SlideShare a Scribd company logo
1 of 52
Download to read offline
The Argand Diagram
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
                         -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1

              -4 -3 -2 -1       1   2   3 4 x (real axis)
                         -1
A=2                      -2
                         -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
                          -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                           1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3
                           2
                       C 1              E
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3                    NOTE: Conjugates
                           2                    are reflected in the
                       C 1              E       real (x) axis
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
The Argand Diagram
Complex numbers can be represented geometrically on an Argand
Diagram.                   y (imaginary axis)
                           3                    NOTE: Conjugates
                           2                    are reflected in the
                       C 1              E       real (x) axis
                                    A
             -4 -3 -2 -1        1 2 3 4 x (real axis)
                          -1           D
A=2                       -2
B = -3i                   -3 B
C = -2 + i
D=4-i
E=4+i
           Every complex number can be represented by a unique
           point on the Argand Diagram.
Mod-Arg Form
y




O    x
Mod-Arg Form
         Modulus
         The modulus of a complex number is the
y        length of the vector OZ




O    x
Mod-Arg Form
                 Modulus
                 The modulus of a complex number is the
y                length of the vector OZ
    z = x + iy




O         x
Mod-Arg Form
                 Modulus
                 The modulus of a complex number is the
y                length of the vector OZ
    z = x + iy




O         x
Mod-Arg Form
                     Modulus
                     The modulus of a complex number is the
y                    length of the vector OZ
        z = x + iy

           y

O   x          x
Mod-Arg Form
                     Modulus
                     The modulus of a complex number is the
y                    length of the vector OZ
        z = x + iy
                               r 2  x2  y2
           y                    r  x2  y2

O   x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                    r  x2  y2

O      x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                    r  x2  y2
                                   z  x2  y2
O      x          x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
              y                     r  x2  y2
                                    z  x2  y2
O      x          x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
                                    1 y
                          arg z  tan  
                                       x
Mod-Arg Form
                        Modulus
                        The modulus of a complex number is the
y                       length of the vector OZ
           z = x + iy
                                  r 2  x2  y2
    r z
                y                   r  x2  y2
      arg z                       z  x2  y2
O      x            x
                        Argument
                        The argument of a complex number is
                        the angle the vector OZ makes with the
                        positive real (x) axis
                                       y
                                    1
                          arg z  tan              arg z  
                                       x
e.g . Find the modulus and argument of 4  4i
e.g . Find the modulus and argument of 4  4i
    4  4i  4 2   4 
                        2
e.g . Find the modulus and argument of 4  4i
    4  4i  4 2   4 
                        2


           32
          4 2
e.g . Find the modulus and argument of 4  4i
                                                  4
                             arg4  4i   tan 
    4  4i  4   4 
                                                1
                                                     
                2       2

                                                 4 
           32
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                                4
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
     4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
e.g . Find the modulus and argument of 4  4i
                             arg4  4i   tan    4
    4  4i  4   4 
                                                 1
                                                         
                2       2

                                                   4 
           32                             tan 1  1
          4 2                                  
                                           
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                    4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                    4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
                      z  rcis
e.g . Find the modulus and argument of 4  4i
                              arg4  4i   tan    4
    4  4i  4   4 
                                                  1
                                                          
                2       2

                                                    4 
           32                              tan 1  1
          4 2                                   
                                            
                                           4
Every complex number can be written in terms of its modulus and
argument
                   z  x  iy
                      r cos  ir sin 
                      r cos  i sin  
      The mod-arg form of z is;
                      z  r cos  i sin  
                      z  rcis
              where; r  z
                        arg z
e.g. i  4  4i

e.g. i  4  4i  4 2cis  
                             
                          4

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i
       z     3 2
                       12
          4
         2

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i
       z     3 2
                      1
                       2
                                  arg z  tan 1
                                                   1
                                                    3
          4
         2

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i
       z     3 2
                      1
                       2
                                  arg z  tan 1
                                                   1
                                                   3
          4                            
                                            6
         2

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i
       z     3 2
                      1
                       2
                                       arg z  tan 1
                                                        1
                                                        3
          4                                 
                                                 6
         2
                                       
                       3  i  2cis
                                       6

e.g. i  4  4i  4 2cis  
                             
                          4
     ii  3  i
       z     3 2
                      1
                       2
                                       arg z  tan 1
                                                        1
                                                        3
          4                                 
                                                 6
         2
                                       
