................................................................................97 1.5.2.1 Thiruvarudchelvan, S., Wang, H., (2001) “Investigations into the hydraulic-pressure augmented deep drawing process” Journal of Materials Processing Technology, Vol. 110, pp. 112-126. .......................97 1.5.2.2 Siegert, K., Aust, M., (2000) “Hydromechanical Deep-Drawing” WGP Production Engineering, Germany, Vol. VII/2, pp. 7-12. .................98 1.5.2.3 Geiger, M., Celeghini, M., (2002) “Double sheet hydroforming of complex hollow bodies” WGP Production Engineering, Germany, (In Print). ...............................................................................................99 1.5.2.4 Zhang, S., Danckert, J., (1998) “Development of hydro- mechanical deep drawing” Journal of Materials Processing Technology, Vol. 83, pp. 14-25...................................................................................100 1.5.2.5 Thiruvarudchelvan, S., Travis, F., Poh, T., (1999) “On the deep drawing of cups with punch and blank-holding forces proportional to a hydraulic pressure” Journal of Materials Processing Technology, Vol. 92, pp. 375-380............................................................................................103 1.5.2.6 Siegert, K., Häussermann, M., Lösch, B., Rieger, R., (2000) “Recent developments in hydroforming technology” Journal of Materials Processing Technology, Vol. 98, pp. 251-258........................................104 1.5.2.7 Zhang, S., (1999) “Developments in hydroforming” Journal of Materials Processing Technology, Vol. 91, pp. 236-244. .......................105 xiii
  • 14. 1.5.2.8 Hein, P., Vollertsen, F., (1999) “Hydroforming of sheet metal pairs” Journal of Materials Processing Technology, Vol. 87, pp. 154-164.... .............................................................................................107 1.5.2.9 Amino, H., Makita, K., Maki, T., (2000) “Sheet Fluid Forming and Sheet Dieless NC Forming” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 39-66................................................................108 1.5.2.10 Birkert, A., Nuebert, J., Gruszka, T., (1999) “Parallel Plate Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 283-296. ..........................................................................113 1.5.2.11 Dick, P., AUDI AG, Neckarsulm, (1999) “Hydroforming of Aluminum Sheets” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 261-282. ..........................................................................116 1.5.2.12 “Hydroforming of Sheet Metal (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany.............................................117 1.5.2.13 “Hydroforming of Sheet (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany. ...118 1.5.2.14 “High Pressure Hydroforming of Sheet Metal (Research)” University of Dortmund and Siempelkamp Press Systems (Germany). .119 1.5.2.15 Kleiner, M., Homberg, W., Brosius, A., (1999) “Processes and Control of Sheet Metal Hydroforming” Proceedings of 6th ICTP, Vol. II, pp. 1243-1252..............................................................................................120 1.5.2.16 Krei, M., (1999) “State of the Art of Sealing Techniques for Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 441-462. ..........................................................................122 1.5.2.17 Wagner, S., Jager, S., Frank, H., (2001) “Combination of the Conventional Deep Drawing with Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 201-214. ................................127 1.5.2.18 Friebe, E., Langhammer, T., Birkert, A., Neubert, J., Kleiner, M., Wellendorf, A., (2001) “Hydromechanical Deep Drawing of Passenger Car Fuel Tanks” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 181-200. ..........................................................................130 1.5.2.19 Leibinger, B., (2001) “New Technologies Secure Tomorrow’s Competitive Lead” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 1-4. ..................................................................................133 1.5.2.20 Danckert, J., Nielsen, K., (2000) “Hydromechanical deep drawing with uniform pressure on the flange” Annals of the CIRP, Vol. 49/1/2000, pp. 217-220. .........................................................................133 xiv
  • 15. 1.5.2.21 Schmoeckel, D., Geiger, M., Hielscher, C., Huber, R., (1999) “Metal forming of tubes and sheets with liquid and other flexible media” Annals of the CIRP, Vol. 48/2/1999, pp. 497-514...................................135 1.5.2.22 “Sheet hydroforming for the automotive industry (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany.............................................................139 1.5.3 Process Variations.......................................................................139 1.5.3.1 “Hydroforming with local workpiece heating by laser radiation (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .......................................139 1.5.3.2 “Hydroforming of deep drawn preforms starting from homogenous sheet material possessing locally different flow properties (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .......................................140 1.5.3.3 Kleiner, M., Homberg, W. and Beerwald, C. “Aspects of Sheet Hydroforming,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 439- 444. .............................................................................................140 1.5.3.4 Ahmetoglu, M., Hua, J., Kulukuru, S., Altan, T., (2000) “Hydroforming of Sheet Metal Using Viscous Pressure Medium” Journal of Materials Processing Technology, November, 2000..............................141 1.6 Tube Forming (Bending, End Forming and Hydroforming).................142 1.6.1 Machines.....................................................................................142 1.6.1.1 Lücke, H., Hartl, C., Abbey, T., (2001) “Hydroforming” Journal of Materials Processing Technology, Vol. 115, pp. 87-91. .....................142 1.6.1.2 Breckner, M., Mannesmann Rexroth GmbH, Lohr am Main, (1999) “Hydraulic Systems for Hydroforming” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 173-190. ................................142 1.6.1.3 Boehm, A. and Erras, M. (2001) "Two Column Press Concept for Hydroforming and other Innovate Press Systems" presented at the Int. Conf. on Hydroforming, Stuttgart, Nov. 6/7/2001. ..................................144 1.6.1.4 Otto, A., Brandt, V., (1999) “Closed Control Loop System for Laser Bending of Extrusion” Proceedings of 6th ICTP, Vol. II, pp. 1019- 1024. .............................................................................................145 1.6.1.5 Neugebauer, R. and Putz, M. (2000), “Innovation in Light Structures for Body and Drive Train,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 43-68...............................................................................146 1.6.2 Tools............................................................................................147 1.6.2.1 Vollertsen, F., (2000) “Accuracy in process chains using hydroforming” Journal of Materials Processing Technology, Vol. 103, pp. 424-433. .............................................................................................147 1.6.2.2 “Reduction of CO2-impact by weight reduction achieved by bending and hydroforming of steel and aluminum tubular parts for body xv
