SlideShare a Scribd company logo
1 of 59
Download to read offline
Inequations & Inequalities
Inequations & Inequalities
1. Quadratic Inequations
 e.g. (i ) x 2  5 x  6  0
Inequations & Inequalities
1. Quadratic Inequations
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
Inequations & Inequalities
1. Quadratic Inequations            y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                               –6       1   x
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                                         –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
                                         –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
            6  x  1                   –6         1       x

                               Q: for what values of x is the
                                  parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                  –6         1       x

                               Q: for what values of x is the
   (ii )  x 2  3 x  4  0      parabola below the x axis?
Inequations & Inequalities
1. Quadratic Inequations                        y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                  –6         1       x

                               Q: for what values of x is the
   (ii )  x 2  3 x  4  0      parabola below the x axis?
           x 2  3x  4  0
Inequations & Inequalities
1. Quadratic Inequations                            y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6            1    x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                    y
         x  4  x  1  0

                                               –4       1    x
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0

                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
         x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0

                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                          y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                    –6         1       x

                                 Q: for what values of x is the
   (ii )  x 2  3 x  4  0        parabola below the x axis?
            x 2  3x  4  0
                                                  y
         x  4  x  1  0
          x  4 or x  1
   Note: quadratic inequalities                –4    1        x
  always have solutions in the form     Q: for what values of x is the
  ? < x < ? OR x < ? or x > ?              parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                         y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                   –6         1       x

                                Q: for what values of x is the
   (ii )  x 2  3 x  4  0       parabola below the x axis?
            x 2  3x  4  0
                                                 y
         x  4  x  1  0
          x  4 or x  1
                                              –4    1        x
                                       Q: for what values of x is the
                                          parabola above the x axis?
Inequations & Inequalities
1. Quadratic Inequations                          y
 e.g. (i ) x 2  5 x  6  0
        x  6  x  1  0
             6  x  1                    –6         1       x

                                 Q: for what values of x is the
   (ii )  x 2  3 x  4  0        parabola below the x axis?
            x 2  3x  4  0
                                                  y
         x  4  x  1  0
          x  4 or x  1
   Note: quadratic inequalities                –4    1        x
  always have solutions in the form     Q: for what values of x is the
  ? < x < ? OR x < ? or x > ?              parabola above the x axis?
2. Inequalities with Pronumerals in the Denominator
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x
                 2) Solve the “equality”
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                1
                 2) Solve the “equality”     3
                                           x 1
                                           x
                                              3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                                                               3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
               1
 Test x  1     3
              1
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
                                       1
               1                     1 3
 Test x  1     3         Test x  1
              1                     4
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                          0    1
                 4) Test regions                               3
                                       1
               1                     1 3
 Test x  1     3         Test x  1
              1                     4
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                             0    1
                 4) Test regions                                  3
                                       1
               1                     1 3                      1
 Test x  1     3         Test x  1              Test x  1   3
              1                     4                         1
                                       4
2. Inequalities with Pronumerals in the Denominator
          1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
          x                                 1
                 2) Solve the “equality”      3
                                            x 1
                                             x
                                                3
                 3) Plot these values on a number line
                                                             0    1
                 4) Test regions                                  3
                                       1
               1                     1 3                      1
 Test x  1     3         Test x  1              Test x  1   3
              1                     4                         1
                                       4
                                         1
                                0  x 
                                          3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                1                      1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5
        x3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                 1                     1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5
        x3
        x3 0
          x  3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                 1
                   2) Solve the “equality”      3
                                              x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                         1
                 1                     1 3                      1
 Test x  1       3         Test x  1              Test x  1   3
                1                     4                         1
                                         4
                                           1
                                  0  x 
          2                                 3
  (ii )       5          2
        x3                   5
                        x3
        x3 0
          x  3
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0    1
                   4) Test regions                                  3
                                           1
                 1                       1 3                    1
 Test x  1       3          Test x  1             Test x  1   3
                1                       4                       1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15
          x  3            5 x  13
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                               0     1
                   4) Test regions                                   3
                                           1
                 1                       1 3                     1
 Test x  1       3          Test x  1             Test x  1    3
                1                       4                        1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15              –3      13
                                                             
