SlideShare a Scribd company logo
1 of 24
Download to read offline
Studymate Solutions to CBSE Board Examination 2012-2013

       Series : SKS/1                                                           Code No. 65/1/1
                                                            Candidates must write the Code on
Roll No.                                                    the title page of the answer-book.


  Please check that this question paper contains 8 printed pages.

  Code number given on the right hand side of the question paper should be written on the title page of
   the answer-book by the candidate.

  Please check that this question paper contains 29 questions.

  Please write down the Serial Number of the questions before attempting it.

  15 minutes time has been allotted to read this question paper. The question paper will be distributed at
   10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not
   write any answer on the answer script during this period.




                                     MATHEMATICS

[Time allowed : 3 hours]                                                         [Maximum marks : 100]


General Instructuions:
(i)     All questions are compulsory.
(ii)    Questions numbered 1 to 10 are very short-answer questions and carry 1 mark each.
(iii) Questions numbered 11 to 22 are short-answer questions and carry 4 marks each.
(iv) Questions numbered 23 to 29 are also short-answer questions and carry 6 marks each.
(v)     Use of calculators is not allowed.




                                                    -(1)-
STUDYmate

                                                            SECTION-A
                                          Question numbers 1 to 10 carry 1 mark each.

      Write the principal value of tan1 1  cos 1   
                                                         1
1.                                                        
                                                       2
                                     1
                                     
               –1            –1
Ans. tan (1) + cos
                                     2
                                              
      =             tan1  tan   cos 1   cos 
                              4                3
                                       
      =                cos 1 cos     
                    4                  3 
                     2
      =              
                    4 3
                    3  8    11
      =                      =
                      12       12


2.    Write the value of tan  2 tan 1 1 
                                         
                                       5
                1 1 
Ans. tan  2 tan      
                   5
                                     1 
                                  2
                             1 
                    tan  tan         5   
                                          2
      =
                                   1 
                        
                               1   5   
                                      
                               2  5  
      =             tan  tan1         
                                24  
                                       
                                5 
      =             tan  tan1   
                               12  
                     5
      =
                    12


                              a  b 2a  c   1 5 
3.    Find the value of a if 2a  b 3c  d    0 13 
                                                    
Ans. a – b = –1
      2a – b = 0
      –a = –1
      a=1


               x 1      x 1         4 1
4.    If                                      , then write the value of x.
               x 3 x 2              1    3
Ans. (x + 1) (x + 2) – (x – 3) (x – 1) = 12 + 1
           2                      2
      (x + 3x + 2) – (x – 4x + 3) = 13
      7x – 1 = 13
      7x = 14
      x=2



                                                                  -(2)-
STUDYmate

          9 1 4        1 2 1
5.    If  2 1 3   A  0 4 9  , then find the martix A.
                              
          9 1 4  1 2 1
Ans. A =  2 1 3   0 4 9 
                          
          8 3 5 
      A=           
          2 3 6 


                                                               2       4
                                                     3 d y 
                                                          2
                                                                 dy 
6.    Write the degree of the differential equation x  2   x      0
                                                        dx     dx 

Ans. Degree = 2

                               
7.   If a  xi  2 ˆ  zk and b  3i  yj  k are two equal vectors, then write the value of x + y + z.
             ˆ     j    ˆ            ˆ  ˆ ˆ
      
Ans. a  xi  2 ˆ  zk  3i  yj  k
           ˆ    j     ˆ   ˆ    ˆ ˆ
                  x=3       y = –2       z = –1
                  x+y+z=0



                                              
8.    If a unit vector a makes angles   with iˆ, with ˆ and an acute angle  with k , then find
                                                      j                           ˆ
                                      3         4
      the value of .

         2             
Ans. cos          cos 2  cos 2   1
               3        4
      1 1
         cos 2  = 1
      4 2
           2        1
      cos  =
                    4
                    1
      cos  =         , as  is an acute angle.
                    2
               
      =
               3


9.    Find the Cartesian equation of the line which passes through the point (–2, 4, –5) and is
                           x 3 4y z 8
      parallel to the line                .
                             3   5      6
Ans. The required equation of the line
      x 2 y 4 z 5
              
        3   5    6


10.   The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x)
               3        2
      = 0.005x + 0.02x + 30x. Find the marginal increase in pollution content when 3 diesel
      vehicles are added and write which value is indicated in the above question.
                         3        2
Ans. P(x) = 0.005x + 0.02x + 30x
                             2
      P'(x) = 3 × 0.005x + 2(0.02)x + 30
      P'(3) = 3 × 0.005 × 9 + 2(0.02)(3) + 30 = 30.255


                                                   -(3)-
STUDYmate

                                                     SECTION-B
                                     Question numbers 11 to 22 carry 4 marks each.


11.   Show that the function f in A =              
                                                      2
                                                      3
                                                        defined as f(x) =
                                                                          4x  3
                                                                          6x  4
                                                                                 is one-one and onto. Hence
              –1
      find f .
                   4x  3
Ans. f (x ) 
                   6x  4
                            2
      Let x1, x 2  A      ; x1  x 2
                            3 
      Consider, f (x1) = f (x2)
                4x1  3 4x 2  3
      i.e.             
                6x1  4 6x 2  4
      i.e.    (4x1 + 3) (6x2 – 4) = (4x2 + 3) (6x1 – 4)
      i.e.    24x1x2 – 16x1 + 18x2 – 12 = 24 x1x2 – 16x2 + 18 x1 – 12
      i.e.    –34x1 = –34x2
      i.e.    x1 = x2
             f is one - one.
                    4x  3
      Let y 
                    6x  4
              6xy – 4y = 4x + 3
      i.e.    (6y – 4) x = 3+ 4y
                       3  4y
                x
                       6y  4
                       4       2
               y       i .e.
                       6       3
                     2
               y  
                     3 
             f is onto
      Since f is one-one and onto
                                         3  4y
               xf        1
                                y  
                                         6y  4
      i.e.    y (6x – 4) = 4x + 3
                    1           3  4x
               f          x 
                                  6x  4


12.   Find the value of the following:

             1  1 2x               1  y2 
      tan       sin         cos 1         , |x| < 1, y > 0 and xy < 1.
             2      1  x2          1  y2 
                                                          OR
                     1  1   1  1   1  1  
      Prove that: tan    tan    tan   
                        2       5       8 4
         1
                 2x  1            1  y 2 
                                               
Ans. tan  sin1      2 
                            cos 1        2 
         2
                1  x  2          1  y  


                                                          -(4)-
STUDYmate

                1      1    1     1  
          = tan  (2 tan x )  (2tan y )
                2            2         
          = tan (tan–1 x + tan–1 y)
            x y
          = 1  xy

                                                                  OR
         1 1
                      1                                                                                  x y 
Ans. tan  2 5   tan1
              1                                                          [using tan1 x  tan1 y  tan1          , xy  1]
         1   1        8                                                                                  1  xy 
                
             10 
                         7         1
      =            tan1    tan1  
                          9        8
                       7 1
                         
      =            tan  9 8 
                        1

                       1  7 
                             
                          72 
                          56  9 
      =            tan1         
                          72  7 
                          65 
      =            tan1     
                          65 
      =            tan–1 (1)
                    
      =
                    4


13.   Using properties of determinants, prove the following:

          1        x    x2
                         x  1  x 3 
                                             2
      x2           1
          x        x2    1
Ans. Operating C1  C1 + C2 + C3, we obtain
                        1 x  x2       x         x2
                        1 x  x2       1         x
      L.H.S. =
                        1 x  x2       x2        1
      Take out 1 + x + x2 from C1
                             1    x         x2
                             1 1            x
      = (1 + x + x2)
                             1 x2           1
      Operate R2  R2 – R1 : R3  R3 – R1
                             1          x              x2
                             0 1 x      x (1  x )
      = (1 + x + x2)
                             0 x (x  1) 1  x 2
      Expand with C1
                                 1 x            x (1  x )
      = (1 + x + x2)                                          ,
                              x (1  x ) (1  x 2 )
      Take out 1 – x from C1 and same from C2



                                                                  -(5)-
STUDYmate

                               1    x
      = (1 + x + x2) (1 – x)2  x 1  x

      = (1 + x + x2) (1 – x)2 (1 + x + x2)
      = {(1 + x + x2) (1 – x)}2
      = (1 – x3)2 = R.H.S.


14.   Differentiate the following function with respect to x:
             x      log x
      (log x) + x
Ans. Let     y = (log x)x + xlog x,
             dy    d
      Then            {(log x )x  x log x }
             dx dx
             d              d log x
      =         (log x )x      (x     )
             dx             dx
                            d                             d                                            d v           d            
      =      (log x )x         {(x log(log x )}  x log x    (log x log x )                               (u )  uv    (v log u )
                            dx                            dx                                            dx           dx           
                         1 1
                                               
                                                                              1               d                   d               
                                   log(log x )  x                                              (log x log x )     ((log x )2 ) 
                                                      log x
      =      (log x )x x                                            2(log x ) 
                         log x  x
                                               
                                                                              x               dx                  dx              

                        1                        log x  log x
      =      (log x )x         log(log x )  2        x
                        log x                    x 


                      2   2                                         d 2y              dy
15.   If y  log[x  x  a ], show that (x 2  a 2 )                       2
                                                                               x         0.
                                                                    dx                dx
Ans. y  log [x  x 2  a 2 ]

      dy     1                              2x          
                                    1                 
      dx x  x 2  a 2                   2 x2  a2      
                                                        

                                 1     x 
                                        x 2  a 2 ____
                 y1                                
      
                        x a 2 
                           x 2  ____
                                         x2  a2   
            y1( x 2  a 2 )  1
                                            1.2 x .y1
            y2 ( x 2  a 2 )                           0
                                           2 x 2  a2
                    2        2
            y2 (x + a ) + xy1 = 0


16.   Show that the function f (x ) | x  3|, x  , is continuous but not differentiable at x = 3.
                                                                   OR
                                                                               d 2y
      If x = a sin t and y = a (cot t + log tan t/2), find                            .
                                                                               dx 2
Ans. f(x) = |x – 3|; x = 3
                    –                      f  3  h   f  3
      LHD = f '(3 ) =                lim
                                 h 0              h
                                 h 0

                                           |3  h  3|  |3  3|
                            =        lim
                                 h 0               h
                                 h 0




                                                                   -(6)-
STUDYmate

                               | h |
                      =    lim
                           h 0 h
                           h 0

                                  h
                      =    lim
                           h 0   h
                           h 0
                      =    –1
                                   f  3  h   f  3
      R H D = f '(3+) =    lim
                           h 0             h
                           h 0

                               |3  h  3| |3  3|
                      =    lim
                           h 0         h
                           h 0

                                  |h |
                      =    lim
                           h 0    h
                           h 0

                                h
                      =    lim
                           h 0 h
                           h 0

                      =    1
      As LHD  RHD  f is not differentiable.

