SlideShare a Scribd company logo
1 of 178
Download to read offline
http://www.elsolucionario.net
LIBROS UNIVERISTARIOS
Y SOLUCIONARIOS DE
MUCHOS DE ESTOS LIBROS
LOS SOLUCIONARIOS
CONTIENEN TODOS LOS
EJERCICIOS DEL LIBRO
RESUELTOS Y EXPLICADOS
DE FORMA CLARA
VISITANOS PARA
DESARGALOS GRATIS.
1
CHAPTER 1
Basic Considerations
1.1 Conservation of mass — Mass — density
Newton’s second law — Momentum — velocity
The first law of thermodynamics — internal energy — temperature
1.2 a) density = mass/volume = M L
/
3
b) pressure = force/area = F L ML T L M LT
/ / /
2 2 2 2
= =
c) power = force × velocity = F L T ML T L T ML T
× = × =
/ / / /
2 2 3
d) energy = force × distance = ML T L ML T
/ /
2 2 2
× =
e) mass flux = ρAV = M/L3
× L2
× L/T = M/T
f) flow rate = AV = L2
× L/T = L3
/T
1.3 a) density =
M
L
FT L
L
FT L
3
2
3
2 4
/
/
=
b) pressure = F/L2
c) power = F × velocity = F × L/T = FL/T
d) energy = F × L = FL
e) mass flux =
M
T
FT L
T
FT L
= =
2
/
/
f) flow rate = AV = L2
× L/T = L3
/T
1.4 (C) m = F/a or kg = N/m/s2
= N.
s2
/m.
1.5 (B) [µ] = [τ/du/dy] = (F/L2
)/(L/T)/L = F.
T/L2
.
1.6 a) L = [C] T2
. ∴[C] = L/T2
b) F = [C]M. ∴[C] = F/M = ML/T2
M = L/T2
c) L3
/T = [C] L2
L2/3
. ∴[C] = L T L L L T
3 2 2 3 1 3
/
/ /
⋅ ⋅ =
Note: the slope S0 has no dimensions.
1.7 a) m = [C] s2
. ∴[C] = m/s2
b) N = [C] kg. ∴[C] = N/kg = kg ⋅ m/s2
⋅ kg = m/s2
c) m3
/s = [C] m2
m2/3
. ∴[C] = m3
/s⋅m2
⋅ m2/3
= m1/3
/s
1.8 a) pressure: N/m2
= kg ⋅ m/s2
/m2
= kg/m⋅ s2
b) energy: N⋅ m = kg ⋅ m/s2
× m = kg⋅ m2
/s2
c) power: N⋅ m/s = kg ⋅ m2
/s3
d) viscosity: N⋅ s/m2
=
kg m
s
s
1
m
kg / m s
2 2
⋅
⋅ = ⋅
2
e) heat flux: J/s =
N m
s
kg m
s
m
s
kg m / s
2
2 3
⋅
=
⋅
⋅ = ⋅
f) specific heat:
J
kg K
N m
kg K
kg m
s
m
kg K
m / K s
2
2 2
⋅
=
⋅
⋅
=
⋅
⋅
⋅
= ⋅
1.9 kg
m
s
m
s
m
2
+ + =
c k f. Since all terms must have the same dimensions (units) we
require:
[c] = kg/s, [k] = kg/s2
= N s / m s N / m,
2 2
⋅ ⋅ = [f] = kg m / s N.
2
⋅ =
Note: we could express the units on c as [c] = kg / s N s / m s N s / m
2
= ⋅ ⋅ = ⋅
1.10 a) 250 kN b) 572 GPa c) 42 nPa d) 17.6 cm3
e) 1.2 cm2
f) 76 mm3
1.11 a) 1.25× 108
N b) 3.21× 10−5
s c) 6.7× 108
Pa
d) 5.6× 10−12
m3
e) 5.2 × 10−2
m2
f) 7.8 × 109
m3
1.12 (A) 8 9
2.36 10 23.6 10 23.6 nPa.
− −
× = × =
1.13 2 2 2
0.06854
0.225 0.738
0.00194 3.281
m m
d d
λ
ρ ρ
= =
×
where m is in slugs, ρ in slug/ft3
and d in feet. We used the conversions in the
front cover.
1.14 a) 20 cm/hr = 5
20
/3600 5.555 10 m/s
100
−
= × 5
20
/3600 5.555 10 m/s
100
−
= ×
b) 2000 rev/min = 2000 2
× π/60 = 209.4 rad/s
c) 50 Hp = 50 × 745.7 = 37 285 W
d) 100 ft3
/min = 100 × 0.02832/60 = 0.0472 m3
/s
e) 2000 kN/cm2
= 2× 106
N/cm2
× 1002
cm2
/m2
= 2× 1010
N/m2
f) 4 slug/min = 4 × 14.59/60 = 0.9727 kg/s
g) 500 g/L = 500 × 10−3
kg/10−3
m3
= 500 kg/m3
h) 500 kWh = 500 × 1000× 3600 = 1.8× 109
J
1.15 a) F = ma = 10 × 40 = 400 N.
b) F − W = ma. ∴ F = 10 × 40 + 10 × 9.81 = 498.1 N.
c) F − W sin 30° = ma. ∴ F = 10 × 40 + 9.81 × 0.5 = 449 N.
1.16 (C) The mass is the same on earth and the moon: [4(8 )] 32 .
du
r r
dr
τ µ µ µ
= = =
1.17 The mass is the same on the earth and the moon:
3
m =
60
32 2
1863
.
. .
= ∴ Wmoon = 1.863× 5.4 = 10.06 lb
1.18 (C) shear sin 4200sin30 2100 N.
F F θ
= = =
o
shear
4
2100
= 84 kPa
250 10
F
A
τ −
= =
×
1.19 a) λ
ρ
= =
×
× ×
= ×
−
−
−
. .
.
. ( . )
.43
225 225
4 8 10
184 3 7 10
10
2
26
10 2
6
m
d
m or 0.00043 mm
b) λ
ρ
= =
×
× ×
= ×
−
−
−
. .
.
. ( . )
.
225 225
4 8 10
00103 3 7 10
7 7 10
2
26
10 2
5
m
d
m or 0.077 mm
c)
26
2 10 2
4.8 10
.225 .225 .0039m
.00002 (3.7 10 )
m
d
λ
ρ
−
−
×
= = =
× ×
or 3.9 mm
1.20 Use the values from Table B.3 in the Appendix.
a) 52.3 + 101.3 = 153.6 kPa.
b) 52.3 + 89.85 = 142.2 kPa.
c) 52.3 + 54.4 = 106.7 kPa (use a straight-line interpolation).
d) 52.3 + 26.49 = 78.8 kPa.
e) 52.3 + 1.196 = 53.5 kPa.
1.21 a) 101 − 31 = 70 kPa abs. b) 760 −
31
101
× 760 = 527 mm of Hg abs.
c) 14.7 −
31
101
× 14.7 = 10.2 psia. d) 34 −
31
101
× 34 = 23.6 ft of H2O abs.
e) 30 −
31
101
× 30 = 20.8 in. of Hg abs.
1.22 p = po e−gz/RT
= 101 e−9.81 × 4000/287 ×(15 + 273)
= 62.8 kPa
From Table B.3, at 4000 m: p = 61.6 kPa. The percent error is
% error =
62.8 61.6
61.6
−
× 100 = 1.95 %.
1.23 a) p = 973 +
22,560 20,000
25,000 20,000
−
−
(785 - 973) = 877 psf
T = −12.3 +
22,560 20,000
25,000 20,000
−
−
(−30.1 + 12.3) = −21.4°F
b) p = 973 + .512 (785 − 973) +
.512
2
(−.488) (628 − 2 × 785 + 973) = 873 psf
T = −12.3 + .512 (−30.1 + 12.3) +
.512
2
(−.488) (−48 + 2 × 30.1 − 12.3) = −21.4°F
Note: The results in (b) are more accurate than the results in (a). When we use a
linear interpolation, we lose significant digits in the result.
4
1.24 T = −48 +
33,000 30,000
35,000 30,000
−
−
(−65.8 + 48) = −59°F or (−59 − 32)
5
9
= −50.6°C
1.25 (B)
1.26 p = n
F
A
= 4
26.5 cos 42
152 10−
×
o
= 1296 MN/m2
= 1296 MPa.
1.27
4
n
4
t
(120000) .2 10 2.4N
20 .2 10 .0004N
F
F
−
−

= × × = 

= × × = 

F = 2 2
n t
F F
+ = 2.400 N.
θ= tan−1 .0004
2.4
=.0095°
1.28 ρ=
m
V
−
=
0 2
180 1728
.
/
= 1.92 slug/ft3
. τ = ρg = 1.92 × 32.2 = 61.8 lb/ft3
.
1.29 ρ= 1000 − (T − 4)2
/180 = 1000 − (70 − 4)2
/180 = 976 kg/m3
γ = 9800 − (T − 4)2
/18 = 9800 − (70 − 4)2
/180 = 9560 N/m3
% error for ρ=
976 978
978
−
× 100 = −.20%
% error for γ =
9560 978 9.81
978 9.81
− ×
×
× 100 = −.36%
1.30 S = 13.6 − .0024T = 13.6 − .0024 × 50 = 13.48.
% error =
13.48 13.6
13.6
−
× 100 = −.88%
1.31 a) m =
W V
g
γ
=
6
12 400 500 10
9.81
g
−
× ×
= = 0.632 kg
b) m =
6
12 400 500 10
9.77
−
× ×
= 0.635 kg
c) m =
6
12 400 500 10
9.83
−
× ×
= 0.631 kg
1.32 S =
/
water
m V
ρ
ρ
=
10/
. 1.2
water
V
ρ
= .
1.94
∴ V = 4.30 ft3
1.33 (D)
2 2
3
water
( 4) (80 4)
1000 1000 968 kg/m
180 180
T
ρ
− −
= − = − =
5
1.34 τ= µ
du
dr
= 1.92 × 10−5
2
30(2 1/12)
(1/12)
 
×
 
 
= 0.014 lb/ft2
1.35 T = force × moment arm = τ2πRL × R = µ
du
dr
2πR2
L = µ
2
0.4
1000
R
 
+
 
 
2πR2
L.
∴µ=
2 2
2
0.0026
0.4 0.4
1000 2 1000 2 .01 0.2
12
T
R L
R
π π
=
   
+ + × ×
   
   
= 0.414 N.
s/m2
.
1.36 Use Eq.1.5.8: T =
3
2 R L
h
π ω µ
=
( )
2 .5 / 12
π
π
× ×
×
× ×
3 2000 2
60
4 006
01 12
.
. /
= 2.74 ft-lb.
Hp =
Tω
550
2 74 209
550
=
×
. .4
= 1.04 Hp
1.37 Fbelt = µ
du
dy
A = × −
131 10
10
002
3
.
.
(.6 × 4) = 15.7 N.
Hp =
F V
×
=
×
746
15 7 10
746
.
= 0.210 Hp
1.38 Assume a linear velocity so .
du r
dy h
ω
= Due to the area
element shown, dT = dF × r = τdA × r = µ
du
dy
2πr dr × r.
dr
r
τ
T = 3
0
2
R
r dr
h
µω π
∫ =
2
4
2 36 10
400 2
60
3 12
2 08 12
4
5 4
πµω
π
π
h
R
=
× × ×
×
×
×
−
. ( / )
. /
= 91 × 10−5
ft-lb.
1.39
2
30(2 1/12)
(1/12)
 
×
 
 
2 2
0 0
[32 / ] 32 / .
du
r r r r
dr
τ µ µ µ
= = = ∴τr = 0 = 0,
τr=0.25 = 32 × 1 × 10−3
× 2
.25/100
(.5/100)
= 3.2 Pa, τr=0.5 = 32 × 1 × 10−3
× 2
.5/100
(.5/100)
= 6.4 Pa
1.40 (A) 3
[10 5000 ] 10 10 5000 0.02 1 Pa.
du
r
dr
τ µ µ −
= = × = × × × =
1.41 The velocity at a radius r is rω. The shear stress is τ µ
=
∆
∆
u
y
.
The torque is dT = τrdA on a differential element. We have
6
0.08
0
= = 2
0.0002
r
T rdA rdx
ω
τ µ π
∫ ∫ ,
2000 2
209.4 rad/s
60
π
ω
×
= =
where x is measured along the rotating surface. From the geometry 2
x = r, so that
0.08 0.08
2 3
0 0
209.4 / 2 329000
= 0.1 2 329000 (0.08 )
0.0002 3
2
x x
T dx x dx
π
×
= =
∫ ∫ = 56.1 N .
m
1.42 If τ µ
=
du
dy
= cons’t and µ= AeB/T
= AeBy/K
= AeCy
, then
AeCy du
dy
= cons’t. ∴
du
dy
= De−Cy
.
Finally,
0 0
y
u
Cy
du De dy
−
=
∫ ∫ or u(y) = 0
y
Cy
D
e
C
−
− = E (e−Cy
− 1)
where A, B, C, D, E, and K are constants.
1.43
µ = =
=



Ae Ae
Ae
B T B
B
/ /
/
.
.
001
000357
293
353
∴A = 2.334 × 10−6
, B = 1776.
µ40 = 2.334 × 10−6
e1776/313
= 6.80 × 10−4
N.
s/m2
1.44 m = ρV . Then dm = ρd V + V dρ. Assume mass to be constant in a volume
subjected to a pressure increase; then dm = 0. ∴ρd V = − V dρ, or
d V
V
.
d ρ
ρ
= −
1.45 B =
V
−
p
V
∆
∆
2200 MPa.
= V
∴∆
V
−
=
2 10
2200
p
B
∆ − ×
= = −0.00909 m3
or −9090 cm3
1.46 Use c = 1450 m/s. L = c∆t = 1450 × 0.62 = 899 m
1.47 =
B V
p
∆
∆ −
V
= −2100
−13
20
.
= 136.5 MPa
1.48 a) 327,000 144/1.93
c = × = 4670 fps b) 327,000 144/1.93
c = × = 4940 fps
c) 308,000 144/1.87
c = × = 4870 fps
1.49 V
∆ =3.8 × 10−4
× −20 × 1 = .0076 m3
.
∆p = −B
V
∆
V
.0076
2270
1
−
= − = 17.25 MPa
1.50 p =
2 2 0741
5 10 6
σ
R
=
×
× −
.
= 2.96 × 104
Pa or 29.6 kPa. Bubbles: p = 4σ/R = 59.3 kPa
7
1.51 Use Table B.1: σ= 0.00504 lb/ft. ∴p =
4 4 .00504
1/32 12
R
σ ×
=
×
= 7.74 psf or 0.0538 psi
1.52 See Example 1.4: h =
4 cos 4 0.0736 0.866
0.130 m.
1000 9.81 0.0002
gD
σ β
ρ
× ×
= =
× ×
1.53 (D)
6
4 cos 4 0.0736 1
3 m or 300 cm.
1000 9.81 10 10
h
gD
σ β
ρ −
× ×
= = =
× × ×
1.54 See Example 1.4: h =
4 cos 4 0.032cos130
1.94 13.6 32.2 0.8/12
gD
σ β
ρ
×
=
× × ×
o
= −0.00145 ft or −0.0174 in
1.55 force up = σ× L × 2 cosβ= force down = ρghtL. ∴h =
2σ β
ρ
cos
.
gt
1.56 Draw a free-body diagram:
The force must balance:
W = 2σL or
π
ρ σ
d
L g L
2
4
2





 = .
∴ =
d
g
8σ
πρ
W
σL σL
needle
1.57 From the free-body diagram in No. 1.47, a force balance yields:
Is
π
ρ
d
g
2
4
< 2σ?
π(. )
. .
004
4
7850 9 81 2 0741
2
× < ×
0.968 < 0.1482 ∴No
1.58 Each surface tension force = σ× πD. There is a force on the outside
and one on the inside of the ring.
∴F = 2σπD neglecting the weight of the ring.
F
D
1.59
h(x)
h
dW
σdl
From the infinitesimal free-body shown:
cos .
d gh xdx
σ θ ρ α
=
l cosθ=
dx
dl
.
/
d d x d
h
g xdx g x
σ σ
ρ α ρ α
∴ = =
l l
We assumed small αso that the element
thickness is αx.
8
1.60 The absolute pressure is p = −80 + 92 = 12 kPa. At 50°C water has a vapor
pressure of 12.2 kPa; so T = 50°C is a maximum temperature. The water would
“boil” above this temperature.
1.61 The engineer knew that water boils near the vapor pressure. At 82°C the vapor
pressure from Table B.1 is 50.8 (by interpolation). From Table B.3, the elevation
that has a pressure of 50.8 kPa is interpolated to be 5500 m.
1.62 At 40°C the vapor pressure from Table B.1 is 7.4 kPa. This would be the
minimum pressure that could be obtained since the water would vaporize below
this pressure.
1.63 The absolute pressure is 14.5 − 11.5 = 3.0 psia. If bubbles were observed to form
at 3.0 psia (this is boiling), the temperature from Table B.1 is interpolated, using
vapor pressure, to be 141°F.
1.64 The inlet pressure to a pump cannot be less than 0 kPa absolute. Assuming
atmospheric pressure to be 100 kPa, we have
10 000 + 100 = 600 x. ∴x = 16.83 km.
1.65 (C)
1.66 ρ= =
× +
=
p
RT
1013
0 287 273 15
.
. ( )
1.226 kg/m3
. γ = 1.226 × 9.81 = 12.03 N/m3
1.67 3
in
101.3
1.226 kg/m .
0.287 (15 273)
p
RT
ρ = = =
× +
3
out
85
1.19 kg/m .
0.287 248
ρ = =
×
Yes. The heavier air outside enters at the bottom and the lighter air inside exits at
the top. A circulation is set up and the air moves from the outside in and the inside
out: infiltration. This is the “chimney” effect.
1.68 3
750 44
0.1339 slug/ft .
1716 470
p
RT
ρ
×
= = =
×
m V
ρ
= 0.1339 15 2.01 slug.
= × =
1.69 (C)
pV
m =
800 4
59.95 kg
0.1886 (10 273)
RT
×
= =
× +
1.70
p
W V
RT
=
100
(10 20 4) 9.81 9333 N.
0.287 293
g = × × × × =
×
9
1.71 Assume that the steel belts and tire rigidity result in a constant volume so that m1
= m2:
V 1 V
= 1 1 2 2
2
1 2
2
2 1
1
or .
150 460
(35 14.7) 67.4 psia or 52.7 psi gage.
10 460
m RT m RT
p p
T
p p
T
=
+
∴ = = + =
− +
1.72 The pressure holding up the mass is 100 kPa. Hence, using pA = W, we have
100000 1 9.81. 10200 kg.
m m
× = × ∴ =
Hence,
pV
m =
3
100 4 / 3
10200. 12.6 m or 25.2 m.
0.287 288
r
r d
RT
π
×
= = ∴ = =
×
1.73 2 2
1
0 ( 10). 20 32.2. 25.4 fps.
2
KE PE mV mg V V
= ∆ + ∆ = + − ∴ = × ∴ =
2 2
1
0 ( 20). 40 32.2. 35.9 fps.
2
mV mg V V
= + − ∴ = × ∴ =
1.74 2 2
1-2
1
. a) 200 0 5( 10 ). 19.15 m/s.
2
f f
W KE V V
= ∆ × = × − ∴ =
b)
10
2 2
0
1
20 15( 10 ).
2
f
sds V
= × −
∫
2
2 2
10 1
20 15( 10 ). 15.27 m/s.
2 2
f f
V V
× = × − ∴ =
c)
10
2 2
0
1
200cos 15( 10 ).
20 2
f
s
ds V
π
= × −
∫
2 2
20 1
200sin 15( 10 ). 16.42 m/s.
2 2
f f
V V
π
π
× = × − ∴ =
1.75 2
1 2 1 2 2 1
1
. 10 40 0.2 0 . 40000.
2
E E u u u u
= × × + = + ∴ − =
% % % %
40000
. 55.8 C where comes from Table B.4.
717
v v
u c T T c
∆ = ∆ ∴∆ = = o
%
The following shows that the units check:
2 2 2 2 2
car
2 2 2
air
kg m / s m kg C m kg C
C
kg J/(kg C) N m s (kg m/s ) m s
m V
m c
 
× ⋅ ⋅ ⋅ ⋅ ⋅
= = = =
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
 
o o
o
o
where we used N = kg.
m/s2
from Newton’s 2nd
law.
10
1.76 2
2
2 1 H O
1
. .
2
E E mV m c T
= = ∆
2
6
1 100 1000
1500 1000 2000 10 4180 . 69.2 C.
2 3600
T T
−
×
 
× × = × × × ∆ ∴∆ =
 
 
o
We used c = 4180 J/kg.
C
o
from Table B.5. (See Problem 1.75 for a units check.)
1.77 water . 0.2 40000 100 4.18 . 19.1 C.
f f
m h m c T T T
= ∆ × = × ∆ ∴∆ = o
The specific heat c was found in Table B.5. Note: We used kJ on the left and kJ
on the right.
1.78. (B) ice water ice water water
. 320 .
E E m m c T
∆ = ∆ × = × ∆
6 3
5 (40 10 ) 1000 320 (2 10 ) 1000 4.18 . 7.66 C.
T T
− −
× × × × = × × × ∆ ∴∆ = o
We assumed the density of ice to be equal to that of water, namely 1000
kg/m3
. Ice is actually slightly lighter than water, but it is not necessary for
such accuracy in this problem.
1.79. W pdV
=
mRT
V
=
∫ d V
d V
mRT
=
∫
V
ln
V
mRT
=
∫
2
V
2
1 1
ln
p
mRT
p
=
since, for the T = const process, 1
p V 1 2
p V
= 2. Finally,
1-2
4 1
1716 530ln 78,310 ft-lb.
32.2 2
W = × × = −
The 1st
law states that
0. 78,310 ft-lb or 101 Btu.
v
Q W u mc T Q W
− = ∆ = ∆ = ∴ = = − −
%
1.80 If the volume is fixed the reversible work is zero since the boundary does not
move. Also, since V 1 2
1 2
,
mRT T T
p p p
= = so the temperature doubles if the
pressure doubles. Hence, using Table B.4 and Eq. 1.7.17,
200 2
a) (1.004 0.287)(2 293 293) 999 kJ
0.287 293
v
Q mc T
×
= ∆ = − × − =
×
b)
200 2
(1.004 0.287)(2 373 373) 999 kJ
0.287 373
v
Q mc T
×
= ∆ = − × − =
×
c)
200 2
(1.004 0.287)(2 473 473) 999 kJ
0.287 473
v
Q mc T
×
= ∆ = − × − =
×
1.81 W pdV
= (
p V
= 2 V
− 1
1). If = const,
T
p
V
2
1
T
V
= 2 1
2
so if 2 ,
T T
=
∫
then V 2 2V
= 1 and (2
W p V
= 1 V
− 1) pV
= 1 1.
mRT
=
a) 2 0.287 333 191 kJ
W = × × =
b) 2 0.287 423 243 kJ
W = × × =
11
c) 2 0.287 473 272 kJ
W = × × =
1.82 = 1.4 287 318 357 m/s. 357 8.32 2970 m.
c kRT L c t
= × × = = ∆ = × =
1/ 0.4/1.4
2
2 1
1
500
(20 273) 151.8 K or 121.2 C
5000
k k
p
T T
p
−
   