  • 16. and chassis applications (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .148 1.6.2.3 Siegert, K., (1999) “Hydroforming of Tubes with External High Pressure” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 463-480. .............................................................................................148 1.6.2.4 Birkert, A., Neubert, J., (2001) “Dies and Die-Tryout for the Hydromorming of Tubes and Profiles” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 271-288........................................................150 1.6.2.5 Hoffmann, A., Birkert, A., (2001) “Design Guidelines for Hydroformed Structural Components of Aluminum” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 323-338..........151 1.6.2.6 Flehmig, T., Blumel, K., Kibben, M., “Investigation to Bending Boundaries of Circular Tube Cross Sections” Hydroforming of Tubes, Extrusions and Sheet Metals, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 41-62. ....................................153 1.6.2.7 Hartl, C., Abbey, T., (1999) “Product Development of Complex Hydroformed Parts and Requirements Regarding Tool Manufacture” Proceedings of 6th ICTP, Vol. II, pp. 1183-1188.....................................154 1.6.2.8 Arendes, D., Chatti, S., Kleiner, M., (1999) “Forming of Aluminum Extrusions for Structural Elements” Proceedings of 6th ICTP, Vol. III, pp. 2337-2342............................................................................155 1.6.2.9 Koc,M., and Altan, T., (2002) "Prediction of Forming Limits and Parameters in the Tube Hydroforming Process", International Journal of Machine Tools and Manufacture, Vol. 42, pp. 123-138..........................156 1.6.3 Process Variations.......................................................................157 1.6.3.1 Eichhorn, A. and Motsch, S. (2000), “Hydroforming of Tailored Tubes,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 403-410................157 2. Billet and Rod Forming Machines and Tooling ..........................................159 2.1 Wire and Rod Drawing, Forming and Shearing ..................................159 2.1.1 Machines.....................................................................................159 2.1.1.1 Hiroguchi, K., Fujita, K., Kodama, M., Onodera, N., (1999) “Development of Flexible-size Technology for Sections with a Skewed Roll Mill, a Pre-Forming Rolling Mill” Proceedings of 6th ICTP, Vol. II, pp. 1563- 1568. .............................................................................................159 2.1.2 Tools............................................................................................160 2.1.3 Process Variations.......................................................................160 2.1.3.1 Murakawa, M., Jin, M., (2001) “The utility of radially and ultrasonically vibrated dies in the wire drawing process” Journal of Materials Processing Technology, Vol. 113, pp. 81-86. .........................160 2.1.3.2 Siegert, K., Ulmer, J., (1999) “Superimposing Ultrasonic Waves on Tube and Wire Drawing” Proceedings of 6th ICTP, Vol. III, pp. 1763-1774..............................................................................................160 xvi
  • 17. 2.1.3.3 Altan, T. (2001), "High Speed or Adiabatic Shearing Technology" review prepared by ERC/NSM. .........................................161 2.1.3.4 “Manufacturing of Internal Gear Teeth using a Combined Rolling / Ironing Process (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany..............................................................................162 2.2 Cold and Warm Forging and Extrusion...............................................162 2.2.1 Machines.....................................................................................162 2.2.1.1 Strauch, A., Korner, E., (1999) “Recent Process Developments and Press Type Criteria” Proceedings of 6th ICTP, Vol. I, pp. 171-176. .162 2.2.1.2 Aida, K., Walkinshaw, S., (2001) “Multi Slide and Servo Presses for Accurate Forming” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 41-50. ..............................................................................164 2.2.1.3 Doege, E., Bohnsack, R., (1999) “Press Concept for the Future in Precision Forging” Proceedings of 6th ICTP, Vol. I, pp. 203-210. .......165 2.2.1.4 Weib, K., Schilling, R., Carper, J., (1999) “Integration of Advanced Engineering with New Production Machinery for Net Shape Cold Forming” Proceedings of 6th ICTP, Vol. I, pp. 211-220. .................166 2.2.1.5 Osman, F., Ferreira, J., (1999) “Implementation of Metal Forming Analysis in the Design of Forging Machines” Proceedings of 6th ICTP, Vol. I, pp. 227-230........................................................................167 2.2.2 Tools............................................................................................168 2.2.2.1 Sheljaskow, S., (2001) “Tool lubricating systems in warm forging” Journal of Materials Processing Technology, Vol. 113, pp. 16-21. . .............................................................................................168 2.2.2.2 Groenbaek, J., Birker, T., (2000) “Innovations in cold forging die design” Journal of Materials Processing Technology, Vol. 98, pp. 155- 161. .............................................................................................169 2.2.2.3 Berezhnoy, V., (2000) “Non-Traditional Process Techniques of Extrusion and Pressing” International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 19-22. .............................................................170 2.2.2.4 DaChang, K., HongYi, S., Yu, C., HongLiang, Y., (2001) “Research on the “shear-extrusion” process to form large-scale cut-off valve bodies” Journal of Materials Processing Technology, Vol. 117, pp. 15-20. .............................................................................................171 2.2.2.5 Kuzman, K., (2001) “Problems of Accuracy Control in Cold Forming” Journal of Materials Processing Technology, Vol. 113, pp. 10-15. .............................................................................................171 2.2.2.6 Yoshimura, H., Tanaka, K., (2000) “Precision forging of aluminum and steel” Journal of Materials Processing Technology, Vol. 98, pp. 196-204............................................................................................172 2.2.2.7 Monroe, L., (2001) “Achieving Precision Forming Capability” Fastener Technology International, Dec. 2001, pp. 32...........................172 2.2.2.8 Remppis, M., Dytert, C., (2001) “Manufacture of Shaft Components on Long stroke Knuckle-Joint Presses” New Developments xvii
  • 18. in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 9-22. ............................................173 2.2.2.9 Neugebauer, R., Lorenz, B., Glab, R., (2001) “Hollow Shafts in Lightweight Construction Realized by Cross Rolling and Spin Extrusion” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 211-226..........174 2.2.2.10 Standring, P., (2001) “Rotary Forging – Current and Future Developments” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 329-350. .............................................................................................176 2.2.2.11 Sheu, J., (1999) “An Integrated Tool Design System in Collaboration with the Displacement Adjustment of Forging Machine” Proceedings of 6th ICTP, Vol. I, pp. 235-242..........................................177 2.2.2.12 Hinsel, C., Celeghini, M., Engel, U., Geiger, M., (1999) “Improved Fatigue Strength of Cold Forging Tools by Surface and Coating Technologies” Proceedings of 6th ICTP, Vol. I, pp. 271-280...................178 2.2.2.13 “Development of a system for the load oriented design and evaluation of tool systems for bulk metal forming (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen- Nuremberg, Germany. ...........................................................................179 2.2.2.14 “Improvement of service life and reliability of cold forging tools with respect to fatigue damage due to cyclic plasticity (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen- Nuremberg, Germany. ...........................................................................179 2.2.2.15 “Fundamental process knowledge of warm forming of shaft- shaped workpieces with overhanging geometrical elements (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany.............................................................179 2.2.2.16 Schubert, R. and Sekreter, F. (1999), “Forming of T-Shapes using Multiple-Action Tooling,” Presentation by Schuler, Inc..................180 2.2.2.17 Tiesler, N., (2001) “Fundamental investigations on the extrusion of metal microparts (PhD Dissertation)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .............................................................................................180 2.2.2.18 “Warm forming to improve the formability in the field of micro forming (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. .......................................181 2.2.2.19 Hannan, D. and Altan, T. (2000) “Case Studies on Improving the Tool Life of Cold Heading Operations,” Fastener Magazine, July 2000, p. 56. .............................................................................................181 2.2.3 Process Variations.......................................................................182 2.3 Hot Forging and Extrusion..................................................................182 2.3.1 Machines.....................................................................................182 2.3.1.1 Bourkine, S., Babailov, N., Loginov, Y., Shimov, V., (1999) “Energy analysis of a through-put radial forging machine” Journal of Materials Processing Technology, Vol. 86, pp. 291-299. .......................182 xviii