      Again, LHL      =     lim | x  3|                          (at x = 3)
                           x 3

                      =    lim|3  h  3|
                           h 0

                      =    lim| h | 0
                                    
                           h 0

      RHL             =     lim | x  3|                          (at x = 3)
                           x 3

                      =    lim|3  h  3|
                           h 0

                      =           
                           lim|h | 0
                           h 0

      Since, LHL = RHL
           f is continuous at x = 3.
                                                          OR
                           t
Ans. y = a  cos t  log tan  ; x = a sin t
                           2
      dy                      1             t  1
            = a   sin t            sec2    
      dt
                               t          2  2
                            tan  
                
                               2                
                                                   
                                t           
                            cot             
                          1      2   1
             a   sin t                     
            =            2      t    2  t 
                             sin   cos  
               
                                2       2
                             1 
            = a   sin t 
                           sin t 
                                  
               1  sin2 t 
            = a           
                sin t 
                  cos2 t
            = a
                   sin t
      dx
            = a cos t
      dt

                                                          -(7)-
STUDYmate

                    a cos2 t 
               dy  sin t  = cot t
                           
               dx    a cos t
               d 2y         d  dy 
                       
               dx   2       dx  dx 
                                

              =  cosec 2t  
                                dt 
                                  
                               dx 
                                          1       cosec2t .sec t
              =   cosec t  .
                         2
                                               
                                       a cos t         a
                   cosec2t
              =
                    a cos t


                            sin(x  a )
17.   Evaluate :         sin(x  a dx
                                                                   OR

                                  5x  2
      Evaluate :         1  2x  3x      2
                                               dx


             sin(x  a )
Ans. I                 dx
             sin(x  a )
          sin(t  2a )
      I              dx
              sin t
         sin t cos 2a         cos t sin2a
                     dt               dt
             sin t               sin t
      = t cos 2a – sin 2a .              cot dt
      = t cos 2a – sin 2a ln | sin t | + C
      = (x + a) cos 2a – sin 2a ln | sin (x + a) | + C
                                                                   OR
                  5x  2
Ans. I     1  2x  3x      2
                                  dx

                   d
      5x  2  A      (1  2x  3x 2 )  B
                   dx
             5x – 2 = A (2 + 6x) + B
      Comparing the co-efficients we get
              5 = 6A
                   5
             A=
                   6
              – 2 = 2A + B
             B = – 2A – 2
                  5
              =     2
                  3
                  11
              = 
                   3




                                                                   -(8)-
STUDYmate

                    5                       11
                      (2  6x )
              I 6            dx         3       dx
                  1  2x  3x 2        1  2x  3x 2
                           I1                 I2
                      5      2  6x
                      6  1  2x  3x 2
               I1                      dx

      Let     1 + 2x + 3x2 = t
             (2 + 6x)dx = dt
                      5 dt 5
                      6 t
              I1          ln t
                            6
                  5
              =     ln|1  2x  3x 2 | C1
                  6
                    11        dx
               I2 
                     3  3x 2  2x  1
                   11            dx
                    9  x2  2 x  1  1  1
               

                             3     3 9 9
                   11       dx
               
                    9   1 2 2
                        x   
                           3   9
                                             1
                                          x
                 11 1                        3 C
                   .    tan1                    2
                  9    2                    2
                      3                    3
              = I = I 1 – I2
                   5                       11        3x  1 
              =      ln|1  2x  3x 2 |      tan1         C
                   6                      3 2           2 


                                     x2
18.   Evaluate :        (x   2
                                   4) (x 2  9)
                                                   dx

            1 2x 2  4  9  4  9
            2   x 2  4  x 2  9
Ans. I =                              dx

          1          x2  4             1          x2  9             1          x2  4            1          13dx
      =
          2   x 2  4 x 2  9 dx  2   x 2  4 x 2  9 dx  2   x 2  4 x 2  9dx  2   x 2  4  x 2  9dx
        1 1      1  x  1 1      1  x  1 3  1             1    
      = 2 . 3 tan  3   2 . 2 tan  2   2 . 5   2
                                                                dx
                                                     x  4  x  9 
                                                               2


          1       x 1        x  13        x  13      x
      =     tan1    tan1       tan1       tan1  C
          6       3 4        2  20        2  30      3
           1  x   1 13       1  x   1 13 
      = tan              tan              C
               3   6 30           2   4 20 
                                                  
          3       x 2       x
      =     tan1    tan1    C
          5       3 5       2




                                                             -(9)-
STUDYmate


19.    Evaluate :
                      (|x |  | x  2| | x  4|)dx
       4

Ans.   | x |  | x  2|  | x  4|dx  I
       0

       0<x <4          |x| = + x
       0<x <2          |x – 2| = – (x – 2)
       0<x <4          |x – 2| = + (x – 2)
       0<x <4          |x – 4| = – (x – 4)
                4      4         4          4

        I =    
                0
                       
                       0
                                 
                                 0
                                            
                    x  2  x  (x  2)  4  x
                                            0
                       4               2               4            4
                 x2      x2    x2              x2 
                  2x           2x   4x     
                 2 0 
                         2 0  2
                                           2 
                                                    2 0
              = (8) + [(4 – 2) – 0] + [(8 – 8) – (2 – 4)] + [16 – 16/2]
              = 8 + 2 + 2 + 16/2
              = 20


                                                                               
20.  If a and b are two vectors such that |a  b |  |a |, then prove that vector 2a  b is
                                 
     perpendicular to vector b.
         2       2
Ans. |a  b |  |a |
               2         2  2
          |a |  2a .b  |b | |a |
                 
            2a .b  b .b  0
                 
            (2a  b ). b  0
                
           2a  b  b


                                                                        x  2 y 1 z  2
21.    Find the coordinates of the point, where the line                               intersects the plane
                                                                          3     4    2
       x – y + z – 5 = 0. Also, find the angle between the line and the plane.
                                                           OR
       Find the vector equation of the plane which contains the line of intersection of the planes
        ˆ                             
       r . (i  2 ˆ  3k )  4  0 and r . (2i  ˆ  k )  5  0 and which is perpendicular to the plane
                  j    ˆ                     ˆ j ˆ
       
       r . (5i  3 ˆ  6k )  8  0.
             ˆ     j    ˆ

       x  2 y 1 z  2
Ans.                                                                       [x = 2 + 2, y = 4 – 1; z = 2 + 2]
         3     4    2
       This point lies on the plane x – y + z – 5 = 0
       (3 + 2) – (4 – 1) + (2 + 2) – 5 = 0
       3 + 2 – 4 + 1 + 2 + 2 – 5 = 0
       =0




                                                           -(10)-
STUDYmate

            Point of Intersection = [2, –1, 2]
                  3  1  4  1  2 1
      sin  =
                   9  16  4 1  1  1
                 342
      sin  =
                   29 3
                  1
      sin  =
                  87
             1       1
       = sin
                      87
                                                         OR
Ans. Equation of plane through 1 & 2
             (x + 2y + 3z – 4) + k(2x + y – z + 5) = 0
             x (1 + 2k) + y(2 + k) + z (3 – k) – 4 + 5k = 0
      This plane is perpendicular to 5x + 3y – 6z + 8 = 0
            5 (1 + 2k) + 3 (2 + k) – 6 (3 – k) = 0
             5 + 10 k + 6 + 3k – 18 + 6k = 0
             19 k – 7 = 0
                7
             k
               19
       Required plane is will be
         14              7           7 
      x 1       y 2       z 3     
            19          19          19 
           85
      4     0
           19
      33x + 45y + 50z + 9 = 0


22.   A speak truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are
      they likely to contradict each other in stating the same fact? In the cases of contradiction do
      you think, the statement of B will carry more weight as he speaks truth in more number of
      cases than A?
                  60                       40
Ans. P (AT) =               P (AC) =
                 100                      100
                  90                       10
      P (BT) =              P (BC) =
                 100                      100

                                           60   10   400 90
             P (contradiction)                       
                                          100 100 100 100

                                          600  3600    4200
                                                    
                                            10000      10000

          % P (contradiction) = 42 %
      In general parlace we understand who speaks truth, will have a better say and accepted
      more.




                                                         -(11)-
STUDYmate

                                           SECTION-C
                           Question numbers 23 to 29 carry 6 marks each.
23.   A school wants to award its students for the values of Honesty, Regularity and Hard work with
      a total cash award of ` 6,000. Three times the award money for Hardwork added to that given
      for honesty amounts to ` 11,000. The award money given for Honesty and Hard work together
      is double the one given for Regularity. Represent the above situation algebraically and find
      the award money for each value, using matrix method. Apart from these values, namely,
      Honesty, Regularity and Hard work, suggest one more value which the school must include
      for award.
Ans. Let    Honesty award = ` x
            Regularity award = ` y
            Hard work award = ` z
      According to question;
            x + y + z = 6000
            3z + x = 11000
            x + z = 2y
            x + y + z = 6000
            x + 0y + 3z = 11000
            x – 2y + z = 0
      We can represent these equations using Matrices as:
      1 1 1   x   6000 
      1 0 3 y   11000 
                       
      1 2 1   z   0 
                       
            AX = B
                   –1
           X=A B
                1 1 1 
      Now |A| = 1 0 3  = 6 + 2 – 2 = 6  0
                       
                1 2 1 
                       
             –1
           A     exists
                6 3 3 
                       
      adj. A =  2 0 2
                2 3 1
                       
                 1
            A = |A| adj. A 
             –1
      

                6 3 3 
              1
                 2 0 2
            = 6        
                2 3 1
                       
               6 3 3   6000 
             1
                2 0 2 11000 
      X=A B= 6               
         –1

               2 3 1  0 
                             
          36000  33000  0 
        1                    
             12000  0  0
      = 6                    
          12000  33000  0 
                             



                                               -(12)-
STUDYmate

          3000 
        1
          12000 
      = 6      
         21000 
               
         500 
        2000 
      =      
        3500 
             
           Award for honesty = ` 500
            Award for regularity = ` 2000
            Award for hardwork = ` 3500
      One more value can be punctuality.


