SlideShare a Scribd company logo
1 of 181
Download to read offline
3. Moist Air Properties and Conditioning Processes
3.1 Calculate values of humidity ratio, enthalpy, and specific volume for saturated air
at one standard atmosphere using perfect gas relations for temperatures of (a) 70 F
(20 C) and (b) 20 F (-6.7 C).
Solution:
(a) In English units, t = 70 F
Humidity Ratio:
Eq. (3-14b)
s
s
a
s
s
p
P
p
p
p
W
−
=
= 6219
.
0
6219
.
0
at t = 70 F, ps = 0.363 psia
P = 14.696 psia
363
.
0
696
.
14
363
.
0
6219
.
0
−
=
s
W = 0.01575 lbmv/lbma
Enthalpy:
Eq. (3-20a)
( )
t
W
t
i 444
.
0
2
.
1061
240
.
0 +
+
= Btu/lbma
( ) ( ) ( )( )
[ ]
70
444
.
0
2
.
1061
01575
.
0
70
240
.
0 +
+
=
i = 34.0 Btu/lbma
Specific Volume:
Ra = 53.352 ft-lbf/lbm-R
s
a
a
a
p
P
T
R
p
T
R
v
−
=
=
( )( )
( )( )
144
363
.
0
696
.
14
67
.
459
70
352
.
53
−
+
=
v = 13.69 ft3
/lbma
In SI units, t = 20 C
Humidity Ratio:
Eq. (3-14b)
s
s
a
s
s
p
P
p
p
p
W
−
=
= 6219
.
0
6219
.
0
at t = 20 C, ps = 0.00234 MPa = 2.34 kPa
P = 101.325 kPa
34
.
2
325
.
101
34
.
2
6219
.
0
−
=
s
W = 0.01407 kgv/kga
Enthalpy: Eq. (3-20b)
3. Moist Air Properties and Conditioning Processes
( )
t
W
t
i 86
.
1
3
.
2501
0
.
1 +
+
= kJ/kga
( ) ( ) ( )( )
[ ]
20
86
.
1
3
.
2501
01407
.
0
70
0
.
1 +
+
=
i = 55.7 kJ/kga
Specific Volume:
Ra = 287 J/kg.K
s
a
a
a
p
P
T
R
p
T
R
v
−
=
=
( )( )
( )( )
1000
34
.
2
325
.
101
15
.
273
20
287
−
+
=
v = 0.85 m3
/kga
(b) In English units, t = 20 F
Humidity Ratio:
Eq. (3-14b)
s
s
a
s
s
p
P
p
p
p
W
−
=
= 6219
.
0
6219
.
0
at t = 20 F < 32.02 F,
use ps at 32.02 F which is nearly equal by plotting on curve = 0.089 psia
P = 14.696 psia
089
.
0
696
.
14
089
.
0
6219
.
0
−
=
s
W = 0.0038 lbmv/lbma
Enthalpy:
Eq. (3-20a)
( )
t
W
t
i 444
.
0
2
.
1061
240
.
0 +
+
= Btu/lbma
( ) ( ) ( )( )
[ ]
20
444
.
0
2
.
1061
0038
.
0
20
240
.
0 +
+
=
i = 8.7 Btu/lbma
Specific Volume:
Ra = 53.352 ft-lbf/lbm-R
s
a
a
a
p
P
T
R
p
T
R
v
−
=
=
( )( )
( )( )
144
089
.
0
696
.
14
67
.
459
20
352
.
53
−
+
=
v = 12.17 ft3
/lbma
In SI units, t = -6.7 C
Humidity Ratio:
Eq. (3-14b)
s
s
a
s
s
p
P
p
p
p
W
−
=
= 6219
.
0
6219
.
0
at t = -6.7 C < 0.01 C,
use ps at 0.01C which is nearly equal by plotting on curve = 0.00061 Mpa = 0.61 kPa
3. Moist Air Properties and Conditioning Processes
P = 101.325 kPa
61
.
0
325
.
101
61
.
0
6219
.
0
−
=
s
W = 0.0038 kgv/kga
Enthalpy:
Eq. (3-20b)
( )
t
W
t
i 86
.
1
3
.
2501
0
.
1 +
+
= kJ/kga
( ) ( ) ( )( )
[ ]
7
.
6
86
.
1
3
.
2501
0038
.
0
7
.
6
0
.
1 −
+
+
−
=
i = 2.8 kJ/kga
Specific Volume:
Ra = 287 J/kg.K
s
a
a
a
p
P
T
R
p
T
R
v
−
=
=
( )( )
( )( )
1000
61
.
0
325
.
101
15
.
273
7
.
6
287
−
+
−
=
v = 0.76 m3
/kga
3.2 The temperature of a certain room is 22 C, and the relative humidity is 50 percent.
The barometric pressure is 100 kPa. Find (a) the partial pressures of the air and
water vapor, (b) the vapor density, and (c) the humidity ratio of the mixtures.
Solution:
t = 22 C
φ = 50 % = 0.50
P = 100 kPa
(a) ps at 22 C = 2.672 kPa
s
v
p
p
=
φ ; s
v
p
p φ
= = (0.50)(2.672) = 1.336 kPa
v
a p
P
p −
= = 100 – 1.336 = 98.664 kPa
(b)
v
v
p
T
R
v =
Rv = 462 J/kg.K
( )( )
( )( )
1000
336
.
1
15
.
273
22
462 +
=
v = 102.065 m3
/kgv
(c)
v
v
p
P
p
W
−
= 6219
.
0
336
.
1
100
336
.
1
6219
.
0
−
=
W = 0.008421 kgv/kga
3. Moist Air Properties and Conditioning Processes
3.3 Compute the local atmospheric pressure at elevation ranging from sea level to
6000 ft (1830 m) in (a) inches of mercury and (b) kilopascals.
Solution:
(a) H = 6000 ft
Eq. (3-4)
P = a + bH
Table 3-2: H > 4000 ft
a = 29.42
b = -0.0009
P = 29.42 + (-0.0009)(6000) = 24.02 in. Hg.
(b) H = 1830 m
Eq. (3-4)
P = a + bH
Table 3-2: H > 1220 m
a = 99.436
b = -0.010
P = 99.436 + (-0.010)(1830) = 81.136 kPa.
3.4 Rework Problem 3.1 for an atmospheric pressure corresponding to an elevation of
(a) 5280 ft and (b) 1600 m.
Solution:
(a) H = 5280 ft
Eq. (3-4)
P = a + bH
Table 3-2: H > 4000 ft
a = 29.42
b = -0.0009
P = 29.42 + (-0.0009)(5280) = 24.668 in. Hg.
(b) H = 1830 m
Eq. (3-4)
P = a + bH
Table 3-2: H > 1220 m
a = 99.436
b = -0.010
P = 99.436 + (-0.010)(1600) = 83.346 kPa.
3. Moist Air Properties and Conditioning Processes
3.5 Compute the enthalpy of moist air at 60 F (16 C) and 80 percent relative humidity
for an elevation of (a) sea level and (b) 5000 ft (1525 m).
Solution:
(a) English units
ps at 60 F = 0.256 psia
φ = 80 % = 0.80
s
v p
p φ
= = (0.80)(0.256) = 0.2048 psia
At sea level, H = 0
Eq. (3-4)
P = a + bH
Table 3-2: H < 4000 ft
a = 29.92
P = a = 29.92 in. Hg = 101.325 kPa = 14.696 psia
2048
.
0
696
.
14
2048
.
0
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.008789 lbmv/lbma
Eq. (3-20a)
( )
t
W
t
i 444
.
0
2
.
1061
240
.
0 +
+
= Btu/lbma
( ) ( ) ( )( )
[ ]
60
444
.
0
2
.
1061
008789
.
0
60
240
.
0 +
+
=
i = 23.96 Btu/lbma
In SI units
ps at 16 C = 1.836 kPa
φ = 80 % = 0.80
s
v
p
p φ
= = (0.80)(1.836) = 1.469 psia
At sea level, H = 0
Eq. (3-4)
P = a + bH
Table 3-2: H < 4000 ft
a = 101.325
P = a = 101.325 kPa
469
.
1
325
.
101
469
.
1
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.00915 kgv/kga
Eq. (3-20b)
( )
t
W
t
i 86
.
1
3
.
2501
0
.
1 +
+
= kJ/kga
( ) ( ) ( )( )
[ ]
16
86
.
1
3
.
2501
00915
.
0
16
0
.
1 +
+
=
i = 39.16 kJ/kga
(b) English units
3. Moist Air Properties and Conditioning Processes
ps at 60 F = 0.256 psia
φ = 80 % = 0.80
s
v p
p φ
= = (0.80)(0.256) = 0.2048 psia
At H = 5000 ft > 4000 ft
Eq. (3-4)
P = a + bH
Table 3-2: H > 4000 ft
a = 29.42
b = - 0.0009
P = 29.42 + (-0.0009)(5000) = 24.92 in. Hg = 12.24 psia
2048
.
0
24
.
12
2048
.
0
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.010583 lbmv/lbma
Eq. (3-20a)
( )
t
W
t
i 444
.
0
2
.
1061
240
.
0 +
+
= Btu/lbma
( ) ( ) ( )( )
[ ]
60
444
.
0
2
.
1061
010583
.
0
60
240
.
0 +
+
=
i = 25.91 Btu/lbma
In SI units
ps at 16 C = 1.836 kPa
φ = 80 % = 0.80
s
v
p
p φ
= = (0.80)(1.836) = 1.469 psia
At H = 1525 m > 1220 ,
Eq. (3-4)
P = a + bH
Table 3-2: H < 4000 ft
a = 99.436
b = - 0.010
P = 99.436 + (-0.010)(1525) = 84.186 kPa
469
.
1
186
.
84
469
.
1
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.011045 kgv/kga
Eq. (3-20b)
( )
t
W
t
i 86
.
1
3
.
2501
0
.
1 +
+
= kJ/kga
( ) ( ) ( )( )
[ ]
16
86
.
1
3
.
2501
011045
.
0
16
0
.
1 +
+
=
i = 43.96 kJ/kga
3.6 The condition within a room is 70 F db, 50 percent relative humidity, and 14.696
psia pressure. The inside surface temperature of the window is 40 F. Will
moisture condense on the window glass?
Solution:
At 70 F db, ps = 0.363 psia
φ = 0.50
3. Moist Air Properties and Conditioning Processes
pv = 0.50 ( 0.363 psia ) = 0.1815 psia
at 0.1815 psia, t = 50.45 F
Since 40 F < 50.45 F , the moisture will condense on the window glass.
3.7 A duct has moist air flowing at a rate of 5000 ft3/min (2.36 m3/s). What is the
mass flow rate of the dry air, where the dry bulb temperature is 60 F (16 C), the
relative humidity is 80 percent and the pressure inside the duct corresponds to (a)
sea level, and (b) 6000 ft (1830 m).
Solution:
(a) English units
ps at 60 F = 0.2563 psia
s
v
p
p φ
= = (0.80)(0.2563) = 0.20504 psia
At sea level, P = 29.92 in. Hg = 14.696 psia
pa = P – pv = 14.696 – 0.20504 = 14.4910 psia
( )( )
( )( )
67
.
459
60
352
.
53
144
4910
.
14
+
=
=
T
R
p
a
a
ρ = 0.0753 lb/ft3
Q
& = 5000 ft3
/min
Q
ma
&
& ρ
= = (0.0753)(5000) = 376.5 lb/min
SI Units
ps at 16 C = 1.836 kPa
s
v p
p φ
= = (0.80)(1.836) = 1.4688 psia
At sea level, P = 101.325 kPa
pa = P – pv = 101.325 – 1.4688 = 99.8562
( )( )
( )( )
15
.
273
16
287
1000
8562
.
99
+
=
=
T
R
p
a
a
ρ = 1.2033 kg/m3
Q
& = 2.36 m3
/s
Q
ma
&
& ρ
= = (1.2033)(2.36) = 2.84 kg/s
(b) English units
ps at 60 F = 0.2563 psia
s
v
p
p φ
= = (0.80)(0.2563) = 0.20504 psia
At H = 6000 ft > 4000 ft
P = a + bH
a =29.42
b = - 0.0009
P = 29.42+ (-0.0009)(6000) = 24.02 in. Hg = 11.798 psia
3. Moist Air Properties and Conditioning Processes
pa = P – pv = 11.798 – 0.20504 = 11.593 psia
( )( )
( )( )
67
.
459
60
352
.
53
144
593
.
11
+
=
=
T
R
p
a
a
ρ = 0.06021 lb/ft3
Q
& = 5000 ft3
/min
Q
ma
&
& ρ
= = (0.06021)(5000) = 301.05 lb/min
SI Units
ps at 16 C = 1.836 kPa
s
v
p
p φ
= = (0.80)(1.836) = 1.4688 kPa
At H = 1830 m > 1220 m
P = a + bH
a = 99.436
b = - 0.010
P = 99.436 + (-0.010)(1830) = 81.136 kPa
pa = P – pv = 81.136 – 1.4688 = 79.667 kPa
( )( )
( )( )
15
.
273
16
287
1000
667
.
79
+
=
=
T
R
p
a
a
ρ = 0.96 kg/m3
Q
& = 2.36 m3
/s
Q
ma
&
& ρ
= = (0.96)(2.36) = 2.2656 kg/s
3.8 Compute the dew point for moist air at 80 F (27 C) and 50 percent relative
humidity for pressures corresponding to (a) sea level and (b) 5000 ft (1225 m).
Solution:
(a) English units
ps at 80 F = 0.507 psia
s
v
p
p φ
= = (0.50)(0.507) = 0.2535 psia
Dew Point = tdp = 59.68 F
SI units
ps at 27 C = 3.602 kPa
s
v p
p φ
= = (0.50)(3.602) = 1.801 kPa
Dew Point = tdp = 15.72 C
(b) H = 5000 ft (1225 m)
Since elevation does not affect dew point, the answers are the same as in (a).
3. Moist Air Properties and Conditioning Processes
3.9 A space is to be maintained at 70 F (21 C) dry bulb. It is estimated that the inside
wall surface temperature could be as low as 45 F (7 C). What maximum relative
and specific humidity can be maintained without condensation on the walls?
Solution:
English units
At 45 F, pv = 0.150 psia
At 70 F, ps = 0.363 psia
s
v p
p φ
=
( ) ( )
%
100
363
.
0
150
.
0
%
100 =
=
s
v
p
p
φ = 41.32 %
150
.
0
696
.
14
150
.
0
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.006413 lbmv/lbma
Maximum relative humidity = 41.32 %
Maximum specific humidity = 0.006413 lbmv/lbma
SI units
At 7 C, pv = 1.014 kPa
At 21 C, ps = 2.506 kPa
s
v
p
p φ
=
( ) ( )
%
100
506
.
2
014
.
1
%
100 =
=
s
v
p
p
φ = 40.46 %
014
.
1
325
.
101
014
.
1
6219
.
0
6219
.
0
−
=
−
=
v
v
p
P
p
W = 0.006287 kgv/kga
Maximum relative humidity = 40.46 %
Maximum specific humidity = 0.006287 kgv/kga
3.10 Outdoor air with a temperature of 40 F db and 35 F wb and with a barometric
pressure of 29 in. Hg is heated and humidified under steady-flow conditions to a
final temperature of 70 F db and 40 percent relative humidity. (a) Find the mass of
water vapor added to each pound mass of dry air. (b) If the water is supplied at 50
F, how much heat is added per pound mass of dry air?
Solution:
Solving for for W1 and i1 at Point 1
Using eq. (3-21d) and (3-14b) with its symbols.
At 35 F, 2
2 s
v
p
p = = 0.1013 psia
3. Moist Air Properties and Conditioning Processes
∗
2
fg
i = 1973.3 Btu/lbm
∗
w
i = 3.0 Btu/lbm
∗
2
t = 35 F
at 40 F , 1
v
i = 1078.5 Btu/lbm
P = 29 in Hg = 14.244 psia
1013
.
0
244
.
14
1013
.
0
6219
.
0
2
−
=
∗
s
W = 0.004454 lbmv/lbma
Then
( )
∗
∗
∗
∗
−
+
−
=
w
v
fg
s
pa
i
i
i
W
t
t
c
W
1
2
2
1
2
1
( ) ( )( )
3
5
.
1078
3
.
1073
004454
.
0
40
35
24
.
0
1
−
+
−
=
W = 0.003283 lbmv/lbma
( )
t
W
t
i 444
.
0
2
.
1061
24
.
0 +
+
= Btu/lbma
( ) ( ) ( )
[ ]
40
444
.
0
2
.
1061
003283
.
0
40
24
.
0
1 +
+
=
i = 13.14 Btu/lbma
Solving for W2 and i2 at point 2
At 70 F, ps = 0.363 psia
s
v
p
p φ
= = (0.40)(0.363 psia) = 0.1452 psia
P = 14.244 psia
1452
.
0
244
.
14
1452
.
0
6219
.
0
6219
.
0
2
−
=
−
=
v
v
p
P
p
W = 0.006408 lbmv/lbma
( )
2
2
2
2 444
.
0
2
.
1061
240
.
0 t
W
t
i +
+
= Btu/lbma
( ) ( ) ( )
[ ]
70
444
.
0
2
.
1061
006408
.
0
70
240
.
0
2 +
+
=
i = 23.8 Btu/lbma
(a) Mass of water vapor added:
1
2
W
W
m
m
a
w
−
=
&
&
= 0.006408 – 0.003283 = 0.003125 lbmv/lbma
(b) At 50 F, iw = 18.1 Btu/lb
( ) w
a
w
a
i
m
m
i
i
m
q
&
&
&
&
−
−
= 1
2
= (23.8 – 13.14) – (0.003125)(18.1) = 10.3434 Btu/lbma
3.11 Air with a dry bulb temperature of 70 F and wet bulb temperature of 65 F is at a
barometric pressure of 29.92 in. Hg. Without making use of psychrometric chart,
find (a) the relative humidity of the air, (b) the vapor density, (c) the dew point,
(d) the humidity ratio, and (e) the volume occupied by the mixture associated with
a pound mass of dry air.
Solution:
3. Moist Air Properties and Conditioning Processes
1
t = 70 F
∗
2
t = 65 F
Solving for ∗
2
s
W , Eq. (3-14b)
2
v
p = 2
s
p at 65 F = 0.3095 psia
1
2 P
P = = 29.92 in Hg = 14.696 psia
3095
.
0
696
.
14
3095
.
0
6219
.
0
6219
.
0
2
2
2
2
−
=
−
=
∗
v
v
s
p
P
p
W = 0.013379 lbmv/lbma
Solving for 1
W , Eq. (3-21c)
( )
∗
∗
∗
∗
−
+
−
=
w
v
fg
s
pa
i
i
i
W
t
t
c
W
1
2
2
1
2
1
∗
2
fg
i = fg
i at 65 F = 1056.5 Btu/lbm
∗
w
i = f
i at 65 F = 33 Btu/lbm
1
v
i = g
i at 70 F = 1091.7 Btu/lbm
( ) ( )( )
33
7
.
1091
5
.
1056
013379
.
0
70
65
24
.
0
1
−
+
−
=
W = 0.012218 lbmv/lbma
Solving for 1
v
p , Eq. (3-14b)
1
1
1
1
6219
.
0
v
v
p
P
p
W
−
=
1
1
696
.
14
6219
.
0
012218
.
0
v
v
p
p
−
=
1
v
p = 0.2832 psia
at 70 F, 1
s
p = 0.363 psia
(a) Relative Humidity
363
.
0
2832
.
0
1
1
=
=
s
v
p
p
φ = 0.78 or 78 %
(b) Vapor Density
( )( )
( )( )
67
.
459
70
78
.
85
144
2832
.
0
+
=
=
T
R
p
v
v
ρ = 0.000898 lbmv/ft3
(c) Dew Point
At 1
v
p = 0.2832 psia
dp
t = 62.54 F
(d) Humidity Ratio
3. Moist Air Properties and Conditioning Processes
1
W
m
m
W
a
v
=
=
&
&
= 0.012218 lbmv/lbma
(e) Volume occupied by mixture per pound of mass of dry air.
( )( )
( )( )
144
2832
.
0
696
.
14
67
.
459
70
352
.
53
−
+
=
=
a
a
p
T
R
v = 13.62 ft3
/lbma
3.12 Air is cooled from 75 F db and 70 F wb until it is saturated at 55 F. Find (a) the
moisture removed per pound of dry air, (b) the heat removed to condense the
moisture, (c) the sensible heat removed, and (d) the total amount of heat removed.
Solution:
Use Figure 3-7
Determine state condition 1, 75 F db, 70 F wb
1
t = 75 F
∗
= 2
t
twb = 70 F
2
2 s
v p
p = at 70 F = 0.363 psia
2
P = 14.696 psia
363
.
0
696
.
14
363
.
0
6219
.
0
6219
.
0
2
2
2
2
−
=
−
=
∗
v
v
s
p
P
p
W = 0.01575 lbmv/lbma
( )
∗
∗
∗
∗
−
+
−
=
w
v
fg
s
pa
i
i
i
W
t
t
c
W
1
2
2
1
2
1
∗
2
fg
i = fg
i at 70 F = 1053.7 Btu/lbm
∗
w
i = f
i at 70 F = 38Btu/lbm
1
v
i = g
i at 75F = 1093.85 Btu/lbm
3. Moist Air Properties and Conditioning Processes
( ) ( )( )
38
85
.
1093
7
.
1053
01575
.
0
75
70
24
.
0
1
−
+
−
=
W = 0.014581 Btu/lbma
( )
1
1
1
1 444
.
0
2
.
1061
240
.
0 t
W
t
i +
+
= Btu/lbma
( ) ( ) ( )
[ ]
75
444
.
0
2
.
1061
014581
.
0
75
240
.
0
1 +
+
=
i = 33.96 Btu/lbma
Determine state condition2
2
t = 55 F
2
s
p = 0.217 psia
2
2
2
2
6219
.
0
s
s
p
P
p
W
−
=
217
.
0
696
.
14
217
.
0
6219
.
0
2
−
=
W = 0.009321 lbmv/lbma
( )
2
2
2
2 444
.
0
2
.
1061
240
.
0 t
W
t
i +
+
= Btu/lbma
( ) ( ) ( )
[ ]
55
444
.
0
2
.
1061
009321
.
0
55
240
.
0
2 +
+
=
i = 23.32 Btu/lbma
Determine state condition 3
1
3 t
t = = 75 F
2
3 W
W = = 0.009321 lbmv/lbma
( )
3
3
3
3 444
.
0
2
.
1061
240
.
0 t
W
t
i +
+
= Btu/lbma
( ) ( ) ( )
[ ]
75
444
.
0
2
.
1061
009321
.
0
75
240
.
0
3 +
+
=
i = 28.20 Btu/lbma
(a) Moisture removed, Eq. (3-29)
2
1
W
W
m
m
a
w
−
=
&
&
= 0.014581 – 0.009321 = 0.00526 Btu/lbma
(b) Heat removed to condense the moisture, Eq. (3-33)
3
1
i
i
m
q
a
l
−
=
&
&
= 33.96 – 28.20 = 5.76 Btu/lbma
(c) Sensible heat removed
2
3
i
i
m
q
a
s
−
=
&
&
= 28.20 – 23.32 = 4.88 Btu/lbma
(d) Total amount of heat removed
a
l
a
s
a
m
q
m
q
m
q
&
&
&
&
&
&
+
= = 4.88 + 5.76 = 10.64 Btu/lbma
3.13 The dry bulb and thermodynamic wet bulb temperature are measured to be 75 F
and 62 F, respectively, in a room. Compute the humidity ratio relative humidity
for the air at (a) sea level and (b) 5000 ft (1225 m).
3. Moist Air Properties and Conditioning Processes
Solution:
Use only English units as temperature are given in English units.
(a) At sea level, P = 29.92 in Hg = 14.696 psia
Eq. (3-14b)
∗
2
t = 62 F
2
2
2
2
6219
.
0
v
v
s
p
P
p
W
−
=
∗
2
v
p = 2
s
p at 62 F = 0.2774 psia
2774
.
0
696
.
14
2774
.
0
6219
.
0
2
−
=
∗
s
W = 0.0119865 lbmv/lbma
Eq. (3-21d)
( )
∗
∗
∗
∗
−
+
−
=
w
v
fg
s
pa
i
i
t
W
t
t
c
W
1
2
2
1
2
1
∗
2
fg
i = fg
i at 62 F = 1058.18 Btu/lbm
∗
w
i = f
i at 62 F = 30 Btu/lbm
1
v
i = g
i at 75F = 1093.85 Btu/lbm
( ) ( )( )
30
85
.
1093
18
.
1058
011965
.
0
75
62
24
.
0
1
−
+
−
=
W = 0.008969 lbmv/lbma – ans.
Solving for 1
v
p :
1
1
1
696
.
14
6219
.
0
v
v
p
p
W
−
=
1
1
696
.
14
6219
.
0
008969
.
0
v
v
p
p
−
=
1
v
p = 0.20893 psia
1
s
p = v
p at 75 F = 0.435 psia
435
.
0
20893
.
0
1
1
1
=
=
s
v
p
p
φ = 0.48 or 48 % - ans.
(b) H = 5000 ft = 1225 m
P = a + bH
Table 3-2. H > 4000 ft
a = 29.42
b = - 0.0009
P = 29.42 + (-0.0009)(4000) = 25.82 in Hg = 12.682 psia
3. Moist Air Properties and Conditioning Processes
2774
.
0
682
.
12
2774
.
0
6219
.
0
6219
.
0
2
2
2
2
−
=
−
=
∗
v
v
s
p
P
p
W = 0.013907 lbmv/lbma
( )
∗
∗
∗
∗
−
+
−
=
w
v
fg
s
pa
i
i
t
W
t
t
c
W
1
2
2
1
2
1
( ) ( )( )
30
85
.
1093
18
.
1058
013907
.
0
75
62
24
.
0
1
−
+
−
=
W = 0.010900 lbmv/lbma – ans.
Solving for 1
v
p :
1
1
1
696
.
14
6219
.
0
v
v
p
p
W
−
=
1
1
682
.
12
6219
.
0
010900
.
0
v
v
p
p
−
=
1
v
p = 0.218448 psia
1
s
p = v
p at 75 F = 0.435 psia
435
.
0
218448
.
0
1
1
1
=
=
s
v
p
p
φ = 0.5022 or 50.22 % - ans.
3.14 To what temperature must atmospheric air at standard sea level pressure be cooled
to be saturated with a humidity ratio of 0.001 lbv/lba ? What is the temperature if
the pressure is 5 atmospheres?
Solution:
At standard sea level pressure
W = 0.001 lbmv/lbma
s
s
p
p
W
−
=
696
.
14
6219
.
0
s
s
p
p
−
=
696
.
14
6219
.
0
001
.
0
s
p = 0.0236 psia
Use Table A-1a, ≈
t 32.02 F – ans.
At P = 5 atm = 73.48 psia
Solving for 1
v
p :
s
s
p
p
W
−
=
=
48
.
73
6219
.
0
001
.
0
s
p = 0.118 psia
Use Table A-1a, interpolation, t = 39 F – ans.
3.15 Complete Table 3-3 using the ASHRAE psychrometric chart for (a) sea level, (b) 5000 ft
(1500 m) elevation; (c) compare parts (a) and (b).
Table 3-3 Psychrometric Properties for Problem 3-15.
State
Point
Dry
Bulb,
F(C)
Wet
Bulb,
F(C)
Dew
Point,
F(C)
Humid.
Ratio, w,
lbv/lba
(kgv/kga)
Enthalpy,
i,
Btu/lba
(kJ/kga)
Rel.
Humid.,
percent
Spec.
Vol, v,
ft3
/lba
(m3
/kga)
1 85(29) 60(16)
2 75(24) 50(10)
3 30(70) 60
4 70(21) 0.01143
5 82(28) 50(116)
Solution:
(a) Use Chart 1a.
State
Point
Dry Bulb,
F(C)
Wet Bulb,
F(C)
Dew
Point,
F(C)
Humid.
Ratio, w,
lbv/lba
(kgv/kga)
Enthalpy,
i,
Btu/lba
(kJ/kga)
Rel.
Humid.,
percent
Spec. Vol, v,
ft3
/lba
(m3
/kga)
1 85(29) 60(16) 40.7(4.83) 0.0054 26.3(21) 21 13.844(0.8643)
2 75(24) 60(16) 50(10) 0.0077 26.4(21) 41.4 13.640(0.852)
3 74.7(23.7) 65(18.3) 59.9(15.5) 0.0110 30(70) 60 13.70(0.855)
4 88.9(31.6) 70(21) 60.9(16.1) 0.01143 33.9(79) 39.1 14.078(0.879)
5 98.3(36.8) 85.6(29.7) 82(28) 0.0239 50(116) 60 14.6(0.912)
(b) Use Chart 1Ha.
State
Point
Dry Bulb,
F(C)
Wet Bulb,
F(C)
Dew
Point,
F(C)
Humid.
Ratio, w,
lbv/lba
(kgv/kga)
Enthalpy,
i,
Btu/lba
(kJ/kga)
Rel.
Humid.,
percent
Spec. Vol, v,
ft3
/lba
(m3
/kga)
1 85(29) 60(16) 45(7.2) 0.0076 28.8(67) 24.7 16.70(1.043)
2 75(24) 59(15) 50(10) 0.0093 27.9(65) 41.4 16.44(1.026)
3 71.2(21.8) 61.4(16.3) 56.6(13.7) 0.118 30(70) 60 16.39(1.023)
4 103(39.5) 70(21) 55.7(13.2) 0.01143 37.4(87) 21.1 17.36(1.084)
5 N/A N/A 82(28) N/A 50(116) N/A N/A
(c) Comparison of (a) and (b)
State
Point
Dry
Bulb,
F(C)
Wet
Bulb,
F(C)
Dew
Point,
F(C)
Humid.
Ratio, w,
lbv/lba
(kgv/kga)
Enthalpy,
i,
Btu/lba
(kJ/kga)
Rel.
Humid.,
percent
Spec.
Vol, v,
ft3
/lba
(m3
/kga)
1 85(29) 60(16) a < b a < b a < b a < b a < b
2 75(24) a > b 50(10) a < b a < b a = b a < b
3 a > b a > b a > b 30(70) 60 a < b
4 a > b 70(21) a > b 0.01143 a < b a > b a < b
5 NA NA 82(28) NA 50(116) NA NA
3.16 To save energy, the environmental conditions in a room are to be regulated so that the dry
bulb temperature will be greater than or equal to 78 F (24 C) and the dew point will be
less than or equal to 64 F (17 C). Find the maximum relative humidity that can occur for
standard barometric pressure.
Solution:
Maximum relative humidity exist at tdb = 78 F (24 C), twb = 64 F (17 C), since increasing the dry
bulb constant dew point or decreasing the dew point at constant dry bulb will decrease relative
humidity.
From Chart 1a.
φmax = 46.6 %.
From Chart 1b.
φmax = 49.7 %.
3.17 A chilled water cooling coil receives 2.5 m3/s of air at 25 C db, 20 C wb. It is necessary
for the air to leave the coil at 13 C db, 12 C wb. Assume sea level pressure.
(a) Determine the SHF and the apparatus dew point.
(b) Compute the total and sensible heat transfer rates from the air.
Solution:
Chart 1b
State 1, tdb1 = 25 C, twb1 = 20 C
i1 = 57.26 kJ/kg
W1 = 0.01261 kgv/kga
v1 = 0.862 m3
/kg
State 2, tdb2 = 13 C, twb2 = 12 C
i2 = 34.08 kJ/kg
W2 = 0.00832 kgv/kga
Q
& = 2.5 m3
/s
862
.
0
5
.
2
1
=
=
v
Q
ma
&
& = 2.9 kg/s
(a) From chart 1b, SHF = 0.528 and td = 6.45 C
(b) Solving for total and sensible heat transfer rates;
( )
2
1
i
i
m
q a
−
= &
&
q
& = (2.9)(57.26 – 34.08) = 67.22 kW
( )
SHF
q
qs
&
& = = (67.22)(0.528) = 35.5 kW
3.18 The dry bulb and wet bulb temperatures are measured to be 78 F and 65 F, respectively,
in an air duct. Make use of psychrometric Charts 1a and 1b to find enthalpy, specific
volume, humidity ratio, and relative humidity in (a) English units and (b) SI units.
Solution:
(a) English units, Chart 1a
tdb = 78 F
twb = 65 F
Then,
i = 29.96 Btu/lbma
v = 13.773 ft3
/lbma
W = 0.01026 lbmv/lbma
φ = 50 %
(b) SI units, Chart 1b
tdb = 25.56 C
twb = 18.33 C
Then,
i = 51.73 kg/kga
v = 0.860 m3
/kg
W = 0.01022 kgv/kga
φ = 50 %
3.19 The air in Problem 3.18 is heated to temperature of 110 F. Make use of Charts 1a and 1b
and compute the heat transfer rate if 4000 ft3
/min (1.9 m3
/s) is flowing at state 1, in (a)
English units and (b) SI units.
Solution:
(a) English units, Chart 1a.
2
t = 110 F
2
i = 37.79 Btu/lbma,
1
2 W
W =
1
v = 13.773 ft3
/lbma
1
i = 29.96 Btu/lbma
1
t = 78 F
Q
& = 4000 m3
/min
( )( )
773
.
13
60
4000
1
=
=
v
Q
ma
&
& = 17,425 lbma/hr
( )
1
2
t
t
c
m
q p
a
s
−
= &
&
s
q
& = (17,425)(0.245)(110 – 78) = 136,612 Btu/hr
or
( )
1
2 i
i
m
q a
s −
= &
&
s
q
& = (17,425)(37.79 – 29.96) = 136,525 Btu/hr
then s
q
& = 136,525 Btu/hr
Chart 1a:
(b) SI units, Chart 1b
2
t = 110 F = 43.33 C
2
i = 69.96 kJ/kga
1
2 W
W =
1
v = 0.860 m3
/kga
1
i = 51.73 kJ/kga
1
t = 25.56 C
Q
& = 1.9 m3
/s
860
.
0
9
.
1
1
=
=
v
Q
ma
&
& =2.21 kga/s
( )
1
2
t
t
c
m
q p
a
s
−
= &
&
s
q
& = (2.21)(1.02)(43.33 –25.56) = 40 kW
or
( )
1
2
i
i
m
q a
s
−
= &
&
s
q
& = (2.21)(69.96 – 51.73) = 40.3 kW
then s
q
& = 40.15 kW
Chart 1b:
3.20 The air in Problem 3.18 is cooled to 50 F (10 C) dry bulb and 90 percent relative
humidity. Make us of Charts 1a and 1b to compute the total heat transfer rate, the sensible
heat transfer, and the sensible heat factor (SHF) if 4000 ft3
/min (1.9 m3
/s) is flowing at
state 1 in (a) English units and (b) SI units.
Solution:
(a) English units, Chart 1a
2
t = 50 F, 2
φ = 90 %
2
i = 19.46 Btu/lbma
Q
& = 4000 ft3
/min
1
v = 13.773 ft3
/lbma
1
i = 29.96 Btu/lbma
1
t = 78 F
( )( )
773
.
13
60
4000
1
=
=
v
Q
ma
&
& = 17,425 lb/hr
( )
2
1 i
i
m
q a −
= &
& = (17,425)(29.96 – 19.46) = 182,963 Btu/hr
( )
2
1
t
t
c
m
q p
a
s
−
= &
& = (17,425)(0.245)(78 – 50) = 119,536 Btu/hr
863
,
182
536
,
119
=
=
q
q
SHF s
&
&
= 0.653
(b) SI units, Chart 1b
2
t = 10 C, 2
φ = 90 %
2
i = 27.34 kJ/kga
Q
& = 1.9 m3
/s
1
v = 0.860 m3
/kga
1
i = 51.73 kJ/kga
1
t = 25.56 C
860
.
0
9
.
1
1
=
=
v
Q
ma
&
& = 2.21 kga/s
( )
2
1 i
i
m
q a −
= &
& = (2.21)(51.73 – 27.37) = 53.90 kW
( )
2
1
t
t
c
m
q p
a
s
−
= &
& = (2.21)(1.02)( 25.56 – 10) = 35.08 kW
90
.
53
08
.
35
=
=
q
q
SHF s
&
&
= 0.65
3.21 Air at 100 F (38 C) db and 65 F (18 C) wb is humified adiabatically with steam. The
steam supplied contains 20 percent moisture (quality of 0.80) at 14.7 psia (101.3 kPa). If
the air is humidified to 60 percent relative humidity, what is the dry bulb temperature of
the humidified air? Assume sea level pressure.
Solution:
Schematic of humidifying device
Using English units.
1
db
t = 100 F
1
wb
t = 65 F
x = 0.80
Chart 1a.
1
i = 29.79 Btu/lbma
1
W = 0.00523 lbmv/lbma
For steam, Table A-1a, 14.7 psia, x = 0.8
f
i = 180.2 Btu/lbm
g
i = 1150.4 Btu/lbm
( )
f
g
f
w
i
i
x
i
i −
+
=
( )
2
.
180
4
.
1150
80
.
0
2
.
180 −
+
=
w
i = 956.4 Btu/lbm
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
1
2
1
2
= 956.4 Btu/lbm
At point 2, 2
φ = 60 %, draw a line from state 1 parallel to that determine from the protractor, then
locate 2 at the intersection of 2
φ = 60 % to determine 2
t = 91.6 F.
2
t = 91.6 F
Using SI units.
1
db
t = 38 C
1
wb
t = 18 C
x = 0.80
Chart 1b.
1
i = 50.38 kJ/kga
1
W = 0.00473 kgv/kga
For steam, Table A-1b, 101.3 kPa, x = 0.8
f
i = 419.1 kJ/kg
g
i = 2675.7 kJ/kg
( )
f
g
f
w
i
i
x
i
i −
+
=
( )
1
.
419
7
.
2675
80
.
0
1
.
419 −
+
=
w
i = 2224.4 kJ/kg
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
1
2
1
2
= 2224.4 kJ/kg
At point 2, 2
φ = 60 %, draw a line from state 1 parallel to that determine from the protractor, then
locate 2 at the intersection of 2
φ = 60 % to determine 2
t = 33.1 C.
2
t = 33.1 C
3.22 Air at 84 F (29 C) db and 60 F (16 C) wb is humidified with the thr dry bulb temperature
remaining constant. Wet steam is supplied for humidification at 20 psia (138 kPa). What
quality must the steam have (a) to provide saturated air and (b) to provide air at 70
percent relative humidity? Assume sea level pressure.
Solution:
Schematic of humidifying device
(a) Using English units
1
db
t = 84 F
1
wb
t = 60 F
2
db
t = 84 F
2
wb
t = 84 F
W
i
W
W
i
i
iw
∆
∆
=
−
−
=
1
2
1
2
Chart 1a.
1
i = 26.3 Btu/lbma
1
W = 0.00559 lbmv/lbma
2
i = 48.23 Btu/lbma
2
W = 0.02556 lbmv/lbma
00559
.
0
02556
.
0
3
.
26
23
.
48
−
−
=
w
i = 1098.1 Btu/lb
For 20 psia steam , Table A-1a
f
i = 196.2 Btu/lb
g
i = 1156.2 Btu/lb
2
.
196
2
.
1156
2
.
196
1
.
1098
1
−
−
=
−
−
=
f
g
f
w
i
i
i
i
x = 0.9395 or 93.95 %
Using SI units
1
db
t = 29 C
1
wb
t = 16 C
2
db
t = 29 C
2
wb
t = 29 C
W
i
W
W
i
i
iw
∆
∆
=
−
−
=
1
2
1
2
Chart 1b.
1
i = 44.57 kJ/kga
1
W = 0.00603 kgv/kga
2
i = 94.59 kJ/kga
2
W = 0.02562 kgv/kga
00603
.
0
02562
.
0
57
.
44
59
.
94
−
−
=
w
i = 2253.4 kJ/kg
For 138 kPa steam , Table A-1b
f
i = 456.4 kJ/kg
g
i = 2689.5 kJ/kg
4
.
456
5
.
2689
4
.
456
4
.
2553
1
−
−
=
−
−
=
f
g
f
w
i
i
i
i
x = 0.939 or 93.9 %
(b) Using English units
1
db
t = 84 F
1
wb
t = 60 F
2
db
t = 84 F
2
φ = 70 %
W
i
W
W
i
i
iw
∆
∆
=
−
−
=
1
2
1
2
Chart 1a.
1
i = 26.3 Btu/lbma
1
W = 0.00559 lbmv/lbma
2
i = 39.57 Btu/lbma
2
W = 0.01767 lbmv/lbma
00559
.
0
01767
.
0
3
.
26
57
.
39
−
−
=
w
i = 1098.5 Btu/lb
For 20 psia steam , Table A-1a
f
i = 196.2 Btu/lb
g
i = 1156.2 Btu/lb
2
.
196
2
.
1156
2
.
196
5
.
1098
1
−
−
=
−
−
=
f
g
f
w
i
i
i
i
x = 0.94 or 94 %
Using SI units
1
db
t = 29 C
1
wb
t = 16 C
2
db
t = 29 C
2
φ = 70 %
W
i
W
W
i
i
iw
∆
∆
=
−
−
=
1
2
1
2
Chart 1b.
1
i = 44.57 kJ/kga
1
W = 0.00603 kgv/kga
2
i = 74.37 kJ/kga
2
W = 0.01770 kgv/kga
00603
.
0
02562
.
0
57
.
44
37
.
74
−
−
=
w
i = 2253.6 kJ/kg
For 138 kPa steam , Table A-1b
f
i = 456.4 kJ/kg
g
i = 2689.5 kJ/kg
4
.
456
5
.
2689
4
.
456
6
.
2553
1
−
−
=
−
−
=
f
g
f
w
i
i
i
i
x = 0.939 or 93.9 %
3.23 Air at 38 db and 20 C and 101.325 kPa is humidified adiabatically with liquid water
supplied at 60 C, in such proportions that the mixture has a relative humidity of 80
percent. Find the dry bulb temperature of the mixture.
Solution:
Schematic of humidifying device
Use chart 1b.
1
db
t = 38 C
1
wb
t = 20 C
2
φ = 80 %
w
i at 60 C of water = 251.2 kJ/kg
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
1
2
1
2
= 251.2 kJ/kg
At point 2, 2
φ = 80 %, draw a line from state 1 parallel to that determined in the protractor then
locate state 2 at the intersection of 2
φ = 80 % to determine 2
t = 22.86 C.
2
t = 22.86 C
3.24 It is desired to heat and humidify 2000 cfm (1.0 m3
/s) of air from an initial state defined
by a temperature of 60 F (16 C) dry bulb and relative humidity of 30 percent to a final
state of 110 F (43 C) dry bulb and 30 percent relative humidity. The air will first be
heated by a hot water coil, followed by adiabatic humidification using saturated vapor at
5 psig (34.5 kPa). Using the psychrometric chart, find the heat transfer rate for the
heating coil and the mass flow rate of the water vapor, and sketch the processes on a
skeleton chart showing pertinent data. Use (a) English units and (b) SI units. Assume sea
level pressure.
Solution:
Schematic of a heating and humidifying device
(a) English units
Q
& = 2000 cfm
At state 1,
1
db
t = 60 F
1
φ = 30 %
1
i = 17.97 Btu/lbma
1
W = 0.00328 lbmv/lbma
1
v = 13.165 ft3
/lbma
State 2,
2
db
t = 110 F
2
φ = 30 %
2
i = 44.96 Btu/lbma
2
W = 0.01672 lbmv/lbma
Table A-1a,
Steam at 5 psig saturated
w
i = 1155.9 Btu/lbm
Humidification process
χ
χ
χ W
W
i
i
w
i
−
−
=






