SlideShare a Scribd company logo
1 of 65
Download to read offline
nth Roots Of Unity  z   n
                              1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis 
                5           5        5          5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5



                                                                        x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5


                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1     If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                          1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                          1    5 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1         If  is a solution then  5  1
                          15
                           5 5


                               1    5 is a solution

      
     2 5        5 2
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2


            12
           1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5     5 3


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3


            12                               13
        1                                   1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3


            12                               13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3
                                                               
                                                              4 5      5 4


            12                               13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3
                                                               
                                                              4 5          5 4


            12                               13                    14
        1                                1                        1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3
                                                                 
                                                               4 5          5 4


            12                               13                     14
        1                                1                       1
 2 is a solution                 3 is a solution        4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                 1    5 is a solution

      
     2 5          5 2
                                        
                                       3 5          5 3
                                                                 
                                                               4 5          5 4


            12                               13                     14
        1                                1                       1
 2 is a solution                 3 is a solution        4 is a solution

            Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
                       b
           
            2     3     4     5

                       a
ii  Prove that 1     2   3   4  0
                       b
           
            2     3     4     5
                                               sum of the roots 
                       a
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    5
                                                         1
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    5
                                                         1
OR   1  0
    5
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    5
                                                         1
OR   1  0
     5


     11     2   3   4   0
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    1
                                                    5


OR   1  0
     5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
                                                  11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4                              GP: a  1, r   , n  5
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                    5
                                                      1
OR   1  0
      5
                                                   NOTE :                              
                                                   n                                   
     11     2   3   4   0           1  0                             
 1     2   3   4  0   1               11     2     n1   0
                                                                                       
OR                                 a  r n  1
       1   2  3  4                              GP: a  1, r   , n  5
                                      r 1
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                                 sum of the roots 
                               a
       1   2  3  4  0                      5
                                                         1
OR   1  0
      5
                                                      NOTE :                              
                                                      n                                   
     11     2   3   4   0              1  0                             
 1     2   3   4  0   1                  11     2     n1   0
                                                                                          
OR                                    a  r n  1
       1   2  3  4                                 GP: a  1, r   , n  5
                                        r 1
                                      1 5  1
                                  
                                          1
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                                 sum of the roots 
                               a
       1   2  3  4  0                      5
                                                         1
OR   1  0
      5
                                                      NOTE :                              
                                                      n                                   
     11     2   3   4   0              1  0                             
 1     2   3   4  0   1                  11     2     n1   0
                                                                                          
OR                                    a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                        r 1
                                      1 5  1
                                                         0
                                          1
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                                 sum of the roots 
                               a
       1   2  3  4  0                      5
                                                         1
OR   1  0
      5
                                                      NOTE :                              
                                                      n                                   
     11     2   3   4   0              1  0                             
 1     2   3   4  0   1                  11     2     n1   0
                                                                                          
OR                                    a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                        r 1
                                      1 5  1                    5
                                                                          1  0
                                                         0
                                          1
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
ii  Prove that 1     2   3   4  0
                               b
           
            2     3     4     5
                                               sum of the roots 
                               a
       1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
             1
ii  Prove that 1     2   3   4  0
                                b
            
            2     3     4     5
                                               sum of the roots 
                                a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1
ii  Prove that 1     2   3   4  0
                                b
            
            2     3     4     5
                                               sum of the roots 
                                a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
ii  Prove that 1     2   3   4  0
                                b
            
            2     3     4     5
                                               sum of the roots 
                                a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
                                                   3  4    2
                                                   1
ii  Prove that 1     2   3   4  0
                                b
            
             2     3     4     5
                                               sum of the roots 
                                a
        1   2  3  4  0                    1
                                                    5


OR   1  0
          5
                                                  NOTE :                              
                                                  n                                   
         11           0 
                        2    3      4
                                                   1  0                             
  1     2   3   4  0                     11     2     n1   0
                                         1                                        
OR                                 a  r n  1
         1   2  3  4                            GP: a  1, r   , n  5
                                      r 1
                                   1 5  1               5  1  0 
                                                   0
                                       1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2     3                      4  2   3 
             1                                      3  4  6  7
                                                     3  4    2
        equation is x 2  x  1  0
                                                     1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3


                
                     3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1     2 3
                           
                
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                  3
                                                                     
                1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                  3
                                                                     
                1                                                1 
                                                                 
                                                                      2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                  3
                                                                     
                1                                                1 
                                                                 
                                                                      2

                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                  3
                                                                     
                1                                                1 
                                                                 
(iii) Form the cubic equation with roots 1, 1   , 1   2
                                                                     2
                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1     2 3                                    1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                         3
                                                                       1 1
                                                                   2 
                    3
                                                                       
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1     2
                                                                      2
    z  1z  2     z  1         0
             2              2             2   3
                                                                   
                                                                     2
                                                                   2
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1     2 3                                    1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                         3
                                                                       1 1
                                                                   2 
                    3
                                                                       
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1     2
                                                                      2
    z  1z  2     z  1         0
             2              2             2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1     2 3                                    1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                         3
                                                                       1 1
                                                                   2 
                    3
                                                                       
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1     2
                                                                      2
    z  1z  2     z  1         0
             2              2             2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1     2 3                                    1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                         3
                                                                       1 1
                                                                   2 
                    3
                                                                       
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1     2
                                                                      2
    z  1z  2     z  1         0
             2              2             2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1     2 3                                    1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                         3
                                                                       1 1
                                                                   2 
                    3
                                                                       
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1     2
                                                                      2
    z  1z  2     z  1         0
             2              2             2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0



                      Exercise 4I; 1, 3, 5 (need 4b), 7

More Related Content

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 

Roots of Unity

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis0 x
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x 2 cis  5
  • 11. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 2 cis  5
  • 12. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 13. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 14. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 18. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1
  • 19. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution
  • 20. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2
  • 21. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2  12 1
  • 22. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2  12 1  2 is a solution
  • 23. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3  12 1  2 is a solution
  • 24. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution
  • 25. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution  3 is a solution
  • 26. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3      4 5 5 4  12  13 1 1  2 is a solution  3 is a solution
  • 27. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution
  • 28. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution
  • 29. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1  5 is a solution      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 30. ii  Prove that 1     2   3   4  0
  • 31. ii  Prove that 1     2   3   4  0 b        2 3 4 5 a
  • 32. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a
  • 33. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0
  • 34. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1
  • 35. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5
  • 36. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5   11     2   3   4   0
  • 37. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0    11     2     n1   0  
  • 38. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0  
  • 39. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4
  • 40. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4 GP: a  1, r   , n  5
  • 41. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1
  • 42. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1   1
  • 43. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  0  1
  • 44. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5 1  0  0  1
  • 45. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3
  • 46. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3
  • 47. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3  1
  • 48. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1
  • 49. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7
  • 50. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  1
  • 51. ii  Prove that 1     2   3   4  0 b        2 3 4 5 sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  equation is x 2  x  1  0  1
  • 52. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  • 53. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 54. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3     3
  • 55. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3      3   3  1
  • 56. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3   3  1
  • 57. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1
  • 58. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2
  • 59. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2 2  2  1
  • 60. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2 2  2  1
  • 61. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2 1
  • 62. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1
  • 63. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2
  • 64. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0
  • 65. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0 Exercise 4I; 1, 3, 5 (need 4b), 7