24.   Show that the height of the cylinder of maximum value, that can be inscribed in a sphere of
                  3R
      radius R is    . Also find the maximum volume.
                   3
                                                   OR
                                                                     2
      Find the equation of the normal at a point on the curve x = 4y which passes through the
      point(1, 2). Also find the equation of the corresponding tangent.
Ans. Let x be the radius of the base and h be the height of the cylinder ABCD which is inscried in
     a sphere of radius R. It is obvious that for maximum volumke the axis of the cylinder must be
     along OA2 = OL2 + AL2
           AL =        R2  x 2
                                                                                          M
      Let V be the volume of the cylinder. Then,                               D                     C
            V = (AL)2 × LM
           V =  (AL)2 × 2 (OL)
           V =  (R2 – x2) × 2x                                                           O
                                                                                     a
           V = 2 (R2x – x3)
           dV                        d 2V                                            
              2 (R 2  3x 2 ) and       12 x
           dx                        dx 2                                      A          L          B
      For maximum or minimum values of V, we must have
            dV
                0
            dx
           2(R2 – 3x2) = 0
                   R
           x=
                    3
                d 2V                R
                              12     0
      Clearly,  dx 2 x  R
                                     3
                                3

                                          R                      2R
      Hence, V is maximum when x            and hence LM = 2x =    .
                                           3                      3
                                                   OR
      Differentiating x = 4y with respect to x, we get
                            2


            dy x
              
            dx 2
      Let (h, k) be the coordinates of the point of contact of the normal to the curve x2 = 4y. Now, slope
      of the tangent at (h, k) is given by



                                                  -(13)-
STUDYmate

                dy           h
                           
                dx (h , k ) 2
                                            2
      Hence, slope of the normal at (h, k) =
                                            h
      Therefore, the equation of normal at (h, k) is
                   2
            y k     (x  h )                                      … (i)
                    h
      Since it passes through the point (1, 2), we have
                     2
            2k        (1  h )
                     h
                     2
      or    k  2  (1  h )                                        … (ii)
                     h
      Since (h, k) lies on the curve x2 = 4y, we have
            h2 = 4k                                                 … (iii)
      From (ii) and (iii), we have h = 2 and k = 1. Substituting the values of h and k in (i), we get the
      required equation of normal as
                           2
            y 1             (x  2)
                           2
      or    x+y=3
                                                                        2
25.   Using integration, find the area bounded by the curve x = 4y and the line x = 4y – 2.
                                                   OR
      Using integration, find the area of the region enclosed between the two circles
       2    2                          2   2
      x + y = 4 and (x – 2) + y = 4.
Ans. The equations of the given curves are
                          x2 = 4y                          … (i)
      and                 x = 4y – 2                       … (ii)
      Eq. (i) represents a parabola with vertex at the origin
      and axis along positive direction of y-axis. Eq. (ii)
      represents a straight line which meets the
      coordinate axes at (– 2, 0) and (2, 0) respectively.
      To find the points of intersection of the given parabola
      and the line, we solve (i) and (ii) simultaneously.
      Solving the two equations simultaneously.
      We obtain that the points of intersection of the given
      parabola and the line are (2, 1) and (–1, 1/4).
      The region whose area is to be found out is shaded in figure.
      Let us slice the shaded region into vertical strips. We find that each vertical strip runs from
      parabola (i) to the line (ii). So, the approximating rectangle shown in figure has
            Width = x, Length = (y2 – y1), and the Area (y2 – y1) x.
      Since the approximating rectangle can move from x = – 1 to x = 2.
           Required area A is given by
                     2
                A    (y
                     1
                            2    y1 )dx

                                                            P(x , y2 ) and Q(x , y1 ) lie on (ii) and (i) respec.
                     2
                       x  2 x2                                                                                 
                A             dx
                                                           y  x  2 and y  x
                                                                                         2
                          4    4                                                                                  
                   1 
                                                            2
                                                                     4
                                                                                 1
                                                                                        4                          
                                                                                                                   

                                                  -(14)-
STUDYmate

                                  2
                x2 1   x3 
             A   x    
                8 2    12 
                4 2 8  1 1 1  9
             A              sq. units
                 8 2 12   8 2 12  8
                                                            OR
Ans. Equations of the given circles are
             x2 + y2 = 4                                         ...(1)
      and    (x – 2)2 + y2 = 4                                   ...(2)
      Equation (1) is a circle with centre O at the origin
      and radius 2. Equation (2) is a circle with centre C
      (2, 0) and radius 2. Solving equations (1) and (2), we
      have
             (x –2)2 + y2 = x2 + y2
      or     x2 – 4x + 4 + y2 = x2 + y2
      or     x = 1 which gives y =  3

      Thus, the points of intersection of the given circles are A 1, 3  and A' 1,  3  as shown in
      the figure.
      Required area of the enclosed region OACA'O between circles
      = 2 [area of the region ODCAO]                                                             (Why?)
      = 2 [area of the region ODAO + area of the region DCAD]
          1        2     
      = 2   ydx   ydx 
          0
                   1     
                          
          1              2
                                2          
      = 2   4   x  2 dx   4  x dx 
                                       2
                                                                                                 (Why?)
          0
                               1          
                                           
                                                             1                            2
          1                       2 1       1  x  2       1         1        1 x 
      = 2   x  2  4   x  2    4 sin 
                                                                         2
                                                           2  x 4  x   4 sin
           2                        2           2 0         2         2           2 1
                                                                                         
                                                  1                             2
                               2       1  x  2                    1 x 
      =  x  2  4   x  2   4 sin 
                                                                2
                                                      x 4  x  4 sin
                                             2  0                     2 1
                                                                              
                   1  1                                   1 1 
      =   3  4sin     4 sin  1   4 sin 1  3  4 sin
                                   1               1

                       2                                       2
                                        
      =   3  4    4     4   3  4  
                  6      2       2         6
              2                   2 
      =  3      2    2  3     
              3                    3 
           8
      =       2 3
           3

                                                      x/y                 x/y
26.   Show that the differential equation 2ye dx + (y – 2x e ) dy = 0 is homogeneous. Find the
      particular solution of this differential equation, given that x = 0 when y = 1.
Ans. The given differential equation can be written as
                        x

              dx 2xe y  y
                 
              dy       x                                         ...(i)
                   2ye y

                                                        -(15)-
STUDYmate

                                    x

                              2xe y  y
      Let   F(x, y) =                   x

                                  2ye y
                              x     
                         2xe y  y 
                                      0 F x , y 
      Then F(x, y) =                             
                                x 

                          2ye y 
                                   
      Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential
      equation is a homogeneous differential equation.
      To solve it, we make the substitution
            x = vy                                             ...(ii)
      Differentiating equation (ii) with respect to y, we get
             dx       dv
                v y
             dy       dy
                                      dx
      Substituting the value of x and dy in equation (i), we get

                          dv 2vev  1
             v y            
                          dy   2ev
              dv 2vev  1
      or     y           v
              dy    2ev
              dv     1
      or    y     v
              dy    2e
              v
                   dy
      or    2e dv = y

                                      dy
              2e         .dv   
                      v
      or                               y
                 v
      or    2e = –log |y| + C
                         x
      and replacing v by y , we get

                  x

             2e y  log|y |  C                                ...(iii)

      Substituting x = 0 and y = 1 in equation (iii), we get
                 0
            2e + log |1| = C = C = 2
      Substituting the value of C in equation (iii), we get
                  x
                  y
             2e        log|y |  2
      which is particular solution of the given differential equation.


27.   Find the vector equation of the plane passing thorugh the three points with position vectors

      i  ˆ  2k , 2i  j  k and i  2 ˆ  k. Also find the coordinates of the point of intersection of this
      ˆ j      ˆ            ˆ     ˆ     j ˆ
                           
     plane and the line r  3i  ˆ  k  (2i  2 ˆ  k ).
                             ˆ j ˆ          ˆ     j ˆ
         
Ans. (r  a ).(b  c )  0
                  ˆ ˆ k
                  i  j ˆ
        
      n  b  c  2 1 1  3iˆ  ˆ  5k
                                  j    ˆ
                          1   2    1

                                                      -(16)-
STUDYmate
              ˆ
          r  (i  ˆ  2k ) . (3iˆ  ˆ  5k )  0
                     j    ˆ              j    ˆ
                            
      Equation of plane is
             
             r .(3iˆ  ˆ  5k )  14
                       j    ˆ

              ˆ
      or     r .(3i  ˆ  5k )  14
                      j    ˆ

          
      Now r  3i  ˆ  k  (2i  2 ˆ  k )
               ˆ j ˆ          ˆ     j ˆ

      This line intersects the plane

            [(3 + 2l) [(3  2 )i  (1  2 ) ˆ(1   )k ]. (3i  ˆ  5k )  14)
                                 ˆ              j         ˆ      ˆ j      ˆ

            –=1
            =– 1
            Point of intersection is
             i  ˆ  2k .
             ˆ j      ˆ


28.   A cooperative society of farmers has 50 hectares of land to grow two crops A and B. The profits
      from crops A and B per hectare are estimated as ` 10,500 and ` 9,000 respectively. To control
      weeds, a liquid herbicide has to be used for crops A and B at the rate of 20 litres and 10 litres
      per hectare, respectively. Further not more than 800 litres of herbicide should be used in
      order to protect fish and wildlife using a pond which collects drainage from this land. Keeping
      in mind that the protection of fish and other wildlife is more important than earning profit,
      how much land should be allocated to each crop so as to maximize the total profit? Form an
      LPP from the above and solve it graphically. Do you agree with the message that the protection
      of wildlife is utmost necessary to preserve the balance in environment?
Ans. Let x hectares for crop A and y hectares for crop B be allocated.
                                      A                   B
                                   x                     y             50 hectares
                                10500                  9000            Profit
                                20 L/H                10 L/H           800 litres atmost
                                        Y




                                    C
                                   50


                                                         B(30, 20)




                                                                                          X
                                      O                           A    50
                                                                 40                   x + y = 50

                                                                              2x + y = 80



                                                            -(17)-
STUDYmate

      A.T.Q.
      We need to maximise profit given by
            Z = 10500x + 9000y subject to
            x + y  50                                     (Area constraint)
            20x + 10y  800                                (Herbicide constraint)
            x, y  0                                       (Non-negative constraint)
      After plotting graph, the corner points are
       Corner Point                  Value of Z
       O(0, 0)            Z=   0
       A(40, 0)           Z=   420000
       B(30, 20)          Z=   315000 + 180000 = 495000           Maximum
       C(0, 50)           Z=   450000
           30 hectares for crop A and 20 hectares for crop B.