          x  3            5 x  13                           5
                                    13
                              x
                                     5
2. Inequalities with Pronumerals in the Denominator
            1
 e.g. (i )  3 1) Find the value where the denominator is zero x  0
            x                                  1
                   2) Solve the “equality”       3
                                               x 1
                                               x
                                                  3
                   3) Plot these values on a number line
                                                                0      1
                   4) Test regions                                     3
                                           1
                 1                       1 3                      1
 Test x  1       3          Test x  1              Test x  1    3
                1                       4                         1
                                           4
                                             1
                                   0  x 
          2                                  3
  (ii )       5          2
        x3                    5
                        x3
        x3 0               2  5 x  15               –3      13
                                                              
          x  3            5 x  13                            5
                                                                     13
                              x
                                    13             x  3 or x  
                                     5                                5
3. Proving Inequalities
3. Proving Inequalities
(I) Start with a known result
3. Proving Inequalities
(I) Start with a known result
                                xz
   If x  y  y  z prove y 
                                 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2


                                0
3. Proving Inequalities
(I) Start with a known result
                              xz
   If x  y  y  z prove y 
                               2
      x y  yz
       2 y  z  x
              xz
          y
                2

(II) Move everything to the left
     Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2

     ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
                                ab  a  b 
                                                2


                                0
                   ab  a 2  b 2   2a 2b 2
(III) Squares are positive or zero
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                a  b  0
                                       2
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                       2


                          a 2  2ab  b 2  0
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
                             a 2  b 2  c 2  ab  bc  ac
(III) Squares are positive or zero
   Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
                                 a  b  0
                                        2


                          a 2  2ab  b 2  0
                                  a 2  b 2  2ab
                                  a 2  c 2  2ac
                                  b 2  c 2  2bc
                        2a 2  2b 2  2c 2  2ab  2bc  2ac
                             a 2  b 2  c 2  ab  bc  ac




 Exercise 3A; 4, 6ace, 7bdf, 8bdf, 9, 11, 12, 13ac, 15, 18bcd, 22, 24

More Related Content

What's hot (17)

March 18
March 18March 18
March 18
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivadas
DerivadasDerivadas
Derivadas
 
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
PRESENTACIÓN DEL INFORME MATEMÁTICA UPTAEB UNIDAD 1
 
Mth 4101-2 b
Mth 4101-2 bMth 4101-2 b
Mth 4101-2 b
 
Mth 4101-2 a
Mth 4101-2 aMth 4101-2 a
Mth 4101-2 a
 
Mth 4101-2 c
Mth 4101-2 cMth 4101-2 c
Mth 4101-2 c
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
 
Em02 im
Em02 imEm02 im
Em02 im
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
fundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphsfundamentals of 2D and 3D graphs
fundamentals of 2D and 3D graphs
 

Viewers also liked

11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)
Nigel Simmons
 
11X1 T12 08 geometrical theorems (2011)
11X1 T12 08 geometrical theorems (2011)11X1 T12 08 geometrical theorems (2011)
11X1 T12 08 geometrical theorems (2011)
Nigel Simmons
 
11X1 T12 01 locus (2011)
11X1 T12 01 locus (2011)11X1 T12 01 locus (2011)
11X1 T12 01 locus (2011)
Nigel Simmons
 
X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)
Nigel Simmons
 
11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)
Nigel Simmons
 
11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)
Nigel Simmons
 
11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)
Nigel Simmons
 
12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)
Nigel Simmons
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
Nigel Simmons
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
Nigel Simmons
 
X2 T07 06 roots of functions (2011)
X2 T07 06 roots of functions (2011)X2 T07 06 roots of functions (2011)
X2 T07 06 roots of functions (2011)
Nigel Simmons
 
11X1 T12 06 tangents & normals ii (2011)
11X1 T12 06 tangents & normals ii (2011)11X1 T12 06 tangents & normals ii (2011)
11X1 T12 06 tangents & normals ii (2011)
Nigel Simmons
 
11X1 T05 02 gradient
11X1 T05 02 gradient11X1 T05 02 gradient
11X1 T05 02 gradient
Nigel Simmons
 
12X1 T02 01 differentiating exponentials (2011)
12X1 T02 01 differentiating exponentials (2011)12X1 T02 01 differentiating exponentials (2011)
12X1 T02 01 differentiating exponentials (2011)
Nigel Simmons
 