= = + = −
   
 
 
o
1.83 We assume an isentropic process for the maximum pressure:
/ 1 1.4/0.4
2
2 1
1
423
(150 100) 904 kPa abs or 804 kPa gage.
293
k k
T
p p
T
−
   
= = + =
   
 
 
Note: We assumed patm = 100 kPa since it was not given. Also, a measured
pressure is a gage pressure.
1.84
/ 1 1.4/0.4
2
2 1
1
473
100 534 kPa abs.
293
k k
T
p p
T
−
   
= = =
   
 
 
2 1
( ) (1.004 0.287)(473 293) 129 kJ/kg.
v
w u c T T
=−∆ = − − = − − − = −
We used Eq. 1.7.17 for cv.
1.85 a) 1.4 287 293 343.1 m/s
c kRT
= = × × =
b) 1.4 188.9 293 266.9 m/s
c kRT
= = × × =
c) 1.4 296.8 293 348.9 m/s
c kRT
= = × × =
d) 1.4 4124 293 1301 m/s
c kRT
= = × × =
e) 1.4 461.5 293 424.1 m/s
c kRT
= = × × =
Note: We must use the units on R to be J/kg.
K in the above equations.
1.86 (D) For this high-frequency wave, 287 323 304 m/s.
c RT
= = × =
1.87 At 10 000 m the speed of sound 1.4 287 223 299 m/s.
c kRT
= = × × =
At sea level, 1.4 287 288 340 m/s.
c kRT
= = × × =
340 299
% decrease 100 12.06 %.
340
−
= × =
1.88 a) = 1.4 287 253 319 m/s. 319 8.32 2654 m.
c kRT L c t
= × × = = ∆ = × =
b) = 1.4 287 293 343 m/s. 343 8.32 2854 m.
c kRT L c t
= × × = = ∆ = × =
c) = 1.4 287 318 357 m/s. 357 8.32 2970 m.
c kRT L c t
= × × = = ∆ = × =
12
C HAPTER 2
Fluid Statics
2.1 Σ ∆ ∆
∆ ∆
F ma p z p s
y z
a
y y y y
= − =
: sinα ρ
2
Σ ∆ ∆
∆ ∆ ∆ ∆
F ma p y p s
y z
a g
y z
z z z z
= − = +
: cosα ρ ρ
2 2
Since ∆ ∆
s y
cosα = and ∆ ∆
s z
sin α = , we have
p p
y
a
y y
− = ρ
∆
2
and ( )
p p
z
a g
z z
− = +
ρ
∆
2
Let ∆y → 0 and ∆z → 0:
p p
p p
y
z
− =
− =



0
0
∴ = =
p p p
y z .
2.2 p = γh. a) 9810 × 10 = 98 100 Pa or 98.1 kPa
b) (0.8 × 9810) × 10 = 78 480 Pa or 78.5 kPa
c) (13.6 × 9810) × 10 = 1 334 000 Pa or 1334 kPa
d) (1.59 × 9810) × 10 = 155 980 Pa or 156.0 kPa
e) (0.68 × 9810) × 10 = 66 710 Pa or 66.7 kPa
2.3 h = p/γ. a) h = 250 000/9810 = 25.5 m
b) h = 250 000/(0.8 × 9810) = 31.9 m
c) h = 250 000/(13.6 × 9810) = 1.874 m
d) h = 250 000/(1.59 × 9810) = 16.0 m
e) h = 250 000/(0.68 × 9810) = 37.5 m
2.4 (C) (13.6 9810) (28.5 0.0254) 96600 Pa
Hg
p h
γ
= = × × × =
2.5 S =
20 144
62.4 20
p
h
γ
×
=
×
= 2.31. ρ = 1.94 × 2.31 = 4.48 slug/ft3
.
2.6 a) p = γh = 0.76 × (13.6 × 9810) = 9810 h. ∴h = 10.34 m.
b) (13.6 × 9810) × 0.75 = 9810 h. ∴h = 10.2 m.
c) (13.6 × 9810) × 0.01 = 9810 h. ∴h = 0.136 m or 13.6 cm.
2.7 a) p = γ1h1 + γ2h2 = 9810 × 0.2 + (13.6 × 9810) × 0.02 = 4630 Pa or 4.63 kPa.
b) 9810 × 0.052 + 15 630 × 0.026 = 916 Pa or 0.916 kPa.
c) 9016 × 3 + 9810 × 2 + (13.6 × 9810) × 0.1 = 60 010 Pa or 60.0 kPa.
y
z
pz∆y
py∆z
p∆s
∆s
α
∆z
∆y
ρg∆V
13
2.8 ∆p = ρgh = 0.0024 × 32.2 (–10,000) = –773 psf or –5.37 psi.
2.9 (D) 0 84000 1.00 9.81 4000 44760 Pa
p p gh
ρ
= − = − × × =
2.10
inside
100 9.81
3 13.51 Pa
.287 253
100 9.81
3 11.67 Pa
.287 293
outside o
o
base
i
i
pg
p g h h
RT
p
pg
p g h h
RT
ρ
ρ
× 
∆ = ∆ = ∆ = × = 
× 
∴∆

× 
∆ = ∆ = ∆ = × =

× 
= 1.84 Pa
If no wind is present this ∆pbase would produce a small infiltration since the higher
pressure outside would force outside air into the bottom region (through cracks).
2.11 p = ρgdh where h = –z. From the given information S = 1.0 + h/100 since S(0) = 1 and
S(10) = 1.1. By definition ρ = 1000 S, where ρwater = 1000 kg/m3
.
Then dp = 1000 (1 + h/100) gdh. Integrate:
dp h gdh
p
= +
∫
∫ 1000 1 100
0
10
0
( / )
p = × +
×
1000 9 81 10
10
2 100
2
. ( ) = 103 000 Pa or 103 kPa
Note: we could have used an average S: Savg = 1.05, so that ρavg = 1050 kg/m3
.
2.12
v
∇ = + +
p
p
x
i
p
y
j
p
z
k
∂
∂
∂
∂
∂
∂
$ $ $
= – ρa i
x
$ – ρα y j
$ – ρα z k
$ – ρgk
$ = – ( )
ρ a i a j a k
x y z
$ $ $
+ + – ρgk
$
= – ρ
v
a – ρ
v
g
∴ ∇ = − +
v v v
p a g
ρ( )
2.13 /
0 0
[( ) / ]g R
atm
p p T z T α
α
= −
= 100 [(288 − 0.0065 × 300)/288]9.81/.0065 × 287
= 96.49 kPa
p p gh
atm
= − = −
×
× ×
ρ 100
100
287 288
9 81 300 1000
.
. / = 96.44 kPa
% error =
96 96
96
100
.44 .49
.49
−
× = −0.052%
The density variation can be ignored over heights of 300 m or less.
14
2.14
/
0
0
0
g R
atm atm
T z
p p p p p
T
α
α
 
−
∆ = − = −
 
 
= 100
288 0065 20
288
1
9 81 0065 287
− ×


 

 −






×
. . /.
= −0.237 Pa or −0.000237 kPa
This change is very small and can most often be ignored.
2.15 Eq. 1.5.11 gives 310,000 144 .
dp
d
ρ
ρ
× = But, dp = ρgdh. Therefore,
7
4.464 10
gdh d
ρ ρ
ρ
×
= or 2 7
32.2
4.464 10
d
dh
ρ
ρ
=
×
Integrate, using 0
ρ = 2.00 slug/ft3
:
2 7
2 0
32.2
4.464 10
h
d
dh
ρ
ρ
ρ
=
∫ ∫
×
. ∴
1 1
2
ρ
 
− −
 
 
= 7.21 × 10-7
h or
7
2
1 14.42 10 h
ρ
−
=
− ×
Now,
7
7 7
0 0
2 2
ln(1 14.42 10 )
1 14.42 10 14.42 10
h h g g
p gdh dh h
h
ρ −
− −
= = = − ×
∫ ∫
− × − ×
Assume ρ = const:
2.0 32.2 64.4
p gh h h
ρ
= = × × =
a) For h = 1500 ft: paccurate = 96,700 psf and pestimate = 96,600 psf.
96,600 96,700
% error 100 0.103 %
96,700
−
= × = −
b) For h = 5000 ft: paccurate = 323,200 psf and pestimate = 322,000 psf.
322,000 323,200
% error 100 0.371 %
323,200
−
= × = −
c) For h = 15,000 ft: paccurate = 976,600 psf and pestimate = 966,000 psf.
966,000 976,600
% error 100 1.085 %
976,600
−
= × = −
2.16 Use the result of Example 2.2: p = 101 e−gz/RT
.
a) p = 101 e−9.81 ×10 000/287 ×273
= 28.9 kPa.
b) p = 101 e−9.81 ×10 000/287 ×288
= 30.8 kPa.
c) p = 101 e−9.81 ×10 000/287 ×258
= 26.9 kPa.
2.17 Use Eq. 2.4.8: p =
9.81
0.0065 287
101(1 0.0065 /288) .
z ×
−
a) z = 3000. ∴p = 69.9 kPa. b) z = 6000. ∴p = 47.0 kPa.
c) z = 9000. ∴p = 30.6 kPa. d) z = 11 000. ∴p = 22.5 kPa.
15
2.18 Use the result of Example 2.2: /
0
= .
gz RT
p
e
p
−
0
ln .
p gz
p RT
= −
0.001 32.2
ln .
14.7 1716 455
z
= −
×
∴z = 232,700 ft.
2.19 p = γh = (13.6 × 9810) × 0.25 = 33 350 Pa or 33.35 kPa.
2.20 a) p = γh. 450 000 = (13.6 × 9810) h. ∴h = 3.373 m
b) p + 11.78 × 1.5 = (13.6 × 9810) h. Use p = 450 000, then h = 3.373 m
% error is 0.000 %.
2.21 Referring to Fig. 2.6a, the pressure in the pipe is p = ρgh. If p = 2400 Pa, then
2400 = ρgh = ρ × 9.81 h.
a) ρ =
×
2400
981 36
. .
= 680 kg/m3
. ∴gasoline
b) ρ =
×
2400
981 272
. .
= 899 kg/m3
. ∴benzene
c) ρ =
×
2400
981 245
. .
= 999 kg/m3
. ∴water
d) ρ =
×
2400
9 81 154
. .
= 1589 kg/m3
. ∴carbon tetrachloride
2.22 Referring to Fig. 2.6a, the pressure is p = ρwgh = 2
1
.
2
aV
ρ Then V
gh
w
a
2 2
=
ρ
ρ
.
a) V2 2 1000 9 81 06
123
=
× × ×
. .
.
= 957. ∴V = 30.9 m/s
b) V2 2 194 32 2 3 12
00238
=
× × ×
. . /
.
= 13,124. ∴V = 115 ft/sec
c) V2 2 1000 9 81 1
123
=
× × ×
. .
.
= 1595. ∴V = 39.9 m/s
d) V2 2 194 32 2 5 12
00238
=
× × ×
. . /
.
= 21,870. ∴V = 148 ft/sec
2.23 (C) 0 30000 0.3 9810 0.1 8020 Pa
w atm x x water w
p p h h
γ γ
= + − = + × − × =
2.24 See Fig. 2.6b: p1 = –γ1h + γ2H.
p1 = –0.86 × 62.4 ×
5
12
+ 13.6 × 62.4 ×
9 5
12
.
= 649.5 psf or 4.51 psi.
2.25 0 1 1 2 2 3 3 4 4
p p gh gh gh gh
ρ ρ ρ ρ
= + + + +
= 3200 + 917×9.81×0.2 + 1000×9.81×0.1 + 1258×9.81×0.15 + 1593×9.81×0.18
= 10 640 Pa or 10.64 kPa
16
2.26 ( ) ( ) ( )
p p p p p p p p
1 4 1 2 2 3 3 4
− = − + − + − (Use ∆ ∆
p g h
= ρ )
40 000 – 16 000 = 1000×9.81(–.2) + 13 600×9.81×H + 920×9.81×.3.
∴H = .1743 m or 17.43 cm
2.27 ( ) ( ) ( )
p p p p p p p p
1 4 1 2 2 3 3 4
− = − + − + − (Use ∆ ∆
p g h
= ρ )
po – pw = 900×9.81(–.2) + 13 600×9.81(–.1) + 1000×9.81×.15
= –12 300Pa or –12.3 kPa
2.28 ( ) ( ) ( ) ( )
p p p p p p p p p p
1 5 1 2 2 3 3 4 4 5
− = − + − + − + −
p1 = 9810(–.02) + 13 600×9.81(.–04) + 9810(–.02)+13 600×9.81×.16
= 15 620 Pa or 15.62 kPa
2.29 pw + 9810 × .15 – 13.6 × 9810 × .1 – .68 × 9810 × .2 + .86 × 9810 × .15 = po.
∴pw – po = 11 940 Pa or 11.94 kPa.
2.30 pw – 9810 × .12 – .68 × 9810 × .1 + .86 × 9810 × .1 = po.
With pw = 15 000, po = 14 000 Pa or 14.0 kPa.
2.31 a) p + 9810 × 2 = 13.6 × 9810 × .1. ∴p = –6278 Pa or –6.28 kPa.
b) p + 9810 × .8 = 13.6 × 9810 × .2. ∴p = 18 835 Pa or 18.84 kPa.
c) p + 62.4 × 6 = 13.6 × 62.4 × 4/12. ∴p = –91.5 psf or –0.635 psi.
d) p + 62.4 × 2 = 13.6 × 62.4 × 8/12. ∴p = 441 psf or 3.06 psi.
2.32 p – 9810 × 4 + 13.6 × 9810 × .16 = 0. ∴p = 17 890 Pa or 17.89 kPa.
2.33 (A) (13.6 9810) 0.16 21350 Pa.
a
p H
γ
= − = − × × = −
, 21350 10000 11350 13.6 9810 . 0.0851 m
aafter after after
p H H
= − + = − = × ∴ =
2.34 8200 + 9810 × .25 = 1.59 × 9810 × H. ∴H = 0.683 m
Hnew = .683 + .273 = .956 m. ∆H =
.273
2
= .1365.
p + 9810 (.25 + .1365) = 1.59 × 9810 × .956.
∴p = 11 120 Pa or 11.12 kPa.
2.35 p + 9810 × .05 + 1.59 × 9810 × .07 – .8 × 9810 × .1 = 13.6 × 9810 × .05.
∴p = 5873 Pa or 5.87 kPa.
Note: In our solutions we usually retain 3 significant digits in the answers (if a number
starts with “1” then 4 digits are retained. In most problems a material property is used,
i.e., S = 1.59. This is only 3 sig. digits! ∴ only 3 are usually retained in the answer!
H
∆H
∆H
17
2.36 Before pressure is applied the air column on the right is 48" high. After pressure is
applied, it is (4 – H/2) ft high. For an isothermal process 1
p V 1 2
p V
= 2 using
absolute pressures. Thus,
14.7 × 144 × 4A = p2(4 – H / 2 )A or p2 =
8467
4 2
− H /
.
From a pressure balance on the manometer (pressures in psf):
30 × 144 + 14.7 × 144 = 13.6 × 62.4 H +
8467
4 2
− H /
,
or H2
– 15.59 H + 40.73 = 0. ∴H = 12.27 or 3.32 ft.
2.37 a) ( ) ( ) ( ) ( )
p p p p p p p p p p
1 5 1 2 2 3 3 4 4 5
− = − + − + − + −
4000 = 9800(0.16–0.22) + 15 600(0.10–0.16) + 133 400H + 15 600(0.07–H).
∴H = .0376 m or 3.76 cm
b) 0.6×144 = 62.4(–2/12) + 99.5(–2/12) + 849H + 99.5(2.5/12 – H).
∴H = .1236 ft or 1.483 in.
2.38 a)
2 2
2 2
1 1 2 3 2
2 /
2 2( ) /
H D d
p D d
γ γ γ γ
∆
=
∆ − + + −
2
2
2(.1/.005)
9800 2 15 600 2(133 400 15 600)(.1/.005)
=
− + × + −
= × −
8 10 6
.487 H
∴ = × ×
−
∆H 8 10 400
6
.487 = 0.0034 m or 3.4 mm
b) ∆H =
− + × + −
×
2 4 2
62 2 99 5 2 99 5 4 2
06 144
2
2
( /. )
.4 . (849 . )( /. )
. = 0.01153 ft or 0.138 in.
2.39 ( ) ( ) ( )
p p p p p p p p
1 4 1 2 2 3 3 4
− = − + − + − (poil = 14.0 kPa from No. 2.30)
15 500 – 14 000 = 9800(0.12 + ∆z) + 680(0.1 – 2∆z) + 860(–0.1 – ∆z).
∴∆z = 0.0451 m or 4.51 cm
2.40 a) pair = –6250 + 625 = –5620 Pa.
–5620 + 9800(2 + ∆z) – 13 600 × 9.81(0.1 + 2∆z) = 0. ∴∆z = 0.0025.
∴h = 0.1 + 2∆z = .15 m or 15 cm
b) pair = 18 800 + 1880 = 20 680 Pa.
20 680 + 9800(0.8 + ∆z) – 13 600 × 9.81(0.2 + 2∆z) = 0. ∴∆z = 0.00715 m
∴h = .2+ 2∆z = .214 or 21.4 cm
c) pair = –91.5 + 9.15 = –82.4 psf.
–82.4 + 62.4(6 + ∆z) – 13.6 × 62.4(4/12 + 2∆z) = 0. ∴∆z = 0.00558 ft.
∴h = 4/12 + 2 (0.00558) = 0.3445 ft or 4.13 in.
d) pair = 441 + 44.1 = 485 psf
485 + 62.4(2 + ∆z) – 13.6 × 62.4(8/12 + 2∆z) = 0. ∴∆z = 0.0267 ft.
∴h = 8/12 + 2 (0.0267) = 0.7205 ft or 8.65 in.
18
2.41 F hA
= γ = 9810 × 10 × π × .32
/4 = 6934 N.
2.42
5 1 5 5
(2 ) (2 ) [9800 1 3 (2 )]. 32670 N
3 3 3 3
P P
× × = × × × × × × × ∴ = a) F = pc A = 9800 × 2
× 42
= 313 600 N or 313.6 kN
b)
2 2
9800 1 (2 4) 9800 2 9800 1 98000 N or 98.0 kN
3 3
c
F p A
= = × × × + × × + × × =
c) F = pc A = 9800 × 1 × 2 × 4 × 2 = 110 900 N or 110.9 kN
d) F = pc A = 9800 × 1 × 2 × 4/.866 = 90 500 N or 90.5 kN
2.43 For saturated ground, the force on the bottom tending to lift the vault is
F = pc A = 9800 × 1.5 × (2 × 1) = 29 400 N.
The weight of the vault is approximately
W gV
ρ
= 2400 9.81
walls = × [2(2×1.5×.1) + 2(2×1×.1) + 2(.8×1.3×.1)] = 28 400 N.
The vault will tend to rise out of the ground.
2.44 F = pc A = 6660 × 2 × π × 22
= 167 400 N or 167.4 kN
Find γ in Table B.5 in the Appendix.
2.45 a) F = pc A = 9800 (10 − 2.828/3) (2.828 × 2/2) = 251 000 N or 251 kN
where the height of the triangle is (32
− 12
)1/2
= 2.828 m.
b) F = pc A = 9800 × 10 (2.828 × 2/2) = 277 100 N or 277.1 kN
c) F = pc A = 9800 (10 − 2.828 × .866/3) (2.828 × 2/2) = 254 500 N or 254.5 kN
2.46 a) F hA
= = × × =
γ 62 27 33 24
.4 . 40,930 lb.
yp = +
×
×
27 33
6 8 36
27 33 24
3
.
/
.
= 27.46'. ∴y = 30 – 27.46 = 2.54'.
8/5.46 = 3/x. ∴x = 2.05’. (2.05, 2.54) ft.
b) F = 62.4 × 30 × 24 = 44,930 lb. The centroid is the center of pressure.
y = 2.667'. 8/5.333 = 3/x. ∴x = 2.000' (2.000, 2.667) ft.
c) F = 62.4 (30 – 2.667 × .707) × 24 = 42,100 lb.
yp = +
×
×
39 77
6 8 36
39 77 24
3
.
/
.
= 39.86'. y = 42.43 – 39.86 = 2.57'
8/5.43 = 3/x. ∴x = 2.04'. (2.04, 2.57) ft.
2.47 (B) The force acts 1/3 the distance from the hinge to the water line:
5 1 5 5
(2 ) (2 ) [9800 1 3 (2 )]. 32670 N
3 3 3 3
P P
× × = × × × × × × × ∴ =
(x, y)
y
x
19
2.48 a) F hA
= = × ×
γ π
9810 6 22
= 739 700 N or 739.7 kN.
y y
I
Ay
p = + = +
×
×
6
2 4
4 6
4
π
π
/
= 6.167 m. ∴(x, y)p = (0, –0.167) m
b) F hA
= = × ×
γ π
9810 6 2 = 369 800 N or 369.8 kN.
yp = +
×
×
6
2 8
2 6
4
π
π
/
= 6.167 m. x2
+ y2
= 4
x F
x
pdA x y xdy y y dy
p = = − = − −
∫ ∫
∫
−
−
2 2
6
2
4 6
2
2
2
2
2
γ γ
( ) ( )( ) .
∴ × = − − + =
−
∫
x y y y dy
pγ π
γ
γ
6 2
2
24 4 6 32
2
2
2
3
( ) . ∴xp = 0.8488 m
∴(x, y)p = (0.8488, –0.167) m
c) F = 9810 × (4 + 4/3) × 6 = 313 900 N or 313.9 kN.
yp = +
×
×
5333
3 4 36
5 333 6
3
.
/
.
= 5.500 m. ∴y = –1.5
4/2.5 = 1.5/x. ∴x = 0.9375. ∴(x,y)p = (0.9375, –1.5) m
d) F = × + ×
9810 4
2
3
4
( sin 36.9°) × 6 = 330 000 N
yp = +
×
×
5 6
5 2 36
6 5 6
3
.
.4 /
.
= 5.657 m. ∴y = 0.343 m
3 cos 53.13° = 1.8, 2.5 – 1.8 = 0.7, 2.4/2.057 = . /
7 1
x . ∴ x1 = 0.6.
x = 1.8 + 0.6 = 2.4. ∴(x,y)p = (2.4, 0.343) m.
2.49 F hA
= = × × ×
γ 62 11 6 10
.4 ( ) = 41,180 lb.
y y
I
yA
p = + = +
×
×
11
6 10 12
11 60
3
/
= 11.758'.
(16 – 11.758) 41,180 = 10P. ∴P = 17,470 lb.
2.50 F hA
= = × ×
γ 9810 6 20 = 1.777 × 106
N, or 1177 kN.
y y
I
Ay
p = + = +
×
×
7 5
4 5 12
7 5 20
3
.
/
.
= 7.778 m.
(10 – 7.778) 1177 = 5 P. ∴P = 523 kN.
y
x
(x, y)
dA
dy
x
y
3 4
53.13
o
yp
P
F
20
2.51 F hA
= = × ×
γ 9810 12 20 = 2.354 × 106
N, or 2354 kN.
y y
I
Ay
p = + = +
×
×
15
4 5 12
15 20
3
/
= 15.139 m.
(17.5 – 15.139) 2354 = 5 P. ∴P = 1112 kN.
2.52 y y
I
Ay
H bH
bH H
H H
H
p = + = +
×
= + =
2
12
2 2 6
2
3
3
/
/
. yp is measured from the surface.
∴From the bottom, H y H H H
p
− = − =
2
3
1
3
.
Note: this result is independent of the angle α, so it is true for a vertical area or a sloped
area.
2.53 3
1
sin40 3 . ( 2) sin40 . 2( 2) .
2 3
l
F l l F l P l l P
γ γ
= × × = + ∴ = +
o o
a) 9810× 23
= 2(2 + 2)P. ∴P = 9810 N
b) 9810× 43
= 2(4 + 2)P. ∴P = 52 300 N
c) 9810× 53
= 2(5 + 2)P. ∴P = 87 600 N
2.54 h = −
122 2
. .4 = 1.1314 m. A = 1.2 × 1.1314 + .4 × 1.1314 = 1.8102 m2
Use 2 forces: F h A
c
1 1 9800 5657 1 2 11314
= = × × ×
γ . ( . . ) = 7527 N
F h A
c
2 2 9800
11314
3
11314
= = × × ×
γ
.
(.4 . ) = 1673 N
yp1
2
3
11314
= ( . ). y y
I
A y
p2
2
2
3
11314
3
11314 36
11314 2 11314 3
= + = +
×
× ×
. .4 . /
.4 . / . /
= 0.5657 m
ΣMhinge = 0: 7527
11314
3
1673 11314 0 5657 11314
× + × − −
.
( . . ) . P = 0. ∴P = 3346 N.
2.55 To open, the resultant force must be just above the hinge, i.e., yp must be just less than h.
Let yp = h, the condition when the gate is about to open:
y h H A h H I h H h H
= + = + = + +
( ) / , ( ) , [ ( )]( ) /
3 2 36
2 3
∴ =
+
+
+
+ +
=
+
+
+
=
+
y
h H h H
h H h H
h H h H h H
p
3
2 36
3 3 6 2
4
2
( ) /
( ) ( ) /
a) h
h H
=
+
2
. ∴h = H = 0.9 m
b) h = H = 1.2 m
c) h = H = 1.5 m
2.56 The gate is about to open when the center of pressure is at the hinge.
a) y H H
b
H b
p = + = + +
×
+
12 18 2
18 12
9 18
3
. ( . / )
. /
(. ) .
. ∴H = 0.
21
b) y H H
b
H b
p = + = + +
×
+
12 2 0 2
2 12
1 2
3
. ( . / )
/
( )
. ∴H = 0.6667 m.
c) y H H
b
H b
p = + = + +
×
+
12 2 2 2
2 2 12
11 2 2
3
. ( . / )
. /
( . ) .
. ∴H = 2.933 m.
2.57 (A) The gate opens when the center of pressure in at the hinge:
3
1.2 11.2 (1.2 ) /12
5. 5 1.2.
2 2 (1.2 ) (11.2 ) / 2
p
h I h b h
y y y
Ay h b h
+ + +
= + = + = + = +
+ +
This can be solved by trial-and –error, or we can simply substitute one of the
answers into the equation and check to see if it is correct. This yields h = 1.08 m.
2.58 F
H
bH bH
1
2
2
1
2
= × =
γ γ
F H b b H
2 = × =
γ γ
l l
1
2 3 2
2
γ γ
bH
H
b H
× = ×
l
l
. ∴ =
H 3l
a) H = ×
3 2 = 3.464 m b) H = 1.732 m c) H = 10.39' d) H = 5.196'
Assume 1 m deep
2.59 The dam will topple if the moment about “O” of F1 and F3 exceeds
the restoring moment of W and F2.
a) W = × × + ×
( .4 )( / )
2 9810 6 50 24 50 2 = 21.19 × 106
N
dw =
× + ×
+
300 27 600 16
300 600
= 19.67 m.
F2 = 9810 × 5 × 11.09 = 0.544 × 106
N. d2
11 09
3
=
.
= 3.697 m.
F1 9810
45
2
45
= × × = 9.933 × 106
N. d1 = 15 m.
F3 9810
45 10
2
30
= ×
+
× = 8.093 × 106
N. d3
2 943 15 5150 20
2 943 5150
=
× + ×
+
. .
. .
= 18.18 m.
Wd F d
Fd F d
w + = × ⋅
+ = × ⋅