  • 19. 2.3.1.2 “Double Acting High Speed Hot and Warm Forging Press” SMS-Eumuco, Leverhusen, Germany (Product)....................................183 2.3.1.3 Wenzel, L., Gober, N., (2001) “Modern Forming Equipment for Universal Application in the Field of Warm and Hot Forming” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 23-40..............184 2.3.2 Tools............................................................................................185 2.3.2.1 Doege, E., Bohnsack, R., (2000) “Closed die technologies for hot forging” Journal of Materials Processing Technology, Vol. 98, pp. 165- 170. .............................................................................................185 2.3.2.2 Ervasti, E., Stahlberg, U., (1999) “A New Closed-die Forging Concept for the Manufacturing of Crown Wheels” Proceedings of 6th ICTP, Vol. III, pp. 1663-1668............................................................................186 2.3.2.3 Landgrebe, D., Naegele, H. and Lorenz, B. (2000), “Innovations in Forming Technology to Product Tubular Transmission Shafts,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 357-370................187 2.3.2.4 Wolf, A., Baur, J., Gullo, C., (2001) “Thixoforging” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 405-428..........189 2.3.2.5 Kwon, H., Bramley, A., (2000) “A development of ceramic inserts for forging tools” Annals of the CIRP, Vol. 49/1/2000, pp. 173-176. . .............................................................................................190 2.3.2.6 Doege, E., Huskic, A., Barnert, L., Gulde, M., Hornhardt, C., (2001) “Reduction of Wear on Forging Dies by use of New Technologies” New Developments in Forging Technology, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 315-328..........191 2.3.2.7 Kleiner, M. Klaus, A. "Manufacturer of Bent Aluminum Profiles During Hot Extrusion" (LFU - Univ. of Dortmund, Annual Report, p. 22 (ongoing research).................................................................................192 2.3.3 Process Variations.......................................................................192 2.3.3.1 “Thixoforging of Aluminum and Copper Alloys (Research)” Prof. K. Siegert / IFU – Institute for Metal Forming, Technical University Stuttgart, Germany.................................................................................193 2.3.3.2 Hass, J., Abdelfattah, S., (2002) “Potential of Thixoforging of Steel from an Industrial Perspective” (in German) Proceedings of 17th UKH, Hannover, pp. 193-207.................................................................193 2.3.3.3 Siegert, K. et al (2000), “Thixoforging of Aluminum Components,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 309- 325. .............................................................................................194 3. Materials ....................................................................................................195 3.1 Steels (including stainless and high strength steels) ..........................195 3.1.1 Feindt, J., (2002) “Use of High Strength Steels for Weight Reduction in Automotive Applications” (in German) Proceedings of 17th UKH, Hannover, pp. 259-267. .............................................................................195 xix
  • 20. 3.1.2 Kopp, R., Durr, O., (1999) “Innovative Metal Forming Processes to Manufacture Future Sheet Metal Products” Proceedings of 6th ICTP, Vol. I, pp. 69-82....................................................................................................195 3.1.3 Kopp, R. et al “Sheet with Non-Uniform Thickness – Manufacturing and Further Processing,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 143- 156. ....................................................................................................198 3.2 Aluminum Alloys .................................................................................199 3.2.1 Bolt, P., Lamboo, N., Rozier, P., (2001) “Feasibility of warm drawing of aluminium products” Journal of Materials Processing Technology, Vol. 115, pp. 118-121.................................................................................199 3.2.2 Girschewski, B., Pfestorf, M., (2000) “Influence of Dry Film Lubricants and Surface Structure on the Forming Behavior of Aluminum Sheets” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp 429-444.200 3.2.3 Girschewski, B., Pfestorf, M., (2000) “Influence of dry Film Lubricants and Surface Structure on the Forming Behavior of Aluminum Sheets” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 429-444. .... ....................................................................................................201 3.2.4 Bolt, P.J., Werkhoven,R.J.,& Boogard van de A.H., (2001) “Effect of elevated temperatures on the drawability of a aluminum sheet components”, Proceedings of ESAFORM, Liege, pp. 769-772. .......................................202 3.2.5 Takata, K., Ohwe,T., Saga, M., & Kikuchi,M., (2000) “Formability of Al-Mg alloy at warm temperature”, Materials Science Forum, Vols 331-337, pp 631-636.................................................................................................203 3.2.6 Geiger, M., Merklein, M., (2002) “Adaptive design of aluminum sheets for deep drawing process”, WGP Production Engineering, Germany, (In Print).....................................................................................................203 3.2.7 Geiger, M. and Hennige, T. (2000), “Building Light Structures Requires New Process Technology,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, p. 11-27. ....................................................................................................205 3.2.8 Bolt, P.J. et al (2000) “Warm Drawing of Aluminum Components,” Proceedings of the Conference on “Lightweight Construction by Forming Technology,” October 2000, Chemnitz, pp. 101-117. ................................205 3.2.9 Altan, T., (2002) “Warm forming of aluminum alloys – academic exercise or practical opportunity” Stamping Journal, January/February 2002. ....................................................................................................206 3.2.10 Novotny, S., Hein, P., (2001) “Hydroforming of sheet metal pairs from aluminium alloys” Journal of Materials Processing Technology, Vol. 115, pp. 65-69............................................................................................206 3.3 Magnesium Alloys and others.............................................................207 3.3.1 Juchmann, P., Wolff, S., Kurz, G., (2002) “Magnesium Sheet – Material Alternative for Design of Light Structures” (in German) Proceedings of 17th UKH, Hannover, pp. 179-192..........................................................207 xx