∆
∆
2
2
= 1155.9 Btu/lb
Draw a line parallel to that determined from the protractor then locate state χ at 1
W
W =
χ =
0.00328 lbmv/lbma line.
Then,
χ
db
t = 107.47 F
χ
i = 29.425 Btu/lbma
( )( )
165
.
13
60
2000
1
=
=
v
Q
ma
&
& = 9115 lb/hr
( )
1
t
t
c
m
q p
a
−
= χ
&
& = (9115)(0.245)(107.47 – 60) = 106,009 Btu/hr
or
( )
1
i
i
m
q a
−
= χ
&
& = (9115)(29.425 – 17.97) = 104,412 Btu/hr
use
q
& = 105,210 Btu/hr
( )
1
2 W
W
m
m a
w
−
= &
& = (9115)(0.01672 – 0.00328) = 122.5 lbm/hr
SI units
Q
& = 1.0 m3
/s
At state 1,
1
db
t = 16 C
1
φ = 30 %
1
i = 24.62 kJ/kga
1
W = 0.00337 kgv/kga
1
v = 0.8236 m3
/kg
State 2,
2
db
t = 43 C
2
φ = 30 %
2
i = 85.40 kJ/kg.K
2
W = 0.01635 kgv/kga
Table A-1a,
Steam at 34.5 kpag saturated
w
i = 2689 kJ/kg
Humidification process
χ
χ
χ W
W
i
i
w
i
−
−
=






∆
∆
2
2
= 2689 kJ/kg
Draw a line parallel to that determined from the protractor then locate state χ at 1
W
W =
χ =
0.00337 kgv/kga line.
Then,
χ
db
t = 41.57 C
χ
i = 50.51 kJ/kga
8236
.
0
0
.
1
1
=
=
v
Q
ma
&
& = 1.2142 kg/s
( )
1
t
t
c
m
q p
a
−
= χ
&
& = (1.2142)(1.02)(41.57 –16) = 31.7 kW
or
( )
1
i
i
m
q a
−
= χ
&
& = (1.2142)(50.51 – 24.62) = 31.4 kW
use
q
& = 31.6 kW
( )
1
2 W
W
m
m a
w
−
= &
& = (1.2142)(0.01635 – 0.00337) = 0.01576 kg/s
3. Moist Air Properties and Conditioning Processes
3.25 Air at 40 F (5 C) db and 35 F (2 C) wb is mixed with warm air at 100 F (38 C) db
and 77 F (25 C) wb in the ratio of 2 lbm (kga) cool air to 1 lbm (kga) of warm air.
(a) Compute the humidity ratio and enthalpy of the mixed air, and (b) find the
humidity ratio and enthalpy using psychrometric chart 1.
Solution:
English units
(a)
1
db
t = 40 F
1
wb
t = 35 F
2
db
t = 100 F
2
wb
t = 77 F
2
1
a
a
m
m
&
&
= 2 lbm / 1 lbm = 2
Chart 1a
1
W = 0.00315 lbmv/lbma
1
i = 12.66 Btu/lbma
2
W = 0.01476 lbmv/lbma
2
i = 40.32 Btu/lbma
Mixed Air:
Eq. (3-44a)
2
1
2
1
2
1
3
1 a
m
a
m
a
m
a
m
i
i
i
&
&
&
&
+
+
=
( )( ) ( )
2
1
32
.
40
66
.
12
2
3
+
+
=
i = 21.88 Btu/lbma
Eq. (3-44b)
2
1
2
1
2
1
3
1 a
m
a
m
a
m
a
m
W
W
W
&
&
&
&
+
+
=
( )( ) ( )
2
1
01476
.
0
00315
.
0
2
3
+
+
=
W = 0.00702 lbmv/lbma
Using chart 1a.
3
i = 22 Btu/lbma
3. Moist Air Properties and Conditioning Processes
3
W = 0.007 lbmv/lbma
3. Moist Air Properties and Conditioning Processes
SI units
(a)
1
db
t = 5 C
1
wb
t = 2 C
2
db
t = 38 C
2
wb
t = 25 C
2
1
a
a
m
m
&
&
= 2 kga / 1 kga = 2
Chart 1b
1
W = 0.00316 kgv/kga
1
i = 12.95 kJ/kga
2
W = 0.01462 kgv/kga
2
i = 75.79 kJ/kga
Mixed Air:
Eq. (3-44a)
2
1
2
1
2
1
3
1 a
m
a
m
a
m
a
m
i
i
i
&
&
&
&
+
+
=
( )( ) ( )
2
1
79
.
75
95
.
12
2
3
+
+
=
i = 33.90 kJ/kga
Eq. (3-44b)
2
1
2
1
2
1
3
1 a
m
a
m
a
m
a
m
W
W
W
&
&
&
&
+
+
=
( )( ) ( )
2
1
01462
.
0
00316
.
0
2
3
+
+
=
W = 0.00698 kgv/kga
Using chart 1b
3
i = 34 kJ/kga
3
W = 0.007 kgv/kga
3. Moist Air Properties and Conditioning Processes
3.26 Air at 10 C db and 5 C wb is mixed with air at 25 C db and 18 C wb in a
steady-flow process at standard atmospheric pressure. The volume flow rates
are 10 m3
/s and 6 m3
/s, respectively. (a) Compute the mixture conditions. (b)
Find the mixture conditions using Chart 1b.
Solution:
Chart 1b.
State 1, 1
db
t = 10 C, 1
wb
t = 5 C, 1
Q
& = 10 m3
/s
1
i = 18.58 kJ/kga
1
W = 0.0034 kgv/kga
1
v = 0.8065 m3
/kga
State 2, 2
db
t = 25 C, 2
wb
t = 18 C, 2
Q
& = 6 m3
/s
2
i = 50.70 kJ/kga
2
W = 0.0100 kgv/kga
2
v = 0.858 m3
/kga
8054
.
0
10
1
1
1 =
=
v
Q
ma
&
& = 12.40 kg/s
858
.
0
6
2
2
2 =
=
v
Q
ma
&
& = 6.99 kg/s
(a) Eq. (3-44a)
( )
99
.
6
40
.
12
1
70
.
50
58
.
18
99
.
6
40
.
12
1
2
1
2
1
2
1
3
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 30.16 kJ/kga
Eq. (3-44b)
( )
99
.
6
40
.
12
1
0100
.
0
0034
.
0
99
.
6
40
.
12
1
2
1
2
1
2
1
3
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0058 kgv/kga
Then 3
db
t = 15.4 C, 3
wb
t = 10.4 C
(b)
99
.
6
40
.
12
13
32
____
____
2
1
=
=
a
a
m
m
&
&
= 1.774;
99
.
6
40
.
12
40
.
12
12
32
____
____
3
1
+
=
=
a
a
m
m
&
&
= 0.64;
99
.
6
40
.
12
99
.
6
12
13
____
____
3
2
+
=
=
a
a
m
m
&
&
= 1.774
Then, chart 1b. 3
db
t = 15.4 C, 3
wb
t = 10.4 C
3.27 Rework Problem 3.26, using Chart 1b, assuming that the mixture condition
can be computed on the basis of the volume flow rates rather than mass flow
rate. What is the percent error in the mixture enthalpy and humidity ratios?
Solution:
Chart 1b
State 1, 1
db
t = 10 C, 1
wb
t = 5 C, 1
Q
& = 10 m3
/s
1
i = 18.58 kJ/kga
1
W = 0.0034 kgv/kga
State 2, 2
db
t = 25 C, 2
wb
t = 18 C, 2
Q
& = 6 m3
/s
2
i = 50.70 kJ/kga
2
W = 0.0100 kgv/kga
3
5
6
10
13
32
____
____
2
1
=
=
=
Q
Q
&
&
;
8
5
6
10
10
12
32
____
____
3
1
=
+
=
=
Q
Q
&
&
;
8
3
6
10
6
12
13
____
____
3
2
=
+
=
=
Q
Q
&
&
Then, chart 1b. 3
db
t = 15.5 C, 3
wb
t = 10.5 C
( )
6
10
1
70
.
50
58
.
18
6
10
1
2
1
2
1
2
1
3
+
+






=
+
+
=
Q
Q
i
i
Q
Q
i
&
&
&
&
= 30.63 kJ/kga
Eq. (3-44b)
( )
6
10
1
0100
.
0
0034
.
0
6
10
1
2
1
2
1
2
1
3
+
+






=
+
+
=
Q
Q
W
W
Q
Q
W
&
&
&
&
= 0.0059 kgv/kga
% error in enthalpy = ( )
%
100
16
.
30
16
.
30
63
.
30 −
= 1.56 %
% error in humidity ratio = ( )
%
100
0058
.
0
0058
.
0
0059
.
0 −
= 1.73 %
3.28 ngiA zone in a building has a design cooling load of 136,000 Btu/hr (40 kW),
of which 110,000 Btu/hr (32 kW) is sensible cooling load. The space is to be
maintained at 76 F (24 C) dry bulb temperature and 50 percent relative
humidity. Locate the space condition line on Chart 1a and 1b.
Solution:
Chart 1a, English Units
q
& = 136,000 Btu/hr
s
q
& = 110,000 Btu/hr
db
t = 76 F
φ = 50 %
000
,
136
000
,
110
=
=
q
q
SHF s
&
&
= 0.81
Chart 1a:
Chart 1b, SI Units
q
& = 40 kW
s
q
& = 32 kW
db
t = 24 C
φ = 50 %
40
32
=
=
q
q
SHF s
&
&
= 0.80
Chart 1b:
3.29 Refer to Problem 3.28, and assume that the air can be supplied to the space at
55 F (13 C). Compute the volume flow rate of the air required in (a) English
units and (b) SI units.
Solution:
(a) Chart 1a
q
& = 136,000 Btu/hr
1
db
t = 76 F
1
φ = 50 % , SHF = 0.81
1
i = 28.74 Btu/lbma, 1
v = 13.71 ft3
/lb
2
db
t = 55 F, Chart 1a, SHF = 0.81
2
i = 22.39 Btu/lbma
39
.
22
74
.
28
000
,
136
2
1 −
=
−
=
i
i
q
ma
&
& = 21,417 lbma/hr
1
v
m
Q a
&
& = = (21,417 lb/hr)(1 hr / 60 min)(13.71 ft3
/lb) = 4,894 ft3
/min
(b) Chart 1b
q
& = 40 kW
1
db
t = 24 C
1
φ = 50 % , SHF = 0.80
1
i = 47.80 kJ/kga , 1
v = 0.854 m3
/kga
2
db
t = 13 C, Chart 1b, SHF = 0.80
2
i = 33.78 kJ/kga
78
.
33
8
.
47
40
2
1 −
=
−
=
i
i
q
ma
&
& = 2.853 kga/s
1
v
m
Q a
&
& = = (2.853 kga/s (0.854 m3
/kga) = 2.437 m3
/s
3.30 Rework Problem 3.28 using Charts 1Ha and 1Hb for (a) 5000 ft and (b) 1500
m elevation, respectively.
Solution:
(a) Chart 1Ha, English Units, 5000 ft
q
& = 136,000 Btu/hr
s
q
& = 110,000 Btu/hr
db
t = 76 F
φ = 50 %
000
,
136
000
,
110
=
=
q
q
SHF s
&
&
= 0.81
Chart 1Ha:
(b) Chart 1Hb, SI Units, 1500 m
q
& = 40 kW
s
q
& = 32 kW
db
t = 24 C
φ = 50 %
40
32
=
=
q
q
SHF s
&
&
= 0.80
Chart 1Hb:
3.31 Rework Problem 3.29 using Charts 1Ha and 1Hb for (a) 5000 ft and (b) 1500
m elevation, respectively.
Solution:
(a) 5000 ft, Chart 1Ha
q
& = 136,000 Btu/hr
1
db
t = 76 F
1
φ = 50 % , SHF = 0.81
1
i = 30.92 Btu/lbma, 1
v = 16.53 ft3
/lb
2
db
t = 55 F, Chart 1a, SHF = 0.81
2
i = 24.57 Btu/lbma
57
.
24
92
.
30
000
,
136
2
1 −
=
−
=
i
i
q
ma
&
& = 21,417 lbma/hr
1
v
m
Q a
&
& = = (21,417 lb/hr)(1 hr / 60 min)(16.53 ft3
/lb) = 5,900 ft3
/min
(b) 1500 m, Chart 1Hb
q
& = 40 kW
1
db
t = 24 C
1
φ = 50 % , SHF = 0.80
1
i = 52.58 kJ/kga , 1
v = 1.027 m3
/kga
2
db
t = 13 C, Chart 1b, SHF = 0.80
2
i = 38.56 kJ/kga
56
.
38
58
.
52
40
2
1 −
=
−
=
i
i
q
ma
&
& = 2.853 kga/s
1
v
m
Q a
&
& = = (2.853 kga/s (1.027 m3
/kga) = 2.930 m3
/s
3.32 A meeting hall is to be maintained at 25 C db and 18 C wb. The barometric
pressure is 101.3 kPa. The space has a load of 58.6 kW sensible and 58.6 kW
latent. The temperature of the supply air cannot be lower than 18 C db. (a)
How many kilograms per second of air must be supplied? (b) What is the
required wet bulb temperature of the supply air? (c) What is the sensible heat
ratio?
Solution: Chart 1b
1
db
t = 25 C
1
wb
t = 18 C
2
db
t = 18 C
s
q
& = 58.6 kW
l
q
& = 58.6 kW
p
c = 1.02 kJ/kg.C
(a) ( )
2
1 t
t
c
m
q p
a
s −
= &
&
( )( )
18
25
02
.
1
6
.
58 −
= a
m
&
a
m
& = 8.2073 kg/s
(b) l
s
q
q
q &
&
& +
= = 58.6 + 58.6 = 117.2 kW
( )
2
1
i
i
m
q a
−
= &
&
at 1
db
t = 25 C , 1
wb
t = 18 C
1
i = 50.71 kJ/kga
( )( )
2
71
.
50
2073
.
8
2
.
117 i
−
=
2
i = 36.43 kJ/kga
Then, 2
wb
t = 12.92 C
(c)
2
.
117
6
.
58
=
=
q
q
SHF s
&
&
= 0.50
3.33 A space is to be maintained at 72 F (22 C) and 30 percent relative humidity
during the winter months. The sensible heat loss from the space is 500,000
Btu/hr (146 kW), and latent heat loss due to infiltration is 50,000 Btu/hr (14.6
kW). Construct the condition line on (a) Chart 1a and (b) 1b.
Solution:
(a) Chart 1a
s
q
& = 500,000 Btu/hr
l
q
& = 50,000 Btu/hr
000
,
50
000
,
500
000
,
500
+
=
+
=
=
l
s
s
s
q
q
q
q
q
SHF
&
&
&
&
&
= 0.909
Chart 1a:
(b) Chart 1b
s
q
& = 146 kW
l
q
& = 14.6 kW
6
.
14
146
146
+
=
+
=
=
l
s
s
s
q
q
q
q
q
SHF
&
&
&
&
&
= 0.909
Chart 1b:
3.34 What is the maximum relative humidity to prevent condensation on pipes
carrying water at 50 F through a room that has an air temperature of 70 F?
Solution:
dp
t = 50 F
db
t = 70 F
From Chart 1a, φ = 49 %
3.35 Outdoor air at 95 F (35 C) db and 79 F (26 C) wb and at a barometric pressure
of 29.92 in Hg (101 kPa) is cooled and dehumidified under steady conditions
until it becomes saturated at 60 F (16 C). (a) Find the mass of water condensed
per pound of dry air. (b) If the condensate is removed at 60 F (16 C), what
quantity of heat is removed per pound (kilogram) of (16 C) dry air?
Solution:
English units:
1
db
t = 95 F
1
wb
t = 79 F
2
db
t = 60 F
2
wb
t = 60 F
1
i = 42.44 Btu/lbma
2
i = 26.46 Btu/lbma
1
W = 0.0178 lbmv/lbma
2
W = 0.0111 lbmv/lbma
(a) 2
1 W
W
W −
=
∆ = 0.0178 – 0.0111 = 0.0067 lbmv/lbma
(b) w
i at 60 F = 28 Btu/lb
Eq. (3.30)
( ) ( ) w
a
i
W
W
i
i
m
q
2
1
2
1 −
−
−
=
&
&
( ) ( )( )
28
0067
.
0
46
.
26
44
.
42 −
−
=
a
m
q
&
&
a
m
q
&
&
= 15.79 Btu/lbma
SI units:
1
db
t = 35 C
1
wb
t = 26 C
2
db
t = 16 C
2
wb
t = 16 C
1
i = 80.20 kJ/kga
2
i = 44.85 kJ/kga
1
W = 0.0175 kgv/kga
2
W = 0.0114 kgv/kga
(a) 2
1 W
W
W −
=
∆ = 0.0175 – 0.0114 = 0.0061 lbmv/lbma
(b) w
i at 60 F = 67.08 kJ/kg
Eq. (3.30)
( ) ( ) w
a
i
W
W
i
i
m
q
2
1
2
1 −
−
−
=
&
&
( ) ( )( )
08
.
67
0061
.
0
85
.
44
20
.
80 −
−
=
a
m
q
&
&
a
m
q
&
&
= 34.94 kJ/kga
3.36 Moist air enters a refrigeration coil at 89 F db and 75 F wb at a rate of 1400
cfm. The apparatus dewpoint temperature of the coil is 55 F. If 3.5 tons of
refrigeration is available, find the dry bulb temperature of the air leaving the
coil. Assume sea level pressure.
Solution: Chart 1a.
1
db
t = 89 F
1
wb
t = 75 F
1
Q
& = 1400 cfm
d
t = 55 F
q
& = (12000)(3.5) = 42,000 Btu/hr
at 1
db
t = 89 F, 1
wb
t = 75 F
1
i = 38.46 Btu/lbma
1
v =14.172 ft3
/lbma
( )( )
172
.
14
60
1400
1
1
=
=
v
Q
ma
&
& = 5,927 lb/hr
( )
2
1
i
i
m
q a
−
= &
&
( )( )
2
46
.
38
927
,
5
000
,
42 i
−
=
2
i = 31.37 Btu/lbma
From Chart 1a, d
t = 55 F, 2
i = 31.37 Btu/lbma
2
db
t = 73.18 F
3.37 Saturated steam at a pressure of 25 psia is sprayed into a stream of moist air.
The initial condition of the air is 55 F db and 45 F wb temperature. The mass
rate of airflow is 2000 lbma/min. Barometric pressure is 14.696 psia.
Determine (a) how much steam (in lbm/min) must be added to produce a
saturated air condition and (b) the resulting temperature of the saturated air.
Solution:
a
m
& = 2000 lbma/min
Steam at 25 psia, w
i = 1160.6 Btu/lbm
Eq. (3-40)
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
1
2
1
2
at 55 F db, 45 F wb, Chart 1a
1
i = 17.62 Btu/lbma
1
W = 0.0041 lbmv/lbma
With
W
i
∆
∆
= 1160.6 Btu/lb, use protractor on Chart 1a
Then saturated air leaving condition:
2
db
t = 57.2 F
2
i = 24.60 Btu/lbma
2
W = 0.0101 lbmv/lbma
(a) ( )
1
2
W
W
m
m a
s
−
= &
&
( )( )
0041
.
0
0101
.
0
2000 −
=
s
m
& = 12 lbm/min
(b) 2
db
t = 57.2 F
3.38 Saturated water vapor at 100 C is used to humidify a stream of moist air. The
air enters the humidifier at 13 C db and 2 C wb at a a flow rate of 2.5 m3
/s.
The pressure is 101.35 kPa. Determine (a) the mass flow rate of the steam
required to saturate the air and (b) the temperature of the saturated air.
Solution: Chart 1b
w
i at 100 C of water vapor = 2675.7 kJ/kg
at 13 C db, 2 C wb
1
v = 0.81 m3
/kga
1
W = 0.0000 kgv/kga
1
i = 12.97 kJ/kga
1
Q
& = 2.5 m3
/s
81
.
0
5
.
2
1
1
=
=
v
Q
ma
&
& = 3.0864 kg/s
w
i
W
i
=
∆
∆
= 2675.7 kJ/kg
From chart 1b
2
W = 0.0103 kgv/kga
2
i = 40.5 kJ/kga
2
db
t = 14.47 C
(a) ( )
1
2
W
W
m
m a
s
−
= &
&
( )( )
0000
.
0
0103
.
0
0864
.
3 −
=
s
m
& = 0.0318 kg/s
(b) 2
db
t = 14.47 C
3.39 Moist air at 70 F db and 45 percent relative humidity is recirculated from a
room and mixed with outdoor air at 97 F db and 83 F wb. Determine the
mixture dry bulb and wet bulb temperatures if the volume of recirculated air is
three times the volume of outdoor air. Assume sea level pressure.
Solution:
At 70 F db, 45 % relative humidity, Chart 1a
1
W = 0.0070 lbmv/lbma
1
i = 24.47 Btu/lbma
1
v = 13.5 ft3
/lbma
At 70 F db, 45 % relative humidity, Chart 1a
2
W = 0.0214 lbmv/lbma
2
i = 46.88 Btu/lbma
2
v = 14.51 ft3
/lbma
2
1
2
1
2
1
3
1
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
+
+
=
2
1
2
1
2
1
3
1
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
+
+
=
2
1 3Q
Q &
& =
1
Q
& is the recirculated air flow rate.
2
Q
& is the outdoor air flow rate
2
1 3Q
Q &
& =
2
2
1
1
3
v
m
v
m a
a
&
&
=
( )
51
.
14
5
.
13
3
3
2
1
2
1
=
=
v
v
m
m
a
a
&
&
= 2.7912
( )( )
7912
.
2
1
88
.
46
47
.
24
7912
.
2
3
+
+
=
i = 30.38 Btu/lbma
( )( )
7912
.
2
1
0214
.
0
007
.
0
7912
.
2
3
+
+
=
W = 0.0108 lbmv/lbma
Then,
3
db
t = 77.3 F, 3
wb
t = 65.54 F
3.40 A structure has a calculated cooling load of 10 tons, of which 2.5 tons is latent
load. The space is to be maintained at 76 F db and 50 percent relative
humidity. Ten percent by volume of the air supplied to the space is outdoor air
at 100 F db and 50 percent relative humidity. The air is supplied to the space
cannot be less than 56 F db. Assume sea level pressure, and find (a) the
minimum amount of air supplied to the space in cfm, (b) the amounts of return
air and outdoor air in cfm, (c) the conditions and volume flow rate of the air
entering the cooling coil, and (d) the capacity and SHF for the cooling coil.
Solution:
q
& = 10 tons = 120,000 Btu/hr
l
q
& = 2.5 tons = 30,000 Btu/hr
l
s
q
q
q &
&
& −
= = 120,000 – 30,000 = 90,000 Btu/hr
Chart 1a
3
db
t = 76 F
3
φ = 50 %
0
db
t = 100 F
0
φ = 50 %
2
db
t = 56 F
2
0 10
0 Q
Q &
& .
=
2
3 90
0 Q
Q &
& .
=
9
2
0
Q
Q
&
& =
at state 0, 0
db
t = 100 F, 0
φ = 50 %
0
i = 47.08 Btu/lbma
0
W = 0.0209 lbmv/lbma
o
v = 14.58 ft3
/lbma
at state 3, 3
db
t = 76 F, 3
φ = 50 %
3
i = 28.74 Btu/lbma
3
W = 0.0096 lbmv/lbma
3
v = 13.71 ft3
/lbma












=
=
58
14
71
13
9
1
0
3
3
0
3
0
.
.
v
Q
v
Q
m
m
a
a
&
&
&
&
= 0.1045
at state 1,
( )( )
1045
0
1
74
28
08
47
1045
0
1
3
0
3
0
3
0
1
.
.
.
.
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 30.48 Btu/lbma
( )( )
1045
0
1
0096
0
0209
0
1045
0
1
3
0
3
0
3
0
1
.
.
.
.
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.01067 lbmv/lbma
1
db
t = 78.5 F
1
wb
t = 65.75 F
(a) ( )
2
3 t
t
c
m
q p
a
s −
= &
&
p
c = 0.245 Btu/lb-F
( )( )
56
76
245
.
0
000
,
90 −
= a
m
&
a
m
& = 18,367 lbma/hr
(b) 0
3 a
a
a
m
m
m &
&
& +
=
3
3 1045
0 a
a
a m
m
m &
&
& .
+
=
3
1045
1
367
18 a
m
&
.
, =
3
a
m
& = 16,629 lbma/hr return air.
( )( )( )
71
13
60
1
629
16
3
3
3 .
,
=
= v
m
Q a
&
& = 3,800 ft3
/min
( )( )=
=
= 629
16
1045
0
1045
0 3
0 ,
.
. a
a m
m &
& = 1,738 lbma/hr
( )( )( )
58
14
60
1
738
1
0
0
0 .
,
=
= v
m
Q a
&
& = 422 ft3
/min
(c) 1
db
t = 78.5 F, 1
wb
t = 65.75 F
1
v = 13.80 ft3
/lbma
1
i = 30.48 Btu/lbma
a
a
m
m &
& =
1
= 18,367 lbma/hr
( )( )( )
80
13
60
1
367
18
1
1
1 .
,
=
= v
m
Q a
&
& = 4,224 ft3
/min
(d) ( )
2
1 i
i
m
q a
c −
= &
&
For 2
i :
( )
2
3 i
i
m
q a −
= &
&
( )( )
2
74
.
28
367
,
18
000
,
120 i
−
=
2
i = 22.21 Btu/lbma, 2
db
t = 56 F
Then
( )
2
1 i
i
m
q a
c −
= &
&
( )( )
21
22
48
30
367
18 .
.
, −
=
c
q
& = 151,895 Btu/hr = 12.66 Tons
( )
2
1 t
t
c
m
q p
a
cs −
= &
&
( )( )( )
0
56
5
78
245
0
367
18 .
.
.
, −
=
cs
q
& = 101,248 Btu/hr
895
151
248
101
,
,
=
=
c
cs
c
q
q
SHF = 0.667
3.41 Rework Problem 3-40 for an elevation of 5000 feet.
Solution: Chart 1Ha
q
& = 10 tons = 120,000 Btu/hr
l
q
& = 2.5 tons = 30,000 Btu/hr
l
s
q
q
q &
&
& −
= = 120,000 – 30,000 = 90,000 Btu/hr
Chart 1a
3
db
t = 76 F
3
φ = 50 %
0
db
t = 100 F
0
φ = 50 %
2
db
t = 56 F
3
0
10
.
0 Q
Q &
& =
at state 0, 0
db
t = 100 F, 0
φ = 50 %
0
i = 51.95 Btu/lbma
0
W = 0.0253 lbmv/lbma
o
v = 17.64 ft3
/lbma
at state 0, 3
db
t = 76 F, 3
φ = 50 %
3
i = 30.92 Btu/lbma
3
W = 0.0116 lbmv/lbma
3
v = 16.53 ft3
/lbma
( ) 