                       3  i  2cis
                                       6




                             Exercise 4B; evens

More Related Content

What's hot

Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediummohanavaradhan777
 
Mcq ch 1_fsc_part1_nauman
Mcq ch 1_fsc_part1_naumanMcq ch 1_fsc_part1_nauman
Mcq ch 1_fsc_part1_naumanAzhar Khalid
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesBright Minds
 
Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questionsSrikanth KS
 
Teknik Menjawab Kertas 1 Matematik Tambahan
Teknik Menjawab Kertas 1 Matematik TambahanTeknik Menjawab Kertas 1 Matematik Tambahan
Teknik Menjawab Kertas 1 Matematik TambahanZefry Hanif
 
Module 10 Graphs Of Functions
Module 10 Graphs Of FunctionsModule 10 Graphs Of Functions
Module 10 Graphs Of Functionsguestcc333c
 
Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)normalamahadi
 
Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Aidil-Nur Zainal
 
End of module 3 review
End of module 3 reviewEnd of module 3 review
End of module 3 reviewmlabuski
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeMr_KevinShah
 
Basic algebra and graphing
Basic algebra and graphing Basic algebra and graphing
Basic algebra and graphing Bob Marcus
 
H 2012 2015
H 2012   2015H 2012   2015
H 2012 2015sjamaths
 
Catholic High Emath Paper1
Catholic High Emath Paper1Catholic High Emath Paper1
Catholic High Emath Paper1Felicia Shirui
 
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…SmartPrep Education
 
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015khyps13
 

What's hot (17)

Sslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-mediumSslc maths-5-model-question-papers-english-medium
Sslc maths-5-model-question-papers-english-medium
 
Mcq ch 1_fsc_part1_nauman
Mcq ch 1_fsc_part1_naumanMcq ch 1_fsc_part1_nauman
Mcq ch 1_fsc_part1_nauman
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questions
 
Teknik Menjawab Kertas 1 Matematik Tambahan
Teknik Menjawab Kertas 1 Matematik TambahanTeknik Menjawab Kertas 1 Matematik Tambahan
Teknik Menjawab Kertas 1 Matematik Tambahan
 
Module 10 Graphs Of Functions
Module 10 Graphs Of FunctionsModule 10 Graphs Of Functions
Module 10 Graphs Of Functions
 
Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)
 
Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1
 
End of module 3 review
End of module 3 reviewEnd of module 3 review
End of module 3 review
 
Aieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjeeAieee 2003 maths solved paper by fiitjee
Aieee 2003 maths solved paper by fiitjee
 
Basic algebra and graphing
Basic algebra and graphing Basic algebra and graphing
Basic algebra and graphing
 
H 2012 2015
H 2012   2015H 2012   2015
H 2012 2015
 
Catholic High Emath Paper1
Catholic High Emath Paper1Catholic High Emath Paper1
Catholic High Emath Paper1
 
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
Previous Years Solved Question Papers for Staff Selection Commission (SSC)…
 
Summer Task - MATHS - Yr 12 preparation
Summer Task - MATHS - Yr 12 preparationSummer Task - MATHS - Yr 12 preparation
Summer Task - MATHS - Yr 12 preparation
 
4.1 matrices
4.1 matrices4.1 matrices
4.1 matrices
 
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015
 

Viewers also liked

X2 T01 04 mod arg relations (2011)
X2 T01 04 mod arg relations (2011)X2 T01 04 mod arg relations (2011)
X2 T01 04 mod arg relations (2011)Nigel Simmons
 
X2 T01 10 locus & complex nos 1 (2011)
X2 T01 10 locus & complex nos 1 (2011)X2 T01 10 locus & complex nos 1 (2011)
X2 T01 10 locus & complex nos 1 (2011)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitionsNigel Simmons
 
X2 t01 04 mod arg relations (2012)
X2 t01 04 mod arg relations (2012)X2 t01 04 mod arg relations (2012)
X2 t01 04 mod arg relations (2012)Nigel Simmons
 

Viewers also liked (6)

X2 T01 04 mod arg relations (2011)
X2 T01 04 mod arg relations (2011)X2 T01 04 mod arg relations (2011)
X2 T01 04 mod arg relations (2011)
 
X2 T01 10 locus & complex nos 1 (2011)
X2 T01 10 locus & complex nos 1 (2011)X2 T01 10 locus & complex nos 1 (2011)
X2 T01 10 locus & complex nos 1 (2011)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitions
 