29.   Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation
      and yoga course reduces the risk of heart attack by 30% and prescription of certain drug
      reduces its chance by 25%. At a time a patient can choose any one of the two options with
      equal probabilities. It is given that after going through one of the two options, the patient
      selected at random suffers a heart attack. Find the probability that the patient followed a
      course of meditation and yoga. Interpret the result and state which of the above stated methods
      if more beneficial for the patient.
Ans. Let    E1: the patient follows meditation and yoga
            E2: tha patient uses drug
                                                                      1
      then E1 and E2 are mutually exclusive and P(E1) = P(E2) =
                                                                      2
      Let   E: the selected patient suffers a heart attack
                          40      30  28
      then P(E/E1) =         1      
                         100     100  100
                          40      25  30
      and   P(E/E2) =        1      
                         100     100  100
      Hence, P (patient who suffers heart attack follows meditation and yoga).
                               P  E/E1  P  E1 
            = P(E1/E) = P E/E P E  P E/E P E                                       (Using Bayes Theorem)
                            1  1              2  2

                   28 1
                     
                  100 2     28 14
            =                
               28 1 30 1 58 29
                      
              100 2 100 2


                                          ×·×·×·×·×




                                                  -(18)-
STUDYmate


        Studymate Solutions to CBSE Board Examination 2012-2013

      Series : SKS/1                                                                Code No. 65/1/2
                          UNCOMMON QUESTIONS ONLY
                                                    SECTION-A
                                                                                4
                                                      dy       d 2y
9.     Write the degree of the differential equation       3x       0.
                                                      dx       dx 2
             4
      dy        d 2y 
Ans.  dx   3x  2   0
                dx 
                       
       Degree = 1


16.    P speaks truth in 70% of the cases and Q in 80% of the cases. In what percent of cases are
       they likely to agree in stating the same fact?
       Do you think, when they agree, means both are speaking truth?
                   70                                         30
Ans. P(PT) =                                       P(PL) =
                  100                                        100
                   80                                          20
       P(QT) =                                     P(QL) =
                  100                                         100
       P(agreement) = (PL & QT) or (PL & QL)
                   5600   600
              =         
                  10000 10000
                   6200
              =          62%
                  10000
       No, agreement does not mean they are speaking truth.


         ˆ                                                                     
18.  If a  i  ˆ  k and b  ˆ  k  k , find a vector c , such that a  c  b and a .c  3
                j ˆ           j ˆ ˆ
                 ˆ   ˆ   ˆ
Ans. Let c  xi  yj  zk

                     i ˆ k
                     ˆ j ˆ
               
              a c  1 1 1
                        x y    z

            i (z  y )  ˆ(z  x )  k (y  x )
             ˆ            j           ˆ
                                   
       Now, a  c  b (given) (b  ˆ  k ) j ˆ
             z – y = 0, x – z = 1, y – x = – 1
            y = z and x – y = 1                                       ... (i)
               
       Again, a .c  3 x + y + z = 3

                            x+y+y=3
                            x + 2y = 3                                ... (ii)




                                                             -(19)-
STUDYmate

       Solving (i) and (ii)
       x  2y  3
       x  y 1
                                   2
                              y       z
       3y  2 / 3                    3
                                         5
             x=1+y=
                                         3
                5ˆ 2     2 ˆ
       So,     c  i  ˆ  k.
                        j
                  3   3   3

                          3

19.    Evaluate :          | x  1|  | x  2|  | x  3| dx.
                          1
                   3

Ans.         I =    | x  1|  | x  2|  | x  3| dy
                   1
                   2                                                  3
                   | x  1  2  x  3  x  dx   (x  1  x  2  3  x )dx
                   1                                                  2
                   2                         3

                   
                (4  x ) dx  x dx
                   1
                                             
                                             2
                                         2           3
                       x     x2 
                                 2
                 4x       
                 
                        2 
                           1  2  2
                               
                         1 9     
                6   4      2
                         2 2     
                          7 5
               6         
                          2 2
                   5 5
                    5
                   2 2


                                         x2 1
20.    Evaluate :          (x   2
                                      4)(x 2  25)
                                                             dx


                                 x2  1
Ans.         I     (x   2
                               4)(x 2  25)
                                                     dx

                          x2 1                          A                    B
                   2                 2
                                                        2
                                                                         2
               (x  4) (x  25)                      (x  4)          x  25
             x =0
               A   B   1
                       25 A  4B  1                                                   ... (i)
               4 25 100
       x=1
                  2     A   B
                        
                   
               5  26 5 26

               A B   1
                 
               5 26 65

                              5
             13A +             B=1
                              2

                                                                                  -(20)-
STUDYmate

           26A + 5B = 2                                       ... (ii)
                 1      8
           A    ,B
                 7      7
                 1   dx     8             dx
           I=      2
                 7 x 4 7
                                    x   2
                                               25
                     1 1      x 8 1       x
                    . tan1    . tan1    c
                     7 2      2 7 5       5


                                              dy     y             y 
28.   Show that the differential equation x      sin    x  y sin    0 is homogeneous. Find the
                                              dx      x            x
                                                                                     
     particular solution of this differential equation, given that x = 1 when y  .
                                                                                     2
       dy     y           y
Ans. x    sin  y sin  x
       dx      x          x
     dy y         1
          
     dx x sin y
                    x
                     y      1
     Let F (x, y) =     
                     x sin y
                              x
                         y        1
          F (x, y) =     
                         x         y 
                               sin     
                                    x 
                                    
                       y       1 
                                
                        x sin y 
                                    
                                 x
                     = ° F (x, y)
           Given d.e. is homogeneous
      Let y = vx
             dy         dv
                v  x
             dx         dx
      Now
                    dv 
           x v  x       sin v  x  vx  sin v  0
                    dx 
                                 dv
           vx sin v  x 2 sin v      x  vx sin v  0
                                 dx
                              dx
            sin v dv      x
           – cos v = – ln |x| + c
                   y 
           – cos   = – ln |x| + c
                   x
                        
            x  1, y 
                        2
           0=c
                y
           cos  ln | x |
                x
           x  e cos(y/x )
                  y
           cos      log x
                  x


                                                      -(21)-
STUDYmate

29.    Find the vector equation of the plane determined by the points A (3, –1, 2), B (5, 2, 4) and
       C (–1, –1, 6). Also find the distance of Point P (6, 5, 9) from this plane.
        x 3    y 1      z 2
Ans.    53      2 1     42  0
       1  3 1  1 6  2
       x  3 y 1 z  2
         2       3        2       0
         4      0        4
       (x – 3) (12 – 0) – (y + 1) (8 + 8) + (z – 2) (0 + 12) = 0
       12x – 36 – 16y – 16 + 12 z – 24 = 0
       12x – 16y + 12z – 52 – 24 = 0
       12x – 16y + 12z – 76 = 0
       3x – 4y + 3z – 19 = 0
        ˆ
       r .(3i  4 ˆ  3k )  19
                  j    ˆ
       Now, distance of plane from Points P (6, 5, 9)
       Distance of plane from (6, 5, 9)
       (3  6)  (4)(5)  (3)(9)  19
                     34
       18  20  27  19           6
                              
                34                 34



                                              ×·×·×·×·×




                                                      -(22)-
STUDYmate


        Studymate Solutions to CBSE Board Examination 2012-2013

      Series : SKS/1                                                                    Code No. 65/1/3
                             UNCOMMON QUESTIONS ONLY
                                                       SECTION-A
                                                                                   
2.   Write a unit vector in the direction of the sum of vectors a  2i  ˆ  2k and b  i  ˆ  3k .
                                                                     ˆ j      ˆ          ˆ j
           
Ans. c  a  b  i  0 ˆ  5k
                 ˆ     j    ˆ
           
     c |a  b | 12  52  26
                  

               
                 ^
                            ˆ
                             i        5
             a  b                    ˆ
                                           k
                             2b       2b


11.    A speaks truth 75% of the cases, while B in 90 % of the cases. In what percent of cases are
       they likely to contradict each other in stating the same fact? Do you think that statement of
       B is true?
                75                                                           25
Ans. P(AT) =                                                        P(AL) =
               100                                                          100
                90                                                           10
       P(BT) =                                                      P(BL) =
               100                                                          100
                                   75 10   25   90
       P (contradiction) =                  
                                  100 100 100 100
         750  2250
       =
            10000
          3000
       =
         10000
          3
       =
         10
                                                3
        % of P (Contradiction) =                 × 100 = 30%
                                               10

                     5
14.    Evaluate :     | x  2|  | x  3|  || x  5| dx.
                     2

Ans. 2 < x < 5            |x – 2|  + (x – 2)
       2<x <3             |x – 3|  – (x – 3)
       3<x <5             |x – 3|  x – 3
       2<x <5             |x – 5|  5 – x
                5             3            5           5

                                                    
         (x  2)  (3  x )  (x  3)  (5  x )
                2             2            3           2
                              5                    3           5              5
               x    2           x     x2  2            x2 
                  2x    3x           3x    5x     
                2                x                     2 
                       2           2  x       3           2
                 25                          9            25       9                25            
                    10    2  4     9    (6  2)     15     9     25       (10  2)
                 2                           2            2        2                 2            

                                                           -(23)-
STUDYmate

                      5    9        5 9   25    
                       2    4          8
                      2    2        2 2  2      
                     9   7  4 9 39
                    2   2   2  2  2
                       


                                    2x 2  1
15.    Evaluate :          x       2
                                        (x 2  4)
                                                         dx

                           2x 2  1
Ans.           I=    x    2
                               (x 2  4)
                                                dx

                2
       Put x = t for PFD
                     2t  1   A   B
                              
                    t (t  4) t t  4
               2t + 1 = A (t + 4) + Bt
                                                                                      1        7
       Comp :             t =2=A+B                                        where A        B
                                                                                      4        4
       Const              1=4A
                      1    dx               7        dx
               I =
                      4   x    2
                                    
                                            4   x   2
                                                         4
                          1  7 1      x 
                            tan1    C
                          4x 4 2      2
                          1  7      x 
                           tan1    C
                          4x 8      2


25.    Find the coordinates of the point where the line through (3, –4, –5) and (2, –3, 1) crosses the
       plane, passing through the point (2, 2, 1) (3, 0, 1) and (4, –1, 0).
Ans. Equation of line
       x 3 y 4 z 5
                   
        1      1      6
       General Point [x = –  + 3, y =  + 4, z = 6 – 5]
       Equation of plane
       x 2          y 2           z 1
       32           02            1 1  0
       4  2 1  2 0  1
       x  2 y  2 z 1
           1          2                0       0
           2          3            1
       (x – 2) {2 – 0} – (y – 2) {– 1 – 0} + {z – 1} {– 3 + 4} = 0
       2x – 4 + y – 2 + z – 1 = 0
       2x + y + z – 7 = 0 _______________ ,
       General point of line is a point on ,
               2 ( –  + 3) + ( – 4) + (6 – 5) – 7 = 0
                –2 + 6 +  – 4 + 6 – 5 – 7 = 0
                5 – 10 = 0
                =2
               Point of intersection of line and plane (1, –2, 7)
                                                              ×·×·×·×·×
                                                                 -(24)-

More Related Content

What's hot

Stacks image 1721_36
Stacks image 1721_36Stacks image 1721_36
Stacks image 1721_36Dreams4school
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithmsatiqah ayie
 
F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Lineguestcc333c
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Sunaina Rawat
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Modulebspm
 
5 indices & logarithms
5  indices & logarithms5  indices & logarithms
5 indices & logarithmslinusshy
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi indu psthakur
 