2 2
6
1 1 3 3
6
418 8 10
2961 10
.
.
N m
N m
∴will not topple.
b) W = (2.4 × 9810) (6 × 65 + 65 × 12) = 27.55 × 106
N.
dw =
390 27 780 16
390 780
× + ×
+
= 19.67 m.
F2
6
0 54 10
≅ ×
. N. d2 3 70
≅ . m.
F1 = 9810 × 30 × 60 = 17.66 × 106
N. d1 = 20 m.
F3 9810
60 10
2
30
= ×
+
× = 10.3 × 106
N. d3
2 943 15 7358 20
2 943 7 358
=
× + ×
+
. .
. .
= 18.57 m.
F2
F1
H/3
l/2
F1
F2
F3
W
O
22
Wd F d
Fd F d
w + = × ⋅
+ = × ⋅



2 2
6
1 1 3 3
6
543 9 10
544 5 10
.
.
N m
N m
∴it will topple.
c) Since it will topple for H = 60, it certainly will topple if H = 75 m.
assume 1 m deep
2.60 The dam will topple if there is a net clockwise moment about “O.”
a) W W W W
= + = × × × ×
1 2 1 6 43 1 62 2
. ( ) .4 .4 = 38,640 lb.
W2 24 43 2 62 2
= × × ×
( / ) .4 .4 = 77,280 lb.
W3 40 22 33 2 62
= × ×
( . / ) .4 = 27,870 lb @ 20.89 ft.
F1 62 20 40 1
= × × ×
.4 ( ) = 49,920 lb @ 40/3 ft.
F2 62 5 10 1
= × × ×
.4 ( ) = 3120 lb @ 3.33 ft
1
3
2
= 18,720 lb @ 15 ft
= 28,080 lb @ 20 ft
p
p
F
F
F


= 


O
M
Σ : (49,920)(40/3) + (18,720)(15) + (28,080)(20) − (38,640)(3)
− (77,280)(14) − (27,870)(20.89) − (3120)(3.33) < 0. ∴won’t tip.
b) W1 = 6 × 63 × 62.4 × 2.4 = 56,610 lb. W2 = (24 × 63/2) × 62.4 × 2.4 = 113,220 lb.
F1 62 30 60
= × ×
.4 = 112,300 lb. 3 (60 22.86/2) 62.4
W = × × = 42,790 lb.
F2 62 5 10
= × ×
.4 = 3120 lb
Fp1 62 10 30
= × ×
.4 = 18,720 lb. Fp2 62 50 30 2
= × ×
.4 / = 46,800 lb.
O
M
Σ : (112,300)(20) + (18,720)(15) + (46,800)(20) − (56,610)(3)
− (113,220)(14) − 42,790(21.24) = 799,000 > 0. ∴will tip.
c) Since it will topple for H = 60 ft., it will also topple for H = 80 ft.
2.61 ΣMhinge = 0. 2.5P – dw × W – d1 × F1 = 0.
∴ P = × × × +
×
× ×
×
×






1
2 5
2
3
9800 1 8
4 2
3
9800
2
4
4
2
. π
π
= 62 700 N
Note: This calculation is simpler than that of Example 2.7. Actually, We could
have moved the horizontal force FH and a vertical force FV (equal to W)
simultaneously to the center of the circle and then 2.5P = 2FH.=2F1. This
was outlined at the end of Example 2.7.
2.62 Since all infinitesimal pressure forces pass thru the center, we can place the resultant
forces at the center. Since the vertical components pass thru the bottom point, they
produce no moment about that point. Hence, consider only horizontal forces:
( ) 9810 2 (4 10) 784 800N
( ) 0.86 9810 1 20 168 700N
water
H
H oil
F
F
= × × × =
= × × × =
ΣM P
: . . .
2 784 8 2 168 7 2
= × − × ∴P = 616.1 kN.
F1
F2
F3
W
O
W3
F1
dw
d1
P
W
23
2.63 Place the resultant force
v v
F F
H V
+ at the center of the circular arc.
v
FH passes thru the
hinge showing that P FV
= .
a) P FV
= = × × + × =
9810 6 2 4 4 594
( )
π 200 N or 594.2 kN.
b) P = FV = 62.4 (20 × 6 × 12 + 9π × 12) = 111,000 lb.
2.64 (D) Place the force
v v
F F
H V
+ at the center of the circular arc. FH passes through the
hinge:
2
4 1.2 9800 ( 1.2 /4) 9800 300000. 5.16 m.
V
P F w w w
π
∴ = = × × + × × = ∴ =
2.65 Place the resultant
v v
F F
H V
+ at the circular arc center.
v
FH passes thru the hinge so that
P FV
= . Use the water that could be contained above the gate; it produces the same
pressure distribution and hence the same FV .
P FV
= = 9810 (6 × 3 × 4 + 9π) = 983 700 N or 983.7 kN.
2.66 Place the resultant
v v
F F
H V
+ at the center.
v
FV passes thru the hinge
2 × (9810 × 1 × 10) = 2.8 P. ∴P = 70 070 N or 70.07 kN.
2.67 The incremental pressure forces on the circular quarter arc pass through the hinge so that
no moment is produced by such forces. Moments about the hinge gives:
3 P = 0.9 W = 0.9 × 400. ∴P = 120 N.
2.68 The resultant
v v
F F
H V
+ of the unknown liquid acts thru the center of the circular arc.
v
FV
passes thru the hinge. Thus we use only ( ) .
FH oil Assume 1 m wide.
a) ΣM
R R
R
R
S
R
R
R
R
x
: .
3
9810
2
4
3
9800
4 2
2





 +





 =






π
π
γ ∴γ x = 4580 N/m3
b) ΣM
R R
R
R
S
R
R
R
R
x
: . . .
3
62 4
2
4
3
62 4
4 2
2





 +





 =






π
π
γ ∴γ x = 29.1 lb/ft3
2.69 The force of the water is only vertical (FV)w, acting thru the center. The force of the oil
can also be positioned at the center:
a) P FH o
= = × × ×
( ) ( . ) . .
0 8 9810 0 3 3 6 = 8476 N.
ΣF W F F
y V o V w
= = + −
0 ( ) ( )
0 = S × 9810 π × .62
× 6 + .
.
36
36
4
−


 


π
× 6 × (.8 × 9810) – 9810 × π × .18 × 6
− × × × −
9810 8 2 6 6
2
. . . ∴ =
S 0 955
. .
b) g V
ρ .
W
= = 1996 lb.
ΣF W F F
y V o V w
= = + −
0 ( ) ( )
24
0 = S × 62.4 × π × 22
× 20 + 4
4
4
−


 


π
× 20 × .8 × 62.4 – 62.4 × π × 2 × 20
− × × × ×
62 4 8 2 2 20
2
. . . ∴ =
S 0 955
. .
2.70 The pressure in the dome is
a) p = 60 000 – 9810 × 3 – 0.8 × 9810 × 2 = 14 870 Pa or 14.87 kPa.
The force is F = pAprojected = (π × 32
) × 14.87 = 420.4 kN.
b) From a free-body diagram of the dome filled with oil:
Fweld + W = pA
Using the pressure from part (a):
Fweld = 14 870 × π × 32
– (.8 × 9810) ×
1
2
4
3
33
π ×


 

 = –23 400 N
or –23.4 kN
2.71 A free-body diagram of the gate and water is shown.
H
F d W H P
w
3
+ = × .
a) H = 2 m. F = 9810 × 1 × 4 = 39 240 N.
W xdy
y
dy
= = =
×
∫
∫
9810 2 9810 2
2
2 9810
2
2
3 2
1 2
0
2
0
2 3 2
/ /
/
= 26 160 N.
d x
x
xdy
xdy
x dx
x dx
w = = = =






∫
∫
∫
∫
2
1
2
4
4
1
2
1 4
1 3
3
0
1
2
0
1
/
/
= 0.375 m.
∴ = × + ×
P
1
3
39
0 375
2
26 160
240
.
= 17 980 N or 17.98 kN.
b) H = 8'. F = 62.4 × 4 × 32 = 7,987 lb.
W xdy x dx
= = × = × ×
∫
∫
62 4 62 4 4 62 16 2 3
2
0
2
3
.4 .4 .4 / = 2,662 lb.
d x
x dx
x dx
w = = =






∫
∫
1
2
4
4
1
2
16 4
8 3
3
0
2
2
0
2
/
/
= 0.75'.
1 8
7,987 0.75 2,662 2910 lb
8 3
P
 
= × + × =
 
 
2.72 (A) W V
γ
=
900 9.81 9810 0.01 15 . 6 m
w w
× = × × ∴ =
W
pA
Fweld
dA=xdy
y
x
F
h/3
25
2.73 W = weight of displaced water.
a) 20 000 + 250 000 = 9810 × 3 2
(6 /2).
d d
+ ∴d2
+ 12d – 18.35 = 0. ∴d = 1.372 m.
b) 270 000 = 1.03 × 9810 × 3 2
(6 /2).
d d
+ d2
+ 12d – 17.81 = 0. ∴d = 1.336 m.
2.74 25 + FB = 100. ∴FB = 75 = 9810 −
V . ∴ −
V = 7.645 × 10−3
m3
γ × 7.645 × 10−3
= 100. or 7645 cm3
∴γ = 13 080 N/m3
.
2.75 3000 × 60 = 25 × 300 ∆d × 62.4. ∴∆d = 0.3846' or 4.62".
2.76 100 000 × 9.81 + 6 000 000 = (12 × 30 + 8h × 30) 9810
∴h = 1.465 m. ∴distance from top = 2 – 1.465 = 0.535 m
2.77 T + FB = W. (See Fig. 2.11 c.)
T = 40 000 – 1.59 × 9810 × 2 = 8804 N or 8.804 kN.
2.78 The forces acting on the balloon are its weight W, the buoyant force FB, and the weight of
the air in the balloon Fa. Sum forces:
FB = W + Fa or
4
3
1000
4
3
3 3
π ρ π ρ
R g R g
a
= +
4
3
5
100 9 81
287 293
1000
4
3
5
100 981
287
3 3
π π
×
×
×
= + ×
×
.
.
.
.
.
Ta
∴Ta = 350.4 K or 77.4°C
2.79 The forces acting on the blimp are the payload Fp, the weight of the blimp W, the buoyant
force FB, and the weight of the helium Fh:
FB = Fp + W + Fh
1500 150
100 9 81
287 288
2
π × ×
×
×
.
.
= Fp + 0.1 Fp + 1500 π × 1502
×
100 981
2 077 288
×
×
.
.
4
o /64.
I d
π
= . Npeople =
986 10
800
8
. ×
= 1.23 × 106
Of course equipment and other niceties such as gyms, pools, restaurants, etc., would add
significant weight.
2.80 Neglect the bouyant force of air. A force balance yields
FB = W + F
= 50 + 10 = 60 = 9800 −
V . ∴ −
V = .006122 m3
Density: g V
ρ .
W
=
ρ × ×
9 81 006122
. . = 50. ∴ρ = 832.5 kg/m3
Specific wt: γ = ρg = 832.5 × 9.81 = 8167 N/m3
Specific gravity: S = ρ/ρwater = 832.5/1000 = 0.8325
26
2.81 From a force balance FB = W + pA.
a) The buoyant force is found as follows (h > 16'):
cos ,
θ =
− −
h R
R
15
Area = θR2
– (h – 15 – R) R sinθ
∴FB = 10 × 62.4[πR2
− θR2
+ (h – 15 – R) R sinθ].
FB = 1500 + γhA.
The h that makes the above 2 FB’s equal is found by trial-and-
error:
h = 16.5: 1859 ? 1577 h = 16.8: 1866 ? 1858
h = 17.0: 1870 ? 1960 ∴h = 16.82 ft.
b) Assume h > 16
1
3
ft. and use the above equations with R = 1.333':
h = 16.4: 1857 ? 1853 ∴h = 16.4 ft.
c) Assume h < 16
2
3
ft. With R = 1.667',
FB = 10 × 62.4[θR2
− (R – h + 15) R sinθ].
FB = 1500 + γhA. cos θ =
− +
R h
R
15
Trial-and-error for h:
h = 16: 1849 ? 1374 h = 16.2: 1853 ? 1765
h = 16.4: 1857 ? 2170 ∴h = 16.25 ft.
2.82 a) W FB
= . [ ]
0 01 136 1000 015 4 9 81 9810
2
. . . / . .
+ × × × × = −
h V
π
− =
×
× +
×
× = × −
V
π π
.
.
.
. . .
015
4
15
005
4
06 2 769 10
2 2
5 3
m ∴h = 7.361 × 10−3
m
∴ =
mHg
2
13.6 1000 .015 / 4
hπ
× × × = 0.01769 kg
b) (.01 + .01769) 9.81 = 9810
π π
×
× +
×
×