X2 t01 04 mod arg relations (2012)
X2 t01 04 mod arg relations (2012)X2 t01 04 mod arg relations (2012)
X2 t01 04 mod arg relations (2012)
 

Similar to X2 t01 03 argand diagram (2012)

Similar to X2 t01 03 argand diagram (2012) (16)

Aragand Diagram
Aragand DiagramAragand Diagram
Aragand Diagram
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
Maieee03
Maieee03Maieee03
Maieee03
 
Complexos 2
Complexos 2Complexos 2
Complexos 2
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
 
Formulas 2nd year to 4th year
Formulas 2nd year to 4th yearFormulas 2nd year to 4th year
Formulas 2nd year to 4th year
 
9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx9th class maths MCQs by Ustani G.docx
9th class maths MCQs by Ustani G.docx
 
Complex number
Complex numberComplex number
Complex number
 
Mathematics xii 2014 sample paper
Mathematics xii 2014 sample paperMathematics xii 2014 sample paper
Mathematics xii 2014 sample paper
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
 
Complex Numbers And Appsfeb
Complex Numbers And AppsfebComplex Numbers And Appsfeb
Complex Numbers And Appsfeb
 
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdfTheme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
 
Week2
Week2Week2
Week2
 
Complexos 1
Complexos 1Complexos 1
Complexos 1
 
Exp&log graphs assignment
Exp&log graphs assignmentExp&log graphs assignment
Exp&log graphs assignment
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 

Recently uploaded (20)

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 

X2 t01 03 argand diagram (2012)

  • 2. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram.
  • 3. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y 3 2 1 -4 -3 -2 -1 1 2 3 4 x -1 -2 -3
  • 4. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3
  • 5. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3
  • 6. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 -3
  • 7. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 -3
  • 8. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3
  • 9. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B
  • 10. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i
  • 11. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i
  • 12. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 A=2 -2 B = -3i -3 B C = -2 + i D=4-i
  • 13. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i
  • 14. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 15. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 2 C 1 E A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 16. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 NOTE: Conjugates 2 are reflected in the C 1 E real (x) axis A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i
  • 17. The Argand Diagram Complex numbers can be represented geometrically on an Argand Diagram. y (imaginary axis) 3 NOTE: Conjugates 2 are reflected in the C 1 E real (x) axis A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D A=2 -2 B = -3i -3 B C = -2 + i D=4-i E=4+i Every complex number can be represented by a unique point on the Argand Diagram.
  • 19. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ O x
  • 20. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy O x
  • 21. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy O x
  • 22. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy y O x x
  • 23. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 y r  x2  y2 O x x
  • 24. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 O x x
  • 25. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 z  x2  y2 O x x
  • 26. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2 z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 27. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis
  • 28. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis 1 y arg z  tan    x
  • 29. Mod-Arg Form Modulus The modulus of a complex number is the y length of the vector OZ z = x + iy r 2  x2  y2 r z y r  x2  y2   arg z z  x2  y2 O x x Argument The argument of a complex number is the angle the vector OZ makes with the positive real (x) axis  y 1 arg z  tan      arg z    x
  • 30. e.g . Find the modulus and argument of 4  4i
  • 31. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2
  • 32. e.g . Find the modulus and argument of 4  4i 4  4i  4 2   4  2  32 4 2
  • 33. e.g . Find the modulus and argument of 4  4i   4 arg4  4i   tan  4  4i  4   4  1  2 2  4   32 4 2
  • 34. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2
  • 35. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2
  • 36. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4
  • 37. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument
  • 38. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy
  • 39. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin 
  • 40. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin  
  • 41. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is;
  • 42. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin  
  • 43. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis
  • 44. e.g . Find the modulus and argument of 4  4i arg4  4i   tan    4 4  4i  4   4  1  2 2  4   32  tan 1  1 4 2   4 Every complex number can be written in terms of its modulus and argument z  x  iy  r cos  ir sin   r cos  i sin   The mod-arg form of z is; z  r cos  i sin   z  rcis where; r  z   arg z
  • 45. e.g. i  4  4i
  • 46.  e.g. i  4  4i  4 2cis      4
  • 47.  e.g. i  4  4i  4 2cis      4 ii  3  i
  • 48.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2  12  4 2
  • 49.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1 3  4 2
  • 50.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2
  • 51.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2   3  i  2cis 6
  • 52.  e.g. i  4  4i  4 2cis      4 ii  3  i z  3 2 1 2 arg z  tan 1 1  3  4  6 2   3  i  2cis 6 Exercise 4B; evens