=
=
64
.
17
53
.
16
10
.
0
0
3
3
0
3
0
v
Q
v
Q
m
m
a
a
&
&
&
&
= 0.09371
at state 1,
( )( )
09371
.
0
1
92
.
30
95
.
51
09371
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 32.72 Btu/lbma
( )( )
09371
.
0
1
0116
.
0
0253
.
0
09371
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.01277 lbmv/lbma
1
db
t = 78.05 F
1
wb
t = 64.73 F
(a) ( )
2
3
t
t
c
m
q p
a
s
−
= &
&
p
c = 0.245 Btu/lb-F
( )( )
56
76
245
.
0
000
,
90 −
= a
m
&
a
m
& = 18,367 lbma/hr
(b) 0
3 a
a
a
m
m
m &
&
& +
=
3
3
09371
.
0 a
a
a
m
m
m &
&
& +
=
3
09371
.
1
367
,
18 a
m
&
=
3
a
m
& = 16,794 lbma/hr return air.
( )( )( )
53
.
16
60
1
794
,
16
3
3
3 =
= v
m
Q a
&
& = 4,627 ft3
/min
( )( )
794
,
16
09371
.
0
09371
.
0 3
0
=
= a
a
m
m &
& = 1,574 lbma/hr
( )( )( )
64
.
17
60
1
574
,
1
0
0
0 =
= v
m
Q a
&
& = 463 ft3
/min
(c) 1
db
t = 78.05 F, 1
wb
t = 64.73 F
1
v = 16.62 ft3
/lbma
1
i = 32.72 Btu/lbma
a
a
m
m &
& =
1 = 18,367 lbma/hr
( )( )( )
62
.
16
60
1
367
,
18
1
1
1 =
= v
m
Q a
&
& = 5,088 ft3
/min
(d) ( )
2
1
i
i
m
q a
c
−
= &
&
For 2
i :
( )
2
3
i
i
m
q a
−
= &
&
( )( )
2
92
.
30
367
,
18
000
,
120 i
−
=
2
i = 24.39 Btu/lbma, 2
db
t = 56 F
Then
( )
2
1
i
i
m
q a
c
−
= &
&
( )( )
39
.
24
72
.
32
367
,
18 −
=
c
q
& = 152,997 Btu/hr = 12.75 Tons
( )
2
1 t
t
c
m
q p
a
cs −
= &
&
( )( )( )
0
.
56
05
.
78
245
.
0
367
,
18 −
=
cs
q
& = 99,223 Btu/hr
997
,
152
223
,
99
=
=
c
cs
c
q
q
SHF = 0.649
3.42 A building has a calculated cooling load of 410 kW. The latent portion of the
load is100 kW. The space is to be maintained at 25 C db and 50 percent
relative humidity. Outdoor air is at 38 C and 50 percent relative humidity, and
10 percent by mass of the air supplied to the space is outdoor air. Air is to be
supplied to the space at not less than 18 C. Assume sea level pressure and find
(a) the minimum amount of air supplied to the space in m3
/s, (b) the volume
flow rates of the return air, exhaust air, and outdoor air, (c) the condition and
volume flow rates of the air entering the cooling coil, and (d) the capacity,
apparatus dew point, bypass factor, and SHF of the cooling coil.
Solution:
q
& = 410 kW
l
q
& = 100 kW
l
s
q
q
q &
&
& −
= = 410 kW – 100 kW = 310 kW
Chart 1b
State 3,
3
db
t = 25 C
3
φ = 50 %
3
W = 0.0099 kgv/kga
3
i = 50.31 kJ/kga
3
v = 0.858 m3
/kga
State 0,
0
db
t = 38 C
0
φ = 50 %
0
W = 0.0211 kgv/kga
0
i = 92.30 kJ/kga
0
v = 0.911 m3
/kga
1
2
0
10
.
0
10
.
0 a
a
m
m
m =
=
&
State 2,
2
db
t = 18 C
State 1,
9
1
10
.
0
10
.
0
1
1
1
3
0
=
−
=
a
a
a
a
a
m
m
m
m
m
&
&
&
&
&
( )
9
1
1
31
.
50
30
.
92
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 54.51 kJ/kga
( )
9
1
1
0099
.
0
0211
.
0
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.01102 kgv/kga
Chart 1b, 1
v = 0.863 m3
/kg, 1
db
t = 26.30 C, 1
wb
t = 19.19 C, 1
φ = 51.47 %
(a)
410
310
=
=
q
q
SHF s
= 0.756
Chart 1b, 2
db
t = 18 C
2
φ = 69.9 %
2
i = 40.87 kJ/kg
2
W = 0.0090 kgv/kga
2
v = 0.837 m3
/kga
( ) ( )( )
18
25
02
.
1
310
2
3
2
−
=
−
=
t
t
c
q
m
p
s
a
&
& = 43.4 kg/s
(b) 2
1 a
a
m
m &
& = = 43.4 kg/s
( )( )
4
.
43
1
.
0
1
.
0 1
0
=
= a
a
m
m &
& = 4.34 kg/s
( )( )
4
.
43
9
9 0
3
=
= a
a
m
m &
& = 39.06 kg/s
Return air:
( )( )
858
.
0
06
.
39
3
3
3
=
= v
m
Q a
&
& = 33.5 m3
/s
Exhaust air:
( )( )
911
.
0
34
.
4
0
0
0
=
= v
m
Q a
&
& = 3.96 m3
/s
Outdoor air = Exhaust air
( )( )
911
.
0
34
.
4
0
0
0
=
= v
m
Q a
&
& = 3.96 m3
/s
(a) Condition of air entering the coil
1
db
t = 26.30 C, 1
wb
t = 19.19 C, 1
φ = 51.47 %, 1
v = 0.863 m3
/kg
Volume flow rate;
( )( )
863
.
0
4
.
43
1
1
1
=
= v
m
Q a
&
& = 37.45 m3
/s
(b) Capacity ( ) ( )( )
87
.
40
51
.
54
4
.
43
2
1
1
−
=
−
= i
i
m
q a
c
&
& = 592 kW
Apparatus dew point , Chart 1b;
d
t = 7.2 C
By-pass factor
2
.
7
3
.
26
2
.
7
18
1
2
−
−
=
−
−
=
d
d
t
t
t
t
b = 0.566
SHF of cooling coil,
c
cs
c
q
q
SHF
&
&
=
( ) ( )( )( )
18
3
.
26
02
.
1
4
.
43
2
1
1
−
=
−
= t
t
c
m
q p
a
cs
&
&
cs
q
& = 368 kW
592
368
=
=
c
cs
c
q
q
SHF
&
&
= 0.622
3.43 Rework Problem 3-42 for an elevation of 1500 m
Solution:
q
& = 410 kW
l
q
& = 100 kW
l
s
q
q
q &
&
& −
= = 410 kW – 100 kW = 310 kW
Chart 1Hb
State 3,
3
db
t = 25 C
3
φ = 50 %
3
W = 0.0119 kgv/kga
3
i = 55.40 kJ/kga
3
v = 1.032 m3
/kga
State 0,
0
db
t = 38 C
0
φ = 50 %
0
W = 0.0254 kgv/kga
0
i = 103.46 kJ/kga
0
v = 1.099 m3
/kga
1
2
0
10
.
0
10
.
0 a
a
m
m
m =
=
&
State 2,
2
db
t = 18 C
State 1,
9
1
10
.
0
10
.
0
1
1
1
3
0
=
−
=
a
a
a
a
a
m
m
m
m
m
&
&
&
&
&
( )
9
1
1
4
.
55
46
.
103
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 60.21 Btu/lbma
( )
9
1
1
0119
.
0
0254
.
0
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0133 lbmv/lbma
Chart 1Hb, 1
v = 1.038 m3
/kg, 1
db
t = 26.30 C, 1
wb
t = 18.79 C, 1
φ = 51.5 %
(a)
410
310
=
=
q
q
SHF s
= 0.756
Chart 1Hb, 2
db
t = 18 C
2
wb
t = 14.54 C
2
i = 45.96 kJ/kg
2
W = 0.0110 kgv/kga
2
v = 1.006 m3
/kga
96
.
45
4
.
55
310
2
3
2
−
=
−
=
i
i
q
m s
a
&
& = 43.4 kg/s
(b) 2
1 a
a
m
m &
& = = 43.4 kg/s
( )( )
4
.
43
1
.
0
1
.
0 1
0
=
= a
a
m
m &
& = 4.34 kg/s
( )( )
4
.
43
9
9 0
3
=
= a
a
m
m &
& = 39.06 kg/s
Return air:
( )( )
032
.
1
06
.
39
3
3
3
=
= v
m
Q a
&
& = 40.31 m3
/s
Exhaust air:
( )( )
099
.
1
34
.
4
0
0
0
=
= v
m
Q a
&
& = 4.77 m3
/s
Outdoor air = Exhaust air
( )( )
099
.
1
34
.
4
0
0
0
=
= v
m
Q a
&
& = 4.77 m3
/s
(a) Condition of air entering the coil
1
db
t = 26.30 C, 1
wb
t = 18.79 C, 1
φ = 51.5 %, 1
v = 1.038 m3
/kg
Volume flow rate;
( )( )
038
.
1
4
.
43
1
1
1
=
= v
m
Q a
&
& = 45.05 m3
/s
(b) Capacity ( ) ( )( )
96
.
45
21
.
60
4
.
43
2
1
1
−
=
−
= i
i
m
q a
c
&
& = 619 kW
Apparatus dew point , Chart 1Hb;
d
t = 8.9 C
By-pass factor
9
.
8
3
.
26
9
.
8
18
1
2
−
−
=
−
−
=
d
d
t
t
t
t
b = 0.523
SHF of cooling coil,
c
cs
c
q
q
SHF
&
&
=
( ) ( )( )( )
18
3
.
26
02
.
1
4
.
43
2
1
1
−
=
−
= t
t
c
m
q p
a
cs
&
&
cs
q
& = 368 kW
619
368
=
=
c
cs
c
q
q
SHF
&
&
= 0.595
3.44 A building has a total heating load of 200,000 Btu/hr. The sensible heat factor
for the space is 0.8. The space is to be maintained at 72 F db and 40 percent
relative humidity. Outdoor air at 40 F db and 20 percent relative humidity in
the amount of 1000 cfm is required. Air is supplied to the space at 120 F db.
Find (a) the conditions and amount of air supplied to the space, (b) the
temperature rise of the air through the furnace, (c) the amount of water at 50 F
required by the dehumidifier, and (d) the capacity of the furnace. Assume sea
level pressure.
Solution: Chart 1a
State 0,
0
db
t = 40 F
0
φ = 20 %
0
i = 10.72 Btu/lbma
0
W = 0.0010 lbmv/lbma
0
v = 12.611 ft3
/lbma
State 3,
3
db
t = 72 F
3
φ = 40 %
3
i = 24.58 Btu/lbma
3
W = 0.0067 lbmv/lbma
3
v = 13.54 ft3
/lb
State 2,
2
db
t = 120 F
Chart 1a, SHF = 0.8
2
W = 0.0094 lbmv/lbma
2
i = 39.28 Btu/lbma
2
wb
t = 76.18 F
2
φ = 12.8 %
q
& = 200,000 Btu/hr
( ) ( )( )
000
,
200
8
.
0
=
= q
SHF
qs
&
& = 160,000 Btu/hr
( )
3
2
2
i
i
m
q a
−
= &
&
( ) 58
.
24
28
.
39
000
,
200
3
2
2
−
=
−
=
i
i
q
ma
&
& = 13,606 lbma/hr
0
Q
& = 1000 ft3
/min
( )( )
61
.
12
60
1000
0
0
0 =
=
v
Q
ma
&
& = 4,758 lbma/hr
2
3 a
a
m
m &
& = = 13,606 lbma/hr
( )
606
,
13
758
,
4
1
58
.
24
72
.
10
606
,
13
758
,
4
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 20.99 Btu/lbma
( )
606
,
13
758
,
4
1
0067
.
0
0010
.
0
606
,
13
758
,
4
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0052 lbmv/lbma
1
db
t = 63.8 F
At 50 F , w
i = 18.1 Btu/lb
For x – 2,
w
x
x
i
W
W
i
i
W
i
=
−
−
=
∆
∆
2
2
= 18.1
Draw a line parallel to the protractor line from 2 – x, x intersecting line of constant
humidity ratio from 1.
1
W
Wx
= = 0.0052 lbmv/lbma
x
t = 139 F
x
i = 39.20 Btu/lbma
(a) Air supplied to the space.
2
db
t = 120 F, 2
φ = 12.8 %, 2
wb
t = 76.18 F
2
a
m
& = 13,606 lbma/hr
(b) Temperature rise of the air through the furnace.
1
t
tx
− = 139 – 63.8 = 75.2 F
(c) Amount of water required by the humidifier.
( ) ( )( )
0052
.
0
0094
.
0
606
,
13
2
2
−
=
−
= x
a
w
W
W
m
m &
& = 57.2 lb/hr
(d) Capacity of the furnace.
( ) ( )( )
99
.
20
20
.
39
606
,
13
1
2
−
=
−
= i
i
m
q x
a
F
&
& = 247,765 Btu/hr
3.45 Rework Problem 3.44 for an elevation of 5000 ft.
Solution: Chart 1Ha
State 0,
0
db
t = 40 F
0
φ = 20 %
0
i = 10.96 Btu/lbma
0
W = 0.00125 lbmv/lbma
0
v = 15.16 ft3
/lbma
State 3,
3
db
t = 72 F
3
φ = 40 %
3
i = 26.10 Btu/lbma
3
W = 0.00805 lbmv/lbma
3
v = 16.31 ft3
/lb
State 2,
2
db
t = 120 F
Chart 1a, SHF = 0.8
2
W = 0.0104 lbmv/lbma
2
i = 40.80 Btu/lbma
2
wb
t = 73.50 F
2
φ = 12.2 %
q
& = 200,000 Btu/hr
( ) ( )( )
000
,
200
8
.
0
=
= q
SHF
qs
&
& = 160,000 Btu/hr
( )
3
2
2
i
i
m
q a
−
= &
&
( ) 10
.
26
80
.
40
000
,
200
3
2
2
−
=
−
=
i
i
q
ma
&
& = 13,606 lbma/hr
0
Q
& = 1000 ft3
/min
( )( )
16
.
15
60
1000
0
0
0 =
=
v
Q
ma
&
& = 3,958 lbma/hr
2
3 a
a
m
m &
& = = 13,606 lbma/hr
( )
606
,
13
958
,
3
1
10
.
26
96
.
10
606
,
13
958
,
3
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 22.69 Btu/lbma
( )
606
,
13
958
,
3
1
00805
.
0
00125
.
0
606
,
13
958
,
3
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.00645 lbmv/lbma
1
db
t = 65.23 F
At 50 F , w
i = 18.1 Btu/lb
For x – 2,
w
x
x
i
W
W
i
i
W
i
=
−
−
=
∆
∆
2
2
= 18.1
Draw a line parallel to the protractor line from 2 – x, x intersecting line of constant
humidity ratio from 1.
1
W
Wx
= = 0.00645 lbmv/lbma
x
t = 139.52 F
x
i = 40.73 Btu/lbma
(a) Air supplied to the space.
2
db
t = 120 F, 2
φ = 12.2 %, 2
wb
t = 73.50 F
2
a
m
& = 13,606 lbma/hr
(b) Temperature rise of the air through the furnace.
1
t
tx
− = 139.52 – 65.23 = 74.29 F
(c) Amount of water required by the humidifier.
( ) ( )( )
00645
.
0
0104
.
0
606
,
13
2
2
−
=
−
= x
a
w
W
W
m
m &
& = 53.74 lb/hr
(d) Capacity of the furnace.
( ) ( )( )
69
.
22
73
.
40
606
,
13
1
2
−
=
−
= i
i
m
q x
a
F
&
& = 245,452 Btu/hr
3.46 The system of Problem 3.40 has a supply air fan located just downstream of
the cooling coil. The total power input to the fan is 2.0 hp. It is also estimated
that heat gain to the supply duct system is 500 Btu/hr. Rework Problem 3.40
taking the fan and duct system heat gain into account. Make a sketch of the
processes.
Solution:
q
& = 10 tons = 120,000 Btu/hr
l
q
& = 2.5 tons = 30,000 Btu/hr
l
s
q
q
q &
&
& −
= = 120,000 – 30,000 = 90,000 Btu/hr
Chart 1a
3
db
t = 76 F
3
φ = 50 %
0
db
t = 100 F
0
φ = 50 %
2
db
t = 56 F
2
1 ′
−
′
q
& = 2.0 hp (2545 Btu/hp.hr) = 5,090 Btu/hr
2
2 −
′
q
& = 500 Btu/hr
3
0
10
.
0 Q
Q &
& =
at state 0, 0
db
t = 100 F, 0
φ = 50 %
0
i = 47.08 Btu/lbma
0
W = 0.0209 lbmv/lbma
o
v = 14.58 ft3
/lbma
at state 3, 3
db
t = 76 F, 3
φ = 50 %
3
i = 28.74 Btu/lbma
3
W = 0.0096 lbmv/lbma
3
v = 13.71 ft3
/lbma
( ) 





=
=
58
.
14
71
.
13
10
.
0
0
3
3
0
3
0
v
Q
v
Q
m
m
a
a
&
&
&
&
= 0.094
at state 1,
( )( )
094
.
0
1
74
.
28
08
.
47
094
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 30.32 Btu/lbma
( )( )
094
.
0
1
0096
.
0
0209
.
0
094
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0106 lbmv/lbma
1
db
t = 78.0 F
1
wb
t = 65.5 F
(a) ( )
2
3
t
t
c
m
q p
a
s
−
= &
&
p
c = 0.245 Btu/lb-F
( )( )
56
76
245
.
0
000
,
90 −
= a
m
&
a
m
& = 18,367 lbma/hr
(b) 0
3 a
a
a
m
m
m &
&
& +
=
3
3
094
.
0 a
a
a
m
m
m &
&
& +
=
3
094
.
1
367
,
18 a
m
&
=
3
a
m
& = 16,789 lbma/hr return air.
( )( )( )
71
.
13
60
1
789
,
16
3
3
3 =
= v
m
Q a
&
& = 3,836 ft3
/min
( )( )
789
,
16
094
.
0
094
.
0 3
0
=
= a
a
m
m &
& = 1,578 lbma/hr
( )( )( )
58
.
14
60
1
578
,
1
0
0
0 =
= v
m
Q a
&
& = 384 ft3
/min
(c) 1
db
t = 78.0 F, 1
wb
t = 65.5 F
1
v = 13.78 ft3
/lbma
1
i = 30.32 Btu/lbma
a
a
m
m &
& =
1 = 18,367 lbma/hr
( )( )( )
78
.
13
60
1
367
,
18
1
1
1 =
= v
m
Q a
&
& = 4,218 ft3
/min
(d) ( )
2
2
1
2
2 ′
−
′ −
= i
i
m
q a
&
&
( )
1
2
1
2
1 ′
′
′
−
′ −
= i
i
m
q a
&
&
( )
1
2
1
2
2
2
1 ′
−
′
′
−
′ −
=
+ i
i
m
q
q a
&
&
&
( )
2
3
1
i
i
m
q a
−
= &
&
( )
1
3
1
2
2
2
1 ′
−
′
′
−
′ −
=
+
+ i
i
m
q
q
q a
&
&
&
&
( )( )
1
74
.
28
367
,
18
000
,
120
500
090
,
5 ′
−
=
+
+ i
1′
i = 21.90 Btu/lbma
( ) ( )( )
90
.
21
32
.
30
367
,
18
1
1
−
=
−
= ′
i
i
m
q a
c
&
& = 12.9 tons
( )
1
2
2
2
2
1 ′
−
′
′
−
′ −
=
+ t
t
c
m
q
q p
a
&
&
&
( )( )( )
1
56
245
.
0
367
,
18
500
5090 ′
−
=
+ t
1′
t = 54.76 F
( )
1
1 ′
−
= t
t
c
m
q p
a
cs
&
&
( )( )( )
76
.
54
0
.
78
245
.
0
367
,
18 −
=
cs
q
& = 104,578 Btu/hr
650
,
154
578
,
104
=
=
c
cs
c
q
q
SHF = 0.676
3.47 The system of Problem 3.42 has a supply air fan located just downstream of
the coil and a return air fan just upstream of the mixing box. The power input
to the supply fan is 18 kW, and the power input to the return fan is 12 kW.
Rework Problem 3.42 taking the fan power into account. Make a sketch of the
system processes on a skeleton psychrometric chart.
Solution:
q
& = 410 kW
l
q
& = 100 kW
l
s
q
q
q &
&
& −
= = 410 kW – 100 kW = 310 kW
Chart 1b
State 3,
3
db
t = 25 C
3
φ = 50 %
3
W = 0.0099 kgv/kga
3
i = 50.31 kJ/kga
3
v = 0.858 m3
/kga
State 0,
0
db
t = 38 C
0
φ = 50 %
0
W = 0.0211 kgv/kga
0
i = 92.30 kJ/kga
0
v = 0.911 m3
/kga
1
2
0
10
.
0
10
.
0 a
a
m
m
m =
=
&
State 2,
2
db
t = 18 C
State 1,
9
1
10
.
0
10
.
0
1
1
1
3
0
=
−
=
a
a
a
a
a
m
m
m
m
m
&
&
&
&
&
Solving for State 3′ ;
( )
3
3
3
3
3 t
t
c
m
q p
a −
= ′
′
−
&
&
( ) ( )
18
25
02
.
1
310
2
3
2
−
=
−
=
t
t
c
q
m
p
s
a
&
& = 43.4 kg/s
2
1 a
a
m
m &
& =
( )
4
.
43
9
.
0
9
.
0
10
.
0 1
1
1
3
=
=
−
= a
a
a
a
m
m
m
m &
&
&
& = 39.06 kg/s
( )
3
3
3
3
3 t
t
c
m
q p
a −
= ′
′
−
&
&
( ) ( )( )( )
25
02
.
1
06
.
39
12 3
−
= ′
t
3′
t = 25.3 C
at 3′ , 3′
t = 25.3 C, 3
3
W
W =
′ = 0.0099 kgv/kga
Chart 1b, 3′
i = 50.7 kJ/kga
For State 1;
( )
9
1
1
7
.
50
30
.
92
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 54.86 kJ/kga
( )
9
1
1
0099
.
0
0211
.
0
9
1
1
3
0
3
0
3
0
1
+
+






=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.01102 kgv/kga
Chart 1b, 1
v = 0.864 m3
/kg, 1
db
t = 26.57 C, 1
wb
t = 19.3 C, 1
φ = 50.8 %
(a)
410
310
=
=
q
q
SHF s
= 0.756
Chart 1b, 2
db
t = 18 C
2
φ = 69.9 %
2
i = 40.87 kJ/kg
2
W = 0.0090 kgv/kga
2
v = 0.837 m3
/kga
( ) ( )( )
18
25
02
.
1
310
2
3
2
−
=
−
=
t
t
c
q
m
p
s
a
&
& = 43.4 kg/s
(b) 2
1 a
a
m
m &
& = = 43.4 kg/s
( )( )
4
.
43
1
.
0
1
.
0 1
0
=
= a
a
m
m &
& = 4.34 kg/s
( )( )
4
.
43
9
9 0
3
=
= a
a
m
m &
& = 39.06 kg/s
Return air:
( )( )
858
.
0
06
.
39
3
3
3
=
= v
m
Q a
&
& = 33.5 m3
/s
Exhaust air:
( )( )
911
.
0
34
.
4
0
0
0
=
= v
m
Q a
&
& = 3.96 m3
/s
Outdoor air = Exhaust air
( )( )
911
.
0
34
.
4
0
0
0
=
= v
m
Q a
&
& = 3.96 m3
/s
(a) Condition of air entering the coil
1
db
t = 26.57 C, 1
wb
t = 19.3 C, 1
φ = 50.8 %, 1
v = 0.864 m3
/kg
Volume flow rate;
( )( )
864
.
0
4
.
43
1
1
1
=
= v
m
Q a
&
& = 37.5 m3
/s
(a) Capacity
( )
2
1
1 ′
−
= i
i
m
q a
c
&
&
Solve for 2′;
( )
2
2
2
2
2 ′
−
′ −
= t
t
c
m
q p
a
&
&
( )( )( )
2
18
02
.
1
4
.
43
18 ′
−
= t
2′
t = 17.6 C
at 2′, 2′
t = 17.6 C, 2
2 W
W =
′ = 0.0090 kgv/kga
2′
i = 40.57 kJ/kga
( ) ( )( )
57
.
40
86
.
54
4
.
43
2
1
1
−
=
−
= ′
i
i
m
q a
c
&
& = 620 kW
Apparatus dew point , Chart 1b;
d
t = 8.8 C
By-pass factor
8
.
8
57
.
26
8
.
8
6
.
17
1
2
−
−
=
−
−
= ′
d
d
t
t
t
t
b = 0.495
SHF of cooling coil,
c
cs
c
q
q
SHF
&
&
=
( ) ( )( )( )
6
.
17
57
.
26
02
.
1
4
.
43
2
1
1 −
=
−
= ′
t
t
c
m
q p
a
cs
&
&
cs
q
& = 397 kW
620
397
=
=
c
cs
c
q
q
SHF
&
&
= 0.64
3.48 A large warehouse located in Denver, Colorado (elevation = 5000 ft or 1500
m), is to be conditioned using an evaporative cooling system. Assume that the
space is to be maintained at 80 F (27 C) and 50 percent relative humidity by a
100 percent outdoor air system. Outdoor design conditions are 91 F (33 C) db
and 59 F (15 C) wb. The cooling load is estimated to be 100 tons (352 kW)
with a sensible heat factor of 0.9. The supply air fan is locatedjust downstream
of the spray chamber and is estimated to require a power input of 20 hp (15
kW). Determine the volume flow rate of air to the space, and sketch the
processes on a skeleton psychrometric chart in (a) English units and (b) SI
units.
Solution:
(a) Chart 1Ha, English units
State 2;
2
db
t = 80 F
2
φ = 50 %
2
i = 33.73 Btu/lbma
2
W = 0.01323 lbmv/lbma
State 0;
0
db
t = 91 F
0
wb
t = 59 F
0
i = 28.0 Btu/lbma
0
W = 0.0056 lbmv/lbma
State 1;
0
1
i
i = = 28.0 Btu/lbma
q
& = 100 tons = 1,200,000 Btu/hr
( ) ( )( )
9
.
0
000
,
200
,
1
=
= SHF
q
qs
&
& = 1,080,000 Btu/hr
( )
1
2 ′
−
= t
t
c
m
q p
a
s
&
& = 1,080,000 Btu/hr
but 1
1 ′
−
q
& = 20 hp (2545 Btu/hp-hr) = 50,900 Btu/hr
( )
1
1
1
1 t
t
c
m
q p
a −
= ′
′
−
&
& = 50,900 Btu/hr
By trial and error method,
Try 1′
t = 61 F
( )( )
61
80
245
.
0 −
= a
s
m
q &
& = 1,080,000 Btu/hr
a
m
& = 232,009 lb/hr
( )( )( )
1
1
1 61
245
.
0
009
,
232 t
q −
=
′
−
& = 50,900 Btu/hr
1
t = 60.10 F
locate at Chart 1Ha, 1
i = 28.0 Btu/lbma, 1
1 ′
=W
W = 0.0125 lbmv/lbma
with 1′
W = 0.0125 lbmv/lbma and SHF = 0.9
at 1′
t = 61 F,
1′
v = 16.09 ft3
/lbma
( )( )( )
09
.
16
60
1
009
,
232
1 =
= ′
v
m
Q a
&
& = 62,217 ft3
/min
(b) Chart 1Hb, SI units
State 2;
2
db
t = 27 C
2
φ = 50 %
2
i = 61.34 kJ.kga
2
W = 0.0134kgv/kga
State 0;
0
db
t = 33 C
0
wb
t = 15 C
0
i = 47.10 kJ/kga
0
W = 0.0054 kgv/kga
State 1;
0
1
i
i = = 47.1 kJ/kga
q
& = 352 kW
( ) ( )( )
9
.
0
352
=
= SHF
q
qs
&
& = 316.8 kW
( )
1
2 ′
−
= t
t
c
m
q p
a
s
&
& = 316.8 kW
From Chart 1Hb, sketch of the process with SHF = 0.9, SI units equivalent for
temperatureas given in the problem will not intesect inside the chart as shown.
Therefore, use the answer in (a) converted to SI units.
( ) 















=
sec
60
min
1
281
.
3
1
min
/
217
,
62
3
3
ft
m
ft
Q
& = 29.36 m3
/s
3.49 The summer design conditions for Tuczon, Arizona, are 102 F (39 C) dry bulb
and 66 F (19 C) wet bulb temperature. In Shreveport, Louisiana, the design
conditions are 96 F (36 C) dry bulb and 76 F (24 C) wet bulb temperature.
What is the lowest air temperature that can theoretically be attained in an
evaporative cooler for these design conditions in each city?
Solution:
English units, Chart 1a.
In Tuczon, Arizona, 1
db
t = 102 F, 1
wb
t = 66 F,
1
2 i
i = saturated
then 2
t = 65.623 F
In Shreveport, Louisiana, 1
db
t = 96 F, 1
wb
t = 76 F,
1
2 i
i = saturated
then 2
t = 75.783 F
SI units, Chart 1b.
In Tuczon, Arizona, 1
db
t = 39 C, 1
wb
t = 19 C,
1
2 i
i = saturated
then 2
t = 18.836 C
In Shreveport, Louisiana, 1
db
t = 36 C, 1
wb
t = 24 C,
1
2 i
i = saturated
then 2
t = 23.892 C
3.50 Consider a conventional cooling system designed for use at high elevation
(5000 ft or 1500 m). The space, with SHF = 0.7, is to be maintained at 75 F
(24 C) db and 40 percent relative humidity, and outdoor design conditions are
100 F (38 C) and 10 percent relative humidity. Outdoor air is to be mixed with
return air such that it can be cooled sensibly to 50 F (10 C), where it crosses
the condition line. The air is then supplied to the space. Sketch the processes
on Chart 1Ha or 1Hb, and compute the volume flow rate of the supply air and
percent outdoor per ton of cooling load, in (a) English units and (b) SI units.
Solution:
(a) English units, Chart 1Ha.
At state 4, 4
db
t = 75 F, 4
φ = 40%
4
i = 27.77 Btu/lbma
4
W = 0.0089 lbmv/lbma
4
v = 16.43 ft3
/lbma
At state 1 1
db
t = 100 F, 1
φ = 10%
1
i = 29.43 Btu/lbma
1
W = 0.0049 lbmv/lbma
1
v = 17.08 ft3
/lbma
At state 3, From Chart 1Ha, 3
db
t = 50 F, SHF = 0.7
2
3
W
W = = 0.0065 lbmv/lbma,
3
i = 19.02 Btu/lbma
3
v = 15.60 ft3
/lbma
At state 2, From Chart 1Ha, 2
W = 0.0065 lbmv/lbma, along the line connecting the
state 1 and 4.
2
db
t = 90 F
2
i = 28.78 Btu/lbma
( )
3
2
i
i
m
q a
−
= &
& = 1 ton = 12,000 Btu/hr
( ) 000
,
12
02
.
19
78
.
28 =
−
a
m
&
a
m
& = 1,230 lb/hr per ton
( )( )( )
60
.
15
60
1
230
,
1
3
3 =
= v
m
Q a
&
& = 320 ft3
/min-tons
Percentage Outdoor Air.
4
1
4
1
4
1
2
1
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
+
+
=
( )
4
1
4
1
1
0089
.
0
0049
.
0
0065
.
0
a
a
a
a
m
m
m
m
&
&
&
&
+
+
=
4
1
a
a
m
m
&
&
=1.5
( )
%
100
1
5
.
1
5
.
1
%
4
1
1
3
1
+
=
+
=
=
a
a
a
a
a
m
m
m
m
m
Outdoor
&
&
&
&
&
= 0.6 (100 %) = 60 %
(b) SI units, Chart 1Hb.
At state 4, 4
db
t = 24 C, 4
φ = 40%
4
i = 46.81 kJ/kga
4
W = 0.0089 kgv/kga
4
v = 1.023 m3
/kga
At state 1 1
db
t = 38 C, 1
φ = 10%
1
i = 50.86 kJ/kga
1
W = 0.0049 kJ/kga
1
v = 1.065 m3
/kga
At state 3, From Chart 1Hb, 3
db
t = 10 C, SHF = 0.7
2
3
W
W = = 0.0065 kgv/kga,
3
i = 26.41 kJ/kga
3
v = 0.971 m3
/kga
At state 2, From Chart 1Hb 2
W = 0.0065 kgv/kga, along the line connecting the state 1
and 4.
2
db
t = 32.4 C
2
i = 49.22 Btu/lbma
( )
3
2
i
i
m
q a
−
= &
& = 1 ton = 3.517 kW
( ) 517
.
3
41
.
26
22
.
49 =
−
a
m
&
a
m
& = 0.1542 kga/s per ton
( )( )
971
.
0
1542
.
0
3
3
=
= v
m
Q a
&
& = 0.1497 m3
/s -tons
Percentage Outdoor Air.
4
1
4
1
4
1
2
1
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
+
+
=
( )
4
1
4
1
1
0089
.
0
0049
.
0
0065
.
0
a
a
a
a
m
m
m
m
&
&
&
&
+
+
=
4
1
a
a
m
m
&
&
=1.5
( )
%
100
1
5
.
1
5
.
1
%
4
1
1
3
1
+
=
+
=
=
a
a
a
a
a
m
m
m
m
m
Outdoor
&
&
&
&
&
= 0.6 (100 %) = 60 %
3.51 A space heating system is designed as shown in Fig. 3.21 for a large zone in a
building. Under design conditions for Kansas City, Missouri, air enters the
preheat coil at 6 F (-14 C) and essentially 0 percent relative humidity. The
outdoor air is heated to 60 F (16 C) and mixed with return air. It is then heated
and humidified in a separate process to 105 F (40 C) and 30 percent relative
humidity (RH) for supply to the space. Saturated vapor at 2.0 psig is used for
humidification. Twenty-five percent of the supply air is outdoor air by mass.
The total space heating load is 500,000 Btu/hr (145 kW), and the space design
conditions are 70 F (21 C) and 30 percent RH. Sketch the psychrometric
processes, and compute the supply air volume flow rate, the heat transfer rates
in both coils, and the steam flow rate in (a) English units, (b) SI units.
Solution: It is not Fig. 3.21 but Fig. 3.23
(a) English units, Chart 1a
At state 3, 3
db
t = 70 F, 3
φ = 30 %
3
i = 21.90 Btu/lbma
3
W = 0.0047 lbmv/lbma
At state 2, 2
db
t = 105 F, 2
φ = 30 %
2
i = 41.15 Btu/lbma
2
W = 0.0144 lbmv/lbma
2
v = 14.56 ft3
/lbma
1
2
0
25
.
0
25
.
0 a
a
a
m
m
m &
&
& =
=
′
1
2
0
2
3
75
.
0
75
.
0 a
a
a
a
a
m
m
m
m
m &
&
&
&
& =
=
−
= ′
75
.
0
25
.
0
3
0
=
′
a
a
m
m
&
&
At state 0′, 0′
db
t = 60 F, 0′
φ = 0 %
0′
i = 14.4 Btu/lbma
0′
W = 0.0000 lbmv/lbma
( )
75
.
0
25
.
0
1
90
.
21
4
.
14
75
.
0
25
.
0
1
3
0
3
0
3
0
1
+
+






=
+
+
=
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 20.03 Btu/lbma
( )
75
.
0
25
.
0
1
0047
.
0
0000
.
0
75
.
0
25
.
0
1
3
0
3
0
3
0
1
+
+