.
.
.
. .
015
4
15
005
4
12
2 2
Sx ∴Sx = 0.959.
c) (.01 + .01769) 9.81 = 9810
π×
×
.
.
015
4
15
2
Sx. ∴Sx = 1.045.
2.83 (. ) .
.
.
.
. .
01 9 81 9810
015
4
15
005
4
12
2 2
+ =
×
× +
×
×






mHg
π π
∴mHg = 0.01886.
a) (.01 + .01886) 9.81 = 9810
π×
×
.
.
015
4
15
2
Sx. ∴Sx = 1.089.
b) mHg = 0.01886 kg.
h − 15
θ R
pA
FB
W
h − 15
θ R
27
2.84 a)
4 4
o
(10/12)
64 64
d
I
π π ×
= = = 0.02367 ft4
.
− = =
× × × ×
V
W
rH O
2
8 62 5 12 12 12
62
2
. .4 ( / ) /
.4
π
= 0.4363. depth =
.4363
( / )
π 5 12 2
= 0.8'
∴ = − −
GM . /.4363 (. .4)
02367 5 = –0.0457'. ∴It will not float with ends horizontal.
b) Io = 0.02367 ft4
, −
V = 0.3636 ft3
, depth = 0.6667'
GM = − −
. /. ( ) /
02367 3636 5 4 12 = –0.01823'. ∴It will not float as given.
c) −
V = 0.2909, depth = 6.4", GM =
.
.
.
02367
2909
4 3 2
12
−
−
= 0.0147. ∴It will float.
2.85 With ends horizontal 4
o /64.
I d
π
= The displaced volume is
− = × = × −
V d h d
x x
γ π γ
2 5 3
4 9800 8 014 10
/ . since h = d. The depth the cylinder will
sink is
depth =
−
= × = ×
− −
V
A
d d d
x x
8 014 10 4 10 20 10
5 3 2 5
. / / .
γ π γ
The distance CG is CG
h
d
x
= − × −
2
10 2 10 2
5
. /
γ . Then
GM
d
d
d
d
x
x
=
×
− + × >
−
−
π
γ
γ
4
5 3
5
64
8 014 10 2
10 2 10 2 0
/
.
. / .
This gives (divide by d and multiply by γx):
612.5 – .5 γx + 5.1 × 10-5
γ x
2
> 0.
Consequently,
γx > 8369 N/m3
or γx < 1435 N/m3
2.86
3
3
.
water
water water
S d
W
V S d
γ
γ γ
− = = =
3
3
.
water
water water
S d
W
V S d
γ
γ γ
− = = = ∴h = Sd.
GM
d
Sd
d Sd d
S
S
= − − = − +
4
3
12
2 2
1
12
1
2 2
/
( / / ) ( ).
If GM = 0 the cube is neutral and 6S2
– 6S + 1 = 0.
∴ =
± −
S
6 36 24
12
= 0.7887, 0.2113.
The cube is unstable if 0.2113 < S < 0.7887.
Note: Try S = 0.8 and S = 0.1 to see if GM > 0. This indicates stability.
2.87 As shown, y =
× + ×
+
16 9 16 4
16 16
= 6.5 cm above the bottom edge.
G
S
S
A
A
=
× + × + ×
× + × + ×
4 9 5 16 8 5 16 4
5 8 2 8 16
γ γ γ
γ γ γ
. .
.
= 6.5 cm.
C
G
h
28
∴130 + 104 SA = 174 + 64 SA. ∴ SA = 1.1.
2.88 a) y =
× + × + ×
+ +
16 4 8 1 8 7
16 8 8
= 4. x =
× + × + ×
+ +
16 1 8 4 8 4
16 8 8
= 2.5.
For G: y =
× × + × × + × ×
× + × + ×
12 16 4 5 8 1 1 5 8 7
1 2 16 5 8 15 8
. . .
. . .
= 4.682.
x =
× + × × + × ×
× + × + ×
12 16 5 8 4 15 8 4
12 16 5 8 15 8
. . .
. . .
= 2.364.
G must be directly under C.
tan
.
.
.
θ =
136
682
∴θ =11.3°.
b) y =
× + × + ×
+ +
4 2 2
1
2
2 3 5
4 2 2
.
= 2. x =
× + × + ×
+ +
4
1
2
2 2 2 2
4 2 2
= 1.25
For G:y =
× × + × + ×
× + × + ×
12 4 2 5 1 15 7
12 4 5 2 15 2
. . .
. . .
= 2.34. x =
× + × + ×
× + × + ×
12 2 5 4 15 4
1 2 4 5 2 15 2
. . .
. . .
= 1.182
∆y = 0.34, ∆x = 0.068. tan
.
.
.
θ =
068
34
∴θ = 11.3°.
2.89 The centroid C is 1.5 m below the water surface. ∴ CG = 1.5 m.
Using Eq. 2.4.47: GM =
×
× ×
− = − = >
l
l
8 12
8 3
15 1777 15 0 277 0
3
/
. . . . .
∴The barge is stable.
2.90 y =
× + ×
+
8 3 16 97 1
8 16 97
.485 .414 .
.485 .
= 1.8 m. ∴CG = −
18 15
. . = 0.3 m.
Using Eq. 2.4.47: GM =
×
− = − =
l
l
8 12
34 97
3 1 3 116
3
.485 /
.
. .46 . . . ∴Stable.
2.91 (A)
2
5
20000 20000 6660 (1.2 ) 24070 Pa
9.81
24070 0.02 30.25 N
plug
plug plug
p h
F p A
γ
π
= + = + × × =
= = × × =
.
2.92 a) tan
.
.
α = =
20
9 81 4
H
∴H = 8.155 m. pmax = 9810 (8.155 + 2) = 99 620 Pa
b) pmax = ρ(g + az) h = 1000 (9.81 + 20) × 2 = 59 620 Pa
c) pmax = 1.94 × 60 (–12) – 1.94 (32.2 + 60) (–6) = 2470 psf or 17.15 psi
d) pmax = 1.94 (32.2 + 60) (–6) = 1073 psf or 7.45 psi
0.682
C
0.136
G
29
2.93 The air volume is the same before and after.
∴ 0.5 × 8 = hb/2. tan
.
.
α = =
10
9 81
h
b
4
9 81
10
=
h
h
2
.
.
∴h = 2.856. ∴Use dotted line.
2 5
1
2
2 5 2 4
. . .452 .
w + × × = ∴w = 0.374 m.
a) pA = –1000 × 10 (0 – 7.626) – 1000 × 9.81 × 2.5 = 51 740 Pa or 51.74 kPa
b) pB = –1000 × 10 (0 – 7.626) = 76 260 Pa or 76.26 kPa
c) pC = 0. Air fills the space to the dotted line.
2.94 Use Eq. 2.5.2: Assume an air-water surface as shown in the above figure.
a) 60 000 = –1000 ax (0–8) – 1000 × 9.81 0 2 5
8
981
− −














.
.
ax
4 =
h
ax
2
9 81
2
× .
60 = 8 ax + 24.52 – 9.81
8
9 81
ax
.
. ax – 4.435 = 1.1074 ax .
ax
2
– 10.1 ax + 19.67 = 0 ∴ax = 2.64, 7.46 m/s2
b) 60 000 = –1000 ax (–8) – 1000 (9.81 + 10) − +






2 5
8
9 81
.
.
.
ax
60 = 8 ax + 49.52 – 19.81
8
19 81
ax
.
. ax – 1.31 = 1.574 ax .
ax
2
– 5.1 ax + 1.44 = 0 ∴ax = 0.25, 4.8 m/s2
c) 60 000 = –1000 ax (–8) – 1000 (9.81 + 5) (–2.5 +
8
14 81
ax
.
).
60 = 8 ax + 37.0 – 14.81
8
14 81
ax
.
. ax – 2.875 = 1.361 ax .
ax
2
– 7.6 ax + 8.266 = 0 ∴ax = 1.32, 6.28 m/s2
2.95 a) ax = 20 × .866 = 17.32 m/s2
, az = 10 m/s2
. Use Eq. 2.5.2 with the peep hole as
position 1. The x-axis is horizontal passing thru A. We have
pA = –1000 × 17.32 (0 – 1.232) – 1000 (9.81 + 10) (0 – 1.866) = 58 290 Pa
b) pA = –1000 × 8.66 (0 – 1.848) – 1000 (9.81 + 5) (0 – 2.799) = 57 460 Pa
c) The peep hole is located at (3.696, 5.598). Use Eq. 2.5.2:
pA = –1.94 × 51.96 (0 – 3.696) – 1.94 (32.2 + 30) (0 – 5.598) = 1048 psf
d) The peep hole is located at (4.928, 7.464). Use Eq. 2.5.2:
pA = –1.94 × 25.98 (–4.928) – 1.94 (32.2 + 15) (–7.464) = 932 psf
2.96 a) The pressure on the end AB (z is zero at B) is, using Eq. 2.5.2,
p(z) = –1000 × 10 (–7.626) – 1000 × 9.81(z) = 76 260 – 9810 z
α
b
h
A
B
z
1
x
w
C
30
∴ = −
∫
F z dz
AB ( )
.
76 260 9810 4
0
2 5
= 640 000 N or 640 kN
b) The pressure on the bottom BC is
p(x) = –1000 × 10 (x – 7.626) = 76 260 – 10 000 x.
∴ = −
∫
F x dx
BC ( )
.
76 260 10 000 4
0
7 626
= 1.163 × 106
N or 1163 kN
c) On the top p(x) = –1000 × 10 (x – 5.174) where position 1 is on the top surface:
∴ = −
∫
F x dx
top ( )
.
51 740 10 000 4
0
5 174
= 5.35 × 105
N or 535 kN
2.97 a) The pressure at A is 58.29 kPa. At B it is
pB = –1000 × 17.32 (1.732–1.232)
– 1000 (19.81) (1–1.866) = 8495 Pa.
Since the pressure varies linearly over AB, we
can use an average pressure times the area:
FAB =
+
× ×
58 290 8495
2
15 2
. = 100 200 N or 100.2 kN
b) pD = 0. pC = –1000 × 17.32 (–.5–1.232) − 1000 × 19.81(.866–1.866) = 49 810 Pa.
FCD = × × ×
1
2
49 810 15 2
. = 74 720 N or 74.72 kN.
c) pA = 58 290 Pa. pC = 49 810 Pa. ∴ =
+
×
FAC
58 29 49 81
2
15
. .
. = 81.08 kN.
2.98 Use Eq. 2.5.2 with position 1 at the open end:
a) pA = 0 since z2 = z1.
pB = 1000 × 19.81 × 0.6 = 11 890 Pa.
pC = 11 890 Pa.
b) pA = –1000 × 10 (.9–0) = –9000 Pa.
pB = –000 × 10 (.9)–1000 × 9.81(-.6) = –3114 Pa
pC = –1000 × 9.81 × (–.6) = 5886 Pa.
c) pA = –1000×20 (0.9) = –18 000 Pa.
pB = –1000 × 20 × 0.9–1000×19.81(−0.6) = –6110 Pa. pC = 11 890 Pa
d) pA = 0. pB = 1.94 × (32.2-60)
25
12


 

 = −112 psf. pC = –112 psf.
e) pA = 1.94 × 60 −


 


37 5
12
.
= −364 psf.
pB = 1.94 × 60 −


 


37 5
12
.
– 1.94 × 32.2 −


 


25
12
= –234 psf.
x
z
A
B
C
x
z
1
31
pC = –1.94 × 32.2 −


 


25
12
= 130 psf.
f) pA = 1.94 × 30
37 5
12
.


 

 = 182 psf.
pB = –1.94(–30)
37 5
12
.


 

 – 1.94 × 62.2 −


 


25
12
= 433 psf.
pC = –1.94 × 62.2 × −


 


25
12
= 251 psf.
2.99 Use Eq. 2.6.4 with position 1 at the open end:
ω
π
=
×
50 2
60
= 5.236 rad/s.
a) pA =
×
× ×
1000 5 236
2
6 15
2
2
.
(. . ) = 11 100 Pa.
pB =
1
2
× 1000 × 5.2362
× .92
+ 9810 × .6 = 16 990 Pa.
pC = 9810 × .6 = 5886 Pa.
b) pA =
1
2
× 1000 × 5.2362
× 0.62
= 4935 Pa.
pB =
1
2
× 1000 × 5.2362
× 0.62
+ 9810 × 0.4 = 8859 Pa.
pC = 9810 × 0.4 = 3924 Pa.
c) pA =
1
2
× 1.94 × 5.2362
×
37 5
12
2
.





 = 259.7 psf.
pB =
1
2
× 1.94 × 5.2362
×
37 5
12
62
25
12
2
.
.4





 + × = 389.7 psf.
pC =62
25
12
.4 × = 130 psf.
d) pA =
1
2
× 1.94 × 5.2362
×
22 5
12
2
.





 = 93.5 psf.
pB =
1
2
× 1.94 × 5.2362
×
22 5
12
2
.





 + 62
15
12
.4 × = 171.5 psf.
pC = 62
15
12
.4 × = 78 psf.
A
B
C
z
1
r
ω
32
2.100 Use Eq. 2.6.4 with position 1 at the open end.
a) pA =
1
2
× 1000 × 102
(0 – 0.92
) = –40 500 Pa.
pB = –40 500 + 9810 × 0.6 = –34 600 Pa.
pC = 9810 × 0.6 = 5886 Pa.
b) pA =
1
2
× 1000 × 102
(0 – 0.62
) = –18 000 Pa.
pB = –18 000 + 9810 × 0.4 = –14 080 Pa.
pC = 9810 × 0.4 = 3924 Pa.
c) pA =
1
2
× 1.94 × 102
0
37 5
144
2
−






.
= –947 psf.
pB = -947 + 62.4 ×
25
12
= –817 psf. pC = 62.4 ×
25
12
= 130 psf.
d) pA =
1
2
× 1.94 × 102
−






22 5
12
2
2
.
= –341 psf.
pB = –341 + 62.4 ×
15
12
= –263 psf. pC = 62.4 ×
15
12
= 78 psf.
2.101.1Use Eq. 2.6.4 with position 1 at the open end and position 2 at the origin. Given: p2 = 0.
a) 0 =
1
2
× 1000 ω2
(0 – 0.452
) – 9810 (0 – 0.6). ∴ω = 7.62 rad/s.
b) 0 =
1
2
× 1000 ω2
(0 – 0.32
) – 9810 (0 – 0.4). ∴ω = 9.34 rad/s.
c) 0 =
1
2
× 1.94 ω2
0
18 75
12
2
2
−






.
– 62.4 −


 


25
12
. ∴ω = 7.41 rad/s.
d) 0 =
1
2
× 1.94 ω2
−






11 25
12
2
2
.
– 62.4 −


 


15
12
. ∴ω = 9.57 rad/s.
2.102 The air volume before and after is equal.
∴ = × ×
1
2
6 2
0
2 2
π π
r h . . . ∴ r h
0
2
= 0.144.
a) Using Eq. 2.6.5: r0
2 2
5 2
× / = 9.81 h
∴h = 0.428 m
∴pA =
1
2
× 1000 × 52
× 0.62
– 9810 (–0.372)
= 8149 Pa.
b) r0
2 2
7 2
× / = 9.81 h. ∴h = 0.6 m.
∴pA =
1000
2
× 72
× 0.62
+ 9810 × 0.2 = 10 780 Pa.
A
B
C
z
1
r
ω
z
1
r
ω
2
1
2
h
z
r
A
r0
33
c) For ω = 10, part of the bottom is bared.
π π π
× × = −
. . .
6 2
1
2
1
2
2
0
2
1
2
1
r h r h
Using Eq. 2.6.5:
ω2
0
2
2
r
g
h
= ,
ω2
1
2
2
r
g
h
= 1.
∴ = −
0144
2 2
2
2
2 1
2
.
g
h
g
h
ω ω
or
h h
2
1
2
2
0 144 10
2 981
− =
×
×
.
.
.
Also, h – h1 = 0.8. 1.6h – 0.64 = .7339. ∴h = 0.859 m, r1 = 0.108 m.
∴pA =
1
2
× 1000 × 102
(0.62
– 0.1082
) = 17 400 Pa.
d) Following part (c): h h
2
1
2
2
0144 20
2 9 81
− =
×
×
.
.
. 1.6h – .64 = 2.936.∴ h = 2.235 m.
∴pA =
1
2
× 1000 × 202
(0.62
– 0.2652
) = 57 900 Pa r1 = 0.265 m
2.103 The answers to Problem 2.102 are increased by 25 000 Pa.
a) 33 150 Pa b) 35 780 Pa c) 42 400 Pa d) 82 900 Pa
2.104 p r r g h
( ) [ (. )].
= − − −
1
2
0 8
2 2
ρω ρ
p r r h
( ) (. )
= + −
500 9810 8
2 2
ω if h < .8.
p r r r
( ) ( )
= −
500 2 2
1
2
ω if h > .8.
a) F p rdr r r dr
= = +
∫
∫ 2 2 12 500 3650
3
0
6
π π ( )
.
= 6670 N.
(We used h = .428 m)
b) F p rdr r r dr
= = +
∫
∫ 2 2 24 500 1962
3
0
6
π π ( )
.
= 7210 N. (We used h = 0.6 m)
c) F p rdr r r dr
= = −
−
∫
∫ 2 2 50 000 108
3
108
6
2
π π ( ( . )
.
.
= 9520 N. (We used r1 = 0.108 m)
d) F p rdr r r dr
= = −
∫
∫ 2 2 200 000 265
3
265
6
2
π π ( ( . )
.
.
= 26 400 N. (r1 = 0.265 m)
1
h
z
r
A
r0
h1
dr
dA = 2πrdr
34
CHAPTER 3
Introduction to Fluids in Motion
3.1
3.2 Pathlines: Release several at an instant in time and take a time exposure of the
subsequent motions of the bulbs.
Sreakline: Continue to release the devises at a given location and after the last
one is released, take a snapshot of the “line” of bulbs. Repeat this
for several different release locations for additional streaklines.
3.3
3.4
streakline
pathline
streamline
streakline
pathline hose
boy
time t
t = 0
streamlines
t = 2 hr
pathline
t = 2 hr
streakline at t = 3 hr
y
x
35
3.5 a)u
dx
dt
t v
dy
dt
t
= = + = =
2 2 2
x t t c y t c
= + + = +
2
1
2
2
2
= +
y y
2
∴ − + =
x xy y y
2 2
2 4 ∴parabola.
b) x t t c c c
= + + ∴ = − = −
2
1 1 2
2 8 4
. , .
and
= + + ± + −
y y
4 2 4 8
( )
∴ − + + − =
x xy y x y
2 2
2 8 12 0. ∴parabola.
3.6
ˆ
ˆ ˆ ( )
ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
using , .
z
V dr udy vdx
V ui vj wk
dr dxi dy j dzk i j k j i k
 × = −
= + + 

= + + × = × = −


v
v v
v
3.7 Lagrangian: Several college students would be hired to ride bikes around the
various roads, making notes of quantities of interest.
Eulerian: Several college students would be positioned at each intersection
and quantities would be recorded as a function of time.
3.8 a) At t V
= = =
2 0 0 0 2 2
2
and m / s
( , , ) .
At t V
= − = + =
2 1 2 0 3 2 3 606
2 2
and m / s
( , , ) . .
b) At t V
= =
2 0 0 0 0
and ( , , ) .
At t V
= − = − + − =
2 1 2 0 2 8 8 246
2 2
and m/ s
( , , ) ( ) ( ) . .
c) At t V
= = − =
2 0 0 0 4 4
2
and m / s
( , , ) ( ) .
At t V
= − = + − + − =
2 1 2 0 2 4 4 6
2 2 2
and m / s
( , , ) ( ) ( ) .
3.9 (D) 5 ˆ
( 51.4 10 )
j
−
− ×
A simultaneous solution yields 4/5 and 3/5.
x y
n n
= = (They must
both have the same sign.
3.10 a) cos $ / ( )/ . . .
α α
= ⋅ = + + = ∴ =
v o
V i V 1 2 3 2 0 832 33 69
2 2
v
V n i j n i n j
n n
n n
n n
n n
x y
x y
x y
y x
x x
⋅ = + ⋅ + =
+ =
+ =



∴
= −
+ =
$ . ( $ $) ( $ $) .
0 3 2 0
3 2 0
1
3
2
9
4
1
2 2
2 2
∴ = = − = −
n n n i j
x y
2
13
3
13
1
13
2 3
, $ ( $ $).
or
39.8o
y
x
streamlines
t = 5 s
(27, 21)
(35, 25)
36
b) cos $ / / ( ) ( ) . .
α α
= ⋅ = − − + − = − ∴ =
v o
V i V 2 2 8 0 2425 104
2 2
v
V n i j n i n j
n n
n n
n n
n n
x y
x y
x y
x y
y y
⋅ = − − ⋅ + =
− − =
+ =



∴
= −
+ =
$ . ( $ $) ( $ $) .
0 2 8 0
2 8 0
1
4
16 1
2 2 2 2
∴ = = − = − +
n n n i j
y x
1
17
4
17
1
17
4
, $ ( $ $).
or
c) cos $ / / ( ) . . .
α α
= ⋅ = + − = ∴ = −
v o
V i V 5 5 8 0 6202 51 67
2 2
v
V n i j n i n j
n n
n n
n n
n n
x y
x y
x y
x y
y y
⋅ = − ⋅ + =
− =
+ =



∴
=
+ =
$ . ( $ $) ( $ $) .
0 5 8 0
5 8 0
1
8
5
64
25
1
2 2
2 2
∴ = = = +
n n n i j
y x
5
89
8
89
1
89
8 5
, $ ( $ $).
or
3.11 a) [ ]
v v
V dr x i xtj dxi dyj
× = + + × + =
0 2 0
. ( )$ $ ( $ $) .
∴ + − =
+
=
( ) .
x dy xtdx t
xdx
x
dy
2 0
2
or
Integrate: [ ]
t
xdx
x
dy t x n x y C
+
= − + = +
∫
∫ 2
2 2
. .
l
2 1 2 3 2
( ) .
− = − + ∴
ln C C = 0.8028.
[ ]
t x n x y
− + = +
2 2 0 8028
l .
b) [ ]
v v
V dr xyi y j dxi dyj
× = − × + =
0 2 0
2
. $ $ ( $ $) .
∴ + = = −
xydy y dx
dx
x
dy
y
2 0
2
2
or .
Integrate: 2 2 1 2
l l l l
nx n y C n n C
= − = − −
( / ). ( ) ( / ).
∴ = − = − − ∴ = −
C nx n y x y
2 2 2
2 2
. ( / ). .
l l
c) [ ]
v v
V dr x i y tj dxi dyj
× = + − × + =
0 4 0
2 2
. ( )$ $ ( $ $) .
( ) .
x dy y tdx
tdx
x
dy
y
2 2
2 2
4 0
4
+ + =
+
= −
or
Integrate:
t x
C
y
C
2 2
1 2
2
1
2
1
2
1 1
tan . tan .
− −
+





 = +





 = −
∴ = − −





 =
−
C yt
x
0 9636
2
0 9636 2
1
. . tan .
37
3.12 (C) 2
ˆ ˆ ˆ ˆ ˆ ˆ
2 (2 ) (2 2 ) 16 8 16 .
V V V V
a u v w xy yi y xi yj i i j
t x y z
∂ ∂ ∂ ∂
= + + + = − − = − − +
∂ ∂ ∂ ∂
v v v v
v
2 2
8 16 17.89 m/s
a
∴ = + =
3.13 a)
DV
Dt
u
V
x
v
V
y
w
V
z
V
t
v v v v v
= + + +
∂
∂
∂
∂
∂
∂
∂
∂
=0.
b) u
V
x
v
V
y
w
V
z
V
t
x i y j xi yj
∂
∂
∂
∂
∂
∂
∂
∂
v v v v
+ + + = + = +
2 2 2 2 4 4
( $) ( $) $ $ = 8 4
$ $
i j
−
c) u
V
x
v
V
y
w
V
z
V
t
x t xti ytj xyt xtj ztk x i xyj
∂
∂
∂
∂
∂
∂
∂
∂
v v v v
+ + + = + + + + +
2 2
2 2 2 2 2 2
( $ $) ( $ $) $
+ = − −
2 68 100 54
yzk i j k
$ $ $
d) u
V
x
v
V
y
w
V
z
V
t
x i yzj xyz xzj tz xyj tk zk
∂
∂
∂
∂
∂
∂
∂
∂
v v v v
+ + + = − − − + − + +
($ $) ( $) ( $ $) $
2 2 2 2
= xi yz x yz xyzt j zt z k
$ ( )$ ( ) $
− − + + +
2 4 2
2 2 2
=2 114 15
$ $ $
i j k
− +
3.14
v
Ω = −