  • 21. 3.3.2 Friedrich, H., Schumann, S., (2001) “Research for a “new age of magnesium” in the automotive industry “Journal of Materials Processing Technology, Vol. 117, pp. 276-281............................................................208 3.3.3 Doege, E., Droder, K., (2001) “Sheet metal forming of magnesium wrought alloys — formability and process technology” Journal of Materials Processing Technology, Vol. 115, pp. 14-19. ............................................209 3.3.4 Droder,K., St.Janssen, (1999) “Forming of Magnesium alloys – A solution for light weight construction”, SAE Technical Paper No. 01-3172.209 3.3.5 Miha Nastran, Karl Kuzman, (2001) “Some contributions to the problems of cold forming of magnesium alloys”, Journal for Technology of Plasticity, Vol. 26, Number 1......................................................................210 3.3.6 Doege, E., Sebastian, W., Droder, K., Kurz, G., (2001) “Increased Formability of Mg Sheets using Temperature Controlled Deep Drawing Tools” Innovations in Processing and Manufacturing of Sheet Materials, pp. 53-60. ....................................................................................................212 3.3.7 Ogawa, N., Shiomi, M., and Osakada, K., (2002) “Forming limit of magnesium alloy at elevated temperatures for precision forging”..............213 4. Software.....................................................................................................216 4.1 Sheet Forming....................................................................................216 4.1.1 “Simulation of the Dynamic Behavior of Transfer Presses (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany. ................216 4.1.2 Tekkaya, A., (2000) “State-of-the-art of simulation of sheet metal forming” Journal of Materials Processing Technology, Vol. 103, pp. 14-22. .... ....................................................................................................216 4.1.3 Huang, D., Lee, J., (2001) “On obtaining machine tool stiffness by CAE techniques” International Journal of Machine Tools and Manufacture, Vol. 41, pp. 1149-1163...............................................................................218 4.1.4 Altan T., Thomas W., Vazquez V. (1999) “Simulation of Metal Forming Processes-Applications and Future Trends” Proceedings of 6th ICTP, Vol I, pp. 23-40. ...............................................................................219 4.2 Tube Hydroforming.............................................................................220 4.2.1 Yang, J., Jeon, B., Oh, S., (2001) “The tube bending technology of a hydroforming process for an automotive part“Journal of Materials Processing Technology, Vol. 111, pp. 175-181. ........................................220 4.2.2 1.6.3.1 Strano, M., Jirathearanat, S., Altan, T., (2001) “Adaptive FEM Simulation for Tube Hydroforming; A Geometry-Based Approach for Wrinkle Detection” Annals of the CIRP, Vol. 50/1/2001, pp. 185-190. .......223 4.2.3 1.6.3.2 Ngaile G. et al (2001) "Progress in Tube Hydroforming R & D - Materials, Friction and Process Modeling", Int. Conference on THF, Novi, Michigan, Sept. 18-20, 2001......................................................................224 4.2.4 Jirathearanat S. and Altan T. (2001) "Determination of Proper Loading Paths in Tube Hydroforming and Stamping using FEM Simulation", prepared for Ameripam 2001, Oct. 24/25, Powerpoint presentation only. .227 4.3 Rod and Billet Forging ........................................................................228 xxi
  • 22. 4.3.1 Biba, N., Stebounov, S., Lishiny, A., (2001) “Cost effective implementation of forging simulation” Journal of Materials Processing Technology, Vol. 113, pp. 34-39................................................................228 4.3.2 Doeringer, M (2000) "The Application of DEFORM in Metal Forming", technical paper provided by Schuler, Inc...................................230 4.3.3 “Development of a Software Module for the Determination of Tool Life in Cold Forging (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany. ............................231 4.3.4 Vazquez, V. and Altan T. (2000) “ Possibilities and Limits of Simulation Massive Forming” 7th Umformtechnisches Kolloqium, Darmstadt, GERMANY (UKD 2000) March 14/15, 2000..............................................232 5. Other Supporting Technologies .................................................................234 5.1 Tool Coatings .....................................................................................234 5.1.1 Sato, T., Besshi, T., (1998) “Anti-galling evaluation in aluminum sheet forming” Journal of Materials Processing Technology, Vol. 83, pp. 185- 191. ....................................................................................................234 5.1.2 Sato, T., Besshi, T., Tsutsui, I., Morimoto, T., (2000) “Anti-galling property of a diamond-like carbon coated tool in aluminum sheet forming” Journal of Materials Processing Technology, Vol. 104, pp. 21-24. ............234 5.1.3 Schulz, A., Stock, H., Mayr, P., Staeves, J., Schmoeckel, D., (1997) “Deposition and investigation of TiN PVD coatings on cast steel forming tools” Surface and Coatings Technology, Vol. 94-95, pp. 446-450............236 5.1.4 Navinsek, B., Panjan, P., Gorenjak, F., (2001) “Improvement of hot forging manufacturing with PVD and DUPLEX coatings” Surface and Coatings Technology, Vol. 137, pp. 255-264.............................................236 5.1.5 Navinsek, B., Panjan, P., Urankar, I., Cvahte, P., Gorenjak, F., (2001) “Improvement of hot-working processes with PVD coatings and duplex treatment” Surface and Coatings Technology, Vol. 142-144, pp. 1148-1154..................................................................................................237 5.1.6 Smolik, J., Walkowicz, J., Tacikowski, J., (2000) “Influence of the structure of the composite: ‘nitrided layer/PVD coating’ on the durability of tools for hot working” Surface and Coatings Technology, Vol. 125, pp. 134- 140. ....................................................................................................238 5.1.7 Geiger, M., Popp, U., Engel, U., (2002) “Improved Tribological Behavior of Cold Forging Tool Surfaces by Excimer Laser Micro Texturing” WGP Production Engineering, Germany, (In Print)....................................239 5.1.8 Groche, P., Tibari, K., (2002) “Performance of Coatings Against Wear in Dry Blanking” WGP Production Engineering, Germany, (In Print)...... ....................................................................................................239 5.1.9 Osakada, K., (2000) “Fundamental study of dry metal forming with coated tools” Annals of the CIRP, Vol. 49/1/2000, pp. 161-164.................240 5.1.10 “Development of ceramic coatings by pyrolysis, especially laser pyrolysis of organo-metallic polymers (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany.241 xxii
  • 23. 5.1.11 “Advanced surface texturing of hard coated cold forging tools (Research)” Prof. M. Geiger – Institute for Manufacturing Science, University of Erlangen-Nuremberg, Germany.............................................................242 5.1.12 Roescher, A., Tinnemans, A., (2001) “A new coating for deep drawing with preservation–lubricant–primer properties” Progress in Organic Coatings, Vol. 43, pp. 111-122. .................................................................242 5.1.13 “Wear Test for Deep Drawing and Stretch Forming Dies (Research)” Prof. P. Groche / PtU – Institute for Production Technology and Forming Machines, Technical University Darmstadt, Germany. ................243 5.1.14 Bolt, P., Schaake, R., (1999) “Lubricant Reduction in Aluminum Deep Drawing by Means of Tool Coatings or Lubricant Primers” Proceedings of 6th ICTP, Vol. I, pp. 627-632. .................................................................243 5.1.15 Neudecker, T., Popp, U., Schraml, T., Engel, U., Geiger, M., (1999) “Towards Optimized Lubrication by Micro Texturing of Tool Surfaces” Proceedings of 6th ICTP, Vol. I, pp. 619-626..............................................244 5.2 Process Monitoring and Control .........................................................245 5.2.1 Tomov, B., Chodnikiewicz, K., (1998) “A mechanical device for measuring the displacement and rotation of a blanking or forging press” Journal of Materials Processing Technology, Vol. 77, pp. 70-72. ..............245 5.2.2 Breitling, J., Wallace, D., Altan, T., (1996) “Investigations of different loading conditions in a high speed mechanical press” Journal of Materials Processing Technology, Vol. 59, pp. 18-23................................246 5.2.3 Breitling, J., Pfeiffer, B., and Altan T., (1997) "Process Control in Blanking", Journal of Materials Processing Technology, Vol. 71, pp. 187-192. ....................................................................................................247 5.3 Prototyping and Rapid Tooling ...........................................................249 5.3.1 Yarlagadda, P., Ilyas, I., Christodoulou, P., (2001) “Development of rapid tooling for sheet metal drawing using nickel electroforming and stereolithography processes” Journal of Materials Processing Technology, Vol. 111, pp. 286-294.................................................................................249 5.3.2 Weaver, T., Thomas, J., Atre, S., German, R., (2000) “Time compression-rapid steel tooling for an ever-changing world” Materials and Design, Vol. 21, pp. 409-415. ....................................................................249 5.3.3 Nakagawa, T., (2000) “Advances in prototype and low volume sheet forming and tooling” Journal of Materials Processing Technology, Vol. 98, pp. 244-250..........................................................................................250 5.3.4 Khaing, M., Fuh, J., Lu, L., (2001) “Direct metal laser sintering for rapid tooling: processing and characterization of EOS parts” Journal of Materials Processing Technology, Vol. 113, pp. 269-272..........................251 5.3.5 Dimov, S., Pham, D., Lacan, F., Dotchev, K., (2001) “Rapid tooling applications of the selective laser sintering process” Assembly Automation, Vol. 21, pp. 296-302. .................................................................................252 5.3.6 Choi, D., Lee, S., Shin, B., Whang, K., Song, Y., Park, S., Jee, H., (2001) “Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology” Journal of Materials Processing Technology, Vol. 113, pp. 273-279............................................................253 xxiii