=
+
+
=
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.00353 lbmv/lbma
at state 1, 1
db
t = 67.42 F
state 1′, saturated steam at 2.0 psig, w
i = 1152.8 Btu/lb
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
′
′
1
2
1
2
= 1152.8 Btu/lb
From Chart 1a, intersection of line 1
2 ′
− parallel to
W
i
∆
∆
= 1152.8 Btu/lb and line
1
1 ′
− .
1′
db
t = 102.97 F
1
1 W
W =
′ = 0.00353 lbmv/lbma
1′
i = 28.62 Btu/lbma
( )
3
2
2
2
i
i
m
q a
a
−
= &
&
( )
90
.
21
15
.
41
000
,
500 2
−
= a
m
&
2
a
m
& = 25,974 lbma/hr
( )
974
,
25
25
.
0
25
.
0 2
0
=
=
′ a
a
m
m &
& = 6,494 lbma/hr
Supply air volume flow rate,
( )( )( )
56
.
14
60
1
974
,
25
2
2
2 =
= v
m
Q a
&
& = 6,303 ft3
/min
Heat transfer rate on pre-heat coil
( ) ( )( )( )
6
60
245
.
0
494
,
6
0
0
0
−
=
−
= ′
′ t
t
c
m
q p
a
p
&
& = 85,016 Btu/hr
Heat transfer rate on heating coil
( ) ( )( )( )
42
.
67
97
.
102
245
.
0
974
,
25
1
1
2
−
=
−
= ′ t
t
c
m
q p
a
h
&
& = 226,227 Btu/hr
Steam flow rate
( ) ( )( )
00353
.
0
0144
.
0
974
,
25
1
2
2
−
=
−
= ′
W
W
m
m a
v
&
& = 282 lbm/hr
(b) SI units, Chart 1b
At state 3, 3
db
t = 21 C, 3
φ = 30 %
3
i = 32.84 kJ/kga
3
W = 0.0046 kgv/kga
At state 2, 2
db
t = 40 C, 2
φ = 30 %
2
i = 76.01 kJ/kga
2
W = 0.0139 kgv/kga
2
v = 0.907 m3
/kga
1
2
0
25
.
0
25
.
0 a
a
a
m
m
m &
&
& =
=
′
1
2
0
2
3
75
.
0
75
.
0 a
a
a
a
a
m
m
m
m
m &
&
&
&
& =
=
−
= ′
75
.
0
25
.
0
3
0
=
′
a
a
m
m
&
&
At state 0′, 0′
db
t = 16 F, 0′
φ = 0 %
0′
i = 16.10 kJ/kga
0′
W = 0.0000 kgv/kga
( )
75
.
0
25
.
0
1
84
.
32
10
.
16
75
.
0
25
.
0
1
3
0
3
0
3
0
1
+
+






=
+
+
=
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 28.66 kJ/kga
( )
75
.
0
25
.
0
1
0046
.
0
0000
.
0
75
.
0
25
.
0
1
3
0
3
0
3
0
1
+
+






=
+
+
=
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.00346 kgv/kga
at state 1, 1
db
t = 19.75 F
state 1′, saturated steam at 2.0 psig (13.8 kPag) , w
i = 2681 kJ/kg
W
i
i
W
W
i
i
w
∆
∆
=
=
−
−
′
′
1
2
1
2
= 2681 kJ/kg
From Chart 1a, intersection of line 1
2 ′
− parallel to
W
i
∆
∆
= 2681 kJ/kg and line 1
1 ′
− .
1′
db
t = 38.9 C
1
1 W
W =
′ = 0.00346 kgv/kga
1′
i = 48.02 kJ/kga
( )
3
2
2
2
i
i
m
q a
a
−
= &
&
( )
54
.
32
01
.
76
145 2
−
= a
m
&
2
a
m
& = 3.12 kga/s
( )
12
.
3
25
.
0
25
.
0 2
0
=
=
′ a
a
m
m &
& = 0.78 kgas
Supply air volume flow rate,
( )( )
907
.
0
12
.
3
2
2
2
=
= v
m
Q a
&
& = 2.83 m3
/s
Heat transfer rate on pre-heat coil
( ) ( )( ) ( )
[ ]
14
16
02
.
1
78
.
0
0
0
0
−
−
=
−
= ′
′ t
t
c
m
q p
a
p
&
& = 23.9 kW
Heat transfer rate on heating coil
( ) ( )( )( )
75
.
19
9
.
38
02
.
1
12
.
3
1
1
2 −
=
−
= ′ t
t
c
m
q p
a
h
&
& = 61 kW
Steam flow rate
( ) ( )( )
00346
.
0
0139
.
0
12
.
3
1
2
2
−
=
−
= ′
W
W
m
m a
v
&
& = 0.0326 kg/s
3.52 A space is to be maintained at 78 F (26 C) and 68 F (20 C) wb. The cooling
system is a variable-air-volume (VAV) type where the quantity of air supplied
and the supply air temperature are controlled. Under design conditions, the
total cooling load is 150 tons (530 kW) with a sensible heat factor of 0.6, and
the supply air temperature is 60 F (16 C). At minimum load, about 18 tons (63
kW) with SHF of 0.8, the air quantity may be reduced no more than 80 percent
by volume of the full design value. Determine the supply air conditions for
minimum load. Show all the conditions on a psychrometric chart for (a)
English units and (b) SI units. Assume sea level pressure.
Solution:
(a) English units
Chart 1a,
At state 1
1
db
t = 78 F
1
wb
t = 68 F
1
i = 32.34 Btu/lbma
1
W = 0.01243 lbmv/lbma
1
v = 13.82 ft3
/lbma
At state 2, SHF = 0.6
2
db
t = 60 F
2
wb
t = 57.8 F
2
i = 25.14 Btu/lbma
2
W = 0.0099 lbmv/lbma
2
v = 13.30 ft3
/lbma
( )
2
1
2
i
i
m
q a
−
= &
&
( )
14
.
25
34
.
32
000
,
800
,
1 2
−
= a
m
&
2
a
m
& = 250,000 lbma/hr
( )( )( )
30
.
13
60
1
000
,
250
2
2
2 =
= v
m
Q a
&
& = 55,417 ft3
/min
At minimum load condition:
q
& = 18 tons = 216,000 Btu/hr
( ) ( )
417
,
55
2
.
0
2
.
0
8
.
0
1 2
2
2 =
=
−
=
′ Q
Q
Q &
&
& = 11,084 ft3
/min
Since space is to be maintained at 78 F db and 68 F wb.
At state 1′= state 1
1′
db
t = 78 F
1′
wb
t = 68 F
1′
i = 32.34 Btu/lbma
1′
W = 0.01243 lbmv/lbma
1′
v = 13.82 ft3
/lbma
A state 2′, SHF = 0.8, Chart 1a
( ) ( )( )
8
.
0
000
,
216
=
= SHF
q
qs
&
& = 172,800 Btu/hr
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= t
t
c
v
Q
t
t
c
m
q p
p
a
s
&
&
( )( ) ( )( ) ( )( ) 800
,
172
78
245
.
0
040
,
665
78
245
.
0
60
084
,
11
2
2
2
2
=
−








=
−






= ′
′
′
′
t
v
t
v
qs
&
2
2 9429
.
0
55
.
73 ′
′ −
= t
v
or
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= i
i
v
Q
i
i
m
q a
s
&
&
( )( ) ( ) ( ) 000
,
216
34
.
32
040
,
665
34
.
32
60
084
,
11
2
2
2
2
=
−








=
−






= ′
′
′
′
i
v
t
v
qs
&
2
2 3248
.
0
34
.
32 ′
′ −
= v
i
From psychrometric chart, satisfying above equation, Chart 1a., State 2
2′
db
t = 63.75 F, 2′
v = 13.44 ft3
/lbma
2′
i = 28.0 Btu/lbma, 2′
wb
t = 62.35 F
2′
W = 0.01174 lbmv/lbma, 2′
φ = 92.7 %
Therefore the supply air condition is 63.75 F db and 62.35 F wb or 92.7 % RH.
(b) SI units
Chart 1b,
At state 1
1
db
t = 26 C
1
wb
t = 20 C
1
i = 57.23 kJ/kga
1
W = 0.01220 kgv/kga
1
v = 0.864 m3
/kga
At state 2, SHF = 0.6
2
db
t = 16 C
2
wb
t = 14.37 C
2
i = 40.23 kJ/kga
2
W = 0.00955 kgv/kga
2
v = 0.8317 m3
/kga
( )
2
1
2
i
i
m
q a
−
= &
&
( )
23
.
40
23
.
57
530 2
−
= a
m
&
2
a
m
& = 31.18 kga/s
( )( )
8317
.
0
18
.
31
2
2
2
=
= v
m
Q a
&
& = 25.93 m3
/s
At minimum load condition:
q
& = 63 kW
( ) ( )
93
.
25
2
.
0
2
.
0
8
.
0
1 2
2
2 =
=
−
=
′ Q
Q
Q &
&
& = 5.186 kga/s
Since space is to be maintained at 26 C db and 20 C wb.
At state 1′ = State 1
1′
db
t = 26 C
1′
wb
t = 20 C
1′
i = 57.23 kJ/kga
1′
W = 0.01220 kgv/kga
1′
v = 0.864 kgv/kga
A state 2′, SHF = 0.8, Chart 1b
( ) ( )( )
8
.
0
63
=
= SHF
q
qs
&
& = 50.4 kW
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= t
t
c
v
Q
t
t
c
m
q p
p
a
s
&
&
( )( ) 4
.
50
26
02
.
1
186
.
5
2
2
=
−








= ′
′
t
v
qs
&
2
2 105
.
0
729
.
2 ′
′ −
= t
v
or
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= i
i
v
Q
i
i
m
q a
s
&
&
( ) 63
23
.
57
186
.
5
2
2
=
−








= ′
′
i
v
qs
&
2
2 148
.
12
23
.
57 ′
′ −
= v
i
From psychrometric chart, satisfying above equation, Chart 1b., State 2′
2′
db
t = 17.99 C, 2′
v = 0.840 m3
/kga
2′
i = 47.0 kJ/kga, 2′
wb
t = 16.74 C
2′
W = 0.0114 kgv/kga, 2′
φ = 88 %
Therefore the supply air condition is 17.99 C db and 16.74 C wb or 88 % RH.
3.53 Rework Problem 3.52 for an elevation of 5000 feet (1500 m).
Solution:
(a) English units
At design condition:
Chart 1Ha.
At state 1
1
db
t = 78 F
1
wb
t = 68 F
1
i = 35.70 Btu/lbma
1
W = 0.0155 lbmv/lbma
1
v = 16.69 ft3
/lbma
At state 2, SHF = 0.6
2
db
t = 60 F
2
wb
t = 59.23 F
2
i = 28.35 Btu/lbma
2
W = 0.0128 lbmv/lbma
2
v = 16.06 ft3
/lbma
( )
2
1
2
i
i
m
q a
−
= &
&
( )
35
.
28
70
.
35
000
,
800
,
1 2
−
= a
m
&
2
a
m
& = 244,899 lbma/hr
( )( )( )
06
.
16
60
1
899
,
244
2
2
2 =
= v
m
Q a
&
& = 65,551 ft3
/min
At minimum load condition:
q
& = 18 tons = 216,000 Btu/hr
( ) ( )
551
,
65
2
.
0
2
.
0
8
.
0
1 2
2
2 =
=
−
=
′ Q
Q
Q &
&
& = 13,110 ft3
/min
Since space is to be maintained at 78 F db and 68 F wb.
At state 1′= state 1
1′
db
t = 78 F
1′
wb
t = 68 F
1′
i = 35.70 Btu/lbma
1′
W = 0.0155 lbmv/lbma
1′
v = 16.69 ft3
/lbma
A state 2′, SHF = 0.8, Chart 1a
( ) ( )( )
8
.
0
000
,
216
=
= SHF
q
qs
&
& = 172,800 Btu/hr
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= t
t
c
v
Q
t
t
c
m
q p
p
a
s
&
&
( )( ) ( )( ) ( )( ) 800
,
172
78
245
.
0
600
,
786
78
245
.
0
60
110
,
13
2
2
2
2
=
−








=
−






= ′
′
′
′
t
v
t
v
qs
&
2
2 1153
.
1
99
.
86 ′
′ −
= t
v
or
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= i
i
v
Q
i
i
m
q a
s
&
&
( )( ) ( ) ( ) 000
,
216
70
.
35
600
,
786
70
.
35
60
110
,
13
2
2
2
2
=
−








=
−






= ′
′
′
′
i
v
t
v
qs
&
2
2 2746
.
0
70
.
35 ′
′ −
= v
i
From psychrometric chart, satisfying above equation, Chart 1Ha., State 2
2′
db
t = 63.46 F, 2′
v = 16.214 ft3
/lbma
2′
i = 31.22 Btu/lbma, 2′
wb
t = 62.83 F
2′
W = 0.01467 lbmv/lbma, 2′
φ = 96.8 %
Therefore the supply air condition is 63.46 F db and 62.83 F wb or 96.8 % RH.
(a) SI units
Chart 1Hb,
At state 1
1
db
t = 26 C
1
wb
t = 20 C
1
i = 64.83 kJ/kga
1
W = 0.0152 kgv/kga
1
v = 1.040 m3
/kga
At state 2, SHF = 0.6
2
db
t = 16 C
2
wb
t = 15.124 C
2
i = 47.83 kJ/kga
2
W = 0.01254 kgv/kga
2
v = 1.0014 m3
/kga
( )
2
1
2
i
i
m
q a
−
= &
&
( )
83
.
47
83
.
64
530 2
−
= a
m
&
2
a
m
& = 31.18 kga/s
( )( )
0014
.
1
18
.
31
2
2
2
=
= v
m
Q a
&
& = 31.22 m3
/s
At minimum load condition:
q
& = 63 kW
( ) ( )
22
.
31
2
.
0
2
.
0
8
.
0
1 2
2
2 =
=
−
=
′ Q
Q
Q &
&
& = 6.244 kga/s
Since space is to be maintained at 26 C db and 20 C wb.
At state 1′ = State 1
1′
db
t = 26 C
1′
wb
t = 20 C
1′
i = 64.83 kJ/kga
1′
W = 0.0152 kgv/kga
1′
v = 1.040 kgv/kga
A state 2′, SHF = 0.8, Chart 1b
( ) ( )( )
8
.
0
63
=
= SHF
q
qs
&
& = 50.4 kW
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= t
t
c
v
Q
t
t
c
m
q p
p
a
s
&
&
( )( ) 4
.
50
26
02
.
1
244
.
6
2
2
=
−








= ′
′
t
v
qs
&
2
2 1264
.
0
2855
.
3 ′
′ −
= t
v
or
( ) ( )
2
1
2
2
2
1
2 ′
′
′
′
′
′ −








=
−
= i
i
v
Q
i
i
m
q a
s
&
&
( ) 63
83
.
64
244
.
6
2
2
=
−








= ′
′
i
v
qs
&
2
2 09
.
10
83
.
64 ′
′ −
= v
i
From psychrometric chart, satisfying above equation, Chart 1Hb., State 2′
2′
db
t = 17.99 C, 2′
v = 1.0113 m3
/kga
2′
i = 54.63 kJ/kga, 2′
wb
t = 17.18 C
2′
W = 0.01442 kgv/kga, 2′
φ = 92.8 %
Therefore the supply air condition is 17.99 C db and 17.18 C wb or 92.8 % RH.
3.54 A 50-ton constant-volume space air-conditioning system uses face and bypass
and water temperature control. At the design condition the space is to be
maintained at 77 F (25 C) db and 50 percent relative humidity with 55 F (13
C) db supply air at 90 percent relative humidity. Outdoor air is supplied at 95
F (35 C) db, 60 percent relative humidity with a ratio of 1 lbm (kgm) to 5 lbm
(kgm) return air. A part-load condition exists where the total space load
decreases by 50 percent and the SHF increases to 90 percent. The outdoor air
condition changes to 85 F (29 C) db and 70 percent relative humidity. Assume
sea level pressure.
(a) At what temperature must the air be supplied to the space under part-
load condition?
(b) If the air leaving the coil has a dry-bulb temperature of 60 F (15 C),
what is the ratio of the air bypassed to that flowing through the coil?
(c) What is the apparatus dew point temperature for both the design and
part-load conditions?
(d) Show all the processes on a psychrometric chart.
Solution:
In English units, Chart 1a
c
q
& = 50 tons = 600,000 Btu/hr
5
1
3
0
=
a
a
m
m
&
&
= 0.2
at state 0, 0
db
t = 95 F, 0
φ = 60 %
0
i = 46.6 Btu/lbma
0
W = 0.0216 lbmv/lbma
at state 3, 3
db
t = 77 F, 3
φ = 50 %
3
i = 29.4 Btu/lbma
3
W = 0.0099 lbmv/lbma
at state 2, 2
db
t = 55 F, 2
φ = 90 %
2
i = 22.2 Btu/lbma
2
W = 0.0083 lbmv/lbma
at state 1,
( )( )
2
.
0
1
4
.
29
6
.
46
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 32.27 Btu/lbma
( )( )
2
.
0
1
0099
.
0
0216
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.01185 lbmv/lbma
From chart 1a, 1
db
t = 80.3 F, d
t = 49.5 F
( )
2
1
2
i
i
m
q a
c
−
= &
&
( )
2
.
22
27
.
32
000
,
600 2
−
= a
m
&
2
a
m
& = 59,583 lbma/hr
Space load
( )
2
3
2
i
i
m
q a
−
= &
&
( )( )
2
.
22
4
.
29
583
,
59 −
=
q
& = 428,998 Btu/hr
( )
2
3
2 t
t
c
m
q p
a
s −
= &
&
( )( )( )
55
77
245
.
0
483
,
59 −
=
s
q
& = 321,152 Btu/hr
998
,
428
152
,
321
=
=
q
q
SHF s
&
&
= 0.7486
At part-load condition
q
& = (0.5)(428,998) = 214,499 Btu/hr
SHF = 0.90
state 0′, 0′
db
t = 85 F, 0′
φ = 70 %
0′
i = 40.5 Btu/lbma
0′
W = 0.0183 lbmv/lbma
state 3′ , 3′
db
t = 77 F, 3′
φ = 50 %
3′
i = 29.4 Btu/lbma
3′
W = 0.0099 lbmv/lbma
(a) Since volume is constant, 2
2 a
a
m
m &
& =
′ = 59,583 lbma/hr
( )
SHF
q
qs
&
& = = (214,499)(0.90) = 193,049 Btu/hr
( )
2
3
2 ′
′ −
= t
t
c
m
q p
a
s
&
&
( )( )( )
2
77
245
.
0
583
,
59
049
,
193 ′
−
= t
2′
t = 63.78 F
(b) Let b = bypass and c
t = coil leaving temperature
c
c
t
t
t
t
b
−
−
=
′
′
1
2
still,
5
1
3
0
=
′
′
a
a
m
m
&
&
= 0.2
( )( )
2
.
0
1
4
.
29
5
.
40
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 31.25 Btu/lbma
( )( )
2
.
0
1
0099
.
0
0183
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0113 lbmv/lbma
then, Chart 1a, 1′
t = 78.61 F
60
6
.
78
60
78
.
63
1
2
−
−
=
−
−
=
′
′
c
c
t
t
t
t
b = 0.203
(c) For design condition, Chart 1a, d
t = 49.5 F
For part-load condition, Chart 1a, d
t ′ = 52.16 F
(d) Psychrometric Chart
SI units, Chart 1b
c
q
& = 50 tons = 176 kW
5
1
3
0
=
a
a
m
m
&
&
= 0.2
at state 0, 0
db
t = 35 C, 0
φ = 60 %
0
i = 90.19 kJ/kga
0
W = 0.0215 kgv/kga
at state 3, 3
db
t = 25 C, 3
φ = 50 %
3
i = 50.51 kJ/kga
3
W = 0.0099 kgv/kga
at state 2, 2
db
t = 13 C, 2
φ = 90 %
2
i = 34.25 kJ/kga
2
W = 0.0084 kgv/kga
at state 1,
( )( )
2
.
0
1
31
.
50
19
.
90
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 56.96 kJ/kga
( )( )
2
.
0
1
0099
.
0
0215
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0118 lbmv/lbma
From chart 1b, 1
db
t = 26.67 C, d
t = 10 C
( )
2
1
2
i
i
m
q a
c
−
= &
&
( )
25
.
34
96
.
56
176 2
−
= a
m
&
2
a
m
& = 7.75 kga/s
Space load
( )
2
3
2
i
i
m
q a
−
= &
&
( )( )
25
.
34
31
.
50
75
.
7 −
=
q
& = 124.5 kW
( )
2
3
2
t
t
c
m
q p
a
s
−
= &
&
( )( )( )
13
25
02
.
1
75
.
7 −
=
s
q
& = 94.86 kW
5
.
124
86
.
94
=
=
q
q
SHF s
&
&
= 0.762
At part-load condition
q
& = (0.5)(124.5) = 62.25 kW
SHF = 0.90
state 0′, 0′
db
t = 29 C, 0′
φ = 70 %
0′
i = 74.4 kJ/kga
0′
W = 0.01771 kgv/kga
state 3′ , 3′
db
t = 25 C, 3′
φ = 50 %
3′
i = 50.31 kJ/kga
3′
W = 0.0099 kgv/kga
(a) Since volume is constant, 2
2 a
a
m
m &
& =
′ = 7.75 kga/s
( )
SHF
q
qs
&
& = = (62.25)(0.90) = 56.03 kW
( )
2
3
2 ′
′ −
= t
t
c
m
q p
a
s
&
&
( )( )( )
2
25
02
.
1
75
.
7
03
.
56 ′
−
= t
2′
t = 17.91 C
(b) Let b = bypass and c
t = coil leaving temperature
c
c
t
t
t
t
b
−
−
=
′
′
1
2
still,
5
1
3
0
=
′
′
a
a
m
m
&
&
= 0.2
( )( )
2
.
0
1
31
.
50
4
.
74
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 54.33 kJ/kga
( )( )
2
.
0
1
0099
.
0
01771
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0112 kgv/kga
then, Chart 1b, 1′
t = 25.67 C
13
67
.
25
13
91
.
17
1
2
−
−
=
−
−
=
′
′
c
c
t
t
t
t
b = 0.273
(c) For design condition, Chart 1b, d
t = 10 C
For part-load condition, Chart 1b, d
t ′ = 10.9 C
(d) Psychrometric Chart
3.55 Rework Problem 3.54 for an elevation of 5000 ft.
Solution:
In English units, Chart 1Ha
c
q
& = 50 tons = 600,000 Btu/hr
5
1
3
0
=
a
a
m
m
&
&
= 0.2
at state 0, 0
db
t = 95 F, 0
φ = 60 %
0
i = 51.58 Btu/lbma
0
W = 0.026 lbmv/lbma
at state 3, 3
db
t = 77 F, 3
φ = 50 %
3
i = 31.6 Btu/lbma
3
W = 0.012 lbmv/lbma
at state 2, 2
db
t = 55 F, 2
φ = 90 %
2
i = 24.07 Btu/lbma
2
W = 0.010 lbmv/lbma
at state 1,
( )( )
2
.
0
1
6
.
31
58
.
51
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 34.93 Btu/lbma
( )( )
2
.
0
1
012
.
0
026
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0143 lbmv/lbma
From chart 1Ha, 1
db
t = 80.2 F, d
t = 50.25 F
( )
2
1
2
i
i
m
q a
c
−
= &
&
( )
07
.
24
93
.
34
000
,
600 2
−
= a
m
&
2
a
m
& = 55,249 lbma/hr
Space load
( )
2
3
2
i
i
m
q a
−
= &
&
( )( )
07
.
24
6
.
31
249
,
55 −
=
q
& = 416,025 Btu/hr
( )
2
3
2 t
t
c
m
q p
a
s −
= &
&
( )( )( )
55
77
245
.
0
249
,
55 −
=
s
q
& = 297,792 Btu/hr
025
,
416
792
,
297
=
=
q
q
SHF s
&
&
= 0.716
At part-load condition
q
& = (0.5)(416,025) = 208,013 Btu/hr
SHF = 0.90
state 0′, 0′
db
t = 85 F, 0′
φ = 70 %
0′
i = 44.69 Btu/lbma
0′
W = 0.022 lbmv/lbma
state 3′ , 3′
db
t = 77 F, 3′
φ = 50 %
3′
i = 31.6 Btu/lbma
3′
W = 0.012 lbmv/lbma
(a) Since volume is constant, 2
2 a
a
m
m &
& =
′ = 55,249 lbma/hr
( )
SHF
q
qs
&
& = = (208,013)(0.90) = 187,212 Btu/hr
( )
2
3
2 ′
′ −
= t
t
c
m
q p
a
s
&
&
( )( )( )
2
77
245
.
0
249
,
55
212
,
187 ′
−
= t
2′
t = 63.17 F
(b) Let b = bypass and c
t = coil leaving temperature
c
c
t
t
t
t
b
−
−
=
′
′
1
2
still,
5
1
3
0
=
′
′
a
a
m
m
&
&
= 0.2
( )( )
2
.
0
1
6
.
31
69
.
44
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 33.78 Btu/lbma
( )( )
2
.
0
1
012
.
0
022
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0137 lbmv/lbma
then, Chart 1Ha, 1′
t = 78.2 F
60
2
.
78
60
17
.
63
1
2
−
−
=
−
−
=
′
′
c
c
t
t
t
t
b = 0.174
(c) For design condition, Chart 1Ha, d
t = 50.25 F
For part-load condition, Chart 1Ha, d
t ′ = 52.54 F
(d) Psychrometric Chart
SI units, Chart 1Hb
c
q
& = 50 tons = 176 kW
5
1
3
0
=
a
a
m
m
&
&
= 0.2
at state 0, 0
db
t = 35 C, 0
φ = 60 %
0
i = 101.55 kJ/kga
0
W = 0.026 kgv/kga
at state 3, 3
db
t = 25 C, 3
φ = 50 %
3
i = 55.40 kJ/kga
3
W = 0.012 kgv/kga
at state 2, 2
db
t = 13 C, 2
φ = 90 %
2
i = 38.52 kJ/kga
2
W = 0.0101 kgv/kga
at state 1,
( )( )
2
.
0
1
40
.
55
55
.
101
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 63.09 kJ/kga
( )( )
2
.
0
1
012
.
0
026
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0143 lbmv/lbma
From chart 1Hb, 1
db
t = 26.5 C, d
t = 9.89 C
( )
2
1
2
i
i
m
q a
c
−
= &
&
( )
52
.
38
09
.
63
176 2
−
= a
m
&
2
a
m
& = 7.163 kga/s
Space load
( )
2
3
2
i
i
m
q a
−
= &
&
( )( )
52
.
38
4
.
55
163
.
7 −
=
q
& = 120.9 kW
( )
2
3
2
t
t
c
m
q p
a
s
−
= &
&
( )( )( )
13
25
02
.
1
163
.
7 −
=
s
q
& = 87.68 kW
9
.
120
68
.
87
=
=
q
q
SHF s
&
&
= 0.725
At part-load condition
q
& = (0.5)(120.9) = 60.45 kW
SHF = 0.90
state 0′, 0′
db
t = 29 C, 0′
φ = 70 %
0′
i = 83.68 kJ/kga
0′
W = 0.0214 kgv/kga
state 3′ , 3′
db
t = 25 C, 3′
φ = 50 %
3′
i = 55.4 kJ/kga
3′
W = 0.012 kgv/kga
(a) Since volume is constant, 2
2 a
a
m
m &
& =
′ = 7.163 kga/s
( )
SHF
q
qs
&
& = = (60.45)(0.90) = 54.41 kW
( )
2
3
2 ′
′ −
= t
t
c
m
q p
a
s
&
&
( )( )( )
2
25
02
.
1
163
.
7
41
.
54 ′
−
= t
2′
t = 17.55 C
(b) Let b = bypass and c
t = coil leaving temperature
c
c
t
t
t
t
b
−
−
=
′
′
1
2
still,
5
1
3
0
=
′
′
a
a
m
m
&
&
= 0.2
( )( )
2
.
0
1
4
.
55
68
.
83
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
i
i
m
m
i
&
&
&
&
= 60.11 kJ/kga
( )( )
2
.
0
1
012
.
0
0214
.
0
2
.
0
1
3
0
3
0
3
0
1
+
+
=
+
+
=
′
′
′
′
′
′
′
a
a
a
a
m
m
W
W
m
m
W
&
&
&
&
= 0.0136 kgv/kga
then, Chart 1b, 1′
t = 25.6 C
13
6
.
25
13
55
.
17
1
2
−
−
=
−
−
=
′
′
c
c
t
t
t
t
b = 0.241
(c) For design condition, Chart 1Hb, d
t = 9.89 C
For part-load condition, Chart 1Hb, d
t ′ = 11.4 C
(d) Psychrometric Chart
3.56 A condition exists where it is necessary to cool and dehumidify air from 80 F
db and 67 F wb to 60 F db and 54 F wb.
(a) Discuss the feasibility of doing this in one process with a
cooling coil. (Hint: Determine the apparatus dewpoint
temperature for the process.)
(b) Describe a practical method of achieving the required process,
and sketch it on a psychrometric chart.
Answer:
(a) As shown on the psychrometric chart (Chart 1a), it is not feasible to cool and
dehumidify this in one process with a cooling coil only, since there is no
apparatus dewpoint temperature reached.
(b) An additional reheat coil will be feasible by cooling the air to a dewpoint of
49.7 F then reheated to 60 F. See Chart 1a.
3.57 Consider one zone of a dual-duct conditioning system. Conditions in the zone
are to be maintained at 75 F (24 C) and 50 percent relative humidity (RH). The
cold deck air is at 51 F (11 C) and 90 percent RH, while the hot deck air is
oputdoor air at 90 F (32 C) and 30 percent RH. The sensible heat factor for the
zone is 0.65. Assume sea level pressure. In what proportion must the warm
and cold air be mixed to satisfy the space condition? If the total space load is
60 tons (210 kW), what is the total volume flow rate of air supplied to the
zone? Sketch the states and process on a psychrometric chart. Use (a) English
units and (b) SI units.
Solution:
(a) English units
Chart 1a
At state 2, 2
db
t = 75 F, 2
φ = 50 %
2
i = 28.2 Btu/lbma
2
W = 0.0092 lbmv/lbma
At state 1c, c
db
t 1
= 51 F, c
1
φ = 90 %
c
i1
= 20.0 Btu/lbma
c
W1
= 0.0072 lbmv/lbma
At state 1h, h
db
t 1
= 90 F, h
1
φ = 30 %
h
i1
= 31.4 Btu/lbma
h
W1
= 0.009 lbmv/lbma
From the psychrometric chart 1a, intersection of line with SHF = 0.65, from state 1 to
state 2, and line from state 1c to state 1h.
1
db
t = 62.2 F
1
wb
t = 55.4 F
1
φ = 65 %
1
i = 23.8 Btu/lbma
1
W = 0.0078 lbmv/lbma
1
v = 13.32 ft3
/lbma
State 1:
h
a
c
a
h
c
h
a
c
a
m
m
i
i
m
m
i
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
4
.
31
0
.
20
8
.
23
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 2.0
or
h
a
c
a
h
c
h
a
c
a
m
m
W
W
m
m
W
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
009
.
0
0072
.
0
0078
.
0
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 2.0
or
c
a
h
a
m
m
1
1
&
&
= 0.5
Total volume flow rate:
q
& = 60 tons = 720,000 Btu/hr
( )
1
2
i
i
m
q a
−
= &
&
( )
8
.
23
2
.
28
000
,
720 −
= a
m
&
a
m
& = 163,636 lbma/hr
( )( )( )
32
.
13
60
1
636
,
163
1 =
= v
m
Q a
&
& = 36,327 ft3
/min
(b) SI units
Chart 1b
At state 2, 2
db
t = 24 C, 2
φ = 50 %
2
i = 48 kJ/kga
2
W = 0.0093 kgv/kga
At state 1c, c
db
t 1
= 11 C, c
1
φ = 90 %
c
i1
= 29.5 kJ/kga
c
W1
= 0.0072 kgv/kga
At state 1h, h
db
t 1
= 32 C, h
1
φ = 30 %
h
i1
= 55 kJ/kga
h
W1
= 0.009 kgv/kga
From the psychrometric chart 1b, intersection of line with SHF = 0.65, from state 1 to
state 2, and line from state 1c to state 1h.
1
db
t = 17 C
1
wb
t = 13.1 C
1
φ = 65 %
1
i = 38 kJ/kga
1
W = 0.0078 kgv/kga
1
v = 0.832 m3
/kga
State 1:
h
a
c
a
h
c
h
a
c
a
m
m
i
i
m
m
i
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
55
5
.
29
38
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 2.0
or
h
a
c
a
h
c
h
a
c
a
m
m
W
W
m
m
W
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
009
.
0
0072
.
0
0078
.
0
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 2.0
or
c
a
h
a
m
m
1
1
&
&
= 0.5
Total volume flow rate:
q
& = 210 kW
( )
1
2
i
i
m
q a
−
= &
&
( )
38
48
210 −
= a
m
&
a
m
& = 21 kga/s
( )( )
832
.
0
21
1
=
= v
m
Q a
&
& = 17.5 m3
/s
3.58 Rework Problem 3.57 for an elevation of 5000 ft (1500 m).
Solution:
(a) English units
Chart 1Ha
At state 2, 2
db
t = 75 F, 2
φ = 50 %
2
i = 30.2 Btu/lbma
2
W = 0.0111 lbmv/lbma
At state 1c, c
db
t 1
= 51 F, c
1
φ = 90 %
c
i1
= 21.6 Btu/lbma
c
W1
= 0.0086 lbmv/lbma
At state 1h, h
db
t 1
= 90 F, h
1
φ = 30 %
h
i1
= 33.7 Btu/lbma
h
W1
= 0.0108 lbmv/lbma
From the psychrometric chart 1Ha, intersection of line with SHF = 0.65, from state 1
to state 2, and line from state 1c to state 1h.
1
db
t = 58.0 F
1
wb
t = 52.8 F
1
φ = 73.3 %
1
i = 23.8 Btu/lbma
1
W = 0.009 lbmv/lbma
1
v = 15.98 ft3
/lbma
State 1:
h
a
c
a
h
c
h
a
c
a
m
m
i
i
m
m
i
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
7
.
33
6
.
21
8
.
23
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 4.5
or
h
a
c
a
h
c
h
a
c
a
m
m
W
W
m
m
W
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
0108
.
0
0086
.
0
009
.
0
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 4.5
or
5
.
4
1
1
1
=
c
a
h
a
m
m
&
&
= 0.22222
Total volume flow rate:
q
& = 60 tons = 720,000 Btu/hr
( )
1
2
i
i
m
q a
−
= &
&
( )
8
.
23
2
.
30
000
,
720 −
= a
m
&
a
m
& = 112,500 lbma/hr
( )( )( )
98
.
15
60
1
500
,
112
1 =
= v
m
Q a
&
& = 36,327 ft3
/min
(b) SI units
Chart 1Hb
At state 2, 2
db
t = 24 C, 2
φ = 50 %
2
i = 53 kJ/kga
2
W = 0.0112 kgv/kga
At state 1c, c
db
t 1
= 11 C, c
1
φ = 90 %
c
i1
= 33.7 kJ/kga
c
W1
= 0.0088 kgv/kga
At state 1h, h
db
t 1
= 32 C, h
1
φ = 30 %
h
i1
= 59.9 kJ/kga
h
W1
= 0.0117 kgv/kga
From the psychrometric chart 1b, intersection of line with SHF = 0.65, from state 1 to
state 2, and line from state 1c to state 1h.
1
db
t = 16.2 C
1
wb
t = 12.5 C
1
φ = 68.3 %
1
i = 40 kJ/kga
1
W = 0.0095 kgv/kga
1
v = 0.997 m3
/kga
State 1:
h
a
c
a
h
c
h
a
c
a
m
m
i
i
m
m
i
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
8
.
59
7
.
33
40
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 3.15
or
h
a
c
a
h
c
h
a
c
a
m
m
W
W
m
m
W
1
1
1
1
1
1
1
1
&
&
&
&
+
+
=
( )
h
a
c
a
h
a
c
a
m
m
m
m
1
1
1
1
1
0117
.
0
0088
.
0
0095
.
0
&
&
&
&
+
+
=
h
a
c
a
m
m
1
1
&
&
= 3.15
or
c
a
h
a
m
m
1
1
&
&
= 0.32
Total volume flow rate:
q
& = 210 kW
( )
1
2
i
i
m
q a
−
= &
&
( )
40
53
210 −
= a
m
&
a
m
& = 16.15 kga/s
( )( )
997
.
0
15
.
16
1
=
= v
m
Q a
&
& = 16.1 m3
/s
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf
Chapter_3.pdf

More Related Content

What's hot

HVAC Cooling Load Calculation
HVAC Cooling Load CalculationHVAC Cooling Load Calculation
HVAC Cooling Load CalculationOrange Slides
 
Basic dryer for HVAC
Basic dryer for HVACBasic dryer for HVAC
Basic dryer for HVACCharlton Inao
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for ThermodynamicsNaveed Rehman
 
Chap5 space heat load calculations
Chap5 space heat load  calculationsChap5 space heat load  calculations
Chap5 space heat load calculationsCharlton Inao
 
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...zaezo
 
machine-design-problems
machine-design-problemsmachine-design-problems
machine-design-problemsAyuob Yahay
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)Raul Garcia
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsYuri Melliza
 
Design of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESDesign of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESAkram Hossain
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
 
003 diesel cycle
003 diesel cycle003 diesel cycle
003 diesel cyclephysics101
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 
3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)Diptesh Dash
 

What's hot (20)

Ch.10
Ch.10Ch.10
Ch.10
 
HVAC Cooling Load Calculation
HVAC Cooling Load CalculationHVAC Cooling Load Calculation
HVAC Cooling Load Calculation
 
Basic dryer for HVAC
Basic dryer for HVACBasic dryer for HVAC
Basic dryer for HVAC
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for Thermodynamics
 
Chap5 space heat load calculations
Chap5 space heat load  calculationsChap5 space heat load  calculations
Chap5 space heat load calculations
 
Chapter2
Chapter2Chapter2
Chapter2
 
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...Solutions manual for statics and mechanics of materials 5th edition by hibbel...
Solutions manual for statics and mechanics of materials 5th edition by hibbel...
 