Homework chapter 2& 3 form 2
Homework chapter 2& 3 form 2Homework chapter 2& 3 form 2
Homework chapter 2& 3 form 2Mohd Irwan
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesBright Minds
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3naveenkumar9211
 
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)Lai Zhi Jun
 
IIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2019 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2019 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's ClassesSOURAV DAS
 

What's hot (20)

10thmaths online(e)
10thmaths online(e)10thmaths online(e)
10thmaths online(e)
 
New stack
New stackNew stack
New stack
 
C4 January 2012 QP
C4 January 2012 QPC4 January 2012 QP
C4 January 2012 QP
 
Stacks image 1721_36
Stacks image 1721_36Stacks image 1721_36
Stacks image 1721_36
 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithms
 
F4 05 The Straight Line
F4 05 The Straight LineF4 05 The Straight Line
F4 05 The Straight Line
 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4
 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Module
 
5 indices & logarithms
5  indices & logarithms5  indices & logarithms
5 indices & logarithms
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007
 
Homework chapter 2& 3 form 2
Homework chapter 2& 3 form 2Homework chapter 2& 3 form 2
Homework chapter 2& 3 form 2
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3
 
Complex number
Complex numberComplex number
Complex number
 
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
 
IIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2019 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2019 Question Paper | Sourav Sir's Classes
 
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
 
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2020 Question Paper | Sourav Sir's Classes
 

Viewers also liked

Maths CBSE 2012
Maths CBSE 2012Maths CBSE 2012
Maths CBSE 2012studymate
 
3 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-133 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-13studymate
 
2 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-122 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-12studymate
 
class 12 2014 maths solution set 1
class 12 2014 maths solution set 1class 12 2014 maths solution set 1
class 12 2014 maths solution set 1vandna123
 
12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 vandna123
 
Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12studymate
 
Physics CBSE solution 2012
Physics CBSE solution 2012Physics CBSE solution 2012
Physics CBSE solution 2012studymate
 
07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filterstudymate
 
CBSE Board Class 10 Previous Year Maths Paper 2007 Solution
CBSE Board Class 10 Previous Year Maths Paper 2007 SolutionCBSE Board Class 10 Previous Year Maths Paper 2007 Solution
CBSE Board Class 10 Previous Year Maths Paper 2007 SolutionMATHS BLOGS
 
CBSE Accountancy Solution
CBSE Accountancy SolutionCBSE Accountancy Solution
CBSE Accountancy Solutionstudymate
 
CBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPERCBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPERGautham Rajesh
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paperPady Srini
 
Inverse of matrix
Inverse of matrixInverse of matrix
Inverse of matrixgandhinagar
 

Viewers also liked (20)

2013 cbse mathematics board paper
2013 cbse mathematics board paper2013 cbse mathematics board paper
2013 cbse mathematics board paper
 
Maths CBSE 2012
Maths CBSE 2012Maths CBSE 2012
Maths CBSE 2012
 
3 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-133 chem cbse_2012-13_12th_11-03-13
3 chem cbse_2012-13_12th_11-03-13
 
2 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-122 phy cbse_2012-13_12th_05-03-12
2 phy cbse_2012-13_12th_05-03-12
 
class 12 2014 maths solution set 1
class 12 2014 maths solution set 1class 12 2014 maths solution set 1
class 12 2014 maths solution set 1
 
2015 12 lyp_matematics_set3_delhi_qp
2015 12 lyp_matematics_set3_delhi_qp2015 12 lyp_matematics_set3_delhi_qp
2015 12 lyp_matematics_set3_delhi_qp
 
12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1
 
Mathematics xii 2014 sample paper
Mathematics xii 2014 sample paperMathematics xii 2014 sample paper
Mathematics xii 2014 sample paper
 
Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12Chemistry cbse solution_2011-12
Chemistry cbse solution_2011-12
 
Physics CBSE solution 2012
Physics CBSE solution 2012Physics CBSE solution 2012
Physics CBSE solution 2012
 
CBSE Sample Paper Mathematics Class XII - 2015
CBSE Sample Paper  Mathematics Class XII  - 2015CBSE Sample Paper  Mathematics Class XII  - 2015
CBSE Sample Paper Mathematics Class XII - 2015
 
07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter
 
CBSE Board Class 10 Previous Year Maths Paper 2007 Solution
CBSE Board Class 10 Previous Year Maths Paper 2007 SolutionCBSE Board Class 10 Previous Year Maths Paper 2007 Solution
CBSE Board Class 10 Previous Year Maths Paper 2007 Solution
 
2015 Mathematics Class XII
2015 Mathematics Class XII2015 Mathematics Class XII
2015 Mathematics Class XII
 
CBSE Accountancy Solution
CBSE Accountancy SolutionCBSE Accountancy Solution
CBSE Accountancy Solution
 
CBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPERCBSE XII MATHEMATICS QUESTION PAPER
CBSE XII MATHEMATICS QUESTION PAPER
 
Class XII CBSE new Mathematics Question Paper Design-2016-17
Class XII CBSE new Mathematics Question Paper Design-2016-17Class XII CBSE new Mathematics Question Paper Design-2016-17
Class XII CBSE new Mathematics Question Paper Design-2016-17
 
cbse class 12 math question paper
cbse class 12 math question papercbse class 12 math question paper
cbse class 12 math question paper
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Inverse of matrix
Inverse of matrixInverse of matrix
Inverse of matrix
 

Similar to 5 maths cbse_2012-13_12th_20-03-13

Bowen prelim a maths p1 2011 with answer key
Bowen prelim  a maths p1 2011 with answer keyBowen prelim  a maths p1 2011 with answer key
Bowen prelim a maths p1 2011 with answer keyMeng XinYi
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012masyati
 
001 matrices and_determinants
001 matrices and_determinants001 matrices and_determinants
001 matrices and_determinantsphysics101
 
Anderson Emath Paper2_printed
Anderson Emath Paper2_printedAnderson Emath Paper2_printed
Anderson Emath Paper2_printedFelicia Shirui
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamielittrpgaddict
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionSuresh Kumar
 
Catholic High Emath Paper1
Catholic High Emath Paper1Catholic High Emath Paper1
Catholic High Emath Paper1Felicia Shirui
 
Sequence and series 02
Sequence and series 02Sequence and series 02
Sequence and series 02manrak
 
Feb 24 25 Trigonometry 1
Feb 24 25 Trigonometry 1Feb 24 25 Trigonometry 1
Feb 24 25 Trigonometry 1ste ve
 
Lesson29 Intro To Difference Equations Slides
Lesson29   Intro To Difference Equations SlidesLesson29   Intro To Difference Equations Slides
Lesson29 Intro To Difference Equations SlidesMatthew Leingang
 
Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedFelicia Shirui
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printedFelicia Shirui
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationVer Louie Gautani
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]indu thakur
 
1.5 segs __angle_bisectors
1.5 segs __angle_bisectors1.5 segs __angle_bisectors
1.5 segs __angle_bisectorskca1528
 
Unit 5 powerpoint[1] algebra (1)
Unit 5 powerpoint[1] algebra (1)Unit 5 powerpoint[1] algebra (1)
Unit 5 powerpoint[1] algebra (1)John O'Driscoll
 

Similar to 5 maths cbse_2012-13_12th_20-03-13 (20)

Bowen prelim a maths p1 2011 with answer key
Bowen prelim  a maths p1 2011 with answer keyBowen prelim  a maths p1 2011 with answer key
Bowen prelim a maths p1 2011 with answer key
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012
 
001 matrices and_determinants
001 matrices and_determinants001 matrices and_determinants
001 matrices and_determinants
 
Anderson Emath Paper2_printed
Anderson Emath Paper2_printedAnderson Emath Paper2_printed
Anderson Emath Paper2_printed
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solution
 
Add maths 2
Add maths 2Add maths 2
Add maths 2
 
Catholic High Emath Paper1
Catholic High Emath Paper1Catholic High Emath Paper1
Catholic High Emath Paper1
 
Sequence and series 02
Sequence and series 02Sequence and series 02
Sequence and series 02
 
Feb 24 25 Trigonometry 1
Feb 24 25 Trigonometry 1Feb 24 25 Trigonometry 1
Feb 24 25 Trigonometry 1
 
Lesson29 Intro To Difference Equations Slides
Lesson29   Intro To Difference Equations SlidesLesson29   Intro To Difference Equations Slides
Lesson29 Intro To Difference Equations Slides
 
Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printed
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printed
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic Equation
 
Gr aph of cosine
Gr aph of cosineGr aph of cosine
Gr aph of cosine
 
Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
1.5 segs __angle_bisectors
1.5 segs __angle_bisectors1.5 segs __angle_bisectors
1.5 segs __angle_bisectors
 
Unit 5 powerpoint[1] algebra (1)
Unit 5 powerpoint[1] algebra (1)Unit 5 powerpoint[1] algebra (1)
Unit 5 powerpoint[1] algebra (1)
 

More from studymate

Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13studymate
 
6 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-136 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-13studymate
 
Biology CBSE
Biology CBSEBiology CBSE
Biology CBSEstudymate
 
Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)studymate
 
Bio sol cbse_2011-12
Bio sol cbse_2011-12Bio sol cbse_2011-12
Bio sol cbse_2011-12studymate
 
4 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-124 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-12studymate
 
English cbse 2011-12_solutions
English cbse 2011-12_solutionsEnglish cbse 2011-12_solutions
English cbse 2011-12_solutionsstudymate
 

More from studymate (7)

Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13Eco cbse_2012-13_12th_30-03-13
Eco cbse_2012-13_12th_30-03-13
 
6 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-136 eco cbse_2012-13_12th_30-03-13
6 eco cbse_2012-13_12th_30-03-13
 
Biology CBSE
Biology CBSEBiology CBSE
Biology CBSE
 
Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)Economics cbse board_solution_2011-12 (1)
Economics cbse board_solution_2011-12 (1)
 
Bio sol cbse_2011-12
Bio sol cbse_2011-12Bio sol cbse_2011-12
Bio sol cbse_2011-12
 
4 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-124 acc cbse_2011-12_12th_15-03-12
4 acc cbse_2011-12_12th_15-03-12
 
English cbse 2011-12_solutions
English cbse 2011-12_solutionsEnglish cbse 2011-12_solutions
English cbse 2011-12_solutions
 