  • 24. 5.3.7 Zhang, H., Wang, G., Luo, Y., Nakaga, T., (2001) “Rapid hard tooling by plasma spraying for injection molding and sheet metal forming” Thin Solid Films, Vol. 390, pp. 7-12. ..........................................................253 5.3.8 Huhn, S., Haller, B., Ismailoglu, Y., (2000) “Manufacturing of Prototype Tools for Sheet Metal Forming” New Developments in Sheet Metal Forming, Institute for Metal Forming Technology of the University of Stuttgart, Germany, pp. 445-466. ..............................................................254 5.3.9 Yang, B., Leu, M., (1999) “Integration of rapid prototyping and electroforming for tooling applications” Annals of the CIRP, Vol. 48/1/1999, pp. 119-122................................................................................................256 5.3.10 Doege, Frank, (2000) “Polymers as Tooling Materials for Deep Drawing of Sheet Metal with Organic Coatings” WGP Production Engineering, Germany, Vol. VII/2, pp. 103-106. ........................................257 5.3.11 Kleiner, M. and Krux, R. (2000), “Rapid Tooling with laminated dies for drawing and stretching,” LFU – University of Dortmund, Annual Report, p. 22 (ongoing research)................................................................................260 5.3.12 Kleiner, M., Kolleck, R., Rauer, J., Weidner, T., (2000) “Die-less forming of sheet metal parts” Journal of Materials Processing Technology, Vol. 103, pp. 109-113.................................................................................260 xxiv
  • 25. LIST OF FIGURES Figure 1.1.1.1-1: Experimental apparatus for laser bending .................................1 Figure 1.1.1.1-2: Scanning paths of laser and measured height distributions.......2 Figure 1.1.1.2-1: Principle of Section Bending......................................................3 Figure 1.1.1.3-1: New Rolling System...................................................................4 Figure 1.1.1.4-1: Roll forming of a part with variable sections along length..........5 Figure 1.1.2.2-1: Simulation and experimental result of the bent part after springback .....................................................................................................6 Figure 1.1.2.3-1: CNC-two roll round bending ......................................................7 Figure 1.1.3.2-1: Apparatus for laser and spark forming of thin plate springs.....10 Figure 1.3.1.2-1: Linear motor drive press for precision forming.........................12 Figure 1.3.1.3-1: Investigation of the dynamic behavior of linear guides ............13 Figure 1.3.1.4-1: Press with non-round gear drive..............................................14 Figure 1.3.1.5-1: Eccentric shaft flexible drive using planetary gearbox .............15 Figure 1.3.1.5-2: Velocity versus stroke for flexible drive system .......................15 Figure 1.3.1.6-1: Underdrive structure of linear motor press...............................16 Figure 1.3.1.6-2: External view of linear motor press..........................................16 Figure 1.3.1.6-3: Linear scale for learning control...............................................17 Figure 1.3.1.6-4: Various press ram movements ................................................17 Figure 1.3.2.2-1: Comparison of nitrogen and mechanical springs.....................19 Figure 1.3.2.2-2: Self-contained nitrogen gas spring system..............................19 Figure 1.3.2.2-3: Hosed nitrogen gas spring system...........................................20 Figure 1.3.2.2-4: Manifold nitrogen gas spring system .......................................20 Figure 1.3.2.2-5: Tank nitrogen gas spring system.............................................20 Figure 1.3.2.2-6: One-chamber system ..............................................................21 Figure 1.3.2.2-7: Two-chamber system ..............................................................21 Figure 1.3.2.2-8: Modified/sealed two-chamber system......................................22 Figure 1.3.2.4-1: Controllable nitrogen spring systems.......................................23 Figure 1.3.2.5-1: One-chamber system (a), two-chamber system (b), and modified two-chamber system (c)................................................................24 Figure 1.3.2.5-2: Tank system (a) and autonomous spring (b) ...........................24 Figure 1.3.2.5-3: Operation principle (a) and sample force behavior (b).............25 Figure 1.3.2.5-4: Side member die with controllable nitrogen springs.................25 Figure 1.3.2.6-1: Damage distribution in the sheet at the second stage of the process predicted by finite element simulation ............................................26 Figure 1.3.2.6-2: Thickness distribution at the last stage in the operation as predicted by FEM simulation for optimized process conditions....................26 Figure 1.3.3.1-1: Roller assembly for rotary blanking..........................................27 Figure 1.3.3.1-2: Rotary blanking tool.................................................................27 Figure 1.3.3.2-1: Schematic of water jet cutting a) pure water b) abrasive .........29 Figure 1.3.3.2-2: Pressure intensifier principle of operation................................29 Figure 1.3.3.2-3: Water jet machining center ......................................................30 Figure 1.3.3.2-4: Water jet machining center for automotive industry.................30 Figure 1.3.3.2-5: Sample water jet cut parts .......................................................31 Figure 1.3.3.3-1: Schematic of micro punch tooling............................................31 Figure 1.3.3.3-2: Punched micro-hole on brass (upper and lower sides)............32 xxv
  • 26. Figure 1.3.3.4-1: Controllable straightening system............................................33 Figure 1.4.1.1-1: Hydro-kinematic press concept ...............................................34 Figure 1.4.1.2-1: CNC controlled 10-point cushion system.................................35 Figure 1.4.1.4-1: Hybrid (hydraulic-mechanical) press........................................36 Figure 1.4.1.4-2: Non-circular geared mechanical press and optimized stroke vs. time curves ..................................................................................................37 Figure 1.4.1.5-1: Multi-point cushion system ......................................................37 Figure 1.4.1.5-2: Multi-point cushion system with 10 height adjustable pins.......38 Figure 1.4.1.5-3: Segmented elastic blank holder...............................................38 Figure 1.4.1.5-4: Prismatic die design.................................................................39 Figure 1.4.1.5-5: Hydraulic multi-point cushion contained in the die...................39 Figure 1.4.1.5-6: Closed loop control system......................................................40 Figure 1.4.1.6-1: Electronic transfer system attached to the press .....................41 Figure 1.4.1.6-2: Multimode transfer feed system attached to the press ............41 Figure 1.4.1.6-3: Degrees of motion of DOS.......................................................42 Figure 1.4.1.7-1: Multiple slide cylinders to increase the press speed................43 Figure 1.4.1.7-2: Schematic view of ECO- cushion system ................................44 Figure 1.4.1.7-3: Schematic view of