Dryers
DryersDryers
Dryers
 
machine-design-problems
machine-design-problemsmachine-design-problems
machine-design-problems
 
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Design coaching22
Design coaching22Design coaching22
Design coaching22
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer Fundamentals
 
Ch.1
Ch.1Ch.1
Ch.1
 
Design of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSESDesign of machine elements - DESIGN FOR SIMPLE STRESSES
Design of machine elements - DESIGN FOR SIMPLE STRESSES
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
003 diesel cycle
003 diesel cycle003 diesel cycle
003 diesel cycle
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)3_hydrostatic-force_tutorial-solution(1)
3_hydrostatic-force_tutorial-solution(1)
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 

Similar to Chapter_3.pdf

Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioEdgar Ortiz Sánchez
 
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Beckham000
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...KirkMcdowells
 
assignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsassignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsasghar123456
 
H c verma part2 pdf solution
H c verma  part2 pdf solutionH c verma  part2 pdf solution
H c verma part2 pdf solutionSystem of Avinash
 
Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Pankaj Nishant
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2Yuri Melliza
 
Practica física II Estática de fluidos
Practica física II Estática de fluidosPractica física II Estática de fluidos
Practica física II Estática de fluidosjoseluis1261
 
2016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 52016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 5Janet Leong
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertyHenningEnoksen
 
11. pyschrometrics copy
11. pyschrometrics copy11. pyschrometrics copy
11. pyschrometrics copyRafeeq Ahmed
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and applicationUsama Khan
 
Factoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimicaFactoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimicajavier santiago
 
Factoresdeconversion 1935
Factoresdeconversion 1935Factoresdeconversion 1935
Factoresdeconversion 1935emilio bonnet
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04尚儒 吳
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 

Similar to Chapter_3.pdf (20)

problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
assignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsassignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanics
 
H c verma part2 pdf solution
H c verma  part2 pdf solutionH c verma  part2 pdf solution
H c verma part2 pdf solution
 
Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]Introduction to chemical engineering thermodynamics, 6th ed [solution]
Introduction to chemical engineering thermodynamics, 6th ed [solution]
 
Thermo problem set no. 2
Thermo problem set no. 2Thermo problem set no. 2
Thermo problem set no. 2
 
Agroklimatologi 7
Agroklimatologi 7Agroklimatologi 7
Agroklimatologi 7
 
Practica física II Estática de fluidos
Practica física II Estática de fluidosPractica física II Estática de fluidos
Practica física II Estática de fluidos
 
2016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 52016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 5
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert Alberty
 
11. pyschrometrics copy
11. pyschrometrics copy11. pyschrometrics copy
11. pyschrometrics copy
 
Psychrometry
PsychrometryPsychrometry
Psychrometry
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and application
 
Factoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimicaFactoresdeconversion fisicoquimica
Factoresdeconversion fisicoquimica
 
Factoresdeconversion 1935
Factoresdeconversion 1935Factoresdeconversion 1935
Factoresdeconversion 1935
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 

More from Mahamad Jawhar

More from Mahamad Jawhar (20)

text book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdftext book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdf
 
2.pdf
2.pdf2.pdf
2.pdf
 
3.pdf
3.pdf3.pdf
3.pdf
 
1.pdf
1.pdf1.pdf
1.pdf
 
robotic2.docx
robotic2.docxrobotic2.docx
robotic2.docx
 
Power Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdfPower Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdf
 
ref3.pdf
ref3.pdfref3.pdf
ref3.pdf
 
I-Section-US-1003.pdf
I-Section-US-1003.pdfI-Section-US-1003.pdf
I-Section-US-1003.pdf
 
ref.pdf
ref.pdfref.pdf
ref.pdf
 
lect 01 (1).pdf
lect 01 (1).pdflect 01 (1).pdf
lect 01 (1).pdf
 
plasma cutting.pdf
plasma cutting.pdfplasma cutting.pdf
plasma cutting.pdf
 
Grad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docxGrad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docx
 
project format writting 2.docx
project format writting 2.docxproject format writting 2.docx
project format writting 2.docx
 
PLC4.docx
PLC4.docxPLC4.docx
PLC4.docx
 
PLC 1 (2).docx
PLC 1 (2).docxPLC 1 (2).docx
PLC 1 (2).docx
 
Project Cooling Tower.pptx
Project Cooling Tower.pptxProject Cooling Tower.pptx
Project Cooling Tower.pptx
 
final project.docx
final project.docxfinal project.docx
final project.docx
 
final project1.docx
final project1.docxfinal project1.docx
final project1.docx
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docx
 