5 maths cbse_2012-13_12th_20-03-13

  • 1. Studymate Solutions to CBSE Board Examination 2012-2013 Series : SKS/1 Code No. 65/1/1 Candidates must write the Code on Roll No. the title page of the answer-book.  Please check that this question paper contains 8 printed pages.  Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.  Please check that this question paper contains 29 questions.  Please write down the Serial Number of the questions before attempting it.  15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the student will read the question paper only and will not write any answer on the answer script during this period. MATHEMATICS [Time allowed : 3 hours] [Maximum marks : 100] General Instructuions: (i) All questions are compulsory. (ii) Questions numbered 1 to 10 are very short-answer questions and carry 1 mark each. (iii) Questions numbered 11 to 22 are short-answer questions and carry 4 marks each. (iv) Questions numbered 23 to 29 are also short-answer questions and carry 6 marks each. (v) Use of calculators is not allowed. -(1)-
  • 2. STUDYmate SECTION-A Question numbers 1 to 10 carry 1 mark each. Write the principal value of tan1 1  cos 1    1 1.    2  1   –1 –1 Ans. tan (1) + cos  2     = tan1  tan   cos 1   cos   4  3      =  cos 1 cos      4   3   2 =  4 3 3  8  11 = = 12 12 2. Write the value of tan  2 tan 1 1     5  1 1  Ans. tan  2 tan   5   1   2 1  tan  tan  5   2 =   1    1   5         2  5   = tan  tan1     24      5  = tan  tan1     12   5 = 12  a  b 2a  c   1 5  3. Find the value of a if 2a  b 3c  d    0 13      Ans. a – b = –1 2a – b = 0 –a = –1 a=1 x 1 x 1 4 1 4. If  , then write the value of x. x 3 x 2 1 3 Ans. (x + 1) (x + 2) – (x – 3) (x – 1) = 12 + 1 2 2 (x + 3x + 2) – (x – 4x + 3) = 13 7x – 1 = 13 7x = 14 x=2 -(2)-
  • 3. STUDYmate  9 1 4  1 2 1 5. If  2 1 3   A  0 4 9  , then find the martix A.      9 1 4  1 2 1 Ans. A =  2 1 3   0 4 9       8 3 5  A=    2 3 6  2 4 3 d y  2  dy  6. Write the degree of the differential equation x  2   x   0  dx   dx  Ans. Degree = 2   7. If a  xi  2 ˆ  zk and b  3i  yj  k are two equal vectors, then write the value of x + y + z. ˆ j ˆ ˆ ˆ ˆ  Ans. a  xi  2 ˆ  zk  3i  yj  k ˆ j ˆ ˆ ˆ ˆ  x=3 y = –2 z = –1  x+y+z=0    8. If a unit vector a makes angles with iˆ, with ˆ and an acute angle  with k , then find j ˆ 3 4 the value of . 2   Ans. cos  cos 2  cos 2   1 3 4 1 1   cos 2  = 1 4 2 2 1 cos  = 4 1 cos  = , as  is an acute angle. 2  = 3 9. Find the Cartesian equation of the line which passes through the point (–2, 4, –5) and is x 3 4y z 8 parallel to the line   . 3 5 6 Ans. The required equation of the line x 2 y 4 z 5   3 5 6 10. The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) 3 2 = 0.005x + 0.02x + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question. 3 2 Ans. P(x) = 0.005x + 0.02x + 30x 2 P'(x) = 3 × 0.005x + 2(0.02)x + 30 P'(3) = 3 × 0.005 × 9 + 2(0.02)(3) + 30 = 30.255 -(3)-
  • 4. STUDYmate SECTION-B Question numbers 11 to 22 carry 4 marks each. 11. Show that the function f in A =    2 3 defined as f(x) = 4x  3 6x  4 is one-one and onto. Hence –1 find f . 4x  3 Ans. f (x )  6x  4 2 Let x1, x 2  A      ; x1  x 2 3  Consider, f (x1) = f (x2) 4x1  3 4x 2  3 i.e.  6x1  4 6x 2  4 i.e. (4x1 + 3) (6x2 – 4) = (4x2 + 3) (6x1 – 4) i.e. 24x1x2 – 16x1 + 18x2 – 12 = 24 x1x2 – 16x2 + 18 x1 – 12 i.e. –34x1 = –34x2 i.e. x1 = x2  f is one - one. 4x  3 Let y  6x  4 6xy – 4y = 4x + 3 i.e. (6y – 4) x = 3+ 4y 3  4y x 6y  4 4 2  y i .e. 6 3 2  y   3   f is onto Since f is one-one and onto 3  4y  xf 1 y   6y  4 i.e. y (6x – 4) = 4x + 3 1  3  4x  f x  6x  4 12. Find the value of the following: 1  1 2x 1  y2  tan  sin  cos 1  , |x| < 1, y > 0 and xy < 1. 2 1  x2 1  y2  OR 1  1  1  1  1  1   Prove that: tan    tan    tan    2 5 8 4 1   2x  1  1  y 2   Ans. tan  sin1  2   cos 1  2  2  1  x  2  1  y   -(4)-
  • 5. STUDYmate 1 1 1 1  = tan  (2 tan x )  (2tan y ) 2 2  = tan (tan–1 x + tan–1 y) x y = 1  xy OR 1 1    1  x y  Ans. tan  2 5   tan1 1 [using tan1 x  tan1 y  tan1   , xy  1] 1  1  8  1  xy     10  7 1 = tan1    tan1    9 8 7 1    = tan  9 8  1 1  7     72   56  9  = tan1    72  7   65  = tan1    65  = tan–1 (1)  = 4 13. Using properties of determinants, prove the following: 1 x x2 x  1  x 3  2 x2 1 x x2 1 Ans. Operating C1  C1 + C2 + C3, we obtain 1 x  x2 x x2 1 x  x2 1 x L.H.S. = 1 x  x2 x2 1 Take out 1 + x + x2 from C1 1 x x2 1 1 x = (1 + x + x2) 1 x2 1 Operate R2  R2 – R1 : R3  R3 – R1 1 x x2 0 1 x x (1  x ) = (1 + x + x2) 0 x (x  1) 1  x 2 Expand with C1 1 x x (1  x ) = (1 + x + x2) ,  x (1  x ) (1  x 2 ) Take out 1 – x from C1 and same from C2 -(5)-
  • 6. STUDYmate 1 x = (1 + x + x2) (1 – x)2  x 1  x = (1 + x + x2) (1 – x)2 (1 + x + x2) = {(1 + x + x2) (1 – x)}2 = (1 – x3)2 = R.H.S. 14. Differentiate the following function with respect to x: x log x (log x) + x Ans. Let y = (log x)x + xlog x, dy d Then  {(log x )x  x log x } dx dx d d log x = (log x )x  (x ) dx dx d d  d v d  = (log x )x {(x log(log x )}  x log x (log x log x )  (u )  uv (v log u ) dx dx  dx dx    1 1     1  d d    log(log x )  x  (log x log x )  ((log x )2 )  log x = (log x )x x   2(log x )    log x  x     x  dx dx   1   log x  log x = (log x )x   log(log x )  2  x  log x   x  2 2 d 2y dy 15. If y  log[x  x  a ], show that (x 2  a 2 ) 2 x  0. dx dx Ans. y  log [x  x 2  a 2 ] dy 1  2x   1   dx x  x 2  a 2  2 x2  a2    1   x  x 2  a 2 ____ y1     x a 2   x 2  ____  x2  a2    y1( x 2  a 2 )  1 1.2 x .y1  y2 ( x 2  a 2 )  0 2 x 2  a2 2 2  y2 (x + a ) + xy1 = 0 16. Show that the function f (x ) | x  3|, x  , is continuous but not differentiable at x = 3. OR d 2y If x = a sin t and y = a (cot t + log tan t/2), find . dx 2 Ans. f(x) = |x – 3|; x = 3 – f  3  h   f  3 LHD = f '(3 ) = lim h 0 h h 0 |3  h  3|  |3  3| = lim h 0 h h 0 -(6)-
  • 7. STUDYmate | h | = lim h 0 h h 0 h = lim h 0 h h 0 = –1 f  3  h   f  3 R H D = f '(3+) = lim h 0 h h 0 |3  h  3| |3  3| = lim h 0 h h 0 |h | = lim h 0 h h 0 h = lim h 0 h h 0 = 1 As LHD  RHD  f is not differentiable. Again, LHL = lim | x  3| (at x = 3) x 3 = lim|3  h  3| h 0 = lim| h | 0  h 0 RHL = lim | x  3| (at x = 3) x 3 = lim|3  h  3| h 0 =  lim|h | 0 h 0 Since, LHL = RHL  f is continuous at x = 3. OR  t Ans. y = a  cos t  log tan  ; x = a sin t  2 dy  1  t  1 = a   sin t   sec2     dt  t   2  2 tan     2    t    cot    1 2  1 a   sin t    =  2 t  2  t  sin   cos     2  2  1  = a   sin t   sin t   1  sin2 t  = a   sin t  cos2 t = a sin t dx = a cos t dt -(7)-
  • 8. STUDYmate  a cos2 t  dy  sin t  = cot t    dx a cos t d 2y d  dy    dx 2 dx  dx    =  cosec 2t   dt     dx  1 cosec2t .sec t =   cosec t  . 2  a cos t a cosec2t = a cos t sin(x  a ) 17. Evaluate :  sin(x  a dx OR 5x  2 Evaluate :  1  2x  3x 2 dx sin(x  a ) Ans. I   dx sin(x  a ) sin(t  2a ) I dx sin t sin t cos 2a cos t sin2a  dt   dt sin t sin t = t cos 2a – sin 2a .  cot dt = t cos 2a – sin 2a ln | sin t | + C = (x + a) cos 2a – sin 2a ln | sin (x + a) | + C OR 5x  2 Ans. I   1  2x  3x 2 dx d 5x  2  A (1  2x  3x 2 )  B dx  5x – 2 = A (2 + 6x) + B Comparing the co-efficients we get 5 = 6A 5  A= 6 – 2 = 2A + B  B = – 2A – 2 5 =  2 3 11 =  3 -(8)-
  • 9. STUDYmate 5 11 (2  6x )  I 6 dx   3 dx 1  2x  3x 2 1  2x  3x 2 I1 I2 5 2  6x 6  1  2x  3x 2 I1  dx Let 1 + 2x + 3x2 = t  (2 + 6x)dx = dt 5 dt 5 6 t  I1   ln t 6 5 = ln|1  2x  3x 2 | C1 6 11 dx I2  3  3x 2  2x  1 11 dx 9  x2  2 x  1  1  1  3 3 9 9 11 dx  9   1 2 2 x     3 9 1 x 11 1 3 C  . tan1 2 9 2 2 3 3 = I = I 1 – I2 5 11  3x  1  = ln|1  2x  3x 2 |  tan1  C 6 3 2  2  x2 18. Evaluate :  (x 2  4) (x 2  9) dx 1 2x 2  4  9  4  9 2   x 2  4  x 2  9 Ans. I = dx 1 x2  4 1 x2  9 1 x2  4 1 13dx = 2   x 2  4 x 2  9 dx  2   x 2  4 x 2  9 dx  2   x 2  4 x 2  9dx  2   x 2  4  x 2  9dx 1 1 1  x  1 1 1  x  1 3  1 1  = 2 . 3 tan  3   2 . 2 tan  2   2 . 5   2      dx  x  4  x  9  2 1 x 1  x  13  x  13 x = tan1    tan1    tan1    tan1  C 6 3 4  2  20  2  30 3 1  x   1 13  1  x   1 13  = tan       tan     C  3   6 30   2   4 20   3 x 2 x = tan1    tan1    C 5 3 5 2 -(9)-