Force- neutral parallelism control...............45 Figure 1.4.1.8-1: Operation sequence of MPF press ..........................................46 Figure 1.4.1.12-1: Multi-point blank holder cushion ............................................50 Figure 1.4.1.12-2: Active slide parallelism control...............................................51 Figure 1.4.1.13-1: Stamping press under off-center loading...............................52 Figure 1.4.1.14-1: 3 axis CNC machine tool with rounded tool ...........................53 Figure 1.4.1.14-2: Movement of tool forms the component.................................53 Figure 1.4.2.2-1: Blank holder force control........................................................54 Figure 1.4.2.3-1: Segmented elastic blank holder...............................................55 Figure 1.4.2.4-1: Forming of tailored blanks .......................................................56 Figure 1.4.2.5-1: Thin plate elastic blank holder .................................................57 Figure 1.4.2.7-1: Pliable blank holder system.....................................................58 Figure 1.4.2.11-1: Image sensing camera system ..............................................61 Figure 1.4.2.14-1: Four methods of multi-point forming ......................................63 Figure 1.4.2.16-1: Active draw bead mechanism used in dies............................64 Figure 1.4.2.17-1: Conventional blank holder with box type or C-profile castings .....................................................................................................................65 Figure 1.4.2.17-2: Pressure distribution in conventional blank holder due to uniform cushion force ..................................................................................66 Figure 1.4.2.17-3: Principle of segmented elastic blank holder...........................66 Figure 1.4.2.17-4: Prismatic draw ring construction and possible sections.........67 Figure 1.4.2.17-5: Pressure distribution in the segmented elastic blank holder due to cushion force. ...................................................................................67 Figure 1.4.2.17-6: Experimental setup for multi point cushion system................68 Figure 1.4.2.17-7: Optimum blank holder force used in multipoint system to draw a rectangular pan.........................................................................................68 Figure 1.4.2.18-1: Principle of incremental forming.............................................69 Figure 1.4.2.18-2: Forming path and definition of forming parameters ...............69 xxvi
  • 27. Figure 1.4.2.19-1: Asymmetric panel formed from aluminum alloy using active draw beads ..................................................................................................70 Figure 1.4.2.19-2: Trajectories for active draw bead in experiment and simulation .....................................................................................................................70 Figure 1.4.2.20-1: Example ceramic inserts used in tooling................................72 Figure 1.4.2.20-2: Tool life of TiC / TiN coated tool in the experiment ................73 Figure 1.4.2.20-3: Surface roughness of the ceramic tool in the experiment......73 Figure 1.4.2.21-1: Conventional and segmented elastic binder ..........................74 Figure 1.4.2.21-2: Binder system for four-pin hydraulic cushion press ...............74 Figure 1.4.2.21-3: Segmented-elastic die with uniform stiffness.........................75 Figure 1.4.2.22-1: Blank holder force control scheme.........................................76 Figure 1.4.2.23-1: Tool system with pliable blank holder ....................................77 Figure 1.4.2.25-1: Three point force actuator......................................................79 Figure 1.4.2.25-2: Three point actuator configured for axisymmetric part...........79 Figure 1.4.2.25-3: Five point actuator configured for rectangular part ................79 Figure 1.4.2.28-1: Schematic view of hydraulic/nitrogen cylinder blank holder force control system.....................................................................................82 Figure 1.4.2.28-2: System response to step reference signal.............................83 Figure 1.4.2.28-3: System response to ramp reference signal ...........................83 Figure 1.4.2.29-1: Sheet insert in dies to reduce wear........................................84 Figure 1.4.2.30-1: Schematic view of the pin, module and full-scale model of the reconfigurable tooling ..................................................................................86 Figure 1.4.3.2-1: Closed loop fuzzy logic control system for optimizing spinning process ........................................................................................................87 Figure 1.5.1.1-1: Hydrodynamic deep drawing system.......................................89 Figure 1.5.1.2-1: Hydromechanical deep drawing press.....................................90 Figure 1.5.1.2-2: Hydromechanical deep drawing operating sequence ..............91 Figure 1.5.1.3-1: Sheet hydroforming with stretching prior to deep drawing.......92 Figure 1.5.1.4-1: Triple-action hydromechanical deep drawing press.................93 Figure 1.5.1.4-2: Hydromechanical deep drawing press principle of operation...93 Figure 1.5.1.5-1: High-pressure sheet metal forming process ............................94 Figure 1.5.1.5-2: Multi-point blank holder system with flange draw-in sensors ...95 Figure 1.5.1.5-3: High-pressure sheet metal forming press requirements ..........95 Figure 1.5.1.5-4: 100,000 kN hydroforming press system components..............96 Figure 1.5.1.6-1: 10,000 MN horizontal sheet hydroforming press .....................97 Figure 1.5.2.1-1: Hydraulic-pressure augmented deep drawing system.............97 Figure 1.5.2.2-1: Hydromechanical deep drawing tool........................................99 Figure 1.5.2.2-2: Process limits of hydromechanical deep drawing ....................99 Figure 1.5.2.3-1: Double sheet hydroforming process steps.............................100 Figure 1.5.2.4-1: Deep drawing with fluid assisted blank holding .....................101 Figure 1.5.2.4-2: Hydroforming with pressure and rubber diaphragm...............101 Figure 1.5.2.4-3: Hydromechanical deep drawing.............................................102 Figure 1.5.2.4-4: Hydrodynamic deep drawing .................................................102 Figure 1.5.2.4-5: Radial pressure deep drawing ...............................................102 Figure 1.5.2.5-1: Short-stroke device used in experiments...............................103 Figure 1.5.2.6-1: Hydraulic multipoint cushion included in die ..........................104 xxvii
  • 28. Figure 1.5.2.6-2: Combination of conventional deep drawing with hydroforming ...................................................................................................................105 Figure 1.5.2.6-3: Conventional deep drawing with hydroforming of double blanks ...................................................................................................................105 Figure 1.5.2.8-1: Hydroforming of unwelded sheet metal pairs.........................107 Figure 1.5.2.8-2: Docking systems for hydroforming.........................................107 Figure 1.5.2.8-3: Design guidelines for hydroformed parts ...............................108 Figure 1.5.2.9-1: Comparison of conventional drawing and sheet hydroforming ...................................................................................................................109 Figure 1.5.2.9-2: Front section of a Mitsuoka Viewt vehicle..............................110 Figure 1.5.2.9-3: Roof and fender hydroformed from 1.1 mm aluminum sheet.110 Figure 1.5.2.9-4: Hydroformed aluminum reflectors and parabolic antenna .....110 Figure 1.5.2.9-5: Stainless steel sinks hydroformed in one step (t = 0.7 mm)...111 Figure 1.5.2.9-6: Radial pressure deep drawing ...............................................111 Figure 1.5.2.9-7: Pre-painted train panel (t = 1.2 mm) and range hood (t = 0.6 mm) ...........................................................................................................111 Figure 1.5.2.9-8: NC dieless forming equipment setup.....................................112 Figure 