robotic.docx
robotic.docxrobotic.docx
robotic.docx
 

Recently uploaded

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 

Chapter_3.pdf

  • 1. 3. Moist Air Properties and Conditioning Processes 3.1 Calculate values of humidity ratio, enthalpy, and specific volume for saturated air at one standard atmosphere using perfect gas relations for temperatures of (a) 70 F (20 C) and (b) 20 F (-6.7 C). Solution: (a) In English units, t = 70 F Humidity Ratio: Eq. (3-14b) s s a s s p P p p p W − = = 6219 . 0 6219 . 0 at t = 70 F, ps = 0.363 psia P = 14.696 psia 363 . 0 696 . 14 363 . 0 6219 . 0 − = s W = 0.01575 lbmv/lbma Enthalpy: Eq. (3-20a) ( ) t W t i 444 . 0 2 . 1061 240 . 0 + + = Btu/lbma ( ) ( ) ( )( ) [ ] 70 444 . 0 2 . 1061 01575 . 0 70 240 . 0 + + = i = 34.0 Btu/lbma Specific Volume: Ra = 53.352 ft-lbf/lbm-R s a a a p P T R p T R v − = = ( )( ) ( )( ) 144 363 . 0 696 . 14 67 . 459 70 352 . 53 − + = v = 13.69 ft3 /lbma In SI units, t = 20 C Humidity Ratio: Eq. (3-14b) s s a s s p P p p p W − = = 6219 . 0 6219 . 0 at t = 20 C, ps = 0.00234 MPa = 2.34 kPa P = 101.325 kPa 34 . 2 325 . 101 34 . 2 6219 . 0 − = s W = 0.01407 kgv/kga Enthalpy: Eq. (3-20b)
  • 2. 3. Moist Air Properties and Conditioning Processes ( ) t W t i 86 . 1 3 . 2501 0 . 1 + + = kJ/kga ( ) ( ) ( )( ) [ ] 20 86 . 1 3 . 2501 01407 . 0 70 0 . 1 + + = i = 55.7 kJ/kga Specific Volume: Ra = 287 J/kg.K s a a a p P T R p T R v − = = ( )( ) ( )( ) 1000 34 . 2 325 . 101 15 . 273 20 287 − + = v = 0.85 m3 /kga (b) In English units, t = 20 F Humidity Ratio: Eq. (3-14b) s s a s s p P p p p W − = = 6219 . 0 6219 . 0 at t = 20 F < 32.02 F, use ps at 32.02 F which is nearly equal by plotting on curve = 0.089 psia P = 14.696 psia 089 . 0 696 . 14 089 . 0 6219 . 0 − = s W = 0.0038 lbmv/lbma Enthalpy: Eq. (3-20a) ( ) t W t i 444 . 0 2 . 1061 240 . 0 + + = Btu/lbma ( ) ( ) ( )( ) [ ] 20 444 . 0 2 . 1061 0038 . 0 20 240 . 0 + + = i = 8.7 Btu/lbma Specific Volume: Ra = 53.352 ft-lbf/lbm-R s a a a p P T R p T R v − = = ( )( ) ( )( ) 144 089 . 0 696 . 14 67 . 459 20 352 . 53 − + = v = 12.17 ft3 /lbma In SI units, t = -6.7 C Humidity Ratio: Eq. (3-14b) s s a s s p P p p p W − = = 6219 . 0 6219 . 0 at t = -6.7 C < 0.01 C, use ps at 0.01C which is nearly equal by plotting on curve = 0.00061 Mpa = 0.61 kPa
  • 3. 3. Moist Air Properties and Conditioning Processes P = 101.325 kPa 61 . 0 325 . 101 61 . 0 6219 . 0 − = s W = 0.0038 kgv/kga Enthalpy: Eq. (3-20b) ( ) t W t i 86 . 1 3 . 2501 0 . 1 + + = kJ/kga ( ) ( ) ( )( ) [ ] 7 . 6 86 . 1 3 . 2501 0038 . 0 7 . 6 0 . 1 − + + − = i = 2.8 kJ/kga Specific Volume: Ra = 287 J/kg.K s a a a p P T R p T R v − = = ( )( ) ( )( ) 1000 61 . 0 325 . 101 15 . 273 7 . 6 287 − + − = v = 0.76 m3 /kga 3.2 The temperature of a certain room is 22 C, and the relative humidity is 50 percent. The barometric pressure is 100 kPa. Find (a) the partial pressures of the air and water vapor, (b) the vapor density, and (c) the humidity ratio of the mixtures. Solution: t = 22 C φ = 50 % = 0.50 P = 100 kPa (a) ps at 22 C = 2.672 kPa s v p p = φ ; s v p p φ = = (0.50)(2.672) = 1.336 kPa v a p P p − = = 100 – 1.336 = 98.664 kPa (b) v v p T R v = Rv = 462 J/kg.K ( )( ) ( )( ) 1000 336 . 1 15 . 273 22 462 + = v = 102.065 m3 /kgv (c) v v p P p W − = 6219 . 0 336 . 1 100 336 . 1 6219 . 0 − = W = 0.008421 kgv/kga
  • 4. 3. Moist Air Properties and Conditioning Processes 3.3 Compute the local atmospheric pressure at elevation ranging from sea level to 6000 ft (1830 m) in (a) inches of mercury and (b) kilopascals. Solution: (a) H = 6000 ft Eq. (3-4) P = a + bH Table 3-2: H > 4000 ft a = 29.42 b = -0.0009 P = 29.42 + (-0.0009)(6000) = 24.02 in. Hg. (b) H = 1830 m Eq. (3-4) P = a + bH Table 3-2: H > 1220 m a = 99.436 b = -0.010 P = 99.436 + (-0.010)(1830) = 81.136 kPa. 3.4 Rework Problem 3.1 for an atmospheric pressure corresponding to an elevation of (a) 5280 ft and (b) 1600 m. Solution: (a) H = 5280 ft Eq. (3-4) P = a + bH Table 3-2: H > 4000 ft a = 29.42 b = -0.0009 P = 29.42 + (-0.0009)(5280) = 24.668 in. Hg. (b) H = 1830 m Eq. (3-4) P = a + bH Table 3-2: H > 1220 m a = 99.436 b = -0.010 P = 99.436 + (-0.010)(1600) = 83.346 kPa.
  • 5. 3. Moist Air Properties and Conditioning Processes 3.5 Compute the enthalpy of moist air at 60 F (16 C) and 80 percent relative humidity for an elevation of (a) sea level and (b) 5000 ft (1525 m). Solution: (a) English units ps at 60 F = 0.256 psia φ = 80 % = 0.80 s v p p φ = = (0.80)(0.256) = 0.2048 psia At sea level, H = 0 Eq. (3-4) P = a + bH Table 3-2: H < 4000 ft a = 29.92 P = a = 29.92 in. Hg = 101.325 kPa = 14.696 psia 2048 . 0 696 . 14 2048 . 0 6219 . 0 6219 . 0 − = − = v v p P p W = 0.008789 lbmv/lbma Eq. (3-20a) ( ) t W t i 444 . 0 2 . 1061 240 . 0 + + = Btu/lbma ( ) ( ) ( )( ) [ ] 60 444 . 0 2 . 1061 008789 . 0 60 240 . 0 + + = i = 23.96 Btu/lbma In SI units ps at 16 C = 1.836 kPa φ = 80 % = 0.80 s v p p φ = = (0.80)(1.836) = 1.469 psia At sea level, H = 0 Eq. (3-4) P = a + bH Table 3-2: H < 4000 ft a = 101.325 P = a = 101.325 kPa 469 . 1 325 . 101 469 . 1 6219 . 0 6219 . 0 − = − = v v p P p W = 0.00915 kgv/kga Eq. (3-20b) ( ) t W t i 86 . 1 3 . 2501 0 . 1 + + = kJ/kga ( ) ( ) ( )( ) [ ] 16 86 . 1 3 . 2501 00915 . 0 16 0 . 1 + + = i = 39.16 kJ/kga (b) English units
  • 6. 3. Moist Air Properties and Conditioning Processes ps at 60 F = 0.256 psia φ = 80 % = 0.80 s v p p φ = = (0.80)(0.256) = 0.2048 psia At H = 5000 ft > 4000 ft Eq. (3-4) P = a + bH Table 3-2: H > 4000 ft a = 29.42 b = - 0.0009 P = 29.42 + (-0.0009)(5000) = 24.92 in. Hg = 12.24 psia 2048 . 0 24 . 12 2048 . 0 6219 . 0 6219 . 0 − = − = v v p P p W = 0.010583 lbmv/lbma Eq. (3-20a) ( ) t W t i 444 . 0 2 . 1061 240 . 0 + + = Btu/lbma ( ) ( ) ( )( ) [ ] 60 444 . 0 2 . 1061 010583 . 0 60 240 . 0 + + = i = 25.91 Btu/lbma In SI units ps at 16 C = 1.836 kPa φ = 80 % = 0.80 s v p p φ = = (0.80)(1.836) = 1.469 psia At H = 1525 m > 1220 , Eq. (3-4) P = a + bH Table 3-2: H < 4000 ft a = 99.436 b = - 0.010 P = 99.436 + (-0.010)(1525) = 84.186 kPa 469 . 1 186 . 84 469 . 1 6219 . 0 6219 . 0 − = − = v v p P p W = 0.011045 kgv/kga Eq. (3-20b) ( ) t W t i 86 . 1 3 . 2501 0 . 1 + + = kJ/kga ( ) ( ) ( )( ) [ ] 16 86 . 1 3 . 2501 011045 . 0 16 0 . 1 + + = i = 43.96 kJ/kga 3.6 The condition within a room is 70 F db, 50 percent relative humidity, and 14.696 psia pressure. The inside surface temperature of the window is 40 F. Will moisture condense on the window glass? Solution: At 70 F db, ps = 0.363 psia φ = 0.50
  • 7. 3. Moist Air Properties and Conditioning Processes pv = 0.50 ( 0.363 psia ) = 0.1815 psia at 0.1815 psia, t = 50.45 F Since 40 F < 50.45 F , the moisture will condense on the window glass. 3.7 A duct has moist air flowing at a rate of 5000 ft3/min (2.36 m3/s). What is the mass flow rate of the dry air, where the dry bulb temperature is 60 F (16 C), the relative humidity is 80 percent and the pressure inside the duct corresponds to (a) sea level, and (b) 6000 ft (1830 m). Solution: (a) English units ps at 60 F = 0.2563 psia s v p p φ = = (0.80)(0.2563) = 0.20504 psia At sea level, P = 29.92 in. Hg = 14.696 psia pa = P – pv = 14.696 – 0.20504 = 14.4910 psia ( )( ) ( )( ) 67 . 459 60 352 . 53 144 4910 . 14 + = = T R p a a ρ = 0.0753 lb/ft3 Q & = 5000 ft3 /min Q ma & & ρ = = (0.0753)(5000) = 376.5 lb/min SI Units ps at 16 C = 1.836 kPa s v p p φ = = (0.80)(1.836) = 1.4688 psia At sea level, P = 101.325 kPa pa = P – pv = 101.325 – 1.4688 = 99.8562 ( )( ) ( )( ) 15 . 273 16 287 1000 8562 . 99 + = = T R p a a ρ = 1.2033 kg/m3 Q & = 2.36 m3 /s Q ma & & ρ = = (1.2033)(2.36) = 2.84 kg/s (b) English units ps at 60 F = 0.2563 psia s v p p φ = = (0.80)(0.2563) = 0.20504 psia At H = 6000 ft > 4000 ft P = a + bH a =29.42 b = - 0.0009 P = 29.42+ (-0.0009)(6000) = 24.02 in. Hg = 11.798 psia
  • 8. 3. Moist Air Properties and Conditioning Processes pa = P – pv = 11.798 – 0.20504 = 11.593 psia ( )( ) ( )( ) 67 . 459 60 352 . 53 144 593 . 11 + = = T R p a a ρ = 0.06021 lb/ft3 Q & = 5000 ft3 /min Q ma & & ρ = = (0.06021)(5000) = 301.05 lb/min SI Units ps at 16 C = 1.836 kPa s v p p φ = = (0.80)(1.836) = 1.4688 kPa At H = 1830 m > 1220 m P = a + bH a = 99.436 b = - 0.010 P = 99.436 + (-0.010)(1830) = 81.136 kPa pa = P – pv = 81.136 – 1.4688 = 79.667 kPa ( )( ) ( )( ) 15 . 273 16 287 1000 667 . 79 + = = T R p a a ρ = 0.96 kg/m3 Q & = 2.36 m3 /s Q ma & & ρ = = (0.96)(2.36) = 2.2656 kg/s 3.8 Compute the dew point for moist air at 80 F (27 C) and 50 percent relative humidity for pressures corresponding to (a) sea level and (b) 5000 ft (1225 m). Solution: (a) English units ps at 80 F = 0.507 psia s v p p φ = = (0.50)(0.507) = 0.2535 psia Dew Point = tdp = 59.68 F SI units ps at 27 C = 3.602 kPa s v p p φ = = (0.50)(3.602) = 1.801 kPa Dew Point = tdp = 15.72 C (b) H = 5000 ft (1225 m) Since elevation does not affect dew point, the answers are the same as in (a).
  • 9. 3. Moist Air Properties and Conditioning Processes 3.9 A space is to be maintained at 70 F (21 C) dry bulb. It is estimated that the inside wall surface temperature could be as low as 45 F (7 C). What maximum relative and specific humidity can be maintained without condensation on the walls? Solution: English units At 45 F, pv = 0.150 psia At 70 F, ps = 0.363 psia s v p p φ = ( ) ( ) % 100 363 . 0 150 . 0 % 100 = = s v p p φ = 41.32 % 150 . 0 696 . 14 150 . 0 6219 . 0 6219 . 0 − = − = v v p P p W = 0.006413 lbmv/lbma Maximum relative humidity = 41.32 % Maximum specific humidity = 0.006413 lbmv/lbma SI units At 7 C, pv = 1.014 kPa At 21 C, ps = 2.506 kPa s v p p φ = ( ) ( ) % 100 506 . 2 014 . 1 % 100 = = s v p p φ = 40.46 % 014 . 1 325 . 101 014 . 1 6219 . 0 6219 . 0 − = − = v v p P p W = 0.006287 kgv/kga Maximum relative humidity = 40.46 % Maximum specific humidity = 0.006287 kgv/kga 3.10 Outdoor air with a temperature of 40 F db and 35 F wb and with a barometric pressure of 29 in. Hg is heated and humidified under steady-flow conditions to a final temperature of 70 F db and 40 percent relative humidity. (a) Find the mass of water vapor added to each pound mass of dry air. (b) If the water is supplied at 50 F, how much heat is added per pound mass of dry air? Solution: Solving for for W1 and i1 at Point 1 Using eq. (3-21d) and (3-14b) with its symbols. At 35 F, 2 2 s v p p = = 0.1013 psia
  • 10. 3. Moist Air Properties and Conditioning Processes ∗ 2 fg i = 1973.3 Btu/lbm ∗ w i = 3.0 Btu/lbm ∗ 2 t = 35 F at 40 F , 1 v i = 1078.5 Btu/lbm P = 29 in Hg = 14.244 psia 1013 . 0 244 . 14 1013 . 0 6219 . 0 2 − = ∗ s W = 0.004454 lbmv/lbma Then ( ) ∗ ∗ ∗ ∗ − + − = w v fg s pa i i i W t t c W 1 2 2 1 2 1 ( ) ( )( ) 3 5 . 1078 3 . 1073 004454 . 0 40 35 24 . 0 1 − + − = W = 0.003283 lbmv/lbma ( ) t W t i 444 . 0 2 . 1061 24 . 0 + + = Btu/lbma ( ) ( ) ( ) [ ] 40 444 . 0 2 . 1061 003283 . 0 40 24 . 0 1 + + = i = 13.14 Btu/lbma Solving for W2 and i2 at point 2 At 70 F, ps = 0.363 psia s v p p φ = = (0.40)(0.363 psia) = 0.1452 psia P = 14.244 psia 1452 . 0 244 . 14 1452 . 0 6219 . 0 6219 . 0 2 − = − = v v p P p W = 0.006408 lbmv/lbma ( ) 2 2 2 2 444 . 0 2 . 1061 240 . 0 t W t i + + = Btu/lbma ( ) ( ) ( ) [ ] 70 444 . 0 2 . 1061 006408 . 0 70 240 . 0 2 + + = i = 23.8 Btu/lbma (a) Mass of water vapor added: 1 2 W W m m a w − = & & = 0.006408 – 0.003283 = 0.003125 lbmv/lbma (b) At 50 F, iw = 18.1 Btu/lb ( ) w a w a i m m i i m q & & & & − − = 1 2 = (23.8 – 13.14) – (0.003125)(18.1) = 10.3434 Btu/lbma 3.11 Air with a dry bulb temperature of 70 F and wet bulb temperature of 65 F is at a barometric pressure of 29.92 in. Hg. Without making use of psychrometric chart, find (a) the relative humidity of the air, (b) the vapor density, (c) the dew point, (d) the humidity ratio, and (e) the volume occupied by the mixture associated with a pound mass of dry air. Solution:
  • 11. 3. Moist Air Properties and Conditioning Processes 1 t = 70 F ∗ 2 t = 65 F Solving for ∗ 2 s W , Eq. (3-14b) 2 v p = 2 s p at 65 F = 0.3095 psia 1 2 P P = = 29.92 in Hg = 14.696 psia 3095 . 0 696 . 14 3095 . 0 6219 . 0 6219 . 0 2 2 2 2 − = − = ∗ v v s p P p W = 0.013379 lbmv/lbma Solving for 1 W , Eq. (3-21c) ( ) ∗ ∗ ∗ ∗ − + − = w v fg s pa i i i W t t c W 1 2 2 1 2 1 ∗ 2 fg i = fg i at 65 F = 1056.5 Btu/lbm ∗ w i = f i at 65 F = 33 Btu/lbm 1 v i = g i at 70 F = 1091.7 Btu/lbm ( ) ( )( ) 33 7 . 1091 5 . 1056 013379 . 0 70 65 24 . 0 1 − + − = W = 0.012218 lbmv/lbma Solving for 1 v p , Eq. (3-14b) 1 1 1 1 6219 . 0 v v p P p W − = 1 1 696 . 14 6219 . 0 012218 . 0 v v p p − = 1 v p = 0.2832 psia at 70 F, 1 s p = 0.363 psia (a) Relative Humidity 363 . 0 2832 . 0 1 1 = = s v p p φ = 0.78 or 78 % (b) Vapor Density ( )( ) ( )( ) 67 . 459 70 78 . 85 144 2832 . 0 + = = T R p v v ρ = 0.000898 lbmv/ft3 (c) Dew Point At 1 v p = 0.2832 psia dp t = 62.54 F (d) Humidity Ratio
  • 12. 3. Moist Air Properties and Conditioning Processes 1 W m m W a v = = & & = 0.012218 lbmv/lbma (e) Volume occupied by mixture per pound of mass of dry air. ( )( ) ( )( ) 144 2832 . 0 696 . 14 67 . 459 70 352 . 53 − + = = a a p T R v = 13.62 ft3 /lbma 3.12 Air is cooled from 75 F db and 70 F wb until it is saturated at 55 F. Find (a) the moisture removed per pound of dry air, (b) the heat removed to condense the moisture, (c) the sensible heat removed, and (d) the total amount of heat removed. Solution: Use Figure 3-7 Determine state condition 1, 75 F db, 70 F wb 1 t = 75 F ∗ = 2 t twb = 70 F 2 2 s v p p = at 70 F = 0.363 psia 2 P = 14.696 psia 363 . 0 696 . 14 363 . 0 6219 . 0 6219 . 0 2 2 2 2 − = − = ∗ v v s p P p W = 0.01575 lbmv/lbma ( ) ∗ ∗ ∗ ∗ − + − = w v fg s pa i i i W t t c W 1 2 2 1 2 1 ∗ 2 fg i = fg i at 70 F = 1053.7 Btu/lbm ∗ w i = f i at 70 F = 38Btu/lbm 1 v i = g i at 75F = 1093.85 Btu/lbm
  • 13. 3. Moist Air Properties and Conditioning Processes ( ) ( )( ) 38 85 . 1093 7 . 1053 01575 . 0 75 70 24 . 0 1 − + − = W = 0.014581 Btu/lbma ( ) 1 1 1 1 444 . 0 2 . 1061 240 . 0 t W t i + + = Btu/lbma ( ) ( ) ( ) [ ] 75 444 . 0 2 . 1061 014581 . 0 75 240 . 0 1 + + = i = 33.96 Btu/lbma Determine state condition2 2 t = 55 F 2 s p = 0.217 psia 2 2 2 2 6219 . 0 s s p P p W − = 217 . 0 696 . 14 217 . 0 6219 . 0 2 − = W = 0.009321 lbmv/lbma ( ) 2 2 2 2 444 . 0 2 . 1061 240 . 0 t W t i + + = Btu/lbma ( ) ( ) ( ) [ ] 55 444 . 0 2 . 1061 009321 . 0 55 240 . 0 2 + + = i = 23.32 Btu/lbma Determine state condition 3 1 3 t t = = 75 F 2 3 W W = = 0.009321 lbmv/lbma ( ) 3 3 3 3 444 . 0 2 . 1061 240 . 0 t W t i + + = Btu/lbma ( ) ( ) ( ) [ ] 75 444 . 0 2 . 1061 009321 . 0 75 240 . 0 3 + + = i = 28.20 Btu/lbma (a) Moisture removed, Eq. (3-29) 2 1 W W m m a w − = & & = 0.014581 – 0.009321 = 0.00526 Btu/lbma (b) Heat removed to condense the moisture, Eq. (3-33) 3 1 i i m q a l − = & & = 33.96 – 28.20 = 5.76 Btu/lbma (c) Sensible heat removed 2 3 i i m q a s − = & & = 28.20 – 23.32 = 4.88 Btu/lbma (d) Total amount of heat removed a l a s a m q m q m q & & & & & & + = = 4.88 + 5.76 = 10.64 Btu/lbma 3.13 The dry bulb and thermodynamic wet bulb temperature are measured to be 75 F and 62 F, respectively, in a room. Compute the humidity ratio relative humidity for the air at (a) sea level and (b) 5000 ft (1225 m).
  • 14. 3. Moist Air Properties and Conditioning Processes Solution: Use only English units as temperature are given in English units. (a) At sea level, P = 29.92 in Hg = 14.696 psia Eq. (3-14b) ∗ 2 t = 62 F 2 2 2 2 6219 . 0 v v s p P p W − = ∗ 2 v p = 2 s p at 62 F = 0.2774 psia 2774 . 0 696 . 14 2774 . 0 6219 . 0 2 − = ∗ s W = 0.0119865 lbmv/lbma Eq. (3-21d) ( ) ∗ ∗ ∗ ∗ − + − = w v fg s pa i i t W t t c W 1 2 2 1 2 1 ∗ 2 fg i = fg i at 62 F = 1058.18 Btu/lbm ∗ w i = f i at 62 F = 30 Btu/lbm 1 v i = g i at 75F = 1093.85 Btu/lbm ( ) ( )( ) 30 85 . 1093 18 . 1058 011965 . 0 75 62 24 . 0 1 − + − = W = 0.008969 lbmv/lbma – ans. Solving for 1 v p : 1 1 1 696 . 14 6219 . 0 v v p p W − = 1 1 696 . 14 6219 . 0 008969 . 0 v v p p − = 1 v p = 0.20893 psia 1 s p = v p at 75 F = 0.435 psia 435 . 0 20893 . 0 1 1 1 = = s v p p φ = 0.48 or 48 % - ans. (b) H = 5000 ft = 1225 m P = a + bH Table 3-2. H > 4000 ft a = 29.42 b = - 0.0009 P = 29.42 + (-0.0009)(4000) = 25.82 in Hg = 12.682 psia
  • 15. 3. Moist Air Properties and Conditioning Processes 2774 . 0 682 . 12 2774 . 0 6219 . 0 6219 . 0 2 2 2 2 − = − = ∗ v v s p P p W = 0.013907 lbmv/lbma ( ) ∗ ∗ ∗ ∗ − + − = w v fg s pa i i t W t t c W 1 2 2 1 2 1 ( ) ( )( ) 30 85 . 1093 18 . 1058 013907 . 0 75 62 24 . 0 1 − + − = W = 0.010900 lbmv/lbma – ans. Solving for 1 v p : 1 1 1 696 . 14 6219 . 0 v v p p W − = 1 1 682 . 12 6219 . 0 010900 . 0 v v p p − = 1 v p = 0.218448 psia 1 s p = v p at 75 F = 0.435 psia 435 . 0 218448 . 0 1 1 1 = = s v p p φ = 0.5022 or 50.22 % - ans. 3.14 To what temperature must atmospheric air at standard sea level pressure be cooled to be saturated with a humidity ratio of 0.001 lbv/lba ? What is the temperature if the pressure is 5 atmospheres? Solution: At standard sea level pressure W = 0.001 lbmv/lbma s s p p W − = 696 . 14 6219 . 0 s s p p − = 696 . 14 6219 . 0 001 . 0 s p = 0.0236 psia Use Table A-1a, ≈ t 32.02 F – ans. At P = 5 atm = 73.48 psia Solving for 1 v p : s s p p W − = = 48 . 73 6219 . 0 001 . 0 s p = 0.118 psia Use Table A-1a, interpolation, t = 39 F – ans.
  • 16. 3.15 Complete Table 3-3 using the ASHRAE psychrometric chart for (a) sea level, (b) 5000 ft (1500 m) elevation; (c) compare parts (a) and (b). Table 3-3 Psychrometric Properties for Problem 3-15. State Point Dry Bulb, F(C) Wet Bulb, F(C) Dew Point, F(C) Humid. Ratio, w, lbv/lba (kgv/kga) Enthalpy, i, Btu/lba (kJ/kga) Rel. Humid., percent Spec. Vol, v, ft3 /lba (m3 /kga) 1 85(29) 60(16) 2 75(24) 50(10) 3 30(70) 60 4 70(21) 0.01143 5 82(28) 50(116) Solution: (a) Use Chart 1a. State Point Dry Bulb, F(C) Wet Bulb, F(C) Dew Point, F(C) Humid. Ratio, w, lbv/lba (kgv/kga) Enthalpy, i, Btu/lba (kJ/kga) Rel. Humid., percent Spec. Vol, v, ft3 /lba (m3 /kga) 1 85(29) 60(16) 40.7(4.83) 0.0054 26.3(21) 21 13.844(0.8643) 2 75(24) 60(16) 50(10) 0.0077 26.4(21) 41.4 13.640(0.852) 3 74.7(23.7) 65(18.3) 59.9(15.5) 0.0110 30(70) 60 13.70(0.855) 4 88.9(31.6) 70(21) 60.9(16.1) 0.01143 33.9(79) 39.1 14.078(0.879) 5 98.3(36.8) 85.6(29.7) 82(28) 0.0239 50(116) 60 14.6(0.912)
  • 17.
  • 19. State Point Dry Bulb, F(C) Wet Bulb, F(C) Dew Point, F(C) Humid. Ratio, w, lbv/lba (kgv/kga) Enthalpy, i, Btu/lba (kJ/kga) Rel. Humid., percent Spec. Vol, v, ft3 /lba (m3 /kga) 1 85(29) 60(16) 45(7.2) 0.0076 28.8(67) 24.7 16.70(1.043) 2 75(24) 59(15) 50(10) 0.0093 27.9(65) 41.4 16.44(1.026) 3 71.2(21.8) 61.4(16.3) 56.6(13.7) 0.118 30(70) 60 16.39(1.023) 4 103(39.5) 70(21) 55.7(13.2) 0.01143 37.4(87) 21.1 17.36(1.084) 5 N/A N/A 82(28) N/A 50(116) N/A N/A (c) Comparison of (a) and (b) State Point Dry Bulb, F(C) Wet Bulb, F(C) Dew Point, F(C) Humid. Ratio, w, lbv/lba (kgv/kga) Enthalpy, i, Btu/lba (kJ/kga) Rel. Humid., percent Spec. Vol, v, ft3 /lba (m3 /kga) 1 85(29) 60(16) a < b a < b a < b a < b a < b 2 75(24) a > b 50(10) a < b a < b a = b a < b 3 a > b a > b a > b 30(70) 60 a < b 4 a > b 70(21) a > b 0.01143 a < b a > b a < b 5 NA NA 82(28) NA 50(116) NA NA
  • 20. 3.16 To save energy, the environmental conditions in a room are to be regulated so that the dry bulb temperature will be greater than or equal to 78 F (24 C) and the dew point will be less than or equal to 64 F (17 C). Find the maximum relative humidity that can occur for standard barometric pressure. Solution: Maximum relative humidity exist at tdb = 78 F (24 C), twb = 64 F (17 C), since increasing the dry bulb constant dew point or decreasing the dew point at constant dry bulb will decrease relative humidity. From Chart 1a. φmax = 46.6 %. From Chart 1b. φmax = 49.7 %. 3.17 A chilled water cooling coil receives 2.5 m3/s of air at 25 C db, 20 C wb. It is necessary for the air to leave the coil at 13 C db, 12 C wb. Assume sea level pressure. (a) Determine the SHF and the apparatus dew point. (b) Compute the total and sensible heat transfer rates from the air. Solution: Chart 1b State 1, tdb1 = 25 C, twb1 = 20 C i1 = 57.26 kJ/kg W1 = 0.01261 kgv/kga v1 = 0.862 m3 /kg State 2, tdb2 = 13 C, twb2 = 12 C i2 = 34.08 kJ/kg W2 = 0.00832 kgv/kga Q & = 2.5 m3 /s 862 . 0 5 . 2 1 = = v Q ma & & = 2.9 kg/s
  • 21.
  • 22. (a) From chart 1b, SHF = 0.528 and td = 6.45 C (b) Solving for total and sensible heat transfer rates; ( ) 2 1 i i m q a − = & & q & = (2.9)(57.26 – 34.08) = 67.22 kW ( ) SHF q qs & & = = (67.22)(0.528) = 35.5 kW
  • 23. 3.18 The dry bulb and wet bulb temperatures are measured to be 78 F and 65 F, respectively, in an air duct. Make use of psychrometric Charts 1a and 1b to find enthalpy, specific volume, humidity ratio, and relative humidity in (a) English units and (b) SI units. Solution: (a) English units, Chart 1a tdb = 78 F twb = 65 F Then, i = 29.96 Btu/lbma v = 13.773 ft3 /lbma W = 0.01026 lbmv/lbma φ = 50 % (b) SI units, Chart 1b tdb = 25.56 C twb = 18.33 C Then, i = 51.73 kg/kga v = 0.860 m3 /kg W = 0.01022 kgv/kga φ = 50 % 3.19 The air in Problem 3.18 is heated to temperature of 110 F. Make use of Charts 1a and 1b and compute the heat transfer rate if 4000 ft3 /min (1.9 m3 /s) is flowing at state 1, in (a) English units and (b) SI units. Solution: (a) English units, Chart 1a. 2 t = 110 F 2 i = 37.79 Btu/lbma, 1 2 W W = 1 v = 13.773 ft3 /lbma 1 i = 29.96 Btu/lbma 1 t = 78 F Q & = 4000 m3 /min
  • 24. ( )( ) 773 . 13 60 4000 1 = = v Q ma & & = 17,425 lbma/hr ( ) 1 2 t t c m q p a s − = & & s q & = (17,425)(0.245)(110 – 78) = 136,612 Btu/hr or ( ) 1 2 i i m q a s − = & & s q & = (17,425)(37.79 – 29.96) = 136,525 Btu/hr then s q & = 136,525 Btu/hr Chart 1a:
  • 25.
  • 26. (b) SI units, Chart 1b 2 t = 110 F = 43.33 C 2 i = 69.96 kJ/kga 1 2 W W = 1 v = 0.860 m3 /kga 1 i = 51.73 kJ/kga 1 t = 25.56 C Q & = 1.9 m3 /s 860 . 0 9 . 1 1 = = v Q ma & & =2.21 kga/s ( ) 1 2 t t c m q p a s − = & & s q & = (2.21)(1.02)(43.33 –25.56) = 40 kW or ( ) 1 2 i i m q a s − = & & s q & = (2.21)(69.96 – 51.73) = 40.3 kW then s q & = 40.15 kW Chart 1b:
  • 27.
  • 28. 3.20 The air in Problem 3.18 is cooled to 50 F (10 C) dry bulb and 90 percent relative humidity. Make us of Charts 1a and 1b to compute the total heat transfer rate, the sensible heat transfer, and the sensible heat factor (SHF) if 4000 ft3 /min (1.9 m3 /s) is flowing at state 1 in (a) English units and (b) SI units. Solution: (a) English units, Chart 1a
  • 29. 2 t = 50 F, 2 φ = 90 % 2 i = 19.46 Btu/lbma Q & = 4000 ft3 /min 1 v = 13.773 ft3 /lbma 1 i = 29.96 Btu/lbma 1 t = 78 F ( )( ) 773 . 13 60 4000 1 = = v Q ma & & = 17,425 lb/hr ( ) 2 1 i i m q a − = & & = (17,425)(29.96 – 19.46) = 182,963 Btu/hr ( ) 2 1 t t c m q p a s − = & & = (17,425)(0.245)(78 – 50) = 119,536 Btu/hr 863 , 182 536 , 119 = = q q SHF s & & = 0.653 (b) SI units, Chart 1b 2 t = 10 C, 2 φ = 90 % 2 i = 27.34 kJ/kga Q & = 1.9 m3 /s 1 v = 0.860 m3 /kga 1 i = 51.73 kJ/kga 1 t = 25.56 C 860 . 0 9 . 1 1 = = v Q ma & & = 2.21 kga/s ( ) 2 1 i i m q a − = & & = (2.21)(51.73 – 27.37) = 53.90 kW ( ) 2 1 t t c m q p a s − = & & = (2.21)(1.02)( 25.56 – 10) = 35.08 kW 90 . 53 08 . 35 = = q q SHF s & & = 0.65
  • 30.
  • 31. 3.21 Air at 100 F (38 C) db and 65 F (18 C) wb is humified adiabatically with steam. The steam supplied contains 20 percent moisture (quality of 0.80) at 14.7 psia (101.3 kPa). If the air is humidified to 60 percent relative humidity, what is the dry bulb temperature of the humidified air? Assume sea level pressure. Solution: Schematic of humidifying device Using English units. 1 db t = 100 F 1 wb t = 65 F x = 0.80 Chart 1a. 1 i = 29.79 Btu/lbma 1 W = 0.00523 lbmv/lbma For steam, Table A-1a, 14.7 psia, x = 0.8 f i = 180.2 Btu/lbm g i = 1150.4 Btu/lbm ( ) f g f w i i x i i − + = ( ) 2 . 180 4 . 1150 80 . 0 2 . 180 − + = w i = 956.4 Btu/lbm W i i W W i i w ∆ ∆ = = − − 1 2 1 2 = 956.4 Btu/lbm
  • 32.
  • 33. At point 2, 2 φ = 60 %, draw a line from state 1 parallel to that determine from the protractor, then locate 2 at the intersection of 2 φ = 60 % to determine 2 t = 91.6 F. 2 t = 91.6 F Using SI units. 1 db t = 38 C 1 wb t = 18 C x = 0.80 Chart 1b. 1 i = 50.38 kJ/kga 1 W = 0.00473 kgv/kga For steam, Table A-1b, 101.3 kPa, x = 0.8 f i = 419.1 kJ/kg g i = 2675.7 kJ/kg ( ) f g f w i i x i i − + = ( ) 1 . 419 7 . 2675 80 . 0 1 . 419 − + = w i = 2224.4 kJ/kg W i i W W i i w ∆ ∆ = = − − 1 2 1 2 = 2224.4 kJ/kg
  • 34. At point 2, 2 φ = 60 %, draw a line from state 1 parallel to that determine from the protractor, then locate 2 at the intersection of 2 φ = 60 % to determine 2 t = 33.1 C. 2 t = 33.1 C
  • 35. 3.22 Air at 84 F (29 C) db and 60 F (16 C) wb is humidified with the thr dry bulb temperature remaining constant. Wet steam is supplied for humidification at 20 psia (138 kPa). What quality must the steam have (a) to provide saturated air and (b) to provide air at 70 percent relative humidity? Assume sea level pressure. Solution: Schematic of humidifying device (a) Using English units 1 db t = 84 F 1 wb t = 60 F 2 db t = 84 F 2 wb t = 84 F W i W W i i iw ∆ ∆ = − − = 1 2 1 2 Chart 1a. 1 i = 26.3 Btu/lbma 1 W = 0.00559 lbmv/lbma 2 i = 48.23 Btu/lbma 2 W = 0.02556 lbmv/lbma 00559 . 0 02556 . 0 3 . 26 23 . 48 − − = w i = 1098.1 Btu/lb For 20 psia steam , Table A-1a f i = 196.2 Btu/lb g i = 1156.2 Btu/lb 2 . 196 2 . 1156 2 . 196 1 . 1098 1 − − = − − = f g f w i i i i x = 0.9395 or 93.95 % Using SI units 1 db t = 29 C
  • 36. 1 wb t = 16 C 2 db t = 29 C 2 wb t = 29 C W i W W i i iw ∆ ∆ = − − = 1 2 1 2 Chart 1b. 1 i = 44.57 kJ/kga 1 W = 0.00603 kgv/kga 2 i = 94.59 kJ/kga 2 W = 0.02562 kgv/kga 00603 . 0 02562 . 0 57 . 44 59 . 94 − − = w i = 2253.4 kJ/kg For 138 kPa steam , Table A-1b f i = 456.4 kJ/kg g i = 2689.5 kJ/kg 4 . 456 5 . 2689 4 . 456 4 . 2553 1 − − = − − = f g f w i i i i x = 0.939 or 93.9 % (b) Using English units 1 db t = 84 F 1 wb t = 60 F 2 db t = 84 F 2 φ = 70 % W i W W i i iw ∆ ∆ = − − = 1 2 1 2 Chart 1a. 1 i = 26.3 Btu/lbma 1 W = 0.00559 lbmv/lbma 2 i = 39.57 Btu/lbma 2 W = 0.01767 lbmv/lbma 00559 . 0 01767 . 0 3 . 26 57 . 39 − − = w i = 1098.5 Btu/lb For 20 psia steam , Table A-1a f i = 196.2 Btu/lb g i = 1156.2 Btu/lb 2 . 196 2 . 1156 2 . 196 5 . 1098 1 − − = − − = f g f w i i i i x = 0.94 or 94 %
  • 37. Using SI units 1 db t = 29 C 1 wb t = 16 C 2 db t = 29 C 2 φ = 70 % W i W W i i iw ∆ ∆ = − − = 1 2 1 2 Chart 1b. 1 i = 44.57 kJ/kga 1 W = 0.00603 kgv/kga 2 i = 74.37 kJ/kga 2 W = 0.01770 kgv/kga 00603 . 0 02562 . 0 57 . 44 37 . 74 − − = w i = 2253.6 kJ/kg For 138 kPa steam , Table A-1b f i = 456.4 kJ/kg g i = 2689.5 kJ/kg 4 . 456 5 . 2689 4 . 456 6 . 2553 1 − − = − − = f g f w i i i i x = 0.939 or 93.9 % 3.23 Air at 38 db and 20 C and 101.325 kPa is humidified adiabatically with liquid water supplied at 60 C, in such proportions that the mixture has a relative humidity of 80 percent. Find the dry bulb temperature of the mixture. Solution: Schematic of humidifying device Use chart 1b.
  • 38. 1 db t = 38 C 1 wb t = 20 C
  • 39. 2 φ = 80 % w i at 60 C of water = 251.2 kJ/kg W i i W W i i w ∆ ∆ = = − − 1 2 1 2 = 251.2 kJ/kg At point 2, 2 φ = 80 %, draw a line from state 1 parallel to that determined in the protractor then locate state 2 at the intersection of 2 φ = 80 % to determine 2 t = 22.86 C. 2 t = 22.86 C
  • 40. 3.24 It is desired to heat and humidify 2000 cfm (1.0 m3 /s) of air from an initial state defined by a temperature of 60 F (16 C) dry bulb and relative humidity of 30 percent to a final state of 110 F (43 C) dry bulb and 30 percent relative humidity. The air will first be heated by a hot water coil, followed by adiabatic humidification using saturated vapor at 5 psig (34.5 kPa). Using the psychrometric chart, find the heat transfer rate for the heating coil and the mass flow rate of the water vapor, and sketch the processes on a skeleton chart showing pertinent data. Use (a) English units and (b) SI units. Assume sea level pressure. Solution: Schematic of a heating and humidifying device (a) English units Q & = 2000 cfm At state 1, 1 db t = 60 F 1 φ = 30 % 1 i = 17.97 Btu/lbma 1 W = 0.00328 lbmv/lbma 1 v = 13.165 ft3 /lbma State 2, 2 db t = 110 F 2 φ = 30 % 2 i = 44.96 Btu/lbma 2 W = 0.01672 lbmv/lbma Table A-1a, Steam at 5 psig saturated w i = 1155.9 Btu/lbm
  • 41.
  • 42. Humidification process χ χ χ W W i i w i − − =       ∆ ∆ 2 2 = 1155.9 Btu/lb Draw a line parallel to that determined from the protractor then locate state χ at 1 W W = χ = 0.00328 lbmv/lbma line. Then, χ db t = 107.47 F χ i = 29.425 Btu/lbma ( )( ) 165 . 13 60 2000 1 = = v Q ma & & = 9115 lb/hr ( ) 1 t t c m q p a − = χ & & = (9115)(0.245)(107.47 – 60) = 106,009 Btu/hr or ( ) 1 i i m q a − = χ & & = (9115)(29.425 – 17.97) = 104,412 Btu/hr use q & = 105,210 Btu/hr ( ) 1 2 W W m m a w − = & & = (9115)(0.01672 – 0.00328) = 122.5 lbm/hr SI units Q & = 1.0 m3 /s At state 1, 1 db t = 16 C 1 φ = 30 % 1 i = 24.62 kJ/kga 1 W = 0.00337 kgv/kga 1 v = 0.8236 m3 /kg State 2, 2 db t = 43 C 2 φ = 30 % 2 i = 85.40 kJ/kg.K 2 W = 0.01635 kgv/kga
  • 43. Table A-1a, Steam at 34.5 kpag saturated w i = 2689 kJ/kg
  • 44. Humidification process χ χ χ W W i i w i − − =       ∆ ∆ 2 2 = 2689 kJ/kg Draw a line parallel to that determined from the protractor then locate state χ at 1 W W = χ = 0.00337 kgv/kga line. Then, χ db t = 41.57 C χ i = 50.51 kJ/kga 8236 . 0 0 . 1 1 = = v Q ma & & = 1.2142 kg/s ( ) 1 t t c m q p a − = χ & & = (1.2142)(1.02)(41.57 –16) = 31.7 kW or ( ) 1 i i m q a − = χ & & = (1.2142)(50.51 – 24.62) = 31.4 kW use q & = 31.6 kW ( ) 1 2 W W m m a w − = & & = (1.2142)(0.01635 – 0.00337) = 0.01576 kg/s
  • 45. 3. Moist Air Properties and Conditioning Processes 3.25 Air at 40 F (5 C) db and 35 F (2 C) wb is mixed with warm air at 100 F (38 C) db and 77 F (25 C) wb in the ratio of 2 lbm (kga) cool air to 1 lbm (kga) of warm air. (a) Compute the humidity ratio and enthalpy of the mixed air, and (b) find the humidity ratio and enthalpy using psychrometric chart 1. Solution: English units (a) 1 db t = 40 F 1 wb t = 35 F 2 db t = 100 F 2 wb t = 77 F 2 1 a a m m & & = 2 lbm / 1 lbm = 2 Chart 1a 1 W = 0.00315 lbmv/lbma 1 i = 12.66 Btu/lbma 2 W = 0.01476 lbmv/lbma 2 i = 40.32 Btu/lbma Mixed Air: Eq. (3-44a) 2 1 2 1 2 1 3 1 a m a m a m a m i i i & & & & + + = ( )( ) ( ) 2 1 32 . 40 66 . 12 2 3 + + = i = 21.88 Btu/lbma Eq. (3-44b) 2 1 2 1 2 1 3 1 a m a m a m a m W W W & & & & + + = ( )( ) ( ) 2 1 01476 . 0 00315 . 0 2 3 + + = W = 0.00702 lbmv/lbma Using chart 1a. 3 i = 22 Btu/lbma
  • 46. 3. Moist Air Properties and Conditioning Processes 3 W = 0.007 lbmv/lbma