 + −





 + −






1
2
1
2
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
w
y
v
z
i
u
z
w
x
j
v
x
u
y
k
$ $ $.
a)
v
Ω = − =
1
2
20
∂
∂
u
y
k yk
$ $ = −20 $
k
b)
v
Ω = − + − + −
1
2
0 0
1
2
0 0
1
2
0 0
( )$ ( )$ ( ) $
i j k = 0
c)
v
Ω = − + − + −
1
2
2 0
1
2
0 0
1
2
2 0
( )$ ( )$ ( ) $
zt i j yt k = 6 2
$ $
i k
−
d)
v
Ω = + + − + − −
1
2
0 2
1
2
0 0
1
2
2 0
( )$ ( )$ ( )$
xy i j yz k = − +
2 3
$ $
i k
3.15 The vorticity
v v
ω = 2Ω. Using the results of Problem 3.7:
a)
v
ω = −40$
i b)
v
ω = 0 c)
v
ω = 12 4
$ $
i k
− d)
v
ω = − +
4 6
$ $
i k
3.16 a) ε
∂
∂
ε
∂
∂
ε
∂
∂
xx yy zz
u
x
v
y
w
z
= = = = = =
0 0 0
, , .
ε
∂
∂
∂
∂
ε
∂
∂
∂
∂
xy xz
u
y
v
x
y
u
z
w
x
= +





 = − = = +





 =
1
2
20 20
1
2
0
, ,
ε
∂
∂
∂
∂
yz
v
z
w
y
= +





 = ∴ =










1
2
0
0 20 0
20 0 0
0 0 0
. rate - of strain
38
b)
ε ε ε
ε ε ε
xx yy zz
xy xz yz
= = =
= = =
2 2 0
0 0 0
, , .
, , .
rate-of strain =
2 0 0
0 2 0
0 0 0










c) ε ε ε
xx yy zz
xt xt yt
= = = = = = −
2 8 2 8 2 4
, , .
ε ε ε
xy xz yz
yt zt
= = − = = = =
1
2
2 2
1
2
0 0
1
2
2 6
( ) , ( ) , ( ) .
rate-of strain =
8 2 0
2 8 6
0 6 4
−
−
−










d) ε ε ε
xx yy zz
xz t
= = − = − = =
1 2 12 2
, , .
ε ε ε
xy xz yz
yz xy
= − = = = = − =
1
2
2 3
1
2
0 0
1
2
2 2
( ) , ( ) , ( ) .
rate-of strain =
1 3 0
3 12 2
0 2 2
−










3.17 a) a
r r r r r
r = −











 − +





 −





 −
10
40 80
10
40
1
40
2 3 2 2
cos cos
sin
( sin )
θ θ
θ
θ
− +





 = − − −
1
10
40
10 2 1 125 1
2
2
2
r r
sin ( .5)( ) . ( )
θ = 9.375 m/s2.
a
r r r r r
θ θ θ
θ
θ
= −











 + +





 +






10
40 80
10
40
10
40
2 3 2 2
cos sin
sin
cos
− −






1
100
1600
4
r r
sin cos
θ θ = 0 since sin 180° = 0.
aφ = 0.
b) ω ω ω θ θ
θ
r z
r r r r
= = = − +





 − −





 −
0 0
1
10
40 1
10
40
2 2
, , sin ( sin ) = 0.
At (4, 180°)
v
ω = 0 since
v
ω = 0 everywhere.
3.18 a) a
r r r r r
r = −











 − +





 − −






10
80 240
10
80
10
80
3 4 3 3
cos cos
sin
( sin )
θ θ
θ
θ
− +





 = − −
10
80
8 75 1 9375 1
3
2 2
r r
sin
. ( )(. )( )
θ
= 8.203 m/s2
aθ = 0 since sin 180° = 0. aφ = 0 since vφ = 0.
b) ω r = 0, ω θ = 0, ω φ = 0, since sin 180° = 0.
39
3.19
V V
a u
t x
∂ ∂
∂ ∂
= +
v v
v
v
+
V
w
y
∂
+
∂
v
ˆ.
V u
i
z t
∂
∂
∂
=
∂
v
For steady flow ∂ ∂
u t a
/ .
= =
0 0
so that
v
3.20 Assume u(r,x) and v(r,x) are not zero. Then, replacing z with x in the appropriate
equations of Table 3.1 and recognizing that vθ ∂ ∂θ
= =
0 0
and / :
r x
v v u u
a v u a v u
r x r x
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
= + = +
3.21 a) u e t
t
= − − = = ∞
−
2 1 0 1 10
( )( ) .
/
2 m / s at
( )
a
u
t
e t
x
t
= = −





 = =
−
∂
∂
2 1 0
1
10
0 2 0
10
( ) . .
/
m / s at
2
b) u e t
t
= − − = = ∞
−
2 1 0 1
2 10
( .5 )( ) .
/
1.875 m / s at
a e t
x
t
= −





 = =
−
2 1 0 2
1
10
0 0125 0
2 2 10
( .5 / ) . .
/
m / s at
2
c) u e t
t
= − − =
−
2 1 2 2 1
2 2 10
( / )( ) .
/
0 for all
a e t
x
t
= −





 =
−
2 1 2 2
1
10
0
2 2 10
( / ) .
/
for all
3.22
DT T
u
Dt x
∂
∂
= v
+
T
w
y
∂
∂
+ 2
20(1 ) sin 0.5878
100 100 5
T T t
y
z t
∂ ∂ π π π
∂ ∂
 
+ = − − = − ×
 
 
= −0.3693 °C/s.
3.23
D
Dt
u
x
v
y
w
z t
e
ρ ∂ρ
∂
∂ρ
∂
∂ρ
∂
∂ρ
∂
= + + + = − × − − × −
10 1 23 10 4 3000 10 4
( . ) = − ×
⋅
−
9 11 10 4
. .
kg
m s
3
3.24
D
Dt
u
x
v
y
w
z t
ρ ∂ρ
∂
∂ρ
∂
∂ρ
∂
∂ρ
∂
= + + + = −






10
1000
4
= −
⋅
2500
kg
m s
3
.
3.25
D
Dt
u
x
ρ ∂ρ
∂
= = ×
4 01
(. ) = 0.04 kg/m3⋅s
3.26 (D)
2
2
10
[10(4 ) ]
(4 )
x
u u u u u
a u v w u x
t x y z x x
x
−
∂ ∂ ∂ ∂ ∂ ∂
= + + + = = −
∂ ∂ ∂ ∂ ∂ ∂
−
3 2
2
10 10 1
10( 2)( 1)(4 ) 20 6.25 m/s .
4 8
(4 )
x
x
−
= − − − = × × =
−
3.27
D
Dt
V
t
= ⋅∇ +
v v ∂
∂
observing that the dot product of two vectors
v
A A i A j A k
x y z
= + +
$ $ $
and
v v v
B B i B j B k A B A B A B A B
x y z x x y y z z
= + + ⋅ = + +
$ $ $ .
is
40
3.28
a
u
t
V u
a
v
t
V v
a
w
t
V w
a
V
t
V V
x
y
z
= + ⋅∇
= + ⋅∇
= + ⋅∇









∴ = + ⋅∇
∂
∂
∂
∂
∂
∂
∂
∂
v v
v v
v v
v
v
v v v
( )
3.29 Using Eq. 3.2.12:
a)
v v
v v v v v v
v
v
A a
d s
dt
V r
d
dt
r
= + + × + × × + ×
2
2
2Ω Ω Ω
Ω
( )
= 2 20 4 20 20 1
( $ $) $ ( $ .5$)
k i k k i
× + × × = 160 600
$ $
j i
− m / s
2
b)
v v v v v v o
A V r k j k k i
= × + × × = × − + × ×
2 2 20 20 30 20 20 3
Ω Ω Ω
( ) ( $ cos $) $ ( $ $) = −507$
i
3.30
v
Ω =
× ×
= × −
2
24 60 60
7 272 10 5
π $ . $
k k rad/s.
v
v i k i k
= − − = − −
5 707 707 3 3
( . $ . $) .535$ .535$ m/s.
v v v v v v
A V r
= × + × ×
2Ω Ω Ω
( )
= 2 7 272 10 3 3 7 272 10
5 5
× × × − − + × ×
− −
. $ ( .535$ .535 $) . $
k i k k
[ . $ ( . $ . $)]
7 272 10 6 10 707 707
5 6
× × × − +
−
k i k = − × +
−
51 4 10 0 0224
5
. $ . $
j i m / s2
.
Note: We have neglected the acceleration of the earth relative to the sun since it is quite small
(it is d s dt
2 2
v
/ ). The component 5 ˆ
( 51.4 10 )
j
−
− × is the Coriolis acceleration and causes air
motions to move c.w. or c.c.w. in the two hemispheres.
3.31 a) two-dimensional (r, z) b) two-dimensional (x, y)
c) two-dimensional (r, z) d) two-dimensional (r, z)
e) three-dimensional (x, y, z) f) three-dimensional (x, y, z)
g) two-dimensional (r, z) h) one-dimensional (r)
3.32 Steady: a, c, e, f, h Unsteady: b, d, g
3.33 b. It is an unsteady plane flow.
3.34 a) d) e)
3.35 f, h
41
3.36 a) inviscid. b) inviscid. c) inviscid.
d) viscous inside the boundary layer.
e) viscous inside the boundary layers and separated regions.
f) viscous. g) viscous. h) viscous.
3.37 d and e. Each flow possesses a stagnation point.
3.38
3.39 (C) The only velocity component is u(x). We have neglected v(x) since it is
quite small. If v(x) in not negligible, the flow would be two-dimensional.
3.40 Re = VL/ ν = 2 × .015/.77 × 10-6 = 39 000. ∴Turbulent.
3.41 Re = =
VL
ν
.2 × .8/1.4 × 10-5 = 11 400. ∴Turbulent.
3.42 Re
.
.
= =
×
× −
VL
ν
4 06
17 10 5
= 14 100. ∴Turbulent.
Note: We used the smallest dimension to be safe!
3.43 a) Re
. .
.51
= =
×
×
=
−
V D
ν
1 2 0 01
1 10
795.
5
Always laminar.
b) Re
.
.51
= =
×
×
=
−
VD
ν
12 1
1 10
79
5
500. May not be laminar.
3.44 Re = 3 × 105 = T
Vx
ν
. ν µ ρ
= / where µ µ
= ( ).
T
a) T = 223 K or −50°C. ∴ = × ⋅
−
µ 1 10 5
.5 N s / m .
2
∴ =
×
×
= ×
−
−
ν
1 5 10
3376 1 23
2 5 10
5
5
.
. .
. .
m /s
2
3 10
900 1000
3600 2 10
5
5
× =
×
× × −
xT
.5
. ∴xT = 0.03 m or 3 cm
b) T = −48°F. ∴µ = 3.3 × 10−7
lb-sec/ft2. ν =
×
= ×
−
−
3 3 10
00089
3 7 10
7
4
.
.
. ft2/sec.
3 10
600 5280
3600 3 7 10
5
4
× =
×
× × −
xT
.
. ∴xT = 0.13' or 1.5"
42
3.45 Assume the flow is parallel to the leaf. Then 3 × 105 =VxT / .
ν
∴ = × = × × × =
−
x V
T 3 10 3 10 1 4 10 6 8 17
5 5 4
ν / .5 . / . m.
The flow is expected to be laminar.
3.46 a) M
V
c
= =
× ×
=
100
14 287 236
0 325
.
. . For accurate calculations the flow is
compressible. Assume incompressible flow if an error of 4%, or so, is
acceptable.
b) M
V
c
= =
× ×
=
80
14 287 288
0 235
.
. . ∴Assume incompressible.
c) M
V
c
= =
× ×
=
100
14 287 373
0 258
.
. . ∴Assume incompressible.
3.47
D
Dt
u
x
v
y
w
z t
ρ ∂ρ
∂
∂ρ
∂
∂ρ
∂
∂ρ
∂
= + + + = 0. For a steady, plane flow
∂ρ ∂
/ t = 0 and w = 0. Then
u
x
v
y
∂ρ
∂
∂ρ
∂
+ = 0.
3.48
D
u
Dt x
ρ ∂ρ
∂
= v
y
∂ρ
∂
+ w
+
z t
∂ρ ∂ρ
∂ ∂
+ 0.
= ∴incompressible.
3.49 (B)
2
9810 0.800
. 113 m/s.
2 1.23
water
air
h
V p
V
γ
ρ ρ
×
= = = ∴ =
3.50
V p
2
2
=
ρ
. Use ρ = 0.0021 slug/ft3.
a) v p
= = × ×
2 2 3 144 0021
/ . / .
ρ = 203 ft/sec.
b) v p
= = × ×
2 2 9 144 0021
/ . / .
ρ = 351 ft/sec.
c) v p
= = × ×
2 2 09 144 0021
/ . / .
ρ = 111 ft/sec.
3.51 p
V
= =
×






ρ
2 2
2
123
120 1000
3600
2
. / = 683 Pa.
∴F = pA = 683 π × 0.0752 = 12.1 N.
3.52
V p
2
2
0
+ =
ρ
. ∴ =
−
=
×
V
p
2 2 2000
123
ρ .
= 57.0 m/s
43
3.53 (C)
2 2 2
1 2 1
. 0.200 0.600. 2 9.81 0.400 2.80 m/s.
2 2 2
V V V
p
V
g g g
γ
+ = + = ∴ = × × =
3.54 (B) The manometer reading h implies:
2 2
2
1 1 2 2
2 2
2
or (60 10.2). 9.39 m/s
2 2 1.13
V p V p
V V
ρ ρ
+ = + = − ∴ = The
temperature (the viscosity of the water) and the diameter of the pipe are
not needed.
3.55 a)
2
2
0
2 2
V
V p
ρ
+ =
2
2
( 10 )
. . 50
2
o o
o
p p
x p
p p x ρ
ρ ρ ρ
−
+ + = ∴ = −
b)
2
2
0
2 2
V
V p
ρ
+ =
2
2
(10 )
. . 50
2
o o
o
p p
y p
p p y ρ
ρ ρ ρ
+ + = ∴ = −
3.56
2
2
2 2
U p
V p
ρ ρ
∞ ∞
+ = + .
a) v v U r r
r c
θ θ
= = = − −
∞
0 180 1 1
2 2
and o
: ( / )( ).
( )
∴ = − = −














∞ ∞
p U v U
r
r
r
r
r
c c
ρ ρ
2 2
2
2 2 2
2
2
4
.
b) Let r r p U
c T
= = ∞
:
ρ
2
2
c) ( ) [ ]
v r r v U p v U
r c
= = − ∴ = − = −
∞ ∞ ∞
0 2
2 2
1 4
2 2 2
and = U 2
: sin . sin
θ θ
θ
ρ ρ
θ
d) Let θ ρ
= = − ∞
90
3
2
90
2
o
: p U
3.57
2
2
2 2
U p
V p
ρ ρ
∞ ∞
+ = + .
a) vθ θ
= =
0 180
and o
: ( )
p U v U
r
r
r
r
r
c c
= − =





 −














∞ ∞
ρ ρ
2 2
2
2 2 2
3 6
.
b) Let r r p U
c T
= = ∞
:
1
2
2
ρ .
c) ( ) [ ]
v r r p v U
r c
= = − = −
∞ ∞
0
2 2
1 4
2 2 2
and = U 2
: sin
ρ ρ
θ
θ
d) Let θ ρ
= = − ∞
90
3
2
90
2
o
: p U
44
3.58
2
2
2 2
U p
V p
ρ ρ
∞ ∞
+ = + .
a) ( )
p U u
x x
= − = − +











 = − +












∞
ρ ρ π
π
ρ
2 2
10 10
20
2
50 1 1
1
2 2 2
2 2
= − +






50
2 1
2
ρ
x x
b) 1
0 when 1. 50 ( 2 1) 50
u x p ρ ρ
−
= = − = − − + =
c) ( )
2 2
2 2 2 60 1
30 30 450 1 1
2 2 2
p U u
x x
ρ ρ π
ρ
π
∞
   
   
= − = − + = − +
   
   
   
   
   
= − +






450
2 1
2
ρ
x x
d) 1
0 when 1. 450 ( 2 1) 450
u x p ρ ρ
−
= = − = − − + =
3.59
V p V p
V p p
1
2
1 2
2
2
1 1 2
2 2
0 20
+ = + = − =
ρ ρ
. and kPa.
( )
V p p V
2
2
1 2 2
2 2
1000
20 6 32
= − = ∴ =
ρ
( .
000) = 40. m / s
3.60 Assume the velocity in the plenum is zero. Then
2 2
2
1 1 2 2
2 2
2
or (60 10.2). 9.39 m/s
2 2 1.13
V p V p
V V
ρ ρ
+ = + = − ∴ =
We found ρ = 113
. kg / m3
in Table B.2.
3.61 Bernoulli from the stream to the pitot probe: p
V
p
T = +
ρ
2
2
.
Manometer: .
T Hg
p H H h p h
γ γ γ γ
+ − − = −
Then,
2
2
Hg
V
p H H p
ρ γ γ
+ + − = . 2
(2 )
Hg
V H
γ γ
ρ
−
∴ =
a) V V
2 13 6 1 9800
1000
2 0 04 3 14
=
−
× ∴ =
( . )
( . ). . m / s
b) V V
2 13 6 1 9800
1000
2 0 1 4 97
=
−
× ∴ =
( . )
( . ). . m / s
c) V V
2 13 6 1 62 4
194
2 2 12 1162
=
−
× ∴ =
( . ) .
.
( / ). . fps
d) V V
2 13 6 1 62 4
194
2 4 12 16 44
=
−
× ∴ =
( . ) .
.
( / ). . fps
45
3.62 The pressure at 90° from Problem 3.56 is 2
90 3 /2.
p U
ρ ∞
= − The pressure at the
stagnation point is 2
/2.
T
p U
ρ ∞
= The manometer provides: p H p
T − =
γ 90
2 2
1 3
1.204 9800 0.04 1.204 . 12.76 m/s
2 2
U U U
∞ ∞ ∞
× − × = − × ∴ =
3.63 The pressure at 90° from Problem 3.57 is 2
90 3 /2.
p U
ρ ∞
= − The pressure at the
stagnation point is 2
/2.
T
p U
ρ ∞
= The manometer provides: p H p
T − =
γ 90
2 2
1 3
1.204 9800 0.04 1.204 . 12.76 m/s
2 2
U U U
∞ ∞ ∞
× − × = − × ∴ =
3.64 Assume an incompressible flow with point 1 outside in the room where p1 0
=
and v1 0
= . The Bernoulli’s equation gives, with p h
w
2 2
= γ ,
2
1
2
V 1
p
ρ
+
2
2 2
.
2
V p
ρ
= +
a) 0
2
9800 0 02
1 204
18 04
2
2
2
= +
− ×
∴ =
V
V
.
.
. . m / s
b) 0
2
9800 0 08
1 204
36 1
2
2
2
= +
− ×
∴ =
V
V
.
.
. . m / s
c) 0
2
62 4 1 12
0 00233
66 8
2
2
2
= +
− ×
∴ =
V
V
. /
.
. . fps
d) 0
2
62 4 4 12
0 00233
133 6
2
2
2
= +
− ×
∴ =
V
V
. /
.
. . fps
3.65 Assume incompressible flow (V < 100 m/s) with point 1 outside the wind tunnel
where p V
1 1
0 0
= =
and . Bernoulli’s equation gives
0
2
1
2
2
2
2
2 2
2
= + ∴ = −
V p
p V
ρ
ρ
.
a) ρ = =
×
= ∴ = − × × = −
p
RT
p
90
0 287 253
1 239
1
2
1239 100 6195
2
2
.
. . .
kg / m Pa
3
b) ρ = =
×
= ∴ = − × × = −
p
RT
p
95
0 287 273
1 212
1
2
1212 100 6060
2
2
.
. . .
kg / m Pa
3
c) ρ = =
×
= ∴ = − × × = −
p
RT
p
92
0 287 293
1 094
1
2
1094 100 5470
2
2
.
. . .
kg / m Pa
3
d) ρ = =
×
= ∴ = − × × = −
p
RT
p
100
0 287 313
1113
1
2
1113 100 5566
2
2
.
. . .
kg / m Pa
3
3.66 (A)
2
1
2
V
g
2
1 2 2
2
p V p
g
γ γ
+ = +
2
2
2
800000
. . 40 m/s.
9810 2 9.81
V
V
= ∴ =
×
46
3.67 a) p h V h h
A A A
= = × = = =
γ 9800 4 39 0 2
200 Pa, Using
. ,
2
2
A
V
g
A
A
p
h
γ
+ +
2
2 2
2
2
V p
h
g γ
= + +
2
2
2
.
2
A
V
p p
g
γ
= −
= −
×
× = −
39
14
2 9 81
9800 58
2
200 700 Pa
.
b) 0 and 0.
B B
p V
= = Bernoulli’s eq. gives, with the datum through the pipe,
V
g
p
h
V
g
p
h p
B B
B
2
2
2
2
2 2
2
2 2
4
14
2 9 81
9800 58
+ + = + + = −
×