  • 10. STUDYmate 19. Evaluate :  (|x |  | x  2| | x  4|)dx 4 Ans. | x |  | x  2|  | x  4|dx  I 0 0<x <4  |x| = + x 0<x <2  |x – 2| = – (x – 2) 0<x <4  |x – 2| = + (x – 2) 0<x <4  |x – 4| = – (x – 4) 4 4 4 4  I =  0  0  0  x  2  x  (x  2)  4  x 0 4 2 4 4  x2   x2   x2   x2      2x     2x   4x    2 0     2 0  2  2    2 0 = (8) + [(4 – 2) – 0] + [(8 – 8) – (2 – 4)] + [16 – 16/2] = 8 + 2 + 2 + 16/2 = 20        20. If a and b are two vectors such that |a  b |  |a |, then prove that vector 2a  b is  perpendicular to vector b.   2  2 Ans. |a  b |  |a |  2    2  2  |a |  2a .b  |b | |a |     2a .b  b .b  0    (2a  b ). b  0     2a  b  b x  2 y 1 z  2 21. Find the coordinates of the point, where the line   intersects the plane 3 4 2 x – y + z – 5 = 0. Also, find the angle between the line and the plane. OR Find the vector equation of the plane which contains the line of intersection of the planes  ˆ  r . (i  2 ˆ  3k )  4  0 and r . (2i  ˆ  k )  5  0 and which is perpendicular to the plane j ˆ ˆ j ˆ  r . (5i  3 ˆ  6k )  8  0. ˆ j ˆ x  2 y 1 z  2 Ans.    [x = 2 + 2, y = 4 – 1; z = 2 + 2] 3 4 2 This point lies on the plane x – y + z – 5 = 0 (3 + 2) – (4 – 1) + (2 + 2) – 5 = 0 3 + 2 – 4 + 1 + 2 + 2 – 5 = 0 =0 -(10)-
  • 11. STUDYmate  Point of Intersection = [2, –1, 2]  3  1  4  1  2 1 sin  = 9  16  4 1  1  1 342 sin  = 29 3 1 sin  = 87 1 1  = sin 87 OR Ans. Equation of plane through 1 & 2 (x + 2y + 3z – 4) + k(2x + y – z + 5) = 0 x (1 + 2k) + y(2 + k) + z (3 – k) – 4 + 5k = 0 This plane is perpendicular to 5x + 3y – 6z + 8 = 0  5 (1 + 2k) + 3 (2 + k) – 6 (3 – k) = 0 5 + 10 k + 6 + 3k – 18 + 6k = 0 19 k – 7 = 0 7 k 19  Required plane is will be  14   7   7  x 1    y 2    z 3    19   19   19  85 4  0 19 33x + 45y + 50z + 9 = 0 22. A speak truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A? 60 40 Ans. P (AT) = P (AC) = 100 100 90 10 P (BT) = P (BC) = 100 100 60 10 400 90 P (contradiction)     100 100 100 100 600  3600 4200   10000 10000 % P (contradiction) = 42 % In general parlace we understand who speaks truth, will have a better say and accepted more. -(11)-
  • 12. STUDYmate SECTION-C Question numbers 23 to 29 carry 6 marks each. 23. A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of ` 6,000. Three times the award money for Hardwork added to that given for honesty amounts to ` 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for award. Ans. Let Honesty award = ` x Regularity award = ` y Hard work award = ` z According to question; x + y + z = 6000 3z + x = 11000 x + z = 2y x + y + z = 6000 x + 0y + 3z = 11000 x – 2y + z = 0 We can represent these equations using Matrices as: 1 1 1   x   6000  1 0 3 y   11000       1 2 1   z   0       AX = B –1  X=A B 1 1 1  Now |A| = 1 0 3  = 6 + 2 – 2 = 6  0   1 2 1    –1  A exists  6 3 3    adj. A =  2 0 2  2 3 1   1 A = |A| adj. A  –1   6 3 3  1 2 0 2 = 6   2 3 1    6 3 3   6000  1 2 0 2 11000  X=A B= 6   –1  2 3 1  0      36000  33000  0  1  12000  0  0 = 6   12000  33000  0    -(12)-
  • 13. STUDYmate  3000  1 12000  = 6  21000     500  2000  =   3500     Award for honesty = ` 500 Award for regularity = ` 2000 Award for hardwork = ` 3500 One more value can be punctuality. 24. Show that the height of the cylinder of maximum value, that can be inscribed in a sphere of 3R radius R is . Also find the maximum volume. 3 OR 2 Find the equation of the normal at a point on the curve x = 4y which passes through the point(1, 2). Also find the equation of the corresponding tangent. Ans. Let x be the radius of the base and h be the height of the cylinder ABCD which is inscried in a sphere of radius R. It is obvious that for maximum volumke the axis of the cylinder must be along OA2 = OL2 + AL2  AL = R2  x 2 M Let V be the volume of the cylinder. Then, D C V = (AL)2 × LM  V =  (AL)2 × 2 (OL)  V =  (R2 – x2) × 2x O a  V = 2 (R2x – x3) dV d 2V    2 (R 2  3x 2 ) and  12 x dx dx 2 A L B For maximum or minimum values of V, we must have dV 0 dx  2(R2 – 3x2) = 0 R  x= 3  d 2V  R  12  0 Clearly,  dx 2 x  R   3 3 R 2R Hence, V is maximum when x  and hence LM = 2x = . 3 3 OR Differentiating x = 4y with respect to x, we get 2 dy x  dx 2 Let (h, k) be the coordinates of the point of contact of the normal to the curve x2 = 4y. Now, slope of the tangent at (h, k) is given by -(13)-
  • 14. STUDYmate dy  h   dx (h , k ) 2 2 Hence, slope of the normal at (h, k) = h Therefore, the equation of normal at (h, k) is 2 y k  (x  h ) … (i) h Since it passes through the point (1, 2), we have 2 2k  (1  h ) h 2 or k  2  (1  h ) … (ii) h Since (h, k) lies on the curve x2 = 4y, we have h2 = 4k … (iii) From (ii) and (iii), we have h = 2 and k = 1. Substituting the values of h and k in (i), we get the required equation of normal as 2 y 1  (x  2) 2 or x+y=3 2 25. Using integration, find the area bounded by the curve x = 4y and the line x = 4y – 2. OR Using integration, find the area of the region enclosed between the two circles 2 2 2 2 x + y = 4 and (x – 2) + y = 4. Ans. The equations of the given curves are x2 = 4y … (i) and x = 4y – 2 … (ii) Eq. (i) represents a parabola with vertex at the origin and axis along positive direction of y-axis. Eq. (ii) represents a straight line which meets the coordinate axes at (– 2, 0) and (2, 0) respectively. To find the points of intersection of the given parabola and the line, we solve (i) and (ii) simultaneously. Solving the two equations simultaneously. We obtain that the points of intersection of the given parabola and the line are (2, 1) and (–1, 1/4). The region whose area is to be found out is shaded in figure. Let us slice the shaded region into vertical strips. We find that each vertical strip runs from parabola (i) to the line (ii). So, the approximating rectangle shown in figure has Width = x, Length = (y2 – y1), and the Area (y2 – y1) x. Since the approximating rectangle can move from x = – 1 to x = 2.  Required area A is given by 2 A  (y 1 2  y1 )dx  P(x , y2 ) and Q(x , y1 ) lie on (ii) and (i) respec. 2  x  2 x2    A    dx   y  x  2 and y  x 2 4 4   1   2  4 1 4   -(14)-
  • 15. STUDYmate 2 x2 1 x3   A  x  8 2 12  4 2 8  1 1 1  9  A       sq. units  8 2 12   8 2 12  8 OR Ans. Equations of the given circles are x2 + y2 = 4 ...(1) and (x – 2)2 + y2 = 4 ...(2) Equation (1) is a circle with centre O at the origin and radius 2. Equation (2) is a circle with centre C (2, 0) and radius 2. Solving equations (1) and (2), we have (x –2)2 + y2 = x2 + y2 or x2 – 4x + 4 + y2 = x2 + y2 or x = 1 which gives y =  3 Thus, the points of intersection of the given circles are A 1, 3  and A' 1,  3  as shown in the figure. Required area of the enclosed region OACA'O between circles = 2 [area of the region ODCAO] (Why?) = 2 [area of the region ODAO + area of the region DCAD] 1 2  = 2   ydx   ydx  0  1   1 2 2  = 2   4   x  2 dx   4  x dx  2 (Why?) 0  1   1 2 1 2 1 1  x  2   1 1 1 x  = 2   x  2  4   x  2    4 sin  2    2  x 4  x   4 sin  2 2  2 0 2 2 2 1  1 2  2 1  x  2    1 x  =  x  2  4   x  2   4 sin  2    x 4  x  4 sin   2  0   2 1   1  1     1 1  =   3  4sin     4 sin  1   4 sin 1  3  4 sin 1 1    2    2       =   3  4    4     4   3  4    6 2  2 6  2   2  =  3   2    2  3    3   3  8 = 2 3 3 x/y x/y 26. Show that the differential equation 2ye dx + (y – 2x e ) dy = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1. Ans. The given differential equation can be written as x dx 2xe y  y  dy x ...(i) 2ye y -(15)-
  • 16. STUDYmate x 2xe y  y Let F(x, y) = x 2ye y  x   2xe y  y      0 F x , y  Then F(x, y) =     x    2ye y   Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation. To solve it, we make the substitution x = vy ...(ii) Differentiating equation (ii) with respect to y, we get dx dv v y dy dy dx Substituting the value of x and dy in equation (i), we get dv 2vev  1 v y  dy 2ev dv 2vev  1 or y  v dy 2ev dv 1 or y  v dy 2e v dy or 2e dv = y dy  2e .dv    v or y v or 2e = –log |y| + C x and replacing v by y , we get x 2e y  log|y |  C ...(iii) Substituting x = 0 and y = 1 in equation (iii), we get 0 2e + log |1| = C = C = 2 Substituting the value of C in equation (iii), we get x y 2e  log|y |  2 which is particular solution of the given differential equation. 27. Find the vector equation of the plane passing thorugh the three points with position vectors i  ˆ  2k , 2i  j  k and i  2 ˆ  k. Also find the coordinates of the point of intersection of this ˆ j ˆ ˆ ˆ j ˆ  plane and the line r  3i  ˆ  k  (2i  2 ˆ  k ). ˆ j ˆ ˆ j ˆ     Ans. (r  a ).(b  c )  0 ˆ ˆ k i j ˆ    n  b  c  2 1 1  3iˆ  ˆ  5k j ˆ 1 2 1 -(16)-