  • 47. 3. Moist Air Properties and Conditioning Processes SI units (a) 1 db t = 5 C 1 wb t = 2 C 2 db t = 38 C 2 wb t = 25 C 2 1 a a m m & & = 2 kga / 1 kga = 2 Chart 1b 1 W = 0.00316 kgv/kga 1 i = 12.95 kJ/kga 2 W = 0.01462 kgv/kga 2 i = 75.79 kJ/kga Mixed Air: Eq. (3-44a) 2 1 2 1 2 1 3 1 a m a m a m a m i i i & & & & + + = ( )( ) ( ) 2 1 79 . 75 95 . 12 2 3 + + = i = 33.90 kJ/kga Eq. (3-44b) 2 1 2 1 2 1 3 1 a m a m a m a m W W W & & & & + + = ( )( ) ( ) 2 1 01462 . 0 00316 . 0 2 3 + + = W = 0.00698 kgv/kga Using chart 1b 3 i = 34 kJ/kga 3 W = 0.007 kgv/kga
  • 48. 3. Moist Air Properties and Conditioning Processes
  • 49. 3.26 Air at 10 C db and 5 C wb is mixed with air at 25 C db and 18 C wb in a steady-flow process at standard atmospheric pressure. The volume flow rates are 10 m3 /s and 6 m3 /s, respectively. (a) Compute the mixture conditions. (b) Find the mixture conditions using Chart 1b. Solution: Chart 1b. State 1, 1 db t = 10 C, 1 wb t = 5 C, 1 Q & = 10 m3 /s 1 i = 18.58 kJ/kga 1 W = 0.0034 kgv/kga 1 v = 0.8065 m3 /kga State 2, 2 db t = 25 C, 2 wb t = 18 C, 2 Q & = 6 m3 /s 2 i = 50.70 kJ/kga 2 W = 0.0100 kgv/kga 2 v = 0.858 m3 /kga 8054 . 0 10 1 1 1 = = v Q ma & & = 12.40 kg/s 858 . 0 6 2 2 2 = = v Q ma & & = 6.99 kg/s (a) Eq. (3-44a) ( ) 99 . 6 40 . 12 1 70 . 50 58 . 18 99 . 6 40 . 12 1 2 1 2 1 2 1 3 + +       = + + = a a a a m m i i m m i & & & & = 30.16 kJ/kga Eq. (3-44b) ( ) 99 . 6 40 . 12 1 0100 . 0 0034 . 0 99 . 6 40 . 12 1 2 1 2 1 2 1 3 + +       = + + = a a a a m m W W m m W & & & & = 0.0058 kgv/kga Then 3 db t = 15.4 C, 3 wb t = 10.4 C
  • 51. 99 . 6 40 . 12 99 . 6 12 13 ____ ____ 3 2 + = = a a m m & & = 1.774 Then, chart 1b. 3 db t = 15.4 C, 3 wb t = 10.4 C 3.27 Rework Problem 3.26, using Chart 1b, assuming that the mixture condition can be computed on the basis of the volume flow rates rather than mass flow rate. What is the percent error in the mixture enthalpy and humidity ratios? Solution: Chart 1b State 1, 1 db t = 10 C, 1 wb t = 5 C, 1 Q & = 10 m3 /s 1 i = 18.58 kJ/kga 1 W = 0.0034 kgv/kga State 2, 2 db t = 25 C, 2 wb t = 18 C, 2 Q & = 6 m3 /s 2 i = 50.70 kJ/kga 2 W = 0.0100 kgv/kga 3 5 6 10 13 32 ____ ____ 2 1 = = = Q Q & & ; 8 5 6 10 10 12 32 ____ ____ 3 1 = + = = Q Q & & ; 8 3 6 10 6 12 13 ____ ____ 3 2 = + = = Q Q & & Then, chart 1b. 3 db t = 15.5 C, 3 wb t = 10.5 C ( ) 6 10 1 70 . 50 58 . 18 6 10 1 2 1 2 1 2 1 3 + +       = + + = Q Q i i Q Q i & & & & = 30.63 kJ/kga Eq. (3-44b) ( ) 6 10 1 0100 . 0 0034 . 0 6 10 1 2 1 2 1 2 1 3 + +       = + + = Q Q W W Q Q W & & & & = 0.0059 kgv/kga % error in enthalpy = ( ) % 100 16 . 30 16 . 30 63 . 30 − = 1.56 % % error in humidity ratio = ( ) % 100 0058 . 0 0058 . 0 0059 . 0 − = 1.73 %
  • 52.
  • 53. 3.28 ngiA zone in a building has a design cooling load of 136,000 Btu/hr (40 kW), of which 110,000 Btu/hr (32 kW) is sensible cooling load. The space is to be maintained at 76 F (24 C) dry bulb temperature and 50 percent relative humidity. Locate the space condition line on Chart 1a and 1b. Solution: Chart 1a, English Units q & = 136,000 Btu/hr s q & = 110,000 Btu/hr db t = 76 F φ = 50 % 000 , 136 000 , 110 = = q q SHF s & & = 0.81 Chart 1a:
  • 54. Chart 1b, SI Units q & = 40 kW s q & = 32 kW db t = 24 C φ = 50 % 40 32 = = q q SHF s & & = 0.80 Chart 1b:
  • 55. 3.29 Refer to Problem 3.28, and assume that the air can be supplied to the space at 55 F (13 C). Compute the volume flow rate of the air required in (a) English units and (b) SI units. Solution: (a) Chart 1a q & = 136,000 Btu/hr 1 db t = 76 F 1 φ = 50 % , SHF = 0.81 1 i = 28.74 Btu/lbma, 1 v = 13.71 ft3 /lb 2 db t = 55 F, Chart 1a, SHF = 0.81 2 i = 22.39 Btu/lbma 39 . 22 74 . 28 000 , 136 2 1 − = − = i i q ma & & = 21,417 lbma/hr 1 v m Q a & & = = (21,417 lb/hr)(1 hr / 60 min)(13.71 ft3 /lb) = 4,894 ft3 /min
  • 56. (b) Chart 1b q & = 40 kW 1 db t = 24 C 1 φ = 50 % , SHF = 0.80 1 i = 47.80 kJ/kga , 1 v = 0.854 m3 /kga 2 db t = 13 C, Chart 1b, SHF = 0.80 2 i = 33.78 kJ/kga 78 . 33 8 . 47 40 2 1 − = − = i i q ma & & = 2.853 kga/s 1 v m Q a & & = = (2.853 kga/s (0.854 m3 /kga) = 2.437 m3 /s
  • 57. 3.30 Rework Problem 3.28 using Charts 1Ha and 1Hb for (a) 5000 ft and (b) 1500 m elevation, respectively. Solution: (a) Chart 1Ha, English Units, 5000 ft q & = 136,000 Btu/hr s q & = 110,000 Btu/hr db t = 76 F φ = 50 % 000 , 136 000 , 110 = = q q SHF s & & = 0.81 Chart 1Ha:
  • 58. (b) Chart 1Hb, SI Units, 1500 m q & = 40 kW s q & = 32 kW db t = 24 C φ = 50 % 40 32 = = q q SHF s & & = 0.80 Chart 1Hb:
  • 59. 3.31 Rework Problem 3.29 using Charts 1Ha and 1Hb for (a) 5000 ft and (b) 1500 m elevation, respectively. Solution: (a) 5000 ft, Chart 1Ha q & = 136,000 Btu/hr 1 db t = 76 F 1 φ = 50 % , SHF = 0.81 1 i = 30.92 Btu/lbma, 1 v = 16.53 ft3 /lb 2 db t = 55 F, Chart 1a, SHF = 0.81 2 i = 24.57 Btu/lbma 57 . 24 92 . 30 000 , 136 2 1 − = − = i i q ma & & = 21,417 lbma/hr 1 v m Q a & & = = (21,417 lb/hr)(1 hr / 60 min)(16.53 ft3 /lb) = 5,900 ft3 /min
  • 60. (b) 1500 m, Chart 1Hb q & = 40 kW 1 db t = 24 C 1 φ = 50 % , SHF = 0.80 1 i = 52.58 kJ/kga , 1 v = 1.027 m3 /kga 2 db t = 13 C, Chart 1b, SHF = 0.80 2 i = 38.56 kJ/kga 56 . 38 58 . 52 40 2 1 − = − = i i q ma & & = 2.853 kga/s 1 v m Q a & & = = (2.853 kga/s (1.027 m3 /kga) = 2.930 m3 /s
  • 61. 3.32 A meeting hall is to be maintained at 25 C db and 18 C wb. The barometric pressure is 101.3 kPa. The space has a load of 58.6 kW sensible and 58.6 kW latent. The temperature of the supply air cannot be lower than 18 C db. (a) How many kilograms per second of air must be supplied? (b) What is the required wet bulb temperature of the supply air? (c) What is the sensible heat ratio? Solution: Chart 1b 1 db t = 25 C 1 wb t = 18 C 2 db t = 18 C s q & = 58.6 kW l q & = 58.6 kW p c = 1.02 kJ/kg.C (a) ( ) 2 1 t t c m q p a s − = & & ( )( ) 18 25 02 . 1 6 . 58 − = a m & a m & = 8.2073 kg/s (b) l s q q q & & & + = = 58.6 + 58.6 = 117.2 kW ( ) 2 1 i i m q a − = & & at 1 db t = 25 C , 1 wb t = 18 C 1 i = 50.71 kJ/kga ( )( ) 2 71 . 50 2073 . 8 2 . 117 i − = 2 i = 36.43 kJ/kga Then, 2 wb t = 12.92 C (c) 2 . 117 6 . 58 = = q q SHF s & & = 0.50 3.33 A space is to be maintained at 72 F (22 C) and 30 percent relative humidity during the winter months. The sensible heat loss from the space is 500,000 Btu/hr (146 kW), and latent heat loss due to infiltration is 50,000 Btu/hr (14.6 kW). Construct the condition line on (a) Chart 1a and (b) 1b. Solution: (a) Chart 1a s q & = 500,000 Btu/hr
  • 62. l q & = 50,000 Btu/hr 000 , 50 000 , 500 000 , 500 + = + = = l s s s q q q q q SHF & & & & & = 0.909 Chart 1a:
  • 63. (b) Chart 1b s q & = 146 kW l q & = 14.6 kW 6 . 14 146 146 + = + = = l s s s q q q q q SHF & & & & & = 0.909 Chart 1b:
  • 64. 3.34 What is the maximum relative humidity to prevent condensation on pipes carrying water at 50 F through a room that has an air temperature of 70 F? Solution: dp t = 50 F db t = 70 F From Chart 1a, φ = 49 % 3.35 Outdoor air at 95 F (35 C) db and 79 F (26 C) wb and at a barometric pressure of 29.92 in Hg (101 kPa) is cooled and dehumidified under steady conditions until it becomes saturated at 60 F (16 C). (a) Find the mass of water condensed per pound of dry air. (b) If the condensate is removed at 60 F (16 C), what quantity of heat is removed per pound (kilogram) of (16 C) dry air? Solution: English units: 1 db t = 95 F 1 wb t = 79 F 2 db t = 60 F 2 wb t = 60 F 1 i = 42.44 Btu/lbma 2 i = 26.46 Btu/lbma 1 W = 0.0178 lbmv/lbma 2 W = 0.0111 lbmv/lbma (a) 2 1 W W W − = ∆ = 0.0178 – 0.0111 = 0.0067 lbmv/lbma (b) w i at 60 F = 28 Btu/lb Eq. (3.30) ( ) ( ) w a i W W i i m q 2 1 2 1 − − − = & & ( ) ( )( ) 28 0067 . 0 46 . 26 44 . 42 − − = a m q & & a m q & & = 15.79 Btu/lbma
  • 65. SI units: 1 db t = 35 C 1 wb t = 26 C 2 db t = 16 C 2 wb t = 16 C 1 i = 80.20 kJ/kga
  • 66. 2 i = 44.85 kJ/kga 1 W = 0.0175 kgv/kga 2 W = 0.0114 kgv/kga (a) 2 1 W W W − = ∆ = 0.0175 – 0.0114 = 0.0061 lbmv/lbma (b) w i at 60 F = 67.08 kJ/kg Eq. (3.30) ( ) ( ) w a i W W i i m q 2 1 2 1 − − − = & & ( ) ( )( ) 08 . 67 0061 . 0 85 . 44 20 . 80 − − = a m q & & a m q & & = 34.94 kJ/kga
  • 67. 3.36 Moist air enters a refrigeration coil at 89 F db and 75 F wb at a rate of 1400 cfm. The apparatus dewpoint temperature of the coil is 55 F. If 3.5 tons of refrigeration is available, find the dry bulb temperature of the air leaving the coil. Assume sea level pressure. Solution: Chart 1a. 1 db t = 89 F 1 wb t = 75 F 1 Q & = 1400 cfm d t = 55 F q & = (12000)(3.5) = 42,000 Btu/hr at 1 db t = 89 F, 1 wb t = 75 F 1 i = 38.46 Btu/lbma 1 v =14.172 ft3 /lbma ( )( ) 172 . 14 60 1400 1 1 = = v Q ma & & = 5,927 lb/hr ( ) 2 1 i i m q a − = & & ( )( ) 2 46 . 38 927 , 5 000 , 42 i − = 2 i = 31.37 Btu/lbma From Chart 1a, d t = 55 F, 2 i = 31.37 Btu/lbma 2 db t = 73.18 F
  • 68.
  • 69. 3.37 Saturated steam at a pressure of 25 psia is sprayed into a stream of moist air. The initial condition of the air is 55 F db and 45 F wb temperature. The mass rate of airflow is 2000 lbma/min. Barometric pressure is 14.696 psia. Determine (a) how much steam (in lbm/min) must be added to produce a saturated air condition and (b) the resulting temperature of the saturated air. Solution: a m & = 2000 lbma/min Steam at 25 psia, w i = 1160.6 Btu/lbm Eq. (3-40) W i i W W i i w ∆ ∆ = = − − 1 2 1 2 at 55 F db, 45 F wb, Chart 1a 1 i = 17.62 Btu/lbma 1 W = 0.0041 lbmv/lbma With W i ∆ ∆ = 1160.6 Btu/lb, use protractor on Chart 1a Then saturated air leaving condition: 2 db t = 57.2 F 2 i = 24.60 Btu/lbma 2 W = 0.0101 lbmv/lbma (a) ( ) 1 2 W W m m a s − = & & ( )( ) 0041 . 0 0101 . 0 2000 − = s m & = 12 lbm/min (b) 2 db t = 57.2 F
  • 70.
  • 71. 3.38 Saturated water vapor at 100 C is used to humidify a stream of moist air. The air enters the humidifier at 13 C db and 2 C wb at a a flow rate of 2.5 m3 /s. The pressure is 101.35 kPa. Determine (a) the mass flow rate of the steam required to saturate the air and (b) the temperature of the saturated air. Solution: Chart 1b w i at 100 C of water vapor = 2675.7 kJ/kg at 13 C db, 2 C wb 1 v = 0.81 m3 /kga 1 W = 0.0000 kgv/kga 1 i = 12.97 kJ/kga 1 Q & = 2.5 m3 /s 81 . 0 5 . 2 1 1 = = v Q ma & & = 3.0864 kg/s w i W i = ∆ ∆ = 2675.7 kJ/kg From chart 1b 2 W = 0.0103 kgv/kga 2 i = 40.5 kJ/kga 2 db t = 14.47 C (a) ( ) 1 2 W W m m a s − = & & ( )( ) 0000 . 0 0103 . 0 0864 . 3 − = s m & = 0.0318 kg/s (b) 2 db t = 14.47 C
  • 72.
  • 73. 3.39 Moist air at 70 F db and 45 percent relative humidity is recirculated from a room and mixed with outdoor air at 97 F db and 83 F wb. Determine the mixture dry bulb and wet bulb temperatures if the volume of recirculated air is three times the volume of outdoor air. Assume sea level pressure. Solution: At 70 F db, 45 % relative humidity, Chart 1a 1 W = 0.0070 lbmv/lbma 1 i = 24.47 Btu/lbma 1 v = 13.5 ft3 /lbma At 70 F db, 45 % relative humidity, Chart 1a 2 W = 0.0214 lbmv/lbma 2 i = 46.88 Btu/lbma 2 v = 14.51 ft3 /lbma 2 1 2 1 2 1 3 1 a a a a m m i i m m i & & & & + + = 2 1 2 1 2 1 3 1 a a a a m m W W m m W & & & & + + = 2 1 3Q Q & & = 1 Q & is the recirculated air flow rate. 2 Q & is the outdoor air flow rate 2 1 3Q Q & & = 2 2 1 1 3 v m v m a a & & = ( ) 51 . 14 5 . 13 3 3 2 1 2 1 = = v v m m a a & & = 2.7912 ( )( ) 7912 . 2 1 88 . 46 47 . 24 7912 . 2 3 + + = i = 30.38 Btu/lbma ( )( ) 7912 . 2 1 0214 . 0 007 . 0 7912 . 2 3 + + = W = 0.0108 lbmv/lbma Then, 3 db t = 77.3 F, 3 wb t = 65.54 F
  • 74.
  • 75. 3.40 A structure has a calculated cooling load of 10 tons, of which 2.5 tons is latent load. The space is to be maintained at 76 F db and 50 percent relative humidity. Ten percent by volume of the air supplied to the space is outdoor air at 100 F db and 50 percent relative humidity. The air is supplied to the space cannot be less than 56 F db. Assume sea level pressure, and find (a) the minimum amount of air supplied to the space in cfm, (b) the amounts of return air and outdoor air in cfm, (c) the conditions and volume flow rate of the air entering the cooling coil, and (d) the capacity and SHF for the cooling coil. Solution: q & = 10 tons = 120,000 Btu/hr l q & = 2.5 tons = 30,000 Btu/hr l s q q q & & & − = = 120,000 – 30,000 = 90,000 Btu/hr Chart 1a 3 db t = 76 F 3 φ = 50 % 0 db t = 100 F 0 φ = 50 % 2 db t = 56 F 2 0 10 0 Q Q & & . = 2 3 90 0 Q Q & & . = 9 2 0 Q Q & & = at state 0, 0 db t = 100 F, 0 φ = 50 % 0 i = 47.08 Btu/lbma 0 W = 0.0209 lbmv/lbma o v = 14.58 ft3 /lbma at state 3, 3 db t = 76 F, 3 φ = 50 % 3 i = 28.74 Btu/lbma 3 W = 0.0096 lbmv/lbma 3 v = 13.71 ft3 /lbma             = = 58 14 71 13 9 1 0 3 3 0 3 0 . . v Q v Q m m a a & & & & = 0.1045 at state 1, ( )( ) 1045 0 1 74 28 08 47 1045 0 1 3 0 3 0 3 0 1 . . . . + + = + + = a a a a m m i i m m i & & & & = 30.48 Btu/lbma
  • 76. ( )( ) 1045 0 1 0096 0 0209 0 1045 0 1 3 0 3 0 3 0 1 . . . . + + = + + = a a a a m m W W m m W & & & & = 0.01067 lbmv/lbma 1 db t = 78.5 F 1 wb t = 65.75 F (a) ( ) 2 3 t t c m q p a s − = & & p c = 0.245 Btu/lb-F ( )( ) 56 76 245 . 0 000 , 90 − = a m & a m & = 18,367 lbma/hr (b) 0 3 a a a m m m & & & + = 3 3 1045 0 a a a m m m & & & . + = 3 1045 1 367 18 a m & . , = 3 a m & = 16,629 lbma/hr return air. ( )( )( ) 71 13 60 1 629 16 3 3 3 . , = = v m Q a & & = 3,800 ft3 /min ( )( )= = = 629 16 1045 0 1045 0 3 0 , . . a a m m & & = 1,738 lbma/hr ( )( )( ) 58 14 60 1 738 1 0 0 0 . , = = v m Q a & & = 422 ft3 /min (c) 1 db t = 78.5 F, 1 wb t = 65.75 F 1 v = 13.80 ft3 /lbma 1 i = 30.48 Btu/lbma a a m m & & = 1 = 18,367 lbma/hr ( )( )( ) 80 13 60 1 367 18 1 1 1 . , = = v m Q a & & = 4,224 ft3 /min (d) ( ) 2 1 i i m q a c − = & & For 2 i : ( ) 2 3 i i m q a − = & & ( )( ) 2 74 . 28 367 , 18 000 , 120 i − = 2 i = 22.21 Btu/lbma, 2 db t = 56 F Then ( ) 2 1 i i m q a c − = & & ( )( ) 21 22 48 30 367 18 . . , − = c q & = 151,895 Btu/hr = 12.66 Tons ( ) 2 1 t t c m q p a cs − = & & ( )( )( ) 0 56 5 78 245 0 367 18 . . . , − = cs q & = 101,248 Btu/hr
  • 78. 3.41 Rework Problem 3-40 for an elevation of 5000 feet. Solution: Chart 1Ha q & = 10 tons = 120,000 Btu/hr l q & = 2.5 tons = 30,000 Btu/hr l s q q q & & & − = = 120,000 – 30,000 = 90,000 Btu/hr Chart 1a 3 db t = 76 F 3 φ = 50 % 0 db t = 100 F 0 φ = 50 % 2 db t = 56 F 3 0 10 . 0 Q Q & & = at state 0, 0 db t = 100 F, 0 φ = 50 % 0 i = 51.95 Btu/lbma 0 W = 0.0253 lbmv/lbma o v = 17.64 ft3 /lbma at state 0, 3 db t = 76 F, 3 φ = 50 % 3 i = 30.92 Btu/lbma 3 W = 0.0116 lbmv/lbma 3 v = 16.53 ft3 /lbma ( )       = = 64 . 17 53 . 16 10 . 0 0 3 3 0 3 0 v Q v Q m m a a & & & & = 0.09371 at state 1, ( )( ) 09371 . 0 1 92 . 30 95 . 51 09371 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 32.72 Btu/lbma ( )( ) 09371 . 0 1 0116 . 0 0253 . 0 09371 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.01277 lbmv/lbma 1 db t = 78.05 F 1 wb t = 64.73 F
  • 79. (a) ( ) 2 3 t t c m q p a s − = & & p c = 0.245 Btu/lb-F ( )( ) 56 76 245 . 0 000 , 90 − = a m & a m & = 18,367 lbma/hr (b) 0 3 a a a m m m & & & + = 3 3 09371 . 0 a a a m m m & & & + = 3 09371 . 1 367 , 18 a m & = 3 a m & = 16,794 lbma/hr return air. ( )( )( ) 53 . 16 60 1 794 , 16 3 3 3 = = v m Q a & & = 4,627 ft3 /min ( )( ) 794 , 16 09371 . 0 09371 . 0 3 0 = = a a m m & & = 1,574 lbma/hr ( )( )( ) 64 . 17 60 1 574 , 1 0 0 0 = = v m Q a & & = 463 ft3 /min (c) 1 db t = 78.05 F, 1 wb t = 64.73 F 1 v = 16.62 ft3 /lbma 1 i = 32.72 Btu/lbma a a m m & & = 1 = 18,367 lbma/hr ( )( )( ) 62 . 16 60 1 367 , 18 1 1 1 = = v m Q a & & = 5,088 ft3 /min (d) ( ) 2 1 i i m q a c − = & & For 2 i : ( ) 2 3 i i m q a − = & & ( )( ) 2 92 . 30 367 , 18 000 , 120 i − = 2 i = 24.39 Btu/lbma, 2 db t = 56 F Then ( ) 2 1 i i m q a c − = & & ( )( ) 39 . 24 72 . 32 367 , 18 − = c q & = 152,997 Btu/hr = 12.75 Tons ( ) 2 1 t t c m q p a cs − = & & ( )( )( ) 0 . 56 05 . 78 245 . 0 367 , 18 − = cs q & = 99,223 Btu/hr 997 , 152 223 , 99 = = c cs c q q SHF = 0.649
  • 80.
  • 81. 3.42 A building has a calculated cooling load of 410 kW. The latent portion of the load is100 kW. The space is to be maintained at 25 C db and 50 percent relative humidity. Outdoor air is at 38 C and 50 percent relative humidity, and 10 percent by mass of the air supplied to the space is outdoor air. Air is to be supplied to the space at not less than 18 C. Assume sea level pressure and find (a) the minimum amount of air supplied to the space in m3 /s, (b) the volume flow rates of the return air, exhaust air, and outdoor air, (c) the condition and volume flow rates of the air entering the cooling coil, and (d) the capacity, apparatus dew point, bypass factor, and SHF of the cooling coil. Solution: q & = 410 kW l q & = 100 kW l s q q q & & & − = = 410 kW – 100 kW = 310 kW Chart 1b State 3, 3 db t = 25 C 3 φ = 50 % 3 W = 0.0099 kgv/kga 3 i = 50.31 kJ/kga 3 v = 0.858 m3 /kga State 0, 0 db t = 38 C 0 φ = 50 % 0 W = 0.0211 kgv/kga 0 i = 92.30 kJ/kga 0 v = 0.911 m3 /kga 1 2 0 10 . 0 10 . 0 a a m m m = = & State 2, 2 db t = 18 C State 1, 9 1 10 . 0 10 . 0 1 1 1 3 0 = − = a a a a a m m m m m & & & & & ( ) 9 1 1 31 . 50 30 . 92 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m i i m m i & & & & = 54.51 kJ/kga ( ) 9 1 1 0099 . 0 0211 . 0 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m W W m m W & & & & = 0.01102 kgv/kga
  • 82. Chart 1b, 1 v = 0.863 m3 /kg, 1 db t = 26.30 C, 1 wb t = 19.19 C, 1 φ = 51.47 % (a) 410 310 = = q q SHF s = 0.756 Chart 1b, 2 db t = 18 C 2 φ = 69.9 % 2 i = 40.87 kJ/kg 2 W = 0.0090 kgv/kga 2 v = 0.837 m3 /kga ( ) ( )( ) 18 25 02 . 1 310 2 3 2 − = − = t t c q m p s a & & = 43.4 kg/s (b) 2 1 a a m m & & = = 43.4 kg/s ( )( ) 4 . 43 1 . 0 1 . 0 1 0 = = a a m m & & = 4.34 kg/s ( )( ) 4 . 43 9 9 0 3 = = a a m m & & = 39.06 kg/s Return air: ( )( ) 858 . 0 06 . 39 3 3 3 = = v m Q a & & = 33.5 m3 /s Exhaust air: ( )( ) 911 . 0 34 . 4 0 0 0 = = v m Q a & & = 3.96 m3 /s Outdoor air = Exhaust air ( )( ) 911 . 0 34 . 4 0 0 0 = = v m Q a & & = 3.96 m3 /s (a) Condition of air entering the coil 1 db t = 26.30 C, 1 wb t = 19.19 C, 1 φ = 51.47 %, 1 v = 0.863 m3 /kg Volume flow rate; ( )( ) 863 . 0 4 . 43 1 1 1 = = v m Q a & & = 37.45 m3 /s (b) Capacity ( ) ( )( ) 87 . 40 51 . 54 4 . 43 2 1 1 − = − = i i m q a c & & = 592 kW Apparatus dew point , Chart 1b; d t = 7.2 C By-pass factor 2 . 7 3 . 26 2 . 7 18 1 2 − − = − − = d d t t t t b = 0.566 SHF of cooling coil, c cs c q q SHF & & = ( ) ( )( )( ) 18 3 . 26 02 . 1 4 . 43 2 1 1 − = − = t t c m q p a cs & & cs q & = 368 kW 592 368 = = c cs c q q SHF & & = 0.622
  • 83.
  • 84. 3.43 Rework Problem 3-42 for an elevation of 1500 m Solution: q & = 410 kW l q & = 100 kW l s q q q & & & − = = 410 kW – 100 kW = 310 kW Chart 1Hb State 3, 3 db t = 25 C 3 φ = 50 % 3 W = 0.0119 kgv/kga 3 i = 55.40 kJ/kga 3 v = 1.032 m3 /kga State 0, 0 db t = 38 C 0 φ = 50 % 0 W = 0.0254 kgv/kga 0 i = 103.46 kJ/kga 0 v = 1.099 m3 /kga 1 2 0 10 . 0 10 . 0 a a m m m = = & State 2, 2 db t = 18 C State 1, 9 1 10 . 0 10 . 0 1 1 1 3 0 = − = a a a a a m m m m m & & & & & ( ) 9 1 1 4 . 55 46 . 103 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m i i m m i & & & & = 60.21 Btu/lbma ( ) 9 1 1 0119 . 0 0254 . 0 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m W W m m W & & & & = 0.0133 lbmv/lbma Chart 1Hb, 1 v = 1.038 m3 /kg, 1 db t = 26.30 C, 1 wb t = 18.79 C, 1 φ = 51.5 % (a) 410 310 = = q q SHF s = 0.756
  • 85. Chart 1Hb, 2 db t = 18 C 2 wb t = 14.54 C 2 i = 45.96 kJ/kg 2 W = 0.0110 kgv/kga 2 v = 1.006 m3 /kga 96 . 45 4 . 55 310 2 3 2 − = − = i i q m s a & & = 43.4 kg/s (b) 2 1 a a m m & & = = 43.4 kg/s ( )( ) 4 . 43 1 . 0 1 . 0 1 0 = = a a m m & & = 4.34 kg/s ( )( ) 4 . 43 9 9 0 3 = = a a m m & & = 39.06 kg/s Return air: ( )( ) 032 . 1 06 . 39 3 3 3 = = v m Q a & & = 40.31 m3 /s Exhaust air: ( )( ) 099 . 1 34 . 4 0 0 0 = = v m Q a & & = 4.77 m3 /s Outdoor air = Exhaust air ( )( ) 099 . 1 34 . 4 0 0 0 = = v m Q a & & = 4.77 m3 /s (a) Condition of air entering the coil 1 db t = 26.30 C, 1 wb t = 18.79 C, 1 φ = 51.5 %, 1 v = 1.038 m3 /kg Volume flow rate; ( )( ) 038 . 1 4 . 43 1 1 1 = = v m Q a & & = 45.05 m3 /s (b) Capacity ( ) ( )( ) 96 . 45 21 . 60 4 . 43 2 1 1 − = − = i i m q a c & & = 619 kW Apparatus dew point , Chart 1Hb; d t = 8.9 C By-pass factor 9 . 8 3 . 26 9 . 8 18 1 2 − − = − − = d d t t t t b = 0.523 SHF of cooling coil, c cs c q q SHF & & = ( ) ( )( )( ) 18 3 . 26 02 . 1 4 . 43 2 1 1 − = − = t t c m q p a cs & & cs q & = 368 kW
  • 87. 3.44 A building has a total heating load of 200,000 Btu/hr. The sensible heat factor for the space is 0.8. The space is to be maintained at 72 F db and 40 percent relative humidity. Outdoor air at 40 F db and 20 percent relative humidity in the amount of 1000 cfm is required. Air is supplied to the space at 120 F db. Find (a) the conditions and amount of air supplied to the space, (b) the temperature rise of the air through the furnace, (c) the amount of water at 50 F required by the dehumidifier, and (d) the capacity of the furnace. Assume sea level pressure. Solution: Chart 1a State 0, 0 db t = 40 F 0 φ = 20 % 0 i = 10.72 Btu/lbma 0 W = 0.0010 lbmv/lbma 0 v = 12.611 ft3 /lbma State 3, 3 db t = 72 F 3 φ = 40 % 3 i = 24.58 Btu/lbma 3 W = 0.0067 lbmv/lbma 3 v = 13.54 ft3 /lb State 2, 2 db t = 120 F Chart 1a, SHF = 0.8 2 W = 0.0094 lbmv/lbma 2 i = 39.28 Btu/lbma 2 wb t = 76.18 F 2 φ = 12.8 % q & = 200,000 Btu/hr ( ) ( )( ) 000 , 200 8 . 0 = = q SHF qs & & = 160,000 Btu/hr ( ) 3 2 2 i i m q a − = & & ( ) 58 . 24 28 . 39 000 , 200 3 2 2 − = − = i i q ma & & = 13,606 lbma/hr 0 Q & = 1000 ft3 /min
  • 88. ( )( ) 61 . 12 60 1000 0 0 0 = = v Q ma & & = 4,758 lbma/hr 2 3 a a m m & & = = 13,606 lbma/hr ( ) 606 , 13 758 , 4 1 58 . 24 72 . 10 606 , 13 758 , 4 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m i i m m i & & & & = 20.99 Btu/lbma ( ) 606 , 13 758 , 4 1 0067 . 0 0010 . 0 606 , 13 758 , 4 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m W W m m W & & & & = 0.0052 lbmv/lbma 1 db t = 63.8 F At 50 F , w i = 18.1 Btu/lb For x – 2, w x x i W W i i W i = − − = ∆ ∆ 2 2 = 18.1 Draw a line parallel to the protractor line from 2 – x, x intersecting line of constant humidity ratio from 1. 1 W Wx = = 0.0052 lbmv/lbma x t = 139 F x i = 39.20 Btu/lbma (a) Air supplied to the space. 2 db t = 120 F, 2 φ = 12.8 %, 2 wb t = 76.18 F 2 a m & = 13,606 lbma/hr (b) Temperature rise of the air through the furnace. 1 t tx − = 139 – 63.8 = 75.2 F (c) Amount of water required by the humidifier. ( ) ( )( ) 0052 . 0 0094 . 0 606 , 13 2 2 − = − = x a w W W m m & & = 57.2 lb/hr (d) Capacity of the furnace. ( ) ( )( ) 99 . 20 20 . 39 606 , 13 1 2 − = − = i i m q x a F & & = 247,765 Btu/hr
  • 89.
  • 90. 3.45 Rework Problem 3.44 for an elevation of 5000 ft. Solution: Chart 1Ha State 0, 0 db t = 40 F 0 φ = 20 % 0 i = 10.96 Btu/lbma 0 W = 0.00125 lbmv/lbma 0 v = 15.16 ft3 /lbma State 3, 3 db t = 72 F 3 φ = 40 % 3 i = 26.10 Btu/lbma 3 W = 0.00805 lbmv/lbma 3 v = 16.31 ft3 /lb State 2, 2 db t = 120 F Chart 1a, SHF = 0.8 2 W = 0.0104 lbmv/lbma 2 i = 40.80 Btu/lbma 2 wb t = 73.50 F 2 φ = 12.2 % q & = 200,000 Btu/hr ( ) ( )( ) 000 , 200 8 . 0 = = q SHF qs & & = 160,000 Btu/hr ( ) 3 2 2 i i m q a − = & & ( ) 10 . 26 80 . 40 000 , 200 3 2 2 − = − = i i q ma & & = 13,606 lbma/hr 0 Q & = 1000 ft3 /min ( )( ) 16 . 15 60 1000 0 0 0 = = v Q ma & & = 3,958 lbma/hr 2 3 a a m m & & = = 13,606 lbma/hr
  • 91. ( ) 606 , 13 958 , 3 1 10 . 26 96 . 10 606 , 13 958 , 3 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m i i m m i & & & & = 22.69 Btu/lbma ( ) 606 , 13 958 , 3 1 00805 . 0 00125 . 0 606 , 13 958 , 3 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m W W m m W & & & & = 0.00645 lbmv/lbma 1 db t = 65.23 F At 50 F , w i = 18.1 Btu/lb For x – 2, w x x i W W i i W i = − − = ∆ ∆ 2 2 = 18.1 Draw a line parallel to the protractor line from 2 – x, x intersecting line of constant humidity ratio from 1. 1 W Wx = = 0.00645 lbmv/lbma x t = 139.52 F x i = 40.73 Btu/lbma (a) Air supplied to the space. 2 db t = 120 F, 2 φ = 12.2 %, 2 wb t = 73.50 F 2 a m & = 13,606 lbma/hr (b) Temperature rise of the air through the furnace. 1 t tx − = 139.52 – 65.23 = 74.29 F (c) Amount of water required by the humidifier. ( ) ( )( ) 00645 . 0 0104 . 0 606 , 13 2 2 − = − = x a w W W m m & & = 53.74 lb/hr (d) Capacity of the furnace. ( ) ( )( ) 69 . 22 73 . 40 606 , 13 1 2 − = − = i i m q x a F & & = 245,452 Btu/hr
  • 92.
  • 93. 3.46 The system of Problem 3.40 has a supply air fan located just downstream of the cooling coil. The total power input to the fan is 2.0 hp. It is also estimated that heat gain to the supply duct system is 500 Btu/hr. Rework Problem 3.40 taking the fan and duct system heat gain into account. Make a sketch of the processes. Solution: q & = 10 tons = 120,000 Btu/hr l q & = 2.5 tons = 30,000 Btu/hr l s q q q & & & − = = 120,000 – 30,000 = 90,000 Btu/hr Chart 1a 3 db t = 76 F 3 φ = 50 % 0 db t = 100 F 0 φ = 50 % 2 db t = 56 F 2 1 ′ − ′ q & = 2.0 hp (2545 Btu/hp.hr) = 5,090 Btu/hr 2 2 − ′ q & = 500 Btu/hr 3 0 10 . 0 Q Q & & = at state 0, 0 db t = 100 F, 0 φ = 50 % 0 i = 47.08 Btu/lbma 0 W = 0.0209 lbmv/lbma o v = 14.58 ft3 /lbma at state 3, 3 db t = 76 F, 3 φ = 50 % 3 i = 28.74 Btu/lbma 3 W = 0.0096 lbmv/lbma 3 v = 13.71 ft3 /lbma ( )       = = 58 . 14 71 . 13 10 . 0 0 3 3 0 3 0 v Q v Q m m a a & & & & = 0.094 at state 1, ( )( ) 094 . 0 1 74 . 28 08 . 47 094 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 30.32 Btu/lbma
  • 94. ( )( ) 094 . 0 1 0096 . 0 0209 . 0 094 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.0106 lbmv/lbma 1 db t = 78.0 F 1 wb t = 65.5 F (a) ( ) 2 3 t t c m q p a s − = & & p c = 0.245 Btu/lb-F ( )( ) 56 76 245 . 0 000 , 90 − = a m & a m & = 18,367 lbma/hr (b) 0 3 a a a m m m & & & + = 3 3 094 . 0 a a a m m m & & & + = 3 094 . 1 367 , 18 a m & = 3 a m & = 16,789 lbma/hr return air. ( )( )( ) 71 . 13 60 1 789 , 16 3 3 3 = = v m Q a & & = 3,836 ft3 /min ( )( ) 789 , 16 094 . 0 094 . 0 3 0 = = a a m m & & = 1,578 lbma/hr ( )( )( ) 58 . 14 60 1 578 , 1 0 0 0 = = v m Q a & & = 384 ft3 /min (c) 1 db t = 78.0 F, 1 wb t = 65.5 F 1 v = 13.78 ft3 /lbma 1 i = 30.32 Btu/lbma a a m m & & = 1 = 18,367 lbma/hr ( )( )( ) 78 . 13 60 1 367 , 18 1 1 1 = = v m Q a & & = 4,218 ft3 /min (d) ( ) 2 2 1 2 2 ′ − ′ − = i i m q a & & ( ) 1 2 1 2 1 ′ ′ ′ − ′ − = i i m q a & & ( ) 1 2 1 2 2 2 1 ′ − ′ ′ − ′ − = + i i m q q a & & & ( ) 2 3 1 i i m q a − = & & ( ) 1 3 1 2 2 2 1 ′ − ′ ′ − ′ − = + + i i m q q q a & & & & ( )( ) 1 74 . 28 367 , 18 000 , 120 500 090 , 5 ′ − = + + i 1′ i = 21.90 Btu/lbma ( ) ( )( ) 90 . 21 32 . 30 367 , 18 1 1 − = − = ′ i i m q a c & & = 12.9 tons ( ) 1 2 2 2 2 1 ′ − ′ ′ − ′ − = + t t c m q q p a & & & ( )( )( ) 1 56 245 . 0 367 , 18 500 5090 ′ − = + t 1′ t = 54.76 F
  • 95. ( ) 1 1 ′ − = t t c m q p a cs & & ( )( )( ) 76 . 54 0 . 78 245 . 0 367 , 18 − = cs q & = 104,578 Btu/hr 650 , 154 578 , 104 = = c cs c q q SHF = 0.676
  • 96. 3.47 The system of Problem 3.42 has a supply air fan located just downstream of the coil and a return air fan just upstream of the mixing box. The power input to the supply fan is 18 kW, and the power input to the return fan is 12 kW. Rework Problem 3.42 taking the fan power into account. Make a sketch of the system processes on a skeleton psychrometric chart. Solution: q & = 410 kW l q & = 100 kW l s q q q & & & − = = 410 kW – 100 kW = 310 kW Chart 1b State 3, 3 db t = 25 C 3 φ = 50 % 3 W = 0.0099 kgv/kga 3 i = 50.31 kJ/kga 3 v = 0.858 m3 /kga State 0, 0 db t = 38 C 0 φ = 50 % 0 W = 0.0211 kgv/kga 0 i = 92.30 kJ/kga 0 v = 0.911 m3 /kga 1 2 0 10 . 0 10 . 0 a a m m m = = & State 2, 2 db t = 18 C State 1, 9 1 10 . 0 10 . 0 1 1 1 3 0 = − = a a a a a m m m m m & & & & & Solving for State 3′ ; ( ) 3 3 3 3 3 t t c m q p a − = ′ ′ − & & ( ) ( ) 18 25 02 . 1 310 2 3 2 − = − = t t c q m p s a & & = 43.4 kg/s 2 1 a a m m & & = ( ) 4 . 43 9 . 0 9 . 0 10 . 0 1 1 1 3 = = − = a a a a m m m m & & & & = 39.06 kg/s ( ) 3 3 3 3 3 t t c m q p a − = ′ ′ − & & ( ) ( )( )( ) 25 02 . 1 06 . 39 12 3 − = ′ t
  • 97. 3′ t = 25.3 C at 3′ , 3′ t = 25.3 C, 3 3 W W = ′ = 0.0099 kgv/kga Chart 1b, 3′ i = 50.7 kJ/kga For State 1; ( ) 9 1 1 7 . 50 30 . 92 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m i i m m i & & & & = 54.86 kJ/kga ( ) 9 1 1 0099 . 0 0211 . 0 9 1 1 3 0 3 0 3 0 1 + +       = + + = a a a a m m W W m m W & & & & = 0.01102 kgv/kga Chart 1b, 1 v = 0.864 m3 /kg, 1 db t = 26.57 C, 1 wb t = 19.3 C, 1 φ = 50.8 % (a) 410 310 = = q q SHF s = 0.756 Chart 1b, 2 db t = 18 C 2 φ = 69.9 % 2 i = 40.87 kJ/kg 2 W = 0.0090 kgv/kga 2 v = 0.837 m3 /kga ( ) ( )( ) 18 25 02 . 1 310 2 3 2 − = − = t t c q m p s a & & = 43.4 kg/s (b) 2 1 a a m m & & = = 43.4 kg/s ( )( ) 4 . 43 1 . 0 1 . 0 1 0 = = a a m m & & = 4.34 kg/s ( )( ) 4 . 43 9 9 0 3 = = a a m m & & = 39.06 kg/s Return air: ( )( ) 858 . 0 06 . 39 3 3 3 = = v m Q a & & = 33.5 m3 /s Exhaust air: ( )( ) 911 . 0 34 . 4 0 0 0 = = v m Q a & & = 3.96 m3 /s Outdoor air = Exhaust air ( )( ) 911 . 0 34 . 4 0 0 0 = = v m Q a & & = 3.96 m3 /s (a) Condition of air entering the coil
  • 98. 1 db t = 26.57 C, 1 wb t = 19.3 C, 1 φ = 50.8 %, 1 v = 0.864 m3 /kg Volume flow rate; ( )( ) 864 . 0 4 . 43 1 1 1 = = v m Q a & & = 37.5 m3 /s (a) Capacity ( ) 2 1 1 ′ − = i i m q a c & & Solve for 2′; ( ) 2 2 2 2 2 ′ − ′ − = t t c m q p a & & ( )( )( ) 2 18 02 . 1 4 . 43 18 ′ − = t 2′ t = 17.6 C at 2′, 2′ t = 17.6 C, 2 2 W W = ′ = 0.0090 kgv/kga 2′ i = 40.57 kJ/kga ( ) ( )( ) 57 . 40 86 . 54 4 . 43 2 1 1 − = − = ′ i i m q a c & & = 620 kW Apparatus dew point , Chart 1b; d t = 8.8 C By-pass factor 8 . 8 57 . 26 8 . 8 6 . 17 1 2 − − = − − = ′ d d t t t t b = 0.495 SHF of cooling coil, c cs c q q SHF & & = ( ) ( )( )( ) 6 . 17 57 . 26 02 . 1 4 . 43 2 1 1 − = − = ′ t t c m q p a cs & & cs q & = 397 kW 620 397 = = c cs c q q SHF & & = 0.64
  • 99.
  • 100. 3.48 A large warehouse located in Denver, Colorado (elevation = 5000 ft or 1500 m), is to be conditioned using an evaporative cooling system. Assume that the space is to be maintained at 80 F (27 C) and 50 percent relative humidity by a 100 percent outdoor air system. Outdoor design conditions are 91 F (33 C) db and 59 F (15 C) wb. The cooling load is estimated to be 100 tons (352 kW) with a sensible heat factor of 0.9. The supply air fan is locatedjust downstream of the spray chamber and is estimated to require a power input of 20 hp (15 kW). Determine the volume flow rate of air to the space, and sketch the processes on a skeleton psychrometric chart in (a) English units and (b) SI units. Solution: (a) Chart 1Ha, English units State 2; 2 db t = 80 F 2 φ = 50 % 2 i = 33.73 Btu/lbma 2 W = 0.01323 lbmv/lbma State 0; 0 db t = 91 F 0 wb t = 59 F 0 i = 28.0 Btu/lbma 0 W = 0.0056 lbmv/lbma State 1; 0 1 i i = = 28.0 Btu/lbma q & = 100 tons = 1,200,000 Btu/hr ( ) ( )( ) 9 . 0 000 , 200 , 1 = = SHF q qs & & = 1,080,000 Btu/hr ( ) 1 2 ′ − = t t c m q p a s & & = 1,080,000 Btu/hr but 1 1 ′ − q & = 20 hp (2545 Btu/hp-hr) = 50,900 Btu/hr ( ) 1 1 1 1 t t c m q p a − = ′ ′ − & & = 50,900 Btu/hr By trial and error method, Try 1′ t = 61 F ( )( ) 61 80 245 . 0 − = a s m q & & = 1,080,000 Btu/hr a m & = 232,009 lb/hr ( )( )( ) 1 1 1 61 245 . 0 009 , 232 t q − = ′ − & = 50,900 Btu/hr 1 t = 60.10 F locate at Chart 1Ha, 1 i = 28.0 Btu/lbma, 1 1 ′ =W W = 0.0125 lbmv/lbma