 = −
γ γ
.
.
700 Pa
3.68 Bernoulli:
2
2 2
2
V p
g γ
+
2
1 1
2
V p
g γ
= +
Manometer:
2
2
1 2
2
Hg
V
p z H H z p
g
γ γ γ γ γ
+ + − − = +
Substitute Bernoulli’s into the manometer equation:
( )
2
1
1 1.
2
Hg
V
p H p
g
γ γ γ
+ − = +
a) Use H = 0.01 m:
V
V
1
2
1
9800
2 9 81
13 6 1 9800 0 01 1
×
×
= − × ∴ =
.
( . ) . .572 m / s
Substitute into Bernoulli:
p
V V
g
1
2
2
1
2 2 2
2
20 1
2 9 81
9800 198
=
−
=
−
×
× =
γ
.572
.
600 Pa
b) Use H = 0.05 m:
V
V
1
2
1
9800
2 9 81
13 6 1 9800 0 05 3
×
×
= − × ∴ =
.
( . ) . .516 m / s
Substitute into Bernoulli:
p
V V
g
1
2
2
1
2 2 2
2
20 3
2 9 81
9800 193
=
−
=
−
×
× =
γ
.516
.
600 Pa
c) Use H = 0.1 m:
V
V
1
2
1
9800
2 9 81
13 6 1 9800 0 1 4 972
×
×
= − × ∴ =
.
( . ) . . m / s
Substitute into Bernoulli:
p
V V
g
1
2
2
1
2 2 2
2
20 4 972
2 9 81
9800 187
=
−
=
−
×
× =
γ
.
.
400 Pa
47
3.69 Bernoulli across nozzle:
2
1
2
V 2
1 2 2
2
p V p
ρ ρ
+ = + 2 1
. 2 /
V p ρ
∴ =
Bernoulli to max. height:
2
1
2
V
g
1
1
p
h
γ
+ +
2
2
2
V
g
= 2
p
γ
+ 2 2 1
. / .
h h p γ
+ ∴ =
a) V p
2 1
2 2 700 1000 37 42
= = × =
/ / .
ρ 000 m / s
h p
2 1 700
= =
/ γ 000 / 9800 = 71.4 m
b) V p
2 1
2 2 1 1000 52 92
= = × =
/ / .
ρ 400 000 m / s
h p
2 1
= =
/ γ 1 400 000/ 9800 = 142.9 m
c) V p
2 1
2 2 100 194 1218
= = × × =
/ / . .
ρ 144 fps
h p
2 1
= = ×
/ γ 100 144 / 62.4 = 231 ft
d) V p
2 1
2 2 200 194 172 3
= = × × =
/ / . .
ρ 144 fps
h p
2 1 200
= = ×
/ γ 144/ 62.4 = 462 ft
3.70 a) Apply Bernoulli’s eq. from the surface to a point on top of the downstream
flow:
2
1
2
V
g
1
p
γ
+
2
2 2
1
2
V p
h
g γ
+ = + 2 2
. 2 ( )
h V g H h
+ ∴ = −
b) Apply Bernoulli’s eq. from a point near the bottom upstream to a point on the
bottom of the downstream flow:
2
1
2
V
g
2
1 2 2
1 2.
2
p V p
h h
g
γ γ
+ + = + +
Using p H p h h h V g H h
1 2 1 2 2 2
= = = = −
γ γ
, , ( )
and
3.71
2
1
2
V 2
1 2 2
.
2
p V p
ρ ρ
+ = + p2 = −100 000 Pa, the lowest possible pressure.
a)
600
2
2
2
000
1000
100 000
1000
= −
V
. ∴V2 = 37.4 m/s.
b)
300
2
2
2
000
1000
100 000
1000
= −
V
. ∴V2 = 28.3 m/s.
48
c)
80 144
1.94
14.7 144
1.94
×
= −
×
V2
2
2
. ∴V2 = 118.6 ft/sec.
d)
40 144
1.94
14.7 144
1.94
×
= −
×
V2
2
2
. ∴V2 = 90.1 ft/sec.
3.72 A water system must never have a negative pressure, since a leak could ingest
impurities. ∴ The least pressure is zero gage.
V p
gz
V p
gz
1
2
1
1
2
2
2
2
2 2
+ + = + +
ρ ρ
. V V
1 2
= . Let z1 0
= , and p2 0
= .
500 000
1000
= 9 81 2
. .
z ∴ z2 = 51.0 m.
3.73 a) ( ) ( )
p V V
1 2
2
1
2 2 2
2
1000
2
2 10
= − = −
ρ
= −48 000 Pa
b) ( ) ( )
2 2 2 2
1 2 1
902
2 10 43300 Pa
2 2
p V V
ρ
= − = − = −
c) ( ) ( )
2 2 2 2
1 2 1
680
2 10 32600 Pa
2 2
p V V
ρ
= − = − = −
d) ( ) ( )
2 2 2 2
1 2 1
1.23
2 10 59.0 Pa
2 2
p V V
ρ
= − = − = −
3.74
V p V p
1
2
1 2
2
2
2 2
+ = +
ρ ρ
. ( ) ( )
2 2 2 2
1 2 1
1.23
2 8
2 2
p V V
ρ
= − = − = −36.9 Pa
3.75 (D) ( ) ( )
2 2 2 2
1 2 1
902
30 15 304400 Pa
2 2
p V V
ρ
= − = − =
3.76 Apply Bernoulli’s equation between the exit (point 2) where the radius is R and
a point 1 in between the exit and the center of the tube at a radius r less than R:
V p V p
p
V V
1
2
1 2
2
2
1
2
2
1
2
2 2 2
+ = + ∴ =
−
ρ ρ
ρ
. .
Since V V
2 1
< , we see that p1 is negative (a vacuum) so that the envelope would
tend to rise due to the negative pressure over most of its area (except for a small
area near the end of the tube).
3.77 Re .
=
V D
ν
For air ν ≅ × −
1 10 5
.5 . Use reasonable dimensions from your
experience!
49
a) Re
.
.5
.
=
×
×
= ×
−
20 0 03
1 10
4 10
5
4
∴Separate
b) Re
.
.5
.
=
×
×
=
−
20 0 005
1 10
6700
5
∴Separate
c) Re
.5
. .
=
×
×
= ×
−
20 2
1 10
2 7 10
5
6
∴Separate
d) Re
.
.5
.
=
×
×
=
−
5 0 002
1 10
670
5
∴Separate
e) Re
.5
. .
=
×
×
= ×
−
20 2
1 10
2 7 10
5
6
∴Separate
f) Re
.5
.
=
×
×
= ×
−
100 3
1 10
2 10
5
7
∴It will tend to separate, except streamlining the components
eliminates separation.
3.78 A burr downstream of the opening will create a region that
acts similar to a stagnation region thereby creating a high
pressure since the velocity will be relatively low in that region.
3.79 ∆ ∆
p
V
R
n
= = × =
ρ
2 2
1000
10
0 05
0 02
.
. 40 000 Pa Along AB, we
expect V V
A B
> <
10 10
m / s and m /s.
3.80 The higher pressure at B will force the fluid toward the lower
pressure at A, especially in the wall region of slow moving
fluid, thereby causing a secondary flow normal to the pipe’s
axis. This results in a relatively high loss for an elbow.
3.81 Refer to Bernoulli’s equation:
V p V p
1
2
1 2
2
2
2 2
+ = +
ρ ρ
p p
A B
> since V V
A B
<
p p
C D
< since V V
C D
>
p p
B D
> since V V
D B
>
stagnation
region
A
B
VA
VB
50
CHAPTER 4
The Integral Forms of the
Fundamental Laws
4.1 a) No net force may act on the system: Σ
v
F = 0.
b) The energy transferred to or from the system must be zero: Q - W = 0.
c) If 3 3 2
ˆ ˆ
ˆ 10 ( ) 0
n
V V n i j
= ⋅ = ⋅ − =
v
is the same for all volume elements then
Σ
v v
F
D
Dt
V dm
= ∫ , or Σ
v v
F
D
Dt
mV
= ( ). Since mass is constant for a system
Σ
v
v
F m
DV
Dt
= . Since
DV
Dt
a F ma
v
v v v
= =
, .
Σ
4.2 Extensive properties: Mass, m; Momentum, mV
v
; kinetic energy,
1
2
mV 2
;
potential energy, mgh; enthalpy, H.
Associated intensive properties (divide by the mass): unity, 1; velocity,
v
V;V2/2;
gh; H/m = h (specific enthalpy).
Intensive properties: Temperature, T; time, t; pressure, p; density, ρ; viscosity, µ.
4.3 (B)
4.4
System ( )
t V
= 1
c.v.( )
t V
= 1
System ( )
t t V
+ ∆ = 1 V
+ 2
c.v.( )
t t V
+ ∆ = 1
4.5
System ( )
t V
= 1 V
+ 2
c.v.( )
t V
= 1 V
+ 2
System ( )
t t V
+ ∆ = 2 V
+ 3
c.v.( )
t t V
+ ∆ = 1 V
+ 2
1 2
1
2
3
pump
51
4.6 a) The energy equation (the 1st law of Thermo).
b) The conservation of mass.
c) Newton’s 2nd law.
d) The energy equation.
e) The energy equation.
4.7
4.8
4.9
4.10 $ $ $ . ($ $)
n i j i j
1
1
2
1
2
0 707
= − − = − + . $ . $ .5$
n i j
2 0 866 0
= − . $ $
n j
3 = − .
1 1 1
ˆ ˆ ˆ
ˆ 10 [ 0.707( )] 7.07 fps
n
V V n i i j
= ⋅ = ⋅ − + = −
v
V V n i i j
n
2 2 2 10 0866 05 866
= ⋅ = ⋅ − =
v
$ $ ( . $ . $) . fps
3 3 2
ˆ ˆ
ˆ 10 ( ) 0
n
V V n i j
= ⋅ = ⋅ − =
v
4.11 flux = ηρ$
n VA
⋅
v
flux1 = ηρ ηρ
[ . ($ $)] $ / .
− + ⋅ = −
0 707 10 0 707 10
i j iA A
flux2 = ηρ ηρ
( . $ .5$) $ / .
0 866 0 10 0 866 10
i j iA A
− ⋅ =
flux3 = ηρ( $) $
− ⋅ =
j iA
10 0
3
n̂
v n̂
v
ω
n̂ v n̂
v
n̂
v
n̂
v n̂
n̂
n̂
v v
v
v
n̂
n̂
n̂
n̂
v
v
v
v
n̂ n̂ v
v
52
4.12 ( $) ( .5$ . $) $( )
v
B n A i j j
⋅ = + ⋅ ×
15 0 0 866 10 12
= × × =
15 0 866 120 1559
. cm 3
Volume = 15 60 10 12 1559
sin cm 3
o
× × =
4.13 The control volume must be independent of time. Since all space coordinates are
integrated out on the left, only time remains; thus, we use an ordinary derivative
to differentiate a function of time. But, on the right, we note that ρ and η may be
functions of (x, y, z, t); hence, the partial derivative is used.
4.14
4.15
4.16
4.17 If fluid crosses the control surface only on areas A1 and A2,
ρ ρ ρ
$ $ $
. .
n VdA n VdA n VdA
A
A
c s
⋅ = ⋅ + ⋅ =
∫
∫
∫
v v v
0
2
1
For uniform flow all quantities are constant over each area:
ρ ρ
1 1 1 2 2 2 0
2
1
$ $
n V dA n V dA
A
A
⋅ + ⋅ =
∫
∫
v v
Let A1 be the inlet so $
n V V A
1 1 1 2
⋅ = −
v
and be the outlet so $ .
n V V
2 2 2
⋅ =
v
Then
− + =
ρ ρ
1 1 1 2 2 2 0
V A V A
or
ρ ρ
2 2 2 1 1 1
A V A V
=
1
2
1
system (∆t) is in
volumes 1 and 2
c.v. (0) = c.v. (∆t)
= volume 1
1
2
3
system (∆t) = V1 + V2 + V3
c.v. (∆t) = V1 + V2
system boundary
at (t + ∆t)
53
4.18 Use Eq. 4.4.2 with mV representing the mass in the volume:
0 = + ⋅
∫
dm
dt
n VdA
V
c s
ρ$
. .
v
= + −
dm
dt
A V A V
V
ρ ρ
2 2 1 1
= + −
dm
dt
Q m
V
ρ &.
Finally,
dm
dt
m Q
V
= −
& .
ρ
4.19 Use Eq. 4.4.2 with mS representing the mass in the sponge:
0 = + ⋅
∫
dm
dt
n VdA
S
ρ$
v
= + + −
dm
dt
A V A V A V
S
ρ ρ ρ
2 2 3 3 1 1
= + + −
dm
dt
m A V Q
S
& .
2 3 3 1
ρ ρ
Finally,
dm
dt
Q m A V
S
= − −
ρ ρ
1 2 3 3
& .
4.20 (D) 2
200
0.04 70 0.837 kg/s
0.287 293
p
m AV AV
RT
ρ π
= = = × × =
×
& .
4.21 A1V1 = A2V2. π ×
125
144
2
.
× 60 = π ×
2 5
144
2
.
V2. ∴V2 = 15 ft/sec.
& .
.
m AV
= = ×
ρ π
194
1 25
144
60
2
= 3.968 slug/sec. Q = AV = π
125
144
2
.
× 60 = 2 045
. / .
ft sec
3
4.22 A1V1 = A2V2.π × .0252 × 10 = (2π × .6 × .003)V2. ∴V2 = 1.736 m/s.
& .
m AV
= = × ×
ρ π
1000 025 10
2
= 19.63 kg/s. Q = AV=π × .0252 × 10 =0 01963
. .
m / s
3
4.23 &
min = ρA1V1 + ρA2V2. 200 = 1000 π × .0252 × 25 + 1000 Q2. ∴Q2 =0 1509
. .
m / s
3
4.24 ρ1
1
1
40 144
1716 520
= =
×
×
p
RT
= .006455 slug/ft3. ρ2
7 144
1716 610
=
×
×
= .000963 slug/ft3.
& .
& .
( / ).
.
m AV V
m
A
= ∴ = =
×
ρ
ρ π
1
1 1
2
2
2 144 006455
∴V1 = 355 fps.
& . . ( / ) .
m V
2 2
0 2 000963 2 3 144
= = × × ∴V2 = 4984 fps.
54
4.25 ρ ρ ρ ρ
1 1 1 2 2 2 1
1
2
500
287 393
4
1246
287 522
8 317
A V A V
p
RT
= = =
×
= =
×
=
.
.
.433 .
.
.
kg
m
kg
m
3 3
4.433 π × .052 × 600 = 8.317 π × .052 V2. ∴V2 = 319.8 m/s.
&
m A V
= ρ1 1 1 = 20.89 kg/s. Q A V
1 1 1
= = 4 712
. .
m / s
3
Q2 =2.512 .
m / s
3
4.26 ρ ρ
1 1 1 2 2 2
A V A V
=
p
RT
A V
p
RT
A V
1
1
1 1
2
2
2 2
=
200
293
0 05 40
120
0 03 120
2
2
2
π π
× × = × ×
. . .
T
∴ = −
T2 189 9 83
. .
K or C
o
4.27 a) A V A V
1 1 2 2
= . (2 × 1.5 + 1.5 × 1.5) 3 =π
d2
2
4
2
× . ∴d2 = 3.167 m
b) (2 × 1.5 + 1.5 × 1.5) 3 =π
d2
2
4
2
2
× . ∴d2 = 4.478 m
c) (2 × 1.5 + 1.5 × 1.5) 3 =
1
3 2
866 2
2
πR
R
R
− ×


 

 ×
. .
∴R = 3.581 m. ∴d2 = 7.162 m
4.28 (A) Refer to the circle of Problem 4.27:
2 3
75.7 2
( 0.4 0.10 0.40 sin75.5 ) 3 0.516 m /s.
360
Q AV π
×
= = × × − × × × =
o
4.29 a) v
r
r
r V vdA
r
r
rdr r
r
r
dr
r
r r
= −





 = = −





 = −






∫
∫ ∫
10 1 10 1 2 20
0
0
2
0
0
0
2
0
0
0
0 0
. .
π π π
∴ = −





 =
V
r
r r
20
2 3
10
3
0
2
0
2
0
2
= 3.333 m/s.
& . .
m AV
= = × × ×
ρ π
1000 04 3 33
2
= 16 75
. .
kg / s Q = AV =0 01675
. .
m / s
3
b) v
r
r
r V
r
r
rdr
r r
r
= −





 = −





 = −






∫
10 1 10 1 2 20
2 4
2
0
2 0
2
2
0
2
0
0
2
0
2
0
. .
π π π ∴V = 5 m/s
& .
m AV
= = × × ×
ρ π
1000 04 5
2
= 25 13
. kg / s. Q = AV =0 02513
. m / s.
3
c) v
r
r
r V
r
r
rdr r
r
r
= −





 = −





 +
∫
20 1 20 1 2 10 4
0
0
2
0
2
0
2
0
0
. / .
/
π π π ∴V = 5.833 m/s
& . .
m AV
= = × × ×
ρ π
1000 04 5833
2
= 29 32
. kg / s. Q =0 02932
. .
m / s
3
θ R
cosθ = 1/2
θ = 60o
55
4.30 a) Since the area is rectangular, V = 5 m/s.
& . .
m A V
= = × × ×
ρ 1000 08 8 5 = 320 kg / s. Q =
&
m
ρ
= 0 32
. .
m / s
3
b) v
y
h
y
h
= −






40
2
2
with y = 0 at the lower wall.
∴ = −





 = ×
∫
Vhw
y
h
y
h
wdy
h
w
h
40 40
6
2
2
0
. ∴V = 6.667 m/s.
& . . .
m A V
= = × × ×
ρ 1000 08 8 6 667 = 426 7
. kg / s. Q = 0 4267
. .
m / s
3
c) V × .08 = 10 × .04 + 5 × .02 + 5 × .02. ∴V = 7.5 m/s.
& . . .5
m A V
= = × × ×
ρ 1000 08 8 7 = 480 kg / s. & &
Q
m
=
ρ
= 0 48
. .
m / s
3
4.31 a) A V v dA
1 1 2
= ∫ . π π π
×





 × = −





 =
∫
1
24
6 1 2 2
4
2
0
2
0
2
0
2
0
v
r
r
rdr v
r
r
max max .
With r0
1
24
= , vmax = 12 fps. ∴ =
v r
( ) 12 1 576 2
( ) .
− r fps
b) A V v dA
1 1 2
= ∫ .
1
12
6 1
4
3
2
2
× × = −





 =
−
∫
w v
y
h
wdy v w
h
h
h
max max .
With h =
1
24
, vmax = 9 fps. ∴ =
v y
( ) 9 1 576 2
( ) .
− y fps
c) 1 1 2 .
AV v dA
= ∫
0
2
2
2 0
max max
2
0 0
0.01 2 1 2 2 .
4
r r
r
v rdr v
r
π π π
 
× × = − =
 
∫  
 
With r0 = 0.01 m, max
v = 4 m/s. ( )
v r
∴ = 2
4(1 10000 ) m/s.
r
−
d) n̂
2
max max
2
4
0.02 2 1 .
3
h
h
y h
w v wdy v w
h
−
 
× × = − =
 
∫  
 
With h = 0.01 m, max
v = 3 m/s. ( )
v y
∴ = 2
3(1 10000 ) m/s.
y
−
4.32 If dm dt
/ ,
= 0 then ρ ρ ρ
1 1 1 2 2 2 3 3 3
A V A V A V
= + . In terms of &
m Q
2 3
and this
becomes, letting ρ ρ ρ
1 2 3
= = ,
1000 0 02 12 1000 0 01
2
2
× × × = + ×
π . & . .
m ∴ =
& . .
m2 5 08 kg / s
4.33 v dA A V
r
1
0
2 2
1
∫ = . v
r
r
rdr
r
max . .
0
2
1
2
2
1
1 2 0025 2
∫ −





 = × ×
π π
∴ = × ×
2
005
4
0025 2
2
2
π π
vmax
.
. . ∴vmax = 1 m/s. ∴ =
v r
( ) 1
005
2
2
−






r
.
.
m / s
56
4.34 & & &. . ( ) . &.
.
m m m y y dy m
in out
= + × × × = − + × × ×





 +
∫
ρ ρ ρ
2 2 10 10 20 100 2 1 2 10
2
0
1
Note: We see that at y = 0.1 m the velocity u(.1) = 10 m/s. Thus we integrate to
y = 0.1, and between y = 0.1 and 0.2 the velocity u = 10.
4
4
3
2
ρ ρ ρ
= +





 + &.
m ∴ =
& .
m 0 6667ρ = 0.82 kg/s.
4.35 V h u y dy
h
1 1
0
= ∫ ( ) . 10 05 10 20 100 2
0
× = −
∫
. ( )
y y dy
h
= −






10 10
100
3
2 3
h h .
∴666.7 h3 − 200 h2 = −1. This can be solved by trial-and-error:
h = .06: −.576? −1. h = .07: −.751? −1.
h = .08: −.939? −1. h = .083: −.997? −1.
h = .084: −1.016? −1. ∴h = 0.0832: or 8.32 cm.
Note: Fluid does not cross a streamline so all the flow that enters on the left leaves on
the right. The streamline simply moves further from the wall.
4.36 ( )
& . . ( )
/
m VdA y y y dy
= = − − ×
∫
∫ρ 2 2 1 3545 6 9 2 5
0
1 3
2
( )
= − − +
∫
22 6 2 127 9 3 19
2 2 3
0
1 3
y y y y dy
. .
/
= 4.528 slug/sec.
V u
= = × =
2
3
2
3
2
4
3
max .
fps (See Prob. 4.31b).
ρ =
+
2 2 194
2
. .
= 2.07 slug/ft3. ∴ = × × ×






ρV A 2 07
4
3
5
1
3
. = 4.6 slug/sec.
Thus, ρVA m
≠ & since ρ = ρ(y) and V = V(y) so that V V
ρ ρ
≠ .
4.37 A V A V
1 1 2 2
= . π π
× × = × ×
. ( . . ) .
01 8 2 2 04
2
2
V cos 30o
∴V2 = 0.05774 m/s.
4.38 2000
4
3
0015 9000 5
3
3
3
3
× × × ×
π .
m of H O
m of air
m of air
s
2
= 1.5 × (1.5h). ∴h = 0.565 m.
4.39 Use Eq. 4.3.3: 0 1 1 1 1
= − + ⋅
∫
∂ρ
∂
ρ
t
d V V n A
v
$ .
v
V n V
1 1 1
⋅ = −
$ .
∴ = −
ρ
∂ρ
∂
1 1 1
A V
t
Vtire .
( . )
.
37 14 7 144
1716 520
1
96
180 17
2
+
×
× ×