1.5.2.9-9: Dieless NC formed automotive fenders (t = 0.8 mm).............112 Figure 1.5.2.9-10: Aluminum bath unit (t = 2.0 mm) and soaker tub (t = 4.0mm) ...................................................................................................................113 Figure 1.5.2.10-1: Comparison of conventional forming to plate hydroforming.113 Figure 1.5.2.10-2: Parallel plate hydroforming process schematic ...................114 Figure 1.5.2.10-3: Sealing lance (top) and hemispherical (bottom) docking systems .....................................................................................................114 Figure 1.5.2.10-4: Example sheet geometry for parallel plate hydroforming.....115 Figure 1.5.2.10-5: Examples of producible and non-producible cross sections 115 Figure 1.5.2.10-6: Examples of feasible and non-feasible flange geometries...116 Figure 1.5.2.10-7: Vertical component offset ....................................................116 Figure 1.5.2.10-8: Symmetrical and asymmetrical flange draw in.....................116 Figure 1.5.2.12-1: Hydroforming of hollow component from sheet metal..........118 Figure 1.5.2.13-1: Sheet hydroforming process................................................119 Figure 1.5.2.14-1: Horizontal hydroforming press.............................................120 Figure 1.5.2.15-1: High-pressure sheet metal forming process (HBU) .............121 Figure 1.5.2.15-2: University of Dortmund multi-point blank holder system......121 Figure 1.5.2.15-3: Pneumomechanical deep drawing process .........................122 Figure 1.5.2.16-1: Docking system using spherical projection on lower die......123 Figure 1.5.2.16-2: Splitting chisel docking system ............................................124 Figure 1.5.2.16-3: Inserted connecting branch docking system........................124 Figure 1.5.2.16-4: Ring channel docking system ..............................................125 Figure 1.5.2.16-5: Attached connecting branch docking system.......................126 Figure 1.5.2.16-6: Distance plate docking system ............................................126 Figure 1.5.2.16-7: Docking system using hollow-drilled axial plunger...............127 Figure 1.5.2.16-8: Docking system using pressure plate in flange area............127 Figure 1.5.2.17-1: Deep drawing and hydroforming process combination........128 Figure 1.5.2.17-2: “Hishida” geometry used in investigations ...........................128 Figure 1.5.2.17-3: Thickness distribution after deep drawing to 70 mm............128 xxviii
  • 29. Figure 1.5.2.17-4: Strain distribution after hydroforming cavity.........................129 Figure 1.5.2.17-5: Experimental tooling ............................................................129 Figure 1.5.2.17-6: Deep drawing process limits................................................129 Figure 1.5.2.17-7: Hydroforming process limits ................................................130 Figure 1.5.2.18-1: Hydromechanical deep drawing process.............................131 Figure 1.5.2.18-2: Plastic fuel tank versus steel fuel tank variant .....................131 Figure 1.5.2.18-3: Fuel tank split into upper and lower shell.............................131 Figure 1.5.2.18-4: Upper shell formed by conventional deep drawing ..............132 Figure 1.5.2.18-5: Lower shell formed by hydromechanical deep drawing .......132 Figure 1.5.2.18-6: Comparison of plastic and steel fuel tanks ..........................133 Figure 1.5.2.20-1: Modified hydromechanical deep drawing tooling .................134 Figure 1.5.2.20-2: Cup drawn from Al 1050 HO (draw ratio = 2.86)..................134 Figure 1.5.2.20-3: Drawn cup from Al 6016 (draw ratio = 2.29) ........................135 Figure 1.5.2.21-1: Docking systems used for internal high-pressure forming ...136 Figure 1.5.2.21-2: Bursting pressure as a function of draw depth.....................137 Figure 1.5.2.21-3: Process limits diagram for internal high-pressure forming...137 Figure 1.5.2.21-4: Combined deep drawing and internal high-pressure forming ...................................................................................................................138 Figure 1.5.2.21-5: “Active Hydro-Mec” process ................................................138 Figure 1.5.2.21-6: Engine hood formed by “Active Hydro-Mec” process...........139 Figure 1.5.3.3-1: Sheet hydroforming with electro hydraulic forming ................141 Figure 1.6.1.2-1: Hydraulic closing device ........................................................143 Figure 1.6.1.2-2: Pressure intensifier barrel designs.........................................144 Figure 1.6.1.2-3: Forming medium treatment system .......................................144 Figure 1.6.1.3-1: Two-column press system .....................................................145 Figure 1.6.1.3-2: 5000 ton double-ram press system........................................145 Figure 1.6.1.4-1: Principle of section bending...................................................146 Figure 1.6.1.5-1: Tubular part bent with “Hexabend” ........................................147 Figure 1.6.2.3-1: External high-pressure forming..............................................149 Figure 1.6.2.3-2: Incorporation of buckling modes and mandrel design............150 Figure 1.6.2.5-1: Outside inwards punching .....................................................152 Figure 1.6.2.5-2: Inside outwards punching ......................................................152 Figure 1.6.2.5-3: Axial sealing system for multi-cavity sections ........................153 Figure 1.6.2.6-1: Proposed mandrel design......................................................154 Figure 1.6.2.8-1: Influencing parameters in profile bending..............................156 Figure 1.6.3.1-1: Tailor welded tubes................................................................158 Figure 2.1.1.1-1: Shape of SKM .......................................................................159 Figure 2.1.3.2-1: Die Mounting and Oscillation System ....................................161 Figure 2.1.3.4-1: Gear teeth manufacture using combined rolling/ironing.........162 Figure 2.2.1.1-1: Comparison of new drive to eccentric and modified knuckle joint ...................................................................................................................164 Figure 2.2.1.2-1: Servo former designated ASF with screw drive .....................165 Figure 2.2.1.3-1: Press concept with non-circular gear.....................................166 Figure 2.2.1.5-1: Principle of Open Die Forging................................................168 Figure 2.2.2.8-1: Time motion diagram with transfer.........................................174 Figure 2.2.2.9-1: Process chains used to manufacture hollow shafts ...............175 xxix
  • 30. Figure 2.2.2.10-1: Nutation/spin machine concept............................................176 Figure 2.2.2.11-1: System structure..................................................................178 Figure 2.2.2.16-1: Cold forging of T-shaped parts ............................................180 Figure 2.3.1.2-1: Double-acting forging press...................................................184 Figure 2.3.1.3-1: Schematic representation of hydraulic clutch / brake.............185 Figure 2.3.2.2-1: Experimental results ..............................................................186 Figure 2.3.2.3-1: Sample parts with internal contours.......................................187 Figure 2.3.2.3-2: Hot and warm cross rolling with mandrels .............................188 Figure 2.3.2.3-3: Example part delivered ready to assemble............................189 Figure 2.3.2.5-1: Material flow pattern from analysis and experiments.............190 Figure 2.3.2.6-1: Forging dies used in testing...................................................191 Figure 2.3.2.6-2: Electro Static Powder Coating Technology............................191 Figure 2.3.2.7-1: Manufacture of bent aluminum profiles during extrusion .......192 Figure 2.3.3.1-1: Examples of thixoforged parts ...............................................193 Figure 2.3.3.2-1: Examples of thixoforged parts ...............................................194 Figure 3.1.1-1: Sample part formed from MSW 1200 martensitic steel.............195 Figure 3.1.2-1: Process