  • 101. with 1′ W = 0.0125 lbmv/lbma and SHF = 0.9 at 1′ t = 61 F, 1′ v = 16.09 ft3 /lbma ( )( )( ) 09 . 16 60 1 009 , 232 1 = = ′ v m Q a & & = 62,217 ft3 /min
  • 102. (b) Chart 1Hb, SI units State 2; 2 db t = 27 C 2 φ = 50 % 2 i = 61.34 kJ.kga 2 W = 0.0134kgv/kga State 0; 0 db t = 33 C 0 wb t = 15 C 0 i = 47.10 kJ/kga 0 W = 0.0054 kgv/kga State 1; 0 1 i i = = 47.1 kJ/kga q & = 352 kW ( ) ( )( ) 9 . 0 352 = = SHF q qs & & = 316.8 kW ( ) 1 2 ′ − = t t c m q p a s & & = 316.8 kW From Chart 1Hb, sketch of the process with SHF = 0.9, SI units equivalent for temperatureas given in the problem will not intesect inside the chart as shown. Therefore, use the answer in (a) converted to SI units. ( )                 = sec 60 min 1 281 . 3 1 min / 217 , 62 3 3 ft m ft Q & = 29.36 m3 /s
  • 103.
  • 104. 3.49 The summer design conditions for Tuczon, Arizona, are 102 F (39 C) dry bulb and 66 F (19 C) wet bulb temperature. In Shreveport, Louisiana, the design conditions are 96 F (36 C) dry bulb and 76 F (24 C) wet bulb temperature. What is the lowest air temperature that can theoretically be attained in an evaporative cooler for these design conditions in each city? Solution: English units, Chart 1a. In Tuczon, Arizona, 1 db t = 102 F, 1 wb t = 66 F, 1 2 i i = saturated then 2 t = 65.623 F In Shreveport, Louisiana, 1 db t = 96 F, 1 wb t = 76 F, 1 2 i i = saturated then 2 t = 75.783 F SI units, Chart 1b. In Tuczon, Arizona, 1 db t = 39 C, 1 wb t = 19 C, 1 2 i i = saturated then 2 t = 18.836 C In Shreveport, Louisiana, 1 db t = 36 C, 1 wb t = 24 C, 1 2 i i = saturated then 2 t = 23.892 C 3.50 Consider a conventional cooling system designed for use at high elevation (5000 ft or 1500 m). The space, with SHF = 0.7, is to be maintained at 75 F (24 C) db and 40 percent relative humidity, and outdoor design conditions are 100 F (38 C) and 10 percent relative humidity. Outdoor air is to be mixed with return air such that it can be cooled sensibly to 50 F (10 C), where it crosses the condition line. The air is then supplied to the space. Sketch the processes on Chart 1Ha or 1Hb, and compute the volume flow rate of the supply air and percent outdoor per ton of cooling load, in (a) English units and (b) SI units. Solution: (a) English units, Chart 1Ha. At state 4, 4 db t = 75 F, 4 φ = 40% 4 i = 27.77 Btu/lbma 4 W = 0.0089 lbmv/lbma 4 v = 16.43 ft3 /lbma
  • 105. At state 1 1 db t = 100 F, 1 φ = 10% 1 i = 29.43 Btu/lbma 1 W = 0.0049 lbmv/lbma 1 v = 17.08 ft3 /lbma At state 3, From Chart 1Ha, 3 db t = 50 F, SHF = 0.7 2 3 W W = = 0.0065 lbmv/lbma, 3 i = 19.02 Btu/lbma 3 v = 15.60 ft3 /lbma At state 2, From Chart 1Ha, 2 W = 0.0065 lbmv/lbma, along the line connecting the state 1 and 4. 2 db t = 90 F 2 i = 28.78 Btu/lbma ( ) 3 2 i i m q a − = & & = 1 ton = 12,000 Btu/hr ( ) 000 , 12 02 . 19 78 . 28 = − a m & a m & = 1,230 lb/hr per ton ( )( )( ) 60 . 15 60 1 230 , 1 3 3 = = v m Q a & & = 320 ft3 /min-tons Percentage Outdoor Air. 4 1 4 1 4 1 2 1 a a a a m m W W m m W & & & & + + = ( ) 4 1 4 1 1 0089 . 0 0049 . 0 0065 . 0 a a a a m m m m & & & & + + = 4 1 a a m m & & =1.5 ( ) % 100 1 5 . 1 5 . 1 % 4 1 1 3 1 + = + = = a a a a a m m m m m Outdoor & & & & & = 0.6 (100 %) = 60 %
  • 106. (b) SI units, Chart 1Hb. At state 4, 4 db t = 24 C, 4 φ = 40% 4 i = 46.81 kJ/kga
  • 107. 4 W = 0.0089 kgv/kga 4 v = 1.023 m3 /kga At state 1 1 db t = 38 C, 1 φ = 10% 1 i = 50.86 kJ/kga 1 W = 0.0049 kJ/kga 1 v = 1.065 m3 /kga At state 3, From Chart 1Hb, 3 db t = 10 C, SHF = 0.7 2 3 W W = = 0.0065 kgv/kga, 3 i = 26.41 kJ/kga 3 v = 0.971 m3 /kga At state 2, From Chart 1Hb 2 W = 0.0065 kgv/kga, along the line connecting the state 1 and 4. 2 db t = 32.4 C 2 i = 49.22 Btu/lbma ( ) 3 2 i i m q a − = & & = 1 ton = 3.517 kW ( ) 517 . 3 41 . 26 22 . 49 = − a m & a m & = 0.1542 kga/s per ton ( )( ) 971 . 0 1542 . 0 3 3 = = v m Q a & & = 0.1497 m3 /s -tons Percentage Outdoor Air. 4 1 4 1 4 1 2 1 a a a a m m W W m m W & & & & + + = ( ) 4 1 4 1 1 0089 . 0 0049 . 0 0065 . 0 a a a a m m m m & & & & + + = 4 1 a a m m & & =1.5 ( ) % 100 1 5 . 1 5 . 1 % 4 1 1 3 1 + = + = = a a a a a m m m m m Outdoor & & & & & = 0.6 (100 %) = 60 %
  • 108.
  • 109. 3.51 A space heating system is designed as shown in Fig. 3.21 for a large zone in a building. Under design conditions for Kansas City, Missouri, air enters the preheat coil at 6 F (-14 C) and essentially 0 percent relative humidity. The outdoor air is heated to 60 F (16 C) and mixed with return air. It is then heated and humidified in a separate process to 105 F (40 C) and 30 percent relative humidity (RH) for supply to the space. Saturated vapor at 2.0 psig is used for humidification. Twenty-five percent of the supply air is outdoor air by mass. The total space heating load is 500,000 Btu/hr (145 kW), and the space design conditions are 70 F (21 C) and 30 percent RH. Sketch the psychrometric processes, and compute the supply air volume flow rate, the heat transfer rates in both coils, and the steam flow rate in (a) English units, (b) SI units. Solution: It is not Fig. 3.21 but Fig. 3.23 (a) English units, Chart 1a At state 3, 3 db t = 70 F, 3 φ = 30 % 3 i = 21.90 Btu/lbma 3 W = 0.0047 lbmv/lbma At state 2, 2 db t = 105 F, 2 φ = 30 % 2 i = 41.15 Btu/lbma 2 W = 0.0144 lbmv/lbma 2 v = 14.56 ft3 /lbma 1 2 0 25 . 0 25 . 0 a a a m m m & & & = = ′ 1 2 0 2 3 75 . 0 75 . 0 a a a a a m m m m m & & & & & = = − = ′ 75 . 0 25 . 0 3 0 = ′ a a m m & & At state 0′, 0′ db t = 60 F, 0′ φ = 0 % 0′ i = 14.4 Btu/lbma
  • 110. 0′ W = 0.0000 lbmv/lbma ( ) 75 . 0 25 . 0 1 90 . 21 4 . 14 75 . 0 25 . 0 1 3 0 3 0 3 0 1 + +       = + + = ′ ′ ′ a a a a m m i i m m i & & & & = 20.03 Btu/lbma ( ) 75 . 0 25 . 0 1 0047 . 0 0000 . 0 75 . 0 25 . 0 1 3 0 3 0 3 0 1 + +       = + + = ′ ′ ′ a a a a m m W W m m W & & & & = 0.00353 lbmv/lbma at state 1, 1 db t = 67.42 F state 1′, saturated steam at 2.0 psig, w i = 1152.8 Btu/lb W i i W W i i w ∆ ∆ = = − − ′ ′ 1 2 1 2 = 1152.8 Btu/lb From Chart 1a, intersection of line 1 2 ′ − parallel to W i ∆ ∆ = 1152.8 Btu/lb and line 1 1 ′ − . 1′ db t = 102.97 F 1 1 W W = ′ = 0.00353 lbmv/lbma 1′ i = 28.62 Btu/lbma ( ) 3 2 2 2 i i m q a a − = & & ( ) 90 . 21 15 . 41 000 , 500 2 − = a m & 2 a m & = 25,974 lbma/hr ( ) 974 , 25 25 . 0 25 . 0 2 0 = = ′ a a m m & & = 6,494 lbma/hr Supply air volume flow rate, ( )( )( ) 56 . 14 60 1 974 , 25 2 2 2 = = v m Q a & & = 6,303 ft3 /min Heat transfer rate on pre-heat coil ( ) ( )( )( ) 6 60 245 . 0 494 , 6 0 0 0 − = − = ′ ′ t t c m q p a p & & = 85,016 Btu/hr Heat transfer rate on heating coil ( ) ( )( )( ) 42 . 67 97 . 102 245 . 0 974 , 25 1 1 2 − = − = ′ t t c m q p a h & & = 226,227 Btu/hr Steam flow rate ( ) ( )( ) 00353 . 0 0144 . 0 974 , 25 1 2 2 − = − = ′ W W m m a v & & = 282 lbm/hr
  • 111. (b) SI units, Chart 1b At state 3, 3 db t = 21 C, 3 φ = 30 % 3 i = 32.84 kJ/kga 3 W = 0.0046 kgv/kga
  • 112. At state 2, 2 db t = 40 C, 2 φ = 30 % 2 i = 76.01 kJ/kga 2 W = 0.0139 kgv/kga 2 v = 0.907 m3 /kga 1 2 0 25 . 0 25 . 0 a a a m m m & & & = = ′ 1 2 0 2 3 75 . 0 75 . 0 a a a a a m m m m m & & & & & = = − = ′ 75 . 0 25 . 0 3 0 = ′ a a m m & & At state 0′, 0′ db t = 16 F, 0′ φ = 0 % 0′ i = 16.10 kJ/kga 0′ W = 0.0000 kgv/kga ( ) 75 . 0 25 . 0 1 84 . 32 10 . 16 75 . 0 25 . 0 1 3 0 3 0 3 0 1 + +       = + + = ′ ′ ′ a a a a m m i i m m i & & & & = 28.66 kJ/kga ( ) 75 . 0 25 . 0 1 0046 . 0 0000 . 0 75 . 0 25 . 0 1 3 0 3 0 3 0 1 + +       = + + = ′ ′ ′ a a a a m m W W m m W & & & & = 0.00346 kgv/kga at state 1, 1 db t = 19.75 F state 1′, saturated steam at 2.0 psig (13.8 kPag) , w i = 2681 kJ/kg W i i W W i i w ∆ ∆ = = − − ′ ′ 1 2 1 2 = 2681 kJ/kg From Chart 1a, intersection of line 1 2 ′ − parallel to W i ∆ ∆ = 2681 kJ/kg and line 1 1 ′ − . 1′ db t = 38.9 C 1 1 W W = ′ = 0.00346 kgv/kga 1′ i = 48.02 kJ/kga ( ) 3 2 2 2 i i m q a a − = & & ( ) 54 . 32 01 . 76 145 2 − = a m & 2 a m & = 3.12 kga/s ( ) 12 . 3 25 . 0 25 . 0 2 0 = = ′ a a m m & & = 0.78 kgas Supply air volume flow rate, ( )( ) 907 . 0 12 . 3 2 2 2 = = v m Q a & & = 2.83 m3 /s
  • 113. Heat transfer rate on pre-heat coil ( ) ( )( ) ( ) [ ] 14 16 02 . 1 78 . 0 0 0 0 − − = − = ′ ′ t t c m q p a p & & = 23.9 kW Heat transfer rate on heating coil ( ) ( )( )( ) 75 . 19 9 . 38 02 . 1 12 . 3 1 1 2 − = − = ′ t t c m q p a h & & = 61 kW Steam flow rate ( ) ( )( ) 00346 . 0 0139 . 0 12 . 3 1 2 2 − = − = ′ W W m m a v & & = 0.0326 kg/s
  • 114. 3.52 A space is to be maintained at 78 F (26 C) and 68 F (20 C) wb. The cooling system is a variable-air-volume (VAV) type where the quantity of air supplied and the supply air temperature are controlled. Under design conditions, the total cooling load is 150 tons (530 kW) with a sensible heat factor of 0.6, and the supply air temperature is 60 F (16 C). At minimum load, about 18 tons (63 kW) with SHF of 0.8, the air quantity may be reduced no more than 80 percent by volume of the full design value. Determine the supply air conditions for minimum load. Show all the conditions on a psychrometric chart for (a) English units and (b) SI units. Assume sea level pressure. Solution: (a) English units Chart 1a, At state 1 1 db t = 78 F 1 wb t = 68 F 1 i = 32.34 Btu/lbma 1 W = 0.01243 lbmv/lbma 1 v = 13.82 ft3 /lbma At state 2, SHF = 0.6 2 db t = 60 F 2 wb t = 57.8 F 2 i = 25.14 Btu/lbma 2 W = 0.0099 lbmv/lbma 2 v = 13.30 ft3 /lbma ( ) 2 1 2 i i m q a − = & & ( ) 14 . 25 34 . 32 000 , 800 , 1 2 − = a m & 2 a m & = 250,000 lbma/hr ( )( )( ) 30 . 13 60 1 000 , 250 2 2 2 = = v m Q a & & = 55,417 ft3 /min At minimum load condition: q & = 18 tons = 216,000 Btu/hr ( ) ( ) 417 , 55 2 . 0 2 . 0 8 . 0 1 2 2 2 = = − = ′ Q Q Q & & & = 11,084 ft3 /min Since space is to be maintained at 78 F db and 68 F wb. At state 1′= state 1 1′ db t = 78 F
  • 115. 1′ wb t = 68 F 1′ i = 32.34 Btu/lbma 1′ W = 0.01243 lbmv/lbma 1′ v = 13.82 ft3 /lbma A state 2′, SHF = 0.8, Chart 1a ( ) ( )( ) 8 . 0 000 , 216 = = SHF q qs & & = 172,800 Btu/hr ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = t t c v Q t t c m q p p a s & & ( )( ) ( )( ) ( )( ) 800 , 172 78 245 . 0 040 , 665 78 245 . 0 60 084 , 11 2 2 2 2 = −         = −       = ′ ′ ′ ′ t v t v qs & 2 2 9429 . 0 55 . 73 ′ ′ − = t v or ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = i i v Q i i m q a s & & ( )( ) ( ) ( ) 000 , 216 34 . 32 040 , 665 34 . 32 60 084 , 11 2 2 2 2 = −         = −       = ′ ′ ′ ′ i v t v qs & 2 2 3248 . 0 34 . 32 ′ ′ − = v i From psychrometric chart, satisfying above equation, Chart 1a., State 2 2′ db t = 63.75 F, 2′ v = 13.44 ft3 /lbma 2′ i = 28.0 Btu/lbma, 2′ wb t = 62.35 F 2′ W = 0.01174 lbmv/lbma, 2′ φ = 92.7 % Therefore the supply air condition is 63.75 F db and 62.35 F wb or 92.7 % RH.
  • 116. (b) SI units Chart 1b, At state 1 1 db t = 26 C 1 wb t = 20 C 1 i = 57.23 kJ/kga 1 W = 0.01220 kgv/kga 1 v = 0.864 m3 /kga
  • 117. At state 2, SHF = 0.6 2 db t = 16 C 2 wb t = 14.37 C 2 i = 40.23 kJ/kga 2 W = 0.00955 kgv/kga 2 v = 0.8317 m3 /kga ( ) 2 1 2 i i m q a − = & & ( ) 23 . 40 23 . 57 530 2 − = a m & 2 a m & = 31.18 kga/s ( )( ) 8317 . 0 18 . 31 2 2 2 = = v m Q a & & = 25.93 m3 /s At minimum load condition: q & = 63 kW ( ) ( ) 93 . 25 2 . 0 2 . 0 8 . 0 1 2 2 2 = = − = ′ Q Q Q & & & = 5.186 kga/s Since space is to be maintained at 26 C db and 20 C wb. At state 1′ = State 1 1′ db t = 26 C 1′ wb t = 20 C 1′ i = 57.23 kJ/kga 1′ W = 0.01220 kgv/kga 1′ v = 0.864 kgv/kga A state 2′, SHF = 0.8, Chart 1b ( ) ( )( ) 8 . 0 63 = = SHF q qs & & = 50.4 kW ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = t t c v Q t t c m q p p a s & & ( )( ) 4 . 50 26 02 . 1 186 . 5 2 2 = −         = ′ ′ t v qs & 2 2 105 . 0 729 . 2 ′ ′ − = t v or ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = i i v Q i i m q a s & &
  • 118. ( ) 63 23 . 57 186 . 5 2 2 = −         = ′ ′ i v qs & 2 2 148 . 12 23 . 57 ′ ′ − = v i From psychrometric chart, satisfying above equation, Chart 1b., State 2′ 2′ db t = 17.99 C, 2′ v = 0.840 m3 /kga 2′ i = 47.0 kJ/kga, 2′ wb t = 16.74 C 2′ W = 0.0114 kgv/kga, 2′ φ = 88 % Therefore the supply air condition is 17.99 C db and 16.74 C wb or 88 % RH.
  • 119. 3.53 Rework Problem 3.52 for an elevation of 5000 feet (1500 m). Solution: (a) English units At design condition: Chart 1Ha. At state 1 1 db t = 78 F 1 wb t = 68 F 1 i = 35.70 Btu/lbma 1 W = 0.0155 lbmv/lbma 1 v = 16.69 ft3 /lbma At state 2, SHF = 0.6 2 db t = 60 F 2 wb t = 59.23 F 2 i = 28.35 Btu/lbma 2 W = 0.0128 lbmv/lbma 2 v = 16.06 ft3 /lbma ( ) 2 1 2 i i m q a − = & & ( ) 35 . 28 70 . 35 000 , 800 , 1 2 − = a m & 2 a m & = 244,899 lbma/hr ( )( )( ) 06 . 16 60 1 899 , 244 2 2 2 = = v m Q a & & = 65,551 ft3 /min At minimum load condition: q & = 18 tons = 216,000 Btu/hr ( ) ( ) 551 , 65 2 . 0 2 . 0 8 . 0 1 2 2 2 = = − = ′ Q Q Q & & & = 13,110 ft3 /min Since space is to be maintained at 78 F db and 68 F wb. At state 1′= state 1 1′ db t = 78 F 1′ wb t = 68 F 1′ i = 35.70 Btu/lbma 1′ W = 0.0155 lbmv/lbma 1′ v = 16.69 ft3 /lbma
  • 120. A state 2′, SHF = 0.8, Chart 1a ( ) ( )( ) 8 . 0 000 , 216 = = SHF q qs & & = 172,800 Btu/hr ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = t t c v Q t t c m q p p a s & & ( )( ) ( )( ) ( )( ) 800 , 172 78 245 . 0 600 , 786 78 245 . 0 60 110 , 13 2 2 2 2 = −         = −       = ′ ′ ′ ′ t v t v qs & 2 2 1153 . 1 99 . 86 ′ ′ − = t v or ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = i i v Q i i m q a s & & ( )( ) ( ) ( ) 000 , 216 70 . 35 600 , 786 70 . 35 60 110 , 13 2 2 2 2 = −         = −       = ′ ′ ′ ′ i v t v qs & 2 2 2746 . 0 70 . 35 ′ ′ − = v i From psychrometric chart, satisfying above equation, Chart 1Ha., State 2 2′ db t = 63.46 F, 2′ v = 16.214 ft3 /lbma 2′ i = 31.22 Btu/lbma, 2′ wb t = 62.83 F 2′ W = 0.01467 lbmv/lbma, 2′ φ = 96.8 % Therefore the supply air condition is 63.46 F db and 62.83 F wb or 96.8 % RH.
  • 121. (a) SI units Chart 1Hb, At state 1 1 db t = 26 C 1 wb t = 20 C 1 i = 64.83 kJ/kga 1 W = 0.0152 kgv/kga 1 v = 1.040 m3 /kga
  • 122. At state 2, SHF = 0.6 2 db t = 16 C 2 wb t = 15.124 C 2 i = 47.83 kJ/kga 2 W = 0.01254 kgv/kga 2 v = 1.0014 m3 /kga ( ) 2 1 2 i i m q a − = & & ( ) 83 . 47 83 . 64 530 2 − = a m & 2 a m & = 31.18 kga/s ( )( ) 0014 . 1 18 . 31 2 2 2 = = v m Q a & & = 31.22 m3 /s At minimum load condition: q & = 63 kW ( ) ( ) 22 . 31 2 . 0 2 . 0 8 . 0 1 2 2 2 = = − = ′ Q Q Q & & & = 6.244 kga/s Since space is to be maintained at 26 C db and 20 C wb. At state 1′ = State 1 1′ db t = 26 C 1′ wb t = 20 C 1′ i = 64.83 kJ/kga 1′ W = 0.0152 kgv/kga 1′ v = 1.040 kgv/kga A state 2′, SHF = 0.8, Chart 1b ( ) ( )( ) 8 . 0 63 = = SHF q qs & & = 50.4 kW ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = t t c v Q t t c m q p p a s & & ( )( ) 4 . 50 26 02 . 1 244 . 6 2 2 = −         = ′ ′ t v qs & 2 2 1264 . 0 2855 . 3 ′ ′ − = t v or ( ) ( ) 2 1 2 2 2 1 2 ′ ′ ′ ′ ′ ′ −         = − = i i v Q i i m q a s & & ( ) 63 83 . 64 244 . 6 2 2 = −         = ′ ′ i v qs &
  • 123. 2 2 09 . 10 83 . 64 ′ ′ − = v i From psychrometric chart, satisfying above equation, Chart 1Hb., State 2′ 2′ db t = 17.99 C, 2′ v = 1.0113 m3 /kga 2′ i = 54.63 kJ/kga, 2′ wb t = 17.18 C 2′ W = 0.01442 kgv/kga, 2′ φ = 92.8 % Therefore the supply air condition is 17.99 C db and 17.18 C wb or 92.8 % RH.
  • 124. 3.54 A 50-ton constant-volume space air-conditioning system uses face and bypass and water temperature control. At the design condition the space is to be maintained at 77 F (25 C) db and 50 percent relative humidity with 55 F (13 C) db supply air at 90 percent relative humidity. Outdoor air is supplied at 95 F (35 C) db, 60 percent relative humidity with a ratio of 1 lbm (kgm) to 5 lbm (kgm) return air. A part-load condition exists where the total space load decreases by 50 percent and the SHF increases to 90 percent. The outdoor air condition changes to 85 F (29 C) db and 70 percent relative humidity. Assume sea level pressure. (a) At what temperature must the air be supplied to the space under part- load condition? (b) If the air leaving the coil has a dry-bulb temperature of 60 F (15 C), what is the ratio of the air bypassed to that flowing through the coil? (c) What is the apparatus dew point temperature for both the design and part-load conditions? (d) Show all the processes on a psychrometric chart. Solution: In English units, Chart 1a c q & = 50 tons = 600,000 Btu/hr 5 1 3 0 = a a m m & & = 0.2 at state 0, 0 db t = 95 F, 0 φ = 60 % 0 i = 46.6 Btu/lbma 0 W = 0.0216 lbmv/lbma at state 3, 3 db t = 77 F, 3 φ = 50 % 3 i = 29.4 Btu/lbma 3 W = 0.0099 lbmv/lbma at state 2, 2 db t = 55 F, 2 φ = 90 % 2 i = 22.2 Btu/lbma 2 W = 0.0083 lbmv/lbma at state 1, ( )( ) 2 . 0 1 4 . 29 6 . 46 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 32.27 Btu/lbma ( )( ) 2 . 0 1 0099 . 0 0216 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.01185 lbmv/lbma From chart 1a, 1 db t = 80.3 F, d t = 49.5 F
  • 125. ( ) 2 1 2 i i m q a c − = & & ( ) 2 . 22 27 . 32 000 , 600 2 − = a m & 2 a m & = 59,583 lbma/hr Space load ( ) 2 3 2 i i m q a − = & & ( )( ) 2 . 22 4 . 29 583 , 59 − = q & = 428,998 Btu/hr ( ) 2 3 2 t t c m q p a s − = & & ( )( )( ) 55 77 245 . 0 483 , 59 − = s q & = 321,152 Btu/hr 998 , 428 152 , 321 = = q q SHF s & & = 0.7486 At part-load condition q & = (0.5)(428,998) = 214,499 Btu/hr SHF = 0.90 state 0′, 0′ db t = 85 F, 0′ φ = 70 % 0′ i = 40.5 Btu/lbma 0′ W = 0.0183 lbmv/lbma state 3′ , 3′ db t = 77 F, 3′ φ = 50 % 3′ i = 29.4 Btu/lbma 3′ W = 0.0099 lbmv/lbma (a) Since volume is constant, 2 2 a a m m & & = ′ = 59,583 lbma/hr ( ) SHF q qs & & = = (214,499)(0.90) = 193,049 Btu/hr ( ) 2 3 2 ′ ′ − = t t c m q p a s & & ( )( )( ) 2 77 245 . 0 583 , 59 049 , 193 ′ − = t 2′ t = 63.78 F (b) Let b = bypass and c t = coil leaving temperature c c t t t t b − − = ′ ′ 1 2 still, 5 1 3 0 = ′ ′ a a m m & & = 0.2 ( )( ) 2 . 0 1 4 . 29 5 . 40 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m i i m m i & & & & = 31.25 Btu/lbma
  • 126. ( )( ) 2 . 0 1 0099 . 0 0183 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m W W m m W & & & & = 0.0113 lbmv/lbma then, Chart 1a, 1′ t = 78.61 F 60 6 . 78 60 78 . 63 1 2 − − = − − = ′ ′ c c t t t t b = 0.203 (c) For design condition, Chart 1a, d t = 49.5 F For part-load condition, Chart 1a, d t ′ = 52.16 F (d) Psychrometric Chart
  • 127. SI units, Chart 1b c q & = 50 tons = 176 kW 5 1 3 0 = a a m m & & = 0.2 at state 0, 0 db t = 35 C, 0 φ = 60 % 0 i = 90.19 kJ/kga 0 W = 0.0215 kgv/kga at state 3, 3 db t = 25 C, 3 φ = 50 % 3 i = 50.51 kJ/kga 3 W = 0.0099 kgv/kga at state 2, 2 db t = 13 C, 2 φ = 90 % 2 i = 34.25 kJ/kga 2 W = 0.0084 kgv/kga at state 1, ( )( ) 2 . 0 1 31 . 50 19 . 90 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 56.96 kJ/kga ( )( ) 2 . 0 1 0099 . 0 0215 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.0118 lbmv/lbma From chart 1b, 1 db t = 26.67 C, d t = 10 C ( ) 2 1 2 i i m q a c − = & & ( ) 25 . 34 96 . 56 176 2 − = a m & 2 a m & = 7.75 kga/s Space load ( ) 2 3 2 i i m q a − = & & ( )( ) 25 . 34 31 . 50 75 . 7 − = q & = 124.5 kW ( ) 2 3 2 t t c m q p a s − = & & ( )( )( ) 13 25 02 . 1 75 . 7 − = s q & = 94.86 kW 5 . 124 86 . 94 = = q q SHF s & & = 0.762 At part-load condition q & = (0.5)(124.5) = 62.25 kW SHF = 0.90
  • 128. state 0′, 0′ db t = 29 C, 0′ φ = 70 % 0′ i = 74.4 kJ/kga 0′ W = 0.01771 kgv/kga state 3′ , 3′ db t = 25 C, 3′ φ = 50 % 3′ i = 50.31 kJ/kga 3′ W = 0.0099 kgv/kga (a) Since volume is constant, 2 2 a a m m & & = ′ = 7.75 kga/s ( ) SHF q qs & & = = (62.25)(0.90) = 56.03 kW ( ) 2 3 2 ′ ′ − = t t c m q p a s & & ( )( )( ) 2 25 02 . 1 75 . 7 03 . 56 ′ − = t 2′ t = 17.91 C (b) Let b = bypass and c t = coil leaving temperature c c t t t t b − − = ′ ′ 1 2 still, 5 1 3 0 = ′ ′ a a m m & & = 0.2 ( )( ) 2 . 0 1 31 . 50 4 . 74 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m i i m m i & & & & = 54.33 kJ/kga ( )( ) 2 . 0 1 0099 . 0 01771 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m W W m m W & & & & = 0.0112 kgv/kga then, Chart 1b, 1′ t = 25.67 C 13 67 . 25 13 91 . 17 1 2 − − = − − = ′ ′ c c t t t t b = 0.273 (c) For design condition, Chart 1b, d t = 10 C For part-load condition, Chart 1b, d t ′ = 10.9 C (d) Psychrometric Chart
  • 129.
  • 130. 3.55 Rework Problem 3.54 for an elevation of 5000 ft. Solution: In English units, Chart 1Ha c q & = 50 tons = 600,000 Btu/hr 5 1 3 0 = a a m m & & = 0.2 at state 0, 0 db t = 95 F, 0 φ = 60 % 0 i = 51.58 Btu/lbma 0 W = 0.026 lbmv/lbma at state 3, 3 db t = 77 F, 3 φ = 50 % 3 i = 31.6 Btu/lbma 3 W = 0.012 lbmv/lbma at state 2, 2 db t = 55 F, 2 φ = 90 % 2 i = 24.07 Btu/lbma 2 W = 0.010 lbmv/lbma at state 1, ( )( ) 2 . 0 1 6 . 31 58 . 51 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 34.93 Btu/lbma ( )( ) 2 . 0 1 012 . 0 026 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.0143 lbmv/lbma From chart 1Ha, 1 db t = 80.2 F, d t = 50.25 F ( ) 2 1 2 i i m q a c − = & & ( ) 07 . 24 93 . 34 000 , 600 2 − = a m & 2 a m & = 55,249 lbma/hr Space load ( ) 2 3 2 i i m q a − = & & ( )( ) 07 . 24 6 . 31 249 , 55 − = q & = 416,025 Btu/hr ( ) 2 3 2 t t c m q p a s − = & & ( )( )( ) 55 77 245 . 0 249 , 55 − = s q & = 297,792 Btu/hr
  • 131. 025 , 416 792 , 297 = = q q SHF s & & = 0.716 At part-load condition q & = (0.5)(416,025) = 208,013 Btu/hr SHF = 0.90 state 0′, 0′ db t = 85 F, 0′ φ = 70 % 0′ i = 44.69 Btu/lbma 0′ W = 0.022 lbmv/lbma state 3′ , 3′ db t = 77 F, 3′ φ = 50 % 3′ i = 31.6 Btu/lbma 3′ W = 0.012 lbmv/lbma (a) Since volume is constant, 2 2 a a m m & & = ′ = 55,249 lbma/hr ( ) SHF q qs & & = = (208,013)(0.90) = 187,212 Btu/hr ( ) 2 3 2 ′ ′ − = t t c m q p a s & & ( )( )( ) 2 77 245 . 0 249 , 55 212 , 187 ′ − = t 2′ t = 63.17 F (b) Let b = bypass and c t = coil leaving temperature c c t t t t b − − = ′ ′ 1 2 still, 5 1 3 0 = ′ ′ a a m m & & = 0.2 ( )( ) 2 . 0 1 6 . 31 69 . 44 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m i i m m i & & & & = 33.78 Btu/lbma ( )( ) 2 . 0 1 012 . 0 022 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m W W m m W & & & & = 0.0137 lbmv/lbma then, Chart 1Ha, 1′ t = 78.2 F 60 2 . 78 60 17 . 63 1 2 − − = − − = ′ ′ c c t t t t b = 0.174 (c) For design condition, Chart 1Ha, d t = 50.25 F
  • 132. For part-load condition, Chart 1Ha, d t ′ = 52.54 F (d) Psychrometric Chart SI units, Chart 1Hb c q & = 50 tons = 176 kW
  • 133. 5 1 3 0 = a a m m & & = 0.2 at state 0, 0 db t = 35 C, 0 φ = 60 % 0 i = 101.55 kJ/kga 0 W = 0.026 kgv/kga at state 3, 3 db t = 25 C, 3 φ = 50 % 3 i = 55.40 kJ/kga 3 W = 0.012 kgv/kga at state 2, 2 db t = 13 C, 2 φ = 90 % 2 i = 38.52 kJ/kga 2 W = 0.0101 kgv/kga at state 1, ( )( ) 2 . 0 1 40 . 55 55 . 101 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m i i m m i & & & & = 63.09 kJ/kga ( )( ) 2 . 0 1 012 . 0 026 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = a a a a m m W W m m W & & & & = 0.0143 lbmv/lbma From chart 1Hb, 1 db t = 26.5 C, d t = 9.89 C ( ) 2 1 2 i i m q a c − = & & ( ) 52 . 38 09 . 63 176 2 − = a m & 2 a m & = 7.163 kga/s Space load ( ) 2 3 2 i i m q a − = & & ( )( ) 52 . 38 4 . 55 163 . 7 − = q & = 120.9 kW ( ) 2 3 2 t t c m q p a s − = & & ( )( )( ) 13 25 02 . 1 163 . 7 − = s q & = 87.68 kW 9 . 120 68 . 87 = = q q SHF s & & = 0.725 At part-load condition q & = (0.5)(120.9) = 60.45 kW SHF = 0.90 state 0′, 0′ db t = 29 C, 0′ φ = 70 %
  • 134. 0′ i = 83.68 kJ/kga 0′ W = 0.0214 kgv/kga state 3′ , 3′ db t = 25 C, 3′ φ = 50 % 3′ i = 55.4 kJ/kga 3′ W = 0.012 kgv/kga (a) Since volume is constant, 2 2 a a m m & & = ′ = 7.163 kga/s ( ) SHF q qs & & = = (60.45)(0.90) = 54.41 kW ( ) 2 3 2 ′ ′ − = t t c m q p a s & & ( )( )( ) 2 25 02 . 1 163 . 7 41 . 54 ′ − = t 2′ t = 17.55 C (b) Let b = bypass and c t = coil leaving temperature c c t t t t b − − = ′ ′ 1 2 still, 5 1 3 0 = ′ ′ a a m m & & = 0.2 ( )( ) 2 . 0 1 4 . 55 68 . 83 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m i i m m i & & & & = 60.11 kJ/kga ( )( ) 2 . 0 1 012 . 0 0214 . 0 2 . 0 1 3 0 3 0 3 0 1 + + = + + = ′ ′ ′ ′ ′ ′ ′ a a a a m m W W m m W & & & & = 0.0136 kgv/kga then, Chart 1b, 1′ t = 25.6 C 13 6 . 25 13 55 . 17 1 2 − − = − − = ′ ′ c c t t t t b = 0.241 (c) For design condition, Chart 1Hb, d t = 9.89 C For part-load condition, Chart 1Hb, d t ′ = 11.4 C (d) Psychrometric Chart
  • 135.
  • 136. 3.56 A condition exists where it is necessary to cool and dehumidify air from 80 F db and 67 F wb to 60 F db and 54 F wb. (a) Discuss the feasibility of doing this in one process with a cooling coil. (Hint: Determine the apparatus dewpoint temperature for the process.) (b) Describe a practical method of achieving the required process, and sketch it on a psychrometric chart. Answer: (a) As shown on the psychrometric chart (Chart 1a), it is not feasible to cool and dehumidify this in one process with a cooling coil only, since there is no apparatus dewpoint temperature reached. (b) An additional reheat coil will be feasible by cooling the air to a dewpoint of 49.7 F then reheated to 60 F. See Chart 1a.
  • 137. 3.57 Consider one zone of a dual-duct conditioning system. Conditions in the zone are to be maintained at 75 F (24 C) and 50 percent relative humidity (RH). The cold deck air is at 51 F (11 C) and 90 percent RH, while the hot deck air is oputdoor air at 90 F (32 C) and 30 percent RH. The sensible heat factor for the zone is 0.65. Assume sea level pressure. In what proportion must the warm and cold air be mixed to satisfy the space condition? If the total space load is 60 tons (210 kW), what is the total volume flow rate of air supplied to the zone? Sketch the states and process on a psychrometric chart. Use (a) English units and (b) SI units. Solution: (a) English units Chart 1a At state 2, 2 db t = 75 F, 2 φ = 50 % 2 i = 28.2 Btu/lbma 2 W = 0.0092 lbmv/lbma At state 1c, c db t 1 = 51 F, c 1 φ = 90 % c i1 = 20.0 Btu/lbma c W1 = 0.0072 lbmv/lbma At state 1h, h db t 1 = 90 F, h 1 φ = 30 % h i1 = 31.4 Btu/lbma h W1 = 0.009 lbmv/lbma From the psychrometric chart 1a, intersection of line with SHF = 0.65, from state 1 to state 2, and line from state 1c to state 1h. 1 db t = 62.2 F 1 wb t = 55.4 F 1 φ = 65 % 1 i = 23.8 Btu/lbma 1 W = 0.0078 lbmv/lbma 1 v = 13.32 ft3 /lbma State 1: h a c a h c h a c a m m i i m m i 1 1 1 1 1 1 1 1 & & & & + + =
  • 138. ( ) h a c a h a c a m m m m 1 1 1 1 1 4 . 31 0 . 20 8 . 23 & & & & + + = h a c a m m 1 1 & & = 2.0 or h a c a h c h a c a m m W W m m W 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 009 . 0 0072 . 0 0078 . 0 & & & & + + = h a c a m m 1 1 & & = 2.0 or c a h a m m 1 1 & & = 0.5 Total volume flow rate: q & = 60 tons = 720,000 Btu/hr ( ) 1 2 i i m q a − = & & ( ) 8 . 23 2 . 28 000 , 720 − = a m & a m & = 163,636 lbma/hr ( )( )( ) 32 . 13 60 1 636 , 163 1 = = v m Q a & & = 36,327 ft3 /min
  • 139.
  • 140. (b) SI units Chart 1b At state 2, 2 db t = 24 C, 2 φ = 50 % 2 i = 48 kJ/kga 2 W = 0.0093 kgv/kga At state 1c, c db t 1 = 11 C, c 1 φ = 90 % c i1 = 29.5 kJ/kga c W1 = 0.0072 kgv/kga At state 1h, h db t 1 = 32 C, h 1 φ = 30 % h i1 = 55 kJ/kga h W1 = 0.009 kgv/kga From the psychrometric chart 1b, intersection of line with SHF = 0.65, from state 1 to state 2, and line from state 1c to state 1h. 1 db t = 17 C 1 wb t = 13.1 C 1 φ = 65 % 1 i = 38 kJ/kga 1 W = 0.0078 kgv/kga 1 v = 0.832 m3 /kga State 1: h a c a h c h a c a m m i i m m i 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 55 5 . 29 38 & & & & + + = h a c a m m 1 1 & & = 2.0 or
  • 141. h a c a h c h a c a m m W W m m W 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 009 . 0 0072 . 0 0078 . 0 & & & & + + = h a c a m m 1 1 & & = 2.0 or c a h a m m 1 1 & & = 0.5 Total volume flow rate: q & = 210 kW ( ) 1 2 i i m q a − = & & ( ) 38 48 210 − = a m & a m & = 21 kga/s ( )( ) 832 . 0 21 1 = = v m Q a & & = 17.5 m3 /s
  • 142.
  • 143. 3.58 Rework Problem 3.57 for an elevation of 5000 ft (1500 m). Solution: (a) English units Chart 1Ha At state 2, 2 db t = 75 F, 2 φ = 50 % 2 i = 30.2 Btu/lbma 2 W = 0.0111 lbmv/lbma At state 1c, c db t 1 = 51 F, c 1 φ = 90 % c i1 = 21.6 Btu/lbma c W1 = 0.0086 lbmv/lbma At state 1h, h db t 1 = 90 F, h 1 φ = 30 % h i1 = 33.7 Btu/lbma h W1 = 0.0108 lbmv/lbma From the psychrometric chart 1Ha, intersection of line with SHF = 0.65, from state 1 to state 2, and line from state 1c to state 1h. 1 db t = 58.0 F 1 wb t = 52.8 F 1 φ = 73.3 % 1 i = 23.8 Btu/lbma 1 W = 0.009 lbmv/lbma 1 v = 15.98 ft3 /lbma State 1: h a c a h c h a c a m m i i m m i 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 7 . 33 6 . 21 8 . 23 & & & & + + = h a c a m m 1 1 & & = 4.5 or
  • 144. h a c a h c h a c a m m W W m m W 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 0108 . 0 0086 . 0 009 . 0 & & & & + + = h a c a m m 1 1 & & = 4.5 or 5 . 4 1 1 1 = c a h a m m & & = 0.22222 Total volume flow rate: q & = 60 tons = 720,000 Btu/hr ( ) 1 2 i i m q a − = & & ( ) 8 . 23 2 . 30 000 , 720 − = a m & a m & = 112,500 lbma/hr ( )( )( ) 98 . 15 60 1 500 , 112 1 = = v m Q a & & = 36,327 ft3 /min
  • 145.
  • 146. (b) SI units Chart 1Hb At state 2, 2 db t = 24 C, 2 φ = 50 % 2 i = 53 kJ/kga 2 W = 0.0112 kgv/kga At state 1c, c db t 1 = 11 C, c 1 φ = 90 % c i1 = 33.7 kJ/kga c W1 = 0.0088 kgv/kga At state 1h, h db t 1 = 32 C, h 1 φ = 30 % h i1 = 59.9 kJ/kga h W1 = 0.0117 kgv/kga From the psychrometric chart 1b, intersection of line with SHF = 0.65, from state 1 to state 2, and line from state 1c to state 1h. 1 db t = 16.2 C 1 wb t = 12.5 C 1 φ = 68.3 % 1 i = 40 kJ/kga 1 W = 0.0095 kgv/kga 1 v = 0.997 m3 /kga State 1: h a c a h c h a c a m m i i m m i 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 8 . 59 7 . 33 40 & & & & + + = h a c a m m 1 1 & & = 3.15 or
  • 147. h a c a h c h a c a m m W W m m W 1 1 1 1 1 1 1 1 & & & & + + = ( ) h a c a h a c a m m m m 1 1 1 1 1 0117 . 0 0088 . 0 0095 . 0 & & & & + + = h a c a m m 1 1 & & = 3.15 or c a h a m m 1 1 & & = 0.32 Total volume flow rate: q & = 210 kW ( ) 1 2 i i m q a − = & & ( ) 40 53 210 − = a m & a m & = 16.15 kga/s ( )( ) 997 . 0 15 . 16 1 = = v m Q a & & = 16.1 m3 /s