 × = ×
π
∂ρ
∂t
57
∴ =
∂ρ
∂t
3 01 10 5
. .
×
−
− slug
ft sec
3
4.40 & & & .
m m m
in = +
2 3 V1 = 20 m/s (see Prob. 4.31c).
20 1000 02 10 1000 02
2 2
3
× × = + ×
π π
. . .
V ∴ V3 = 12.04 m/s.
4.41 0 2 3 1
= + = + + −
d
dt
m m
d
dt
m m m m
c v net c v
. . . .
& & & &
∴ = − − = × × × − − × ×
d
dt
m m m m
c v
. .
& & & . .
1 2 3
2 2
1000 02 20 10 1000 02 10
π π
= 2.57 kg/s.
4.42 The control surface is close to the
interface at the instant shown.
∴Vi = interface velocity.
ρ ρ
e e e i i i
A V A V
= .
1 15 300
8000
287 673
1
2 2
.5 .
.
.
× × × =
×
×
π π Vi
∴Vi = 0.244 m/s.
4.43 Assume an incompressible flow:
4 1 2 2
Q A V
= . 4 1500 60 2 4 2
× = ×
/ ( ) .
V ∴ =
V2 12.5 .
fps
4.44 For an incompressible flow (low speed air flow)
udA A V
A
=
∫ 2 2
1
. 20 0 8 0 15
1 5 2
2
0
0 2
y dy V
/
.
. . .
× = ×
∫ π
20 0 8
5
6
0 2 015
6 5 2
2
× = ×
. . . .
/
π V ∴ =
V2 27 3
. .
m / s
4.45 A V v dA A V
e e
1 1 2
+ =
∫
π π π
( . . )
.
.
.
01 0 025 4 200 1
0 025
2 0 1
2 2
2
2
2
0
0 025
− × + −





 = ×
∫
r
rdr Ve
0 1178 01963 0 0314
. . . .
+ = Ve ∴ =
Ve 10 0
. .
m / s
4.46 Draw a control volume around the entire set-up:
0 2 2 1 1
= + −
dm
dt
V A V A
tissue
ρ ρ
= +
−





 −
& & ( tan ) &
m
d d
h h h
tissue ρπ ρπ φ
2
2 2
2 1
2
1
4
Ve
n̂
n̂
Vi
58
or
& & & tan .
m
d d
h h h
tissue =
−
+






ρπ φ
2
2
2
2 1
2
1
2
4
4.47 The width w of the channel is constant throughout the flow. Then
0 2 2 1 1
= + −
dm
dt
A V A V
ρ ρ . 0 2 2 1 1
= + −
d
dt
whL A V A V
( )
ρ ρ ρ
0 100 0 2 8 4 0 2
= × + × − ×
ρ ρ ρ
dh
dt
w w w
. . . ∴ =
& . .
h 0 008 m / s
4.48 0 2 2 1 1
= + −
dm
dt
A V A V
ρ ρ
= + × × − × −
& ( . . / ).
m 1000 0 003 0 02 10 10 60
2 6
π ∴ = × −
& . .
m 3 99 10 4
kg / s
4.49 ρ ρ
1 1 1 2 2 2
A V A V
= . &
m A V
1 2 2 2
= ρ .
400 10 900 0 2 0 05
10 100 6 2
e Ve
− −
× × = × ×
/
. . .
π ∴ =
Ve 207 m / s.
4.50 0 3 3 1 1 1 2
= + − −
dm
dt
Q A V m
ρ ρ & where m Ah
= ρ .
a) 0 1000 0 6 1000 0 6 60 1000 0 02 10 10
2 2
= × + × − × × −
π π
. & . / . .
h
∴ =
& .
h 0 0111 m / s or 11.1 mm / s
b) 0 1000 0 6 1000 0 01 0 20
2
= × + × − −
π . & . .
h
∴ =
& . .
h 0 00884 m / s or 8.84 mm/ s
c) 2 2
0 1000 0.6 1000 1.0/60 1000 0.02 5 10.
h
π π
= × + × − × × −
&
0.000339 m/s or 0.339 mm/s.
h
∴ =
&
4.51 A V A V
1 1 2 2
= where A2 is an area just under the top surface.
a) π π
× × = ×
−
0 02 10 60
2 10 2
. ( tan )
/
e h
dh
dt
t o
∴ = −
h dh e dt
t
2 10
0 001333
. .
/
∴ = − +
−
h e t
3 10
0 04 0 04
. . .
/
Finally,
h t e t
( ) . ( ) .
/ /
= − −
0 342 1 10 1 3
b) 0 04 10 10 60 10
10
. ( tan ) &
/
× × = ×
−
e h h
t o
∴ = −
hdh e dt
t
0 2309 10
. .
/
∴ = − +
−
h e t
2 10
4 62 4 62
. . .
/
Finally,
/10 1/2
( ) 2.15(1 ) .
t
h t e−
= −
59
4.52 &
W T pAV
du
dy
Abelt
= + +
ω µ
= × × + × × × + × × × ×
−
20 500 2 60 400 0 4 0 10 181 10 100 0 0 8
5
π / . .5 . .5 .
= + + =
1047 800 0 000724 1847
. W
4.53 If the temperature is essentially constant, the internal energy of the c.v. does not
change and the flux of internal energy into the pipe is the same as that leaving
the pipe. Hence, the two integral terms are zero. The losses are equal to the heat
transfer exiting the pipe.
4.54 80% of the power is used to increase the pressure while 20% increases the
internal energy ( &
Q = 0 because of the insulation). Hence,
& ~ . &
m u W
∆ = 0 2
1000 0 02 4 18 0 2 500
× × = ×
. . . .
∆T ∴ =
∆T 0 836
. .
C
o
4.55 (D)
2 2
2 1
2
P
W V V
Q g
γ
−
=
&
2 1 1200 200
. .
0.040
P
p p W
γ γ γ
− −
+ =
×
&
40
40 kW and energy req'd = 47.1 kW.
0.85
P
W
∴ = =
&
4.56 & .
W
Q H
P
P
p
=
γ
η
5 746
9800 20
0 87
× =
× ×
Q
.
. ∴ =
Q 0 01656
. .
m / s
3
4.57 − = − ×
&
&
. .
W
mg
T
40 0 89
a) & . .
WT = × × × =
40 0 89 200 9 81 69 850 W
b) & . ( / ) .
WT = × × × =
40 0 89 90 000 60 9 81 523 900 W
c) & . ( / ) .
WT = × × × × =
40 0 89 8 10 3600 9 81 776
6
100 W
4.58
10000000
. 0.89 50. 1.273 m/s
100 3 60 9.8
T
T
W
z V
AVg V
η
ρ
− = ∆ = × ∴ =
× × × ×
&
4.59
V
g
p
z
V
g
p
z
1
2
1
1
2
2
2
2
2 2
+ + = + +
γ γ
.
12
2 32 2
6
36
64 4
2 2
2
2 2
×
+ = +
. .
.
h
h
8 236
20 1
2
2 2
.
.
.
= +
h
h Continuity: 3 × 12 = h2 V2.
3 ft
V1
h2
V2
60
This can be solved by trial-and-error.
2 8': 8.24 ? 8.31
h = 2 7.9': 8.24 ? 8.22
h = Qh2 = 7 93
. .
'
2 1.8': 8.24 ? 8.00
h = 2 1.75': 8.24 ? 8.31
h = Qh2 = 176
. '.
4.60
V
g
z
V
g
z hL
1
2
1
2
2
2
2 2
+ = + + . ∴
×
+ =
×
+ +
4
2 9 81
2
16
2 9 81
0 2
2
2
2 2
. .
. .
h
h
∴2 615 0 815 2
2
2
. . / .
= +
h h Trial-and-error provides the following:
h2 2 2 615 2 63
= =
.5: . ? . h2 2 45 615 2
= =
. : . ? .59.
2 ∴ =
h2 2 47
. m
h2 0 65 2 615 2
= =
. : . ? .58 h2 0 64 615 2 63
= =
. : . ? . .
2 ∴ =
h2 0 646
. m
4.61 Manometer: Position the datum at the top of the right mercury level.
9810 4 9810
2
1000 9810 13 6 4 9810 2
2 2
2
2
1
× + + + × = × × + × +
. ( . ) .
z p
V
p
Divide by γ = 9810: . . . .
4
2
13 6 4 2
2
2 2
2
1
+ + + = × + +
z
p V
g
p
γ γ
(1)
Energy:
V
g
p
z
V
g
p
z
1
2
1
1
2
2
2
2
2 2
+ + = + +
γ γ
. (2)
Subtract (1) from (2): With z1 = 2 m,
V
g
1
2
2
12 6 4
= ×
. . . ∴V1 = 9.94 m/s
4.62 The manometer equation (see Prob. 4.61) is
0 4
2
13 6 4 2
2
2 2
2
1
. . . .
+ + + = × + +
z
p V
g
p
γ γ
(1)
Energy:
V
g
p
z
V
g
p
z
V
g
1
2
1
1
2
2
2
2
2
2
2 2
0 05
2
+ + = + + +
γ γ
. . (2)
Subtract (1) from (2): With z1 = 2 m, and with V2 = 4V1 (continuity)
18
2
12 6 0 4
1
2
.
. . .
V
g
= × ∴V1 = 7.41 m/s.
4.63 (A)
2
2
0
V
=
2
1 2 1
2
V p p
g
− −
+
2
2
2
120
. 0 . 7 200000 Pa.
2 9.8 9810
p
p
γ
−
= + ∴ =
×
4.64 Q = 120 × 0.002228 = π ×
1
12
2
1





 V . ∴V1 = 12.25 fps.
61
Continuity: π π
×





 = ×






1
12
1
12
2
1
2
2
V V
.5
. ∴V2 = 5.44 fps.
Energy:
V
g
p V
g
p V
g
1
2
1 2
2
2 1
2
2 2
0 37
2
+ = + +
γ γ
. .
∴ = × + −






p2
2 2
60 144 62 4 0 63
12 25
64 4
5 44
64 4
. .
.
.
.
.
= 8702.9 psf or 60.44 psi
4.65 Q = 600 × 10-3/60 = π × .022 V1. ∴V1 = 7.958 m/s.
3
2
0.02
3 3
3 3 2
0
1 1
10 1
0.02 6.67 0.02
y
V dA wdy
AV w
α
 
= = −
 
∫ ∫  
× ×  
V
A V
A
2
1 1
2
2
2
04 7 958
06
= =
×
. .
.
= 3.537 m/s.
Energy:
V
g
p V
g
p
hL
1
2
1 2
2
2
2 2
+ = + +
γ γ
.
∴ =
−
×
+
−
hL
7 958 3
2 9 81
690 000 700 000
9810
2 2
. .537
.
= 1.571 m
4.66 V Q A
1 1 2
0 08
03
= =
×
/
.
.
π
= 28.29 m/s. ∴V2 = 9V1 = 254.6 m/s.
Energy:
V
g
p V
g
p V
g
1
2
1 2
2
2 1
2
2 2
2
2
+ = + +
γ γ
. .
∴ =
×
−
×






p1
2 2
9810
254 6
2 9 81
0 8
28 29
2 9 81
.
.
.
.
.
= 32 1 106
. .
× Pa
4.67 a) Across the nozzle: 2 2
1 2
.07 .025 .
V V
π π
× = × ∴V2 = 7.84 V1.
Energy:
V
g
p V
g
p
1
2
1 2
2
2
2 2
+ = +
γ γ
.
2
2
1 1
7.84 1
9810 .
2 9.81
p V
−
∴ =
×
For the contraction: π π
× = ×
. . .
07 05
2
1
2
3
V V ∴V3 = 1.96 V1.
Energy:
V
g
p V
g
p
1
2
1 3
2
3
2 2
+ = +
γ γ
.
Manometer: γ γ
× + = × +
. . . .
15 136 15
1 3
p p ∴ = × +
p p
1 3
12 6 15
γ γ
. . .
Subtract the above 2 eqns:
V
g
V
g
V
g
1
2
3
2
2 1
2
2
12 6 15
2
196
2
+ × = =
. . . .
∴ − = × ×
( . ) . . .
196 1 12 6 15 2
2
1
2
V g ∴V1 = 3.612 m/s. ∴p1 = 394 400 Pa.
62
From the reservoir surface to section 1:
V
g
p
z
V
g
p
z
0
2
0
0
1
2
1
1
2 2
+ + = + +
γ γ
H = +
3 612
19 62
2
.
.
394 400
9810
= 40.0 m.
b) Manometer: γ γ
× + = × +
. . . .
2 136 2
1 3
p p ∴ = × +
p p
1 3
12 6 2
γ γ
. . .
Energy:
V
g
p V
g
p
1
2
1 3
2
3
2 2
+ = +
γ γ
. Also, V3 = 1.96 V1.
∴ + × =
V
g
V
g
1
2 2
1
2
2
12 6 2
196
2
. .
.
. ∴V1 = 4.171 m/s.
The nozzle is the same as in part (a): ∴p1 = 534 700 Pa.
From the reservoir surface to the nozzle exit:
V
g
p
z
V
g
p
z
0
2
0
0
2
2
2
2
2 2
+ + = + +
γ γ
. ∴ = =
×
H
V
g
2
2 2
2
32 7
2 9 81
.
.
= 54.5 m.
4.68 a) Energy:
V
g
p
z
V
g
p
z
0
2
0
0
2
2
2
2
2 2
+ + = + +
γ γ
. ∴ = = × ×
V gz
2 0
2 2 9 81 2 4
. . = 6.862 m/s.
Q = AV = .8 × 1 × 6.862 = 5 49
. .
m / s
3
For the second geometry the pressure on the surface is zero but it increases
with depth. The elevation of the surface is 0.8 m.
∴ = +
z
V
g
h
0
2
2
2
. ∴ = − = × ×
V g z h
2 0
2 2 9 81 2
( ) . = 6.264 m/s.
∴Q = .8 × 6.264 = 5 01
. .
m / s
3
Note: z0 is measured from the channel bottom in the 2nd geometry.
∴z0 = H + h.
b)
V
g
p
z
V
g
p
z
0
2
0
0
2
2
2
2
2 2
+ + = + +
γ γ
. ∴ = = × × +





 =
V gz
2 0
2 2 32 2 6
2
2
2123
. . fps.
∴Q = AV = (2 × 1) × 21.23 = 42.5 cfs.
For the second geometry, the bottom is used as the datum:
∴ = + +
z
V
g
h
0
2
2
2
0 . ∴ = + −
V
g
H h h
2
2
2
( ) .
∴ = = × ×
V gH
2 2 2 32 2 6
. = 19.66 fps. ∴Q = 39.3 cfs.
63
4.69 From the reservoir surface to the exit: Continuity:
V
g
p
z
V
g
p
z K
V
g
0
2
0
0
2
2
2
2
1
2
2 2 2
+ + = + + +
γ γ
. V V
1 2
2
2
03
08
=
.
.
= .1406 V2.
10
2
5
1406
2
2
2 2
2
2
= + ×
V
g
V
g
.
∴V2 = 13.36 m/s. ∴Q = 13.36 × π × .0152 =0 00944
. .
m / s
3
The velocity in the pipe is V1 = 1.878 m/s.
Energy 0 → A: 10
1878
2 9 81 9810
8
1878
2 9 81
3
2 2
=
×
+ +
×
+
.
.
.
.
.
.
pA
∴pA = 65 500 Pa.
Energy 0 → B: 10
1878
2 9 81 9810
2 0
1878
2 9 81
10
2 2
=
×
+ +
×
+
.
.
.
.
.
.
pB
∴pB = −5290 Pa.
Energy 0 → C: 10
1878
2 9 81 9810
12 2 8
1878
2 9 81
2 2
=
×
+ + +
×
.
.
.
.
.
.
pC
∴pC = −26 300 Pa.
Energy 0 → D: 10
1878
2 9 81 9810
0 5
1878
2 9 81
2 2
=
×
+ + +
×
.
.
.
.
.
pD
∴pD = 87 500 Pa.
4.70
V
g
p
z
V
g
p
z
0
2
0
0
2
2
2
2
2 2
+ + = + +
γ γ
.
80 000
9810
+ =
×
4
2 9 81
2
2
V
.
. ∴V2 = 19.04 m/s.
a) Q A V
= = × ×
2 2
2
025 19 04
π . . = 0 0374
. .
m / s
3
b) Q A V
= = × ×
2 2
2
09 19 04
π . . = 0 485
. .
m / s
3
c) Q A V
= = × ×
2 2
2
05 19 04
π . . = 0 1495
. .
m / s
3
4.71 a)
p
z
V
g
V
g
0
0
2
2
1
2
2
1
2
γ
+ = + .54 .
80 000
9810
+ = +
4
16
2
1
2
1
2
1
2
V
g
V
g
.54 . ∴V1 = 3.687 m/s.
Q A V
= = × ×
1 1
2
05 3 687
π . . = 0 0290
. .
m / s
3
b) A V A V
1 1 2 2
= . V V V
1
2
2 2 2
09
05
3 24
= =
.
.
. .
80 000
9810
+ = +
4
2
2 3
3 24
2
2
2 2
2
2
V
g
V
g
.
.
. ∴V2 = 3.08 m/s. ∴Q A V
= 2 2 = 0 0784
. .
m / s
3
c)
80 000
9810
+ = +
4
2
1
2
2
2
2
2
V
g
V
g
.5 . ∴V2 = 9.77 m/s. ∴Q A V
= 2 2 = 0 0767
. .
m / s
3
4.72 (C) Manometer:
2
2
1 2
2
V
H p g p
g
γ ρ
+ = + or
2
2
1
9810 0.02 .
2
V
p g
g
ρ
× + =
Energy:
2
100000
7.96
. 3.15.
2 9.81 9810
K K
= ∴ =
×
64
Combine the equations:
2
1
1
9810 0.02 1.2 . 18.1 m/s.
2
V
V
× = × ∴ =
4.73 Manometer: .
6
.
13 2
1 p
z
H
p
z
H +
+
=
+
+ γ
γ
γ
γ ∴ = +
p
H
p
1 2
12 6
γ γ
. .
Energy:
p V
g
p V
g
1 1
2
2 2
2
2 2
γ γ
+ = + .
Combine energy and manometer: 12 6
2
2
2
1
2
. .
H
V V
g
=
−
Continuity: V
d
d
V
2
1
2
2
2 1
= . ∴ = × −






V H g
d
d
1
2 1
4
2
4
12 6 2 1
. / .
∴ = =
×
−






Q V
d H g
d d
d
1
1
2
1
4
2
4
1 2
1
2
4 4
12 6 2
1
π
π .
/
/
= 12 35 1
2
2
2
1
4
2
4
1 2
.
/
d d
H
d d
−






4.74 Use the result of Problem 4.73:
a) Q = 12.35 ×. .
.
. .
/
16 08
2
16 08
2 2
4 4
1 2
×
−





 = 0 0365
. .
m / s
3
b) Q = 12.35 ×. .
.
. .
/
24 08
4
24 08
2 2
4 4
1 2
×
−





 = 0 0503
. .
m / s
3
c) Using English units with g = 32.2: Q d d
H
d d
=
−






22 37 1
2
2
2
1
4
2
4
1 2
. .
/
Q = ×












−






22 37
1
2
1
4
10 12
25
2 2
4 4
1 2
.
/
.5 .
/
= 1.318 cfs.
d) Q = 22.37 ×1
1
3
15 12
1 3333
2
2
4 4
1 2
×






−






/
.
/
= 2.796 cfs.
4.75 (B)
2
2
0.040
. 7.96 m/s.
2 0.04
L
V p Q
h K V
g A
γ π
∆
= = = = =
×
2
100000
7.96
. 3.15.
2 9.81 9810
K K
= ∴ =
×
4.76 a) Energy from surface to outlet:
V
g
H
2
2
2
= . ∴ =
V gH
2
2
2 .
Energy from constriction to outlet:
p V
g
p V
g
1 1
2
2 2
2
2 2
γ γ
+ = + .
65
Continuity: V V
1 2
4
= . With p1 = pv = 2450 Pa and p2 = 100 000 Pa,
2450
9810
16
2 9 81
2
100 000
9810
1
2 9 81
2
+
×
× = +
×
×
. .
.
gH gH ∴H = 0.663 m.
b) With p1 = 0.34 psia, p2 = 14.7 psia,
.
.
.
.
.
34 144
62 4
16
2
2
14 7 144
62 4
1
2
2
×
+ =
×
+
g
gH
g
gH ∴H = 2.21 ft.
4.77 Continuity: V V
1 2
4
= . Energy  surface to exit:
V
g
H
2
2
2
= .
Energy constriction to exit:
p V
g
p V
g
v
γ γ
+ = +
1
2
2 2
2
2 2
.
∴ = +
−
= − = − × ×
p p
V V
g
p H
v 2
2
2
2
2
2
16
2
15 100 000 15 65 9810
γ γ . = 4350 Pa.
From Table B.1, T = 30°C.
4.78 Energy  surface to surface: z z hL
0 2
= + . ∴ = +
30 20 2
2
2
2
V
g
.
Continuity: V1 = 4V2. ∴V1
2
= 160 g. ∴V2
2
= 10 g.
Energy  surface to constriction: 30
160
2
94 000
9810
1
= +
−
+
g
g
z
( )
∴z1 = −40.4 m. ∴H = 40.4 + 20 = 60.4 m.
4.79 Continuity: V V
2
2
2 1
10
6
= = 2.778 V1.
Energy:
V
g
p V
g
p
1
2
1 2
2
2
2 2
+ = +
γ γ
.
V
g
V
g
1
2 2
1
2
2
200 2 778
2
2450
9810
+ = +
000
9810
.
.
∴V1 = 7.67 m/s. ∴Q = π × .052 × 7.67 = 0 0602
. .
m / s
3
4.80 Velocity at exit = Ve . Velocity in constriction = V1. Velocity in pipe = V2 .
Energy — surface to exit:
V
g
H
e
2
2
= . ∴ =
V gH
e
2
2 .
Continuity across nozzle: V
D
d
Ve
2
2
2
= . Also, V V
1 2
4
= .
Energy — surface to constriction: H
V
g
pv
= +
1
2
2 γ
.
66
a) 5
1
2
16
2
2 5
97
4
4
= × × ×