  • 17. STUDYmate  ˆ  r  (i  ˆ  2k ) . (3iˆ  ˆ  5k )  0 j ˆ j ˆ   Equation of plane is  r .(3iˆ  ˆ  5k )  14 j ˆ  ˆ or r .(3i  ˆ  5k )  14 j ˆ  Now r  3i  ˆ  k  (2i  2 ˆ  k ) ˆ j ˆ ˆ j ˆ This line intersects the plane  [(3 + 2l) [(3  2 )i  (1  2 ) ˆ(1   )k ]. (3i  ˆ  5k )  14) ˆ j ˆ ˆ j ˆ  –=1  =– 1  Point of intersection is i  ˆ  2k . ˆ j ˆ 28. A cooperative society of farmers has 50 hectares of land to grow two crops A and B. The profits from crops A and B per hectare are estimated as ` 10,500 and ` 9,000 respectively. To control weeds, a liquid herbicide has to be used for crops A and B at the rate of 20 litres and 10 litres per hectare, respectively. Further not more than 800 litres of herbicide should be used in order to protect fish and wildlife using a pond which collects drainage from this land. Keeping in mind that the protection of fish and other wildlife is more important than earning profit, how much land should be allocated to each crop so as to maximize the total profit? Form an LPP from the above and solve it graphically. Do you agree with the message that the protection of wildlife is utmost necessary to preserve the balance in environment? Ans. Let x hectares for crop A and y hectares for crop B be allocated. A B x y 50 hectares 10500 9000 Profit 20 L/H 10 L/H 800 litres atmost Y C 50 B(30, 20) X O A 50 40 x + y = 50 2x + y = 80 -(17)-
  • 18. STUDYmate A.T.Q. We need to maximise profit given by Z = 10500x + 9000y subject to x + y  50 (Area constraint) 20x + 10y  800 (Herbicide constraint) x, y  0 (Non-negative constraint) After plotting graph, the corner points are Corner Point Value of Z O(0, 0) Z= 0 A(40, 0) Z= 420000 B(30, 20) Z= 315000 + 180000 = 495000 Maximum C(0, 50) Z= 450000  30 hectares for crop A and 20 hectares for crop B. 29. Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods if more beneficial for the patient. Ans. Let E1: the patient follows meditation and yoga E2: tha patient uses drug 1 then E1 and E2 are mutually exclusive and P(E1) = P(E2) = 2 Let E: the selected patient suffers a heart attack 40  30  28 then P(E/E1) = 1   100  100  100 40  25  30 and P(E/E2) = 1   100  100  100 Hence, P (patient who suffers heart attack follows meditation and yoga). P  E/E1  P  E1  = P(E1/E) = P E/E P E  P E/E P E (Using Bayes Theorem)  1  1  2  2 28 1  100 2 28 14 =   28 1 30 1 58 29    100 2 100 2 ×·×·×·×·× -(18)-
  • 19. STUDYmate Studymate Solutions to CBSE Board Examination 2012-2013 Series : SKS/1 Code No. 65/1/2 UNCOMMON QUESTIONS ONLY SECTION-A 4  dy  d 2y 9. Write the degree of the differential equation    3x  0.  dx  dx 2 4  dy   d 2y  Ans.  dx   3x  2   0    dx    Degree = 1 16. P speaks truth in 70% of the cases and Q in 80% of the cases. In what percent of cases are they likely to agree in stating the same fact? Do you think, when they agree, means both are speaking truth? 70 30 Ans. P(PT) = P(PL) = 100 100 80 20 P(QT) = P(QL) = 100 100 P(agreement) = (PL & QT) or (PL & QL) 5600 600 =  10000 10000 6200 =  62% 10000 No, agreement does not mean they are speaking truth.  ˆ        18. If a  i  ˆ  k and b  ˆ  k  k , find a vector c , such that a  c  b and a .c  3 j ˆ j ˆ ˆ  ˆ ˆ ˆ Ans. Let c  xi  yj  zk i ˆ k ˆ j ˆ   a c  1 1 1 x y z i (z  y )  ˆ(z  x )  k (y  x ) ˆ j ˆ     Now, a  c  b (given) (b  ˆ  k ) j ˆ  z – y = 0, x – z = 1, y – x = – 1 y = z and x – y = 1 ... (i)   Again, a .c  3 x + y + z = 3 x+y+y=3 x + 2y = 3 ... (ii) -(19)-
  • 20. STUDYmate Solving (i) and (ii) x  2y  3 x  y 1   2 y z 3y  2 / 3 3 5  x=1+y= 3  5ˆ 2 2 ˆ So, c  i  ˆ  k. j 3 3 3 3 19. Evaluate :  | x  1|  | x  2|  | x  3| dx. 1 3 Ans. I =  | x  1|  | x  2|  | x  3| dy 1 2 3   | x  1  2  x  3  x  dx   (x  1  x  2  3  x )dx 1 2 2 3   (4  x ) dx  x dx 1  2 2 3  x   x2  2   4x       2  1  2  2    1 9   6   4      2  2 2  7 5 6  2 2 5 5   5 2 2 x2 1 20. Evaluate :  (x 2  4)(x 2  25) dx x2  1 Ans. I   (x 2  4)(x 2  25) dx x2 1 A B 2 2  2  2 (x  4) (x  25) (x  4) x  25 x =0 A B 1     25 A  4B  1 ... (i) 4 25 100 x=1 2 A B     5  26 5 26 A B 1    5 26 65 5  13A + B=1 2 -(20)-
  • 21. STUDYmate  26A + 5B = 2 ... (ii) 1 8  A ,B 7 7 1 dx 8 dx  I=  2 7 x 4 7  x 2  25 1 1 x 8 1 x  . tan1    . tan1    c 7 2 2 7 5 5 dy y  y  28. Show that the differential equation x sin    x  y sin    0 is homogeneous. Find the dx  x x  particular solution of this differential equation, given that x = 1 when y  . 2 dy y y Ans. x sin  y sin  x dx x x dy y 1   dx x sin y x y 1 Let F (x, y) =  x sin y x y 1  F (x, y) =  x  y  sin    x    y 1        x sin y     x = ° F (x, y)  Given d.e. is homogeneous Let y = vx dy dv  v  x dx dx Now  dv   x v  x sin v  x  vx  sin v  0  dx  dv  vx sin v  x 2 sin v  x  vx sin v  0 dx dx   sin v dv   x  – cos v = – ln |x| + c y   – cos   = – ln |x| + c x  x  1, y  2  0=c y  cos  ln | x | x  x  e cos(y/x ) y  cos  log x x -(21)-
  • 22. STUDYmate 29. Find the vector equation of the plane determined by the points A (3, –1, 2), B (5, 2, 4) and C (–1, –1, 6). Also find the distance of Point P (6, 5, 9) from this plane. x 3 y 1 z 2 Ans. 53 2 1 42  0 1  3 1  1 6  2 x  3 y 1 z  2 2 3 2 0 4 0 4 (x – 3) (12 – 0) – (y + 1) (8 + 8) + (z – 2) (0 + 12) = 0 12x – 36 – 16y – 16 + 12 z – 24 = 0 12x – 16y + 12z – 52 – 24 = 0 12x – 16y + 12z – 76 = 0 3x – 4y + 3z – 19 = 0  ˆ r .(3i  4 ˆ  3k )  19 j ˆ Now, distance of plane from Points P (6, 5, 9) Distance of plane from (6, 5, 9) (3  6)  (4)(5)  (3)(9)  19 34 18  20  27  19 6  34 34 ×·×·×·×·× -(22)-
  • 23. STUDYmate Studymate Solutions to CBSE Board Examination 2012-2013 Series : SKS/1 Code No. 65/1/3 UNCOMMON QUESTIONS ONLY SECTION-A   2. Write a unit vector in the direction of the sum of vectors a  2i  ˆ  2k and b  i  ˆ  3k . ˆ j ˆ ˆ j    Ans. c  a  b  i  0 ˆ  5k ˆ j ˆ    c |a  b | 12  52  26   ^  ˆ i 5  a  b    ˆ k 2b 2b 11. A speaks truth 75% of the cases, while B in 90 % of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? Do you think that statement of B is true? 75 25 Ans. P(AT) = P(AL) = 100 100 90 10 P(BT) = P(BL) = 100 100 75 10 25 90 P (contradiction) =    100 100 100 100 750  2250 = 10000 3000 = 10000 3 = 10 3  % of P (Contradiction) = × 100 = 30% 10 5 14. Evaluate :  | x  2|  | x  3|  || x  5| dx. 2 Ans. 2 < x < 5  |x – 2|  + (x – 2) 2<x <3  |x – 3|  – (x – 3) 3<x <5  |x – 3|  x – 3 2<x <5  |x – 5|  5 – x 5 3 5 5       (x  2)  (3  x )  (x  3)  (5  x ) 2 2 3 2 5 3 5 5 x 2   x   x2 2   x2    2x    3x     3x    5x    2   x     2   2  2  x 3  2  25    9   25  9    25      10    2  4     9    (6  2)    15     9     25    (10  2)  2    2   2  2    2   -(23)-
  • 24. STUDYmate 5  9   5 9   25     2    4         8 2  2   2 2  2   9   7  4 9 39 2   2   2  2  2     2x 2  1 15. Evaluate : x 2 (x 2  4) dx 2x 2  1 Ans. I= x 2 (x 2  4) dx 2 Put x = t for PFD 2t  1 A B   t (t  4) t t  4  2t + 1 = A (t + 4) + Bt 1 7 Comp : t =2=A+B where A  B 4 4 Const 1=4A 1 dx 7 dx I = 4 x 2  4 x 2 4 1 7 1 x     tan1    C 4x 4 2 2 1 7 x    tan1    C 4x 8 2 25. Find the coordinates of the point where the line through (3, –4, –5) and (2, –3, 1) crosses the plane, passing through the point (2, 2, 1) (3, 0, 1) and (4, –1, 0). Ans. Equation of line x 3 y 4 z 5   1 1 6 General Point [x = –  + 3, y =  + 4, z = 6 – 5] Equation of plane x 2 y 2 z 1 32 02 1 1  0 4  2 1  2 0  1 x  2 y  2 z 1 1 2 0 0 2 3 1 (x – 2) {2 – 0} – (y – 2) {– 1 – 0} + {z – 1} {– 3 + 4} = 0 2x – 4 + y – 2 + z – 1 = 0 2x + y + z – 7 = 0 _______________ , General point of line is a point on ,  2 ( –  + 3) + ( – 4) + (6 – 5) – 7 = 0 –2 + 6 +  – 4 + 6 – 5 – 7 = 0 5 – 10 = 0 =2  Point of intersection of line and plane (1, –2, 7) ×·×·×·×·× -(24)-