shortening in strip fabrication......................................196 Figure 3.1.2-2: Flexible manufacturing processes ............................................197 Figure 3.1.2-3: Innovative semi finished products from sheet and tube............197 Figure 3.1.2-4: Influence of laser beam on the curvature of sheets ..................198 Figure 3.1.3-1: Tailor rolled blanks....................................................................199 Figure 3.2.2-1: M3 outer bonnet die and sensors .............................................200 Figure 3.2.6-1: Laser irradiation strategy for round cup deep drawn blanks .....204 Figure 3.2.6-2: Laser irradiation to improve the drawbility of a conventional blank and tailor welded blank in an automotive application.................................204 Figure 3.3.1-1: Hydroforming heated magnesium sheet metal .........................208 Figure 3.3.5-1: Experimental setup for upsetting magnesium alloy billets in a hydrostatic stress state..............................................................................211 Figure 3.3.5-2: Experimental setup for cold forward extrusion of magnesium alloy billet in a hydrostatic stress state...............................................................211 Figure 3.3.5-3: Experimental setup for combined upsetting and backward extrusion ....................................................................................................212 Figure 3.3.6-1: Tool setup for partial die heating in warm forming of magnesium alloy ...........................................................................................................213 Figure 3.3.7-1: Results of upsetting test on magnesium alloy ZK60 .................214 Figure 3.3.7-2: Results of backward cup extrusion test on magnesium alloy ZK60 at 300o C.....................................................................................................215 Figure 4.1.1-1: FEM modeling of press vibration during blanking .....................216 Figure 4.1.2-1: Simulation of a wheel cover......................................................217 Figure 4.1.3-1: Vertical machining center consisting of five modules................218 Figure 4.1.3-2: FEM models showing fine column and table mesh...................219 Figure 4.2.1-1: Shape and cross-sections of the tie bar....................................221 Figure 4.2.1-2: Rotary draw bending machine geometry and mesh density .....221 Figure 4.2.1-3: Predicted thickness distribution after bending ..........................222 Figure 4.2.1-4: FEM model of hydroforming dies and prebent tube..................222 Figure 4.2.1-5: Predicted thickness distribution after hydroforming ..................223 xxx
  • 31. Figure 4.2.2-1: ERC/NSM tube hydroforming adaptive FEM methodology.......224 Figure 4.2.3-1: ERC/NSM hydraulic formability tooling.....................................225 Figure 4.2.3-2: Friction zones in tube hydroforming..........................................225 Figure 4.2.3-3: ERC/NSM guiding zone tooling ................................................226 Figure 4.2.3-4: ERC/NSM limiting dome height tooling.....................................226 Figure 4.2.3-5: ERC/NSM pear-shaped expansion tooling ...............................227 Figure 4.2.4-1: ERC/NSM blank holder force optimization methodology ..........228 Figure 4.3.1-1: Flow-through defect occurring at end of stroke.........................229 Figure 4.3.1-2: Elastic deflection of upper and lower dies (magnified)..............230 Figure 4.3.2-1: Simulation of shaft shoulder forming in DEFORM ....................231 Figure 5.1.2-1: Schematic view of bending test ................................................235 Figure 5.1.2-2: Schematic view of bent specimen.............................................235 Figure 5.1.4-1: Production part used for testing................................................237 Figure 5.1.6-1: Results of maintenance tracking...............................................239 Figure 5.1.9-1: Effect of reduction in height on coefficient of friction.................241 Figure 5.1.9-2: Effect of oxide layer on friction with coated tools ......................241 Figure 5.1.12-1: Conventional deep drawing vs. PLP deep drawing.................242 Figure 5.1.14-1: TNO slider on sheet tribometer...............................................244 Figure 5.1.15-1: Excimer laser material processing..........................................245 Figure 5.1.15-2: Strip drawing testing device....................................................245 Figure 5.2.3-1: In-die sensor locations..............................................................248 Figure 5.3.2-1: Picture of final tool set ..............................................................250 Figure 5.3.3-1: Low melting point alloy casting process....................................251 Figure 5.3.5-1: Die casting tool produced from RapidTool inserts .................252 Figure 5.3.7-1: Heat resistant mold manufacturing process..............................254 Figure 5.3.8-1: V-process for sand mold production .........................................255 Figure 5.3.9-1: EDM tooling process.................................................................256 Figure 5.3.9-2: Mold tooling process.................................................................256 Figure 5.3.10-1: Set up for making polyurethane mold making.........................258 Figure 5.3.10-2: Manufacturing of polymeric die by gel-coat technique............258 Figure 5.3.10-3: Manufacture of polymeric die by cast front technique.............258 Figure 5.3.10-4: Prototype tool for drawing of aluminum components..............259 Figure 5.3.11-1: Die assembled from laser cut sheet material..........................260 Figure 5.3.11-2: Use of a rubber or plastic layer material .................................260 xxxi
  • 32. 1. Sheet and Tube Forming Machines and Tooling 1.1 Sheet Bending and Shearing 1.1.1 Machines 1.1.1.1 Otsu, M., Fujii, M., Osakada, K., (1999) “Three-Dimensional Laser Bending of Sheet Metal” Proceedings of 6th ICTP, Vol. II, pp. 1025-1030. Laser has been utilized as an easy-controllable heat source of high power density in sheet metal bending. In the present paper, three-dimensional laser bending of sheet metals is studied using a pulsed YAG laser. The laser beam is guided through an optical fiber cable and irradiated on an 18Cr-8Ni stainless steel sheet, which is bent by thermal stress. Supporting pins hold the sheet while the laser is scanned by x-y table, which is numerically controlled via a personal computer. Experiments are performed by changing working conditions such as scanning speed, pitch and path of the laser. The three- dimensional shape of the formed sheet is measured. Figure 1.1.1.1-1 shows the experimental apparatus. Figure 1.1.1.1-1: Experimental apparatus for laser bending 1
  • 33. Figure 1.1.1.1-2: Scanning paths of laser and measured height distributions Grids, concentric circular and radial paths for scanning the laser are used, as shown in Figure 1.1.1.1-2, and the formed shapes are investigated. The sheet is formed into a conical shape in the case of scanning the laser in radial path and into a spherical shape by radial scanning with many stages. To improve the accuracy of the final shape, it is necessary that the three-dimensional shape of the deformed sheet is measured during irradiating laser beam and the obtained shape is used for controlling the working conditions. The need for development of a database for storing the working conditions for the typical deformed work shape and an intelligent system for determination of working conditions is stressed. 1.1.1.2 Arnet, H., (1999) “Section Bending with Kinematic Shaping” Proceedings of 6th ICTP, Vol. III, pp. 2349-2354. Aluminum sections are being increasingly used in cars, in rail vehicles, airplanes etc. constructive requirements regarding cross sectional shape of the section and the curvature necessitate a high expenditure of tools in bending technology. The new section bending technology presented in this paper combines kinematic shaping with the advantages of elastic tools in order to achieve a maximum of bending (see Figure 1.1.1.2-1). Hereby the sections are bent using a rigid collar and a flexible polyurethane pad that is embedded in a solid steel retainer installed on linear tracks. 2