Виктор Минин - Содит, концепция развития
Виктор Минин - Содит, концепция развитияВиктор Минин - Содит, концепция развития
Виктор Минин - Содит, концепция развития
Sergey Polazhenko
 
Web App Security Horror Stories
Web App Security Horror StoriesWeb App Security Horror Stories
Web App Security Horror Stories
FOWADublin2009
 
The Future Is Ruby Without Rails
The Future Is Ruby Without RailsThe Future Is Ruby Without Rails
The Future Is Ruby Without Rails
FOWADublin2009
 

Viewers also liked (20)

11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)11X1 T04 02 angles of any magnitude (2011)
11X1 T04 02 angles of any magnitude (2011)
 
11X1 T12 08 geometrical theorems (2011)
11X1 T12 08 geometrical theorems (2011)11X1 T12 08 geometrical theorems (2011)
11X1 T12 08 geometrical theorems (2011)
 
11X1 T12 01 locus (2011)
11X1 T12 01 locus (2011)11X1 T12 01 locus (2011)
11X1 T12 01 locus (2011)
 
X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)X2 T03 02 hyperbola (2011)
X2 T03 02 hyperbola (2011)
 
11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)11X1 T14 01 definitions & arithmetic series (2011)
11X1 T14 01 definitions & arithmetic series (2011)
 
11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)
 
11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)
 
12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)12X1 T07 03 simple harmonic motion (2011)
12X1 T07 03 simple harmonic motion (2011)
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
 
X2 T07 06 roots of functions (2011)
X2 T07 06 roots of functions (2011)X2 T07 06 roots of functions (2011)
X2 T07 06 roots of functions (2011)
 
11X1 T12 06 tangents & normals ii (2011)
11X1 T12 06 tangents & normals ii (2011)11X1 T12 06 tangents & normals ii (2011)
11X1 T12 06 tangents & normals ii (2011)
 
11X1 T05 02 gradient
11X1 T05 02 gradient11X1 T05 02 gradient
11X1 T05 02 gradient
 
12X1 T02 01 differentiating exponentials (2011)
12X1 T02 01 differentiating exponentials (2011)12X1 T02 01 differentiating exponentials (2011)
12X1 T02 01 differentiating exponentials (2011)
 
Виктор Минин - Содит, концепция развития
Виктор Минин - Содит, концепция развитияВиктор Минин - Содит, концепция развития
Виктор Минин - Содит, концепция развития
 
Measuring the Impact of Earned Online Media on Business Outcomes: A Methodolo...
Measuring the Impact of Earned Online Media on Business Outcomes: A Methodolo...Measuring the Impact of Earned Online Media on Business Outcomes: A Methodolo...
Measuring the Impact of Earned Online Media on Business Outcomes: A Methodolo...
 
Web App Security Horror Stories
Web App Security Horror StoriesWeb App Security Horror Stories
Web App Security Horror Stories
 
TechExpert Virtualization
TechExpert VirtualizationTechExpert Virtualization
TechExpert Virtualization
 
The Future Is Ruby Without Rails
The Future Is Ruby Without RailsThe Future Is Ruby Without Rails
The Future Is Ruby Without Rails
 
Prec fin forum-pt3-digital-strategy
Prec fin forum-pt3-digital-strategyPrec fin forum-pt3-digital-strategy
Prec fin forum-pt3-digital-strategy
 

Similar to 11X1 T03 01 inequations & inequalities (2011)

Rational functions
Rational functionsRational functions
Rational functions
Tarun Gehlot
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
Tarun Gehlot
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
Sadia Zareen
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
Lori Rapp
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
Tarun Gehlot
 
0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions
kijo13
 
Algebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn NotesAlgebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn Notes
mbpomme
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.
Garden City
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
Lily Maryati
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
loptruonga2
 

Similar to 11X1 T03 01 inequations & inequalities (2011) (20)

Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015 Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015
 
Graphs linear equations and functions
Graphs linear equations and functionsGraphs linear equations and functions
Graphs linear equations and functions
 
Rational functions
Rational functionsRational functions
Rational functions
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
 
Polynomial functions modelllings
Polynomial functions modelllingsPolynomial functions modelllings
Polynomial functions modelllings
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial Intelligence
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
 
Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013) Solving inequalities that involve radical functions (Nov 28, 2013)
Solving inequalities that involve radical functions (Nov 28, 2013)
 
0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions0101: Graphing Quadratic Functions
0101: Graphing Quadratic Functions
 
Algebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn NotesAlgebra 2: 5.1 Classn Notes
Algebra 2: 5.1 Classn Notes
 
Dec 14
Dec 14Dec 14
Dec 14
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Recently uploaded (20)

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 

11X1 T03 01 inequations & inequalities (2011)

  • 2. Inequations & Inequalities 1. Quadratic Inequations e.g. (i ) x 2  5 x  6  0
  • 3. Inequations & Inequalities 1. Quadratic Inequations e.g. (i ) x 2  5 x  6  0  x  6  x  1  0
  • 4. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x
  • 5. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 6. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 7. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the parabola below the x axis?
  • 8. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis?
  • 9. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0
  • 10. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x
  • 11. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 12. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 13. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 Note: quadratic inequalities –4 1 x always have solutions in the form Q: for what values of x is the ? < x < ? OR x < ? or x > ? parabola above the x axis?
  • 14. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 –4 1 x Q: for what values of x is the parabola above the x axis?
  • 15. Inequations & Inequalities 1. Quadratic Inequations y e.g. (i ) x 2  5 x  6  0  x  6  x  1  0 6  x  1 –6 1 x Q: for what values of x is the (ii )  x 2  3 x  4  0 parabola below the x axis? x 2  3x  4  0 y  x  4  x  1  0 x  4 or x  1 Note: quadratic inequalities –4 1 x always have solutions in the form Q: for what values of x is the ? < x < ? OR x < ? or x > ? parabola above the x axis?
  • 16. 2. Inequalities with Pronumerals in the Denominator
  • 17. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 x
  • 18. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x
  • 19. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x
  • 20. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 2) Solve the “equality”
  • 21. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3
  • 22. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line
  • 23. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 3
  • 24. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3
  • 25. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 Test x  1 3 1
  • 26. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 Test x  1 3 Test x  1 1 4 4
  • 27. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 Test x  1 3 Test x  1 1 4 4
  • 28. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4
  • 29. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  3
  • 30. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 x3
  • 31. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 x3 x3 0 x  3
  • 32. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 x  3
  • 33. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 x  3 5 x  13 13 x 5
  • 34. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 35. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 36. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 5
  • 37. 2. Inequalities with Pronumerals in the Denominator 1 e.g. (i )  3 1) Find the value where the denominator is zero x  0 x 1 2) Solve the “equality” 3 x 1 x 3 3) Plot these values on a number line 0 1 4) Test regions 3 1 1 1 3 1 Test x  1 3 Test x  1 Test x  1 3 1 4 1 4 1 0  x  2 3 (ii ) 5 2 x3 5 x3 x3 0 2  5 x  15 –3 13  x  3 5 x  13 5 13 x 13  x  3 or x   5 5
  • 39. 3. Proving Inequalities (I) Start with a known result
  • 40. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2
  • 41. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz
  • 42. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x
  • 43. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2
  • 44. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left
  • 45. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2
  • 46. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2
  • 47. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2 
  • 48. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2
  • 49. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2 0
  • 50. 3. Proving Inequalities (I) Start with a known result xz If x  y  y  z prove y  2 x y  yz 2 y  z  x xz y 2 (II) Move everything to the left Show that if a  0, b  0 then ab  a 2  b 2   2a 2b 2 ab  a 2  b 2   2a 2b 2  ab  a 2  2ab  b 2   ab  a  b  2 0  ab  a 2  b 2   2a 2b 2
  • 51. (III) Squares are positive or zero
  • 52. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac
  • 53. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2
  • 54. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0
  • 55. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab
  • 56. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc
  • 57. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac
  • 58. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac a 2  b 2  c 2  ab  bc  ac
  • 59. (III) Squares are positive or zero Show that if a, b and c are positive, then a 2  b 2  c 2  ab  bc  ac a  b  0 2 a 2  2ab  b 2  0 a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2bc  2ac a 2  b 2  c 2  ab  bc  ac Exercise 3A; 4, 6ace, 7bdf, 8bdf, 9, 11, 12, 13ac, 15, 18bcd, 22, 24