 +
−
g
D
g
.
.
550
9810
∴ =
D 0131
. m
b) 15
1
2
16
8 12
2 15
34 14 7 144
62 4
4
4
= × ×





 +
−
g
D
g
( / )
(. . )
.
. ∴ = ′ ′′
D 0 446
. or 5.35
4.81 Energy — surface to exit: 3
2
4
2
1177
2
2
2
2
2
2
= + ∴ =
V
g
V
g
V
. . .
Energy — surface to “A”: 3
1177
2 9 81
1176 100
3 1
1177
2 9 81
2
=
×
+
−
+ + +
×
.
.
( ) .5
.
.
.
000
9810
H
∴ =
H 8.57 .
m
4.82 & . .
m AV
= = × ×





 × =
ρ π
1 94
1
12
120 5 079
2
slug / sec.
& . .
. .
/ . , .
WP = ×
−
×
+
×





 =
5 079 32 2
30 120
2 32 2
120 144
62 4
0 85 12 950
2 2
ft - lb
sec
or 23.5 Hp
4.83 & . .
m AV
= = × × × =
ρ π
1000 02 40 50 27
2
kg / s.
20
40
2 9 81 9810
0 82
2
000 = 50.27 9.81
102
×
−
×
+






.
/ . .
∆p
∴ = ×
∆p 1088 106
. .
Pa
4.84 (C)
2 2
2 1
2
P
W V V
Q g
γ
−
=
&
.
p
γ
∆
+
16
0.040 400 16 kW. 18.0 kW.
0.89
P
P
W
W Q p
η
= ∆ = × = = =
&
&
4.85 − = × ×
−
×
+
−





 ×
& .
.
.
. .
WT 2 1000 9 81
0 10 2
2 9 81
600
0 87
2
000
9810
∴ = ×
& . .
WT 1304 106
W
We used V Q A
2 2 2
2
25
10 2
= =
×
=
/
.
.
π
m / s.
4.86 V V
1 2 2 2
450
3
15 9
450
3 75
10 19
=
×
= =
×
=
π π
. .
.
. .
fps fps
−





 × = × ×
−
×
+
−






10 000
1
746
550 450 194 32 2
1019 159
2 32 2
18 140 144
62 4
2 2
,
.
. .
. .
.
( )
.
.
ηT
∴ =
ηT 0924
.
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario

More Related Content

What's hot

Mecánica para Ingenieros: DINÁMICA 3ed, Ferdinand Singer
Mecánica para Ingenieros: DINÁMICA 3ed,  Ferdinand SingerMecánica para Ingenieros: DINÁMICA 3ed,  Ferdinand Singer
Mecánica para Ingenieros: DINÁMICA 3ed, Ferdinand SingerDaniel Orozco
 
ejercicios-resueltos-mecanica-de-los-fluidos.pdf
ejercicios-resueltos-mecanica-de-los-fluidos.pdfejercicios-resueltos-mecanica-de-los-fluidos.pdf
ejercicios-resueltos-mecanica-de-los-fluidos.pdfRodrigofuentes793408
 
Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición, Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición, melbe89
 
Guia operaciones unitarias 1
Guia operaciones unitarias 1Guia operaciones unitarias 1
Guia operaciones unitarias 1davpett
 
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishi
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishiDocuments.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishi
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishiAngel Grabel Aliaga
 
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptx
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptxCAPITULO 2_ESTATICA DE LOS FLUIDOS.pptx
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptxLeticiaSilvaCaldern
 
Ecuacion de la continuidad
Ecuacion de la continuidadEcuacion de la continuidad
Ecuacion de la continuidadLuis Morales
 
Problema de compuertas (mecanica de fluidos)
Problema de compuertas (mecanica de fluidos)Problema de compuertas (mecanica de fluidos)
Problema de compuertas (mecanica de fluidos)Miguel Antonio Bula Picon
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_whitejonathan
 
Número de reynolds flujo laminar y flujo turbulento
Número de reynolds  flujo laminar y flujo turbulentoNúmero de reynolds  flujo laminar y flujo turbulento
Número de reynolds flujo laminar y flujo turbulentoEdikson Carrillo
 
Problema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangularesProblema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangularesjosiascbc
 
01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporteABELELIASTORRESMORA
 
Tabla centroide-momento-inercia
Tabla centroide-momento-inerciaTabla centroide-momento-inercia
Tabla centroide-momento-inerciaJaime Pérez
 
Mecánica para Ingenieros Dinámica 3ra edicion j. meriam, l. g. kraige, will...
Mecánica para Ingenieros Dinámica  3ra edicion  j. meriam, l. g. kraige, will...Mecánica para Ingenieros Dinámica  3ra edicion  j. meriam, l. g. kraige, will...
Mecánica para Ingenieros Dinámica 3ra edicion j. meriam, l. g. kraige, will...Alexander Salinas
 

What's hot (20)

Mecanica fluidos 5
Mecanica fluidos 5Mecanica fluidos 5
Mecanica fluidos 5
 
Mecánica para Ingenieros: DINÁMICA 3ed, Ferdinand Singer
Mecánica para Ingenieros: DINÁMICA 3ed,  Ferdinand SingerMecánica para Ingenieros: DINÁMICA 3ed,  Ferdinand Singer
Mecánica para Ingenieros: DINÁMICA 3ed, Ferdinand Singer
 
Problema 1 de manometría
Problema 1 de manometríaProblema 1 de manometría
Problema 1 de manometría
 
ejercicios-resueltos-mecanica-de-los-fluidos.pdf
ejercicios-resueltos-mecanica-de-los-fluidos.pdfejercicios-resueltos-mecanica-de-los-fluidos.pdf
ejercicios-resueltos-mecanica-de-los-fluidos.pdf
 
Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición, Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición,
 
Guia operaciones unitarias 1
Guia operaciones unitarias 1Guia operaciones unitarias 1
Guia operaciones unitarias 1
 
Ejercicios 2daunidad
Ejercicios 2daunidadEjercicios 2daunidad
Ejercicios 2daunidad
 
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishi
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishiDocuments.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishi
Documents.tips solucionario fundamentos-mecanica-de-fluidos-munson-young-okiishi
 
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptx
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptxCAPITULO 2_ESTATICA DE LOS FLUIDOS.pptx
CAPITULO 2_ESTATICA DE LOS FLUIDOS.pptx
 
05 transporte de fluidos
05 transporte de fluidos05 transporte de fluidos
05 transporte de fluidos
 
Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6
 
Ecuacion de la continuidad
Ecuacion de la continuidadEcuacion de la continuidad
Ecuacion de la continuidad
 
Problema de compuertas (mecanica de fluidos)
Problema de compuertas (mecanica de fluidos)Problema de compuertas (mecanica de fluidos)
Problema de compuertas (mecanica de fluidos)
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
 
Número de reynolds flujo laminar y flujo turbulento
Número de reynolds  flujo laminar y flujo turbulentoNúmero de reynolds  flujo laminar y flujo turbulento
Número de reynolds flujo laminar y flujo turbulento
 
Problema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangularesProblema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangulares
 
Estatica de fluidos opta 2011
Estatica de fluidos opta 2011Estatica de fluidos opta 2011
Estatica de fluidos opta 2011
 
01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte
 
Tabla centroide-momento-inercia
Tabla centroide-momento-inerciaTabla centroide-momento-inercia
Tabla centroide-momento-inercia
 
Mecánica para Ingenieros Dinámica 3ra edicion j. meriam, l. g. kraige, will...
Mecánica para Ingenieros Dinámica  3ra edicion  j. meriam, l. g. kraige, will...Mecánica para Ingenieros Dinámica  3ra edicion  j. meriam, l. g. kraige, will...
Mecánica para Ingenieros Dinámica 3ra edicion j. meriam, l. g. kraige, will...
 

Similar to Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario

66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...HectorMayolNovoa
 
Mechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions ManualMechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions Manualfexerona
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...KirkMcdowells
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuHildaLa
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...qedobose
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfPatrickSibanda3
 
H c verma part2 pdf solution
H c verma  part2 pdf solutionH c verma  part2 pdf solution
H c verma part2 pdf solutionSystem of Avinash
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΒατάτζης .
 

Similar to Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario (20)

problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
 
Sm chap01
Sm chap01Sm chap01
Sm chap01
 
Mechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions ManualMechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions Manual
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Ch.3-Examples 3.pdf
Ch.3-Examples 3.pdfCh.3-Examples 3.pdf
Ch.3-Examples 3.pdf
 
Fc025 w5 seminar_solutions_2
Fc025 w5 seminar_solutions_2Fc025 w5 seminar_solutions_2
Fc025 w5 seminar_solutions_2
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
 
Ohanian 02
Ohanian 02Ohanian 02
Ohanian 02
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdf
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
H c verma part2 pdf solution
H c verma  part2 pdf solutionH c verma  part2 pdf solution
H c verma part2 pdf solution
 
Appendix b
Appendix bAppendix b
Appendix b
 
ESAUnit2.ppt
ESAUnit2.pptESAUnit2.ppt
ESAUnit2.ppt
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
 

More from Edgar Ortiz Sánchez

Frank White Mecanica de los fluidos
Frank White Mecanica de los fluidosFrank White Mecanica de los fluidos
Frank White Mecanica de los fluidosEdgar Ortiz Sánchez
 
Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Edgar Ortiz Sánchez
 
¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi ZachariasEdgar Ortiz Sánchez
 
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdfEdgar Ortiz Sánchez
 
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFBOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFEdgar Ortiz Sánchez
 
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfMODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfEdgar Ortiz Sánchez
 
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfMODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfEdgar Ortiz Sánchez
 
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfCuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfEdgar Ortiz Sánchez
 
Cuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfCuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfEdgar Ortiz Sánchez
 
MODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfMODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfEdgar Ortiz Sánchez
 
MODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfMODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfEdgar Ortiz Sánchez
 
Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Edgar Ortiz Sánchez
 
Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Edgar Ortiz Sánchez
 
Evaluación de intercambiadores de calor
Evaluación  de  intercambiadores de calorEvaluación  de  intercambiadores de calor
Evaluación de intercambiadores de calorEdgar Ortiz Sánchez
 
Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III  Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III Edgar Ortiz Sánchez
 
Taller norma iso 9001 2015 ing Hendys Quero
Taller norma iso 9001 2015 ing Hendys QueroTaller norma iso 9001 2015 ing Hendys Quero
Taller norma iso 9001 2015 ing Hendys QueroEdgar Ortiz Sánchez
 

More from Edgar Ortiz Sánchez (20)

Frank White Mecanica de los fluidos
Frank White Mecanica de los fluidosFrank White Mecanica de los fluidos
Frank White Mecanica de los fluidos
 
Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.
 
Catalogo de Acero Aisi 4340
Catalogo de Acero Aisi 4340Catalogo de Acero Aisi 4340
Catalogo de Acero Aisi 4340
 
Diseño de Maquinas Schaum.pdf
Diseño de Maquinas Schaum.pdfDiseño de Maquinas Schaum.pdf
Diseño de Maquinas Schaum.pdf
 
¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias
 
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
 
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFBOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
 
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfMODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
 
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfMODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
 
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfCuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
 
Cuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfCuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdf
 
MODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfMODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdf
 
MODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfMODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdf
 
Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019
 
Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00
 
Aprende a dibujar comic volumen 1
Aprende a dibujar comic volumen 1Aprende a dibujar comic volumen 1
Aprende a dibujar comic volumen 1
 
Trabajo en espacios confinados
Trabajo en espacios confinadosTrabajo en espacios confinados
Trabajo en espacios confinados
 
Evaluación de intercambiadores de calor
Evaluación  de  intercambiadores de calorEvaluación  de  intercambiadores de calor
Evaluación de intercambiadores de calor
 
Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III  Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III
 
Taller norma iso 9001 2015 ing Hendys Quero
Taller norma iso 9001 2015 ing Hendys QueroTaller norma iso 9001 2015 ing Hendys Quero
Taller norma iso 9001 2015 ing Hendys Quero
 

Recently uploaded

School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 

Recently uploaded (20)

School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 

Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario

  • 1. http://www.elsolucionario.net LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS LOS SOLUCIONARIOS CONTIENEN TODOS LOS EJERCICIOS DEL LIBRO RESUELTOS Y EXPLICADOS DE FORMA CLARA VISITANOS PARA DESARGALOS GRATIS.
  • 2. 1 CHAPTER 1 Basic Considerations 1.1 Conservation of mass — Mass — density Newton’s second law — Momentum — velocity The first law of thermodynamics — internal energy — temperature 1.2 a) density = mass/volume = M L / 3 b) pressure = force/area = F L ML T L M LT / / / 2 2 2 2 = = c) power = force × velocity = F L T ML T L T ML T × = × = / / / / 2 2 3 d) energy = force × distance = ML T L ML T / / 2 2 2 × = e) mass flux = ρAV = M/L3 × L2 × L/T = M/T f) flow rate = AV = L2 × L/T = L3 /T 1.3 a) density = M L FT L L FT L 3 2 3 2 4 / / = b) pressure = F/L2 c) power = F × velocity = F × L/T = FL/T d) energy = F × L = FL e) mass flux = M T FT L T FT L = = 2 / / f) flow rate = AV = L2 × L/T = L3 /T 1.4 (C) m = F/a or kg = N/m/s2 = N. s2 /m. 1.5 (B) [µ] = [τ/du/dy] = (F/L2 )/(L/T)/L = F. T/L2 . 1.6 a) L = [C] T2 . ∴[C] = L/T2 b) F = [C]M. ∴[C] = F/M = ML/T2 M = L/T2 c) L3 /T = [C] L2 L2/3 . ∴[C] = L T L L L T 3 2 2 3 1 3 / / / ⋅ ⋅ = Note: the slope S0 has no dimensions. 1.7 a) m = [C] s2 . ∴[C] = m/s2 b) N = [C] kg. ∴[C] = N/kg = kg ⋅ m/s2 ⋅ kg = m/s2 c) m3 /s = [C] m2 m2/3 . ∴[C] = m3 /s⋅m2 ⋅ m2/3 = m1/3 /s 1.8 a) pressure: N/m2 = kg ⋅ m/s2 /m2 = kg/m⋅ s2 b) energy: N⋅ m = kg ⋅ m/s2 × m = kg⋅ m2 /s2 c) power: N⋅ m/s = kg ⋅ m2 /s3 d) viscosity: N⋅ s/m2 = kg m s s 1 m kg / m s 2 2 ⋅ ⋅ = ⋅
  • 3. 2 e) heat flux: J/s = N m s kg m s m s kg m / s 2 2 3 ⋅ = ⋅ ⋅ = ⋅ f) specific heat: J kg K N m kg K kg m s m kg K m / K s 2 2 2 ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ 1.9 kg m s m s m 2 + + = c k f. Since all terms must have the same dimensions (units) we require: [c] = kg/s, [k] = kg/s2 = N s / m s N / m, 2 2 ⋅ ⋅ = [f] = kg m / s N. 2 ⋅ = Note: we could express the units on c as [c] = kg / s N s / m s N s / m 2 = ⋅ ⋅ = ⋅ 1.10 a) 250 kN b) 572 GPa c) 42 nPa d) 17.6 cm3 e) 1.2 cm2 f) 76 mm3 1.11 a) 1.25× 108 N b) 3.21× 10−5 s c) 6.7× 108 Pa d) 5.6× 10−12 m3 e) 5.2 × 10−2 m2 f) 7.8 × 109 m3 1.12 (A) 8 9 2.36 10 23.6 10 23.6 nPa. − − × = × = 1.13 2 2 2 0.06854 0.225 0.738 0.00194 3.281 m m d d λ ρ ρ = = × where m is in slugs, ρ in slug/ft3 and d in feet. We used the conversions in the front cover. 1.14 a) 20 cm/hr = 5 20 /3600 5.555 10 m/s 100 − = × 5 20 /3600 5.555 10 m/s 100 − = × b) 2000 rev/min = 2000 2 × π/60 = 209.4 rad/s c) 50 Hp = 50 × 745.7 = 37 285 W d) 100 ft3 /min = 100 × 0.02832/60 = 0.0472 m3 /s e) 2000 kN/cm2 = 2× 106 N/cm2 × 1002 cm2 /m2 = 2× 1010 N/m2 f) 4 slug/min = 4 × 14.59/60 = 0.9727 kg/s g) 500 g/L = 500 × 10−3 kg/10−3 m3 = 500 kg/m3 h) 500 kWh = 500 × 1000× 3600 = 1.8× 109 J 1.15 a) F = ma = 10 × 40 = 400 N. b) F − W = ma. ∴ F = 10 × 40 + 10 × 9.81 = 498.1 N. c) F − W sin 30° = ma. ∴ F = 10 × 40 + 9.81 × 0.5 = 449 N. 1.16 (C) The mass is the same on earth and the moon: [4(8 )] 32 . du r r dr τ µ µ µ = = = 1.17 The mass is the same on the earth and the moon:
  • 4. 3 m = 60 32 2 1863 . . . = ∴ Wmoon = 1.863× 5.4 = 10.06 lb 1.18 (C) shear sin 4200sin30 2100 N. F F θ = = = o shear 4 2100 = 84 kPa 250 10 F A τ − = = × 1.19 a) λ ρ = = × × × = × − − − . . . . ( . ) .43 225 225 4 8 10 184 3 7 10 10 2 26 10 2 6 m d m or 0.00043 mm b) λ ρ = = × × × = × − − − . . . . ( . ) . 225 225 4 8 10 00103 3 7 10 7 7 10 2 26 10 2 5 m d m or 0.077 mm c) 26 2 10 2 4.8 10 .225 .225 .0039m .00002 (3.7 10 ) m d λ ρ − − × = = = × × or 3.9 mm 1.20 Use the values from Table B.3 in the Appendix. a) 52.3 + 101.3 = 153.6 kPa. b) 52.3 + 89.85 = 142.2 kPa. c) 52.3 + 54.4 = 106.7 kPa (use a straight-line interpolation). d) 52.3 + 26.49 = 78.8 kPa. e) 52.3 + 1.196 = 53.5 kPa. 1.21 a) 101 − 31 = 70 kPa abs. b) 760 − 31 101 × 760 = 527 mm of Hg abs. c) 14.7 − 31 101 × 14.7 = 10.2 psia. d) 34 − 31 101 × 34 = 23.6 ft of H2O abs. e) 30 − 31 101 × 30 = 20.8 in. of Hg abs. 1.22 p = po e−gz/RT = 101 e−9.81 × 4000/287 ×(15 + 273) = 62.8 kPa From Table B.3, at 4000 m: p = 61.6 kPa. The percent error is % error = 62.8 61.6 61.6 − × 100 = 1.95 %. 1.23 a) p = 973 + 22,560 20,000 25,000 20,000 − − (785 - 973) = 877 psf T = −12.3 + 22,560 20,000 25,000 20,000 − − (−30.1 + 12.3) = −21.4°F b) p = 973 + .512 (785 − 973) + .512 2 (−.488) (628 − 2 × 785 + 973) = 873 psf T = −12.3 + .512 (−30.1 + 12.3) + .512 2 (−.488) (−48 + 2 × 30.1 − 12.3) = −21.4°F Note: The results in (b) are more accurate than the results in (a). When we use a linear interpolation, we lose significant digits in the result.
  • 5. 4 1.24 T = −48 + 33,000 30,000 35,000 30,000 − − (−65.8 + 48) = −59°F or (−59 − 32) 5 9 = −50.6°C 1.25 (B) 1.26 p = n F A = 4 26.5 cos 42 152 10− × o = 1296 MN/m2 = 1296 MPa. 1.27 4 n 4 t (120000) .2 10 2.4N 20 .2 10 .0004N F F − −  = × × =   = × × =   F = 2 2 n t F F + = 2.400 N. θ= tan−1 .0004 2.4 =.0095° 1.28 ρ= m V − = 0 2 180 1728 . / = 1.92 slug/ft3 . τ = ρg = 1.92 × 32.2 = 61.8 lb/ft3 . 1.29 ρ= 1000 − (T − 4)2 /180 = 1000 − (70 − 4)2 /180 = 976 kg/m3 γ = 9800 − (T − 4)2 /18 = 9800 − (70 − 4)2 /180 = 9560 N/m3 % error for ρ= 976 978 978 − × 100 = −.20% % error for γ = 9560 978 9.81 978 9.81 − × × × 100 = −.36% 1.30 S = 13.6 − .0024T = 13.6 − .0024 × 50 = 13.48. % error = 13.48 13.6 13.6 − × 100 = −.88% 1.31 a) m = W V g γ = 6 12 400 500 10 9.81 g − × × = = 0.632 kg b) m = 6 12 400 500 10 9.77 − × × = 0.635 kg c) m = 6 12 400 500 10 9.83 − × × = 0.631 kg 1.32 S = / water m V ρ ρ = 10/ . 1.2 water V ρ = . 1.94 ∴ V = 4.30 ft3 1.33 (D) 2 2 3 water ( 4) (80 4) 1000 1000 968 kg/m 180 180 T ρ − − = − = − =
  • 6. 5 1.34 τ= µ du dr = 1.92 × 10−5 2 30(2 1/12) (1/12)   ×     = 0.014 lb/ft2 1.35 T = force × moment arm = τ2πRL × R = µ du dr 2πR2 L = µ 2 0.4 1000 R   +     2πR2 L. ∴µ= 2 2 2 0.0026 0.4 0.4 1000 2 1000 2 .01 0.2 12 T R L R π π =     + + × ×         = 0.414 N. s/m2 . 1.36 Use Eq.1.5.8: T = 3 2 R L h π ω µ = ( ) 2 .5 / 12 π π × × × × × 3 2000 2 60 4 006 01 12 . . / = 2.74 ft-lb. Hp = Tω 550 2 74 209 550 = × . .4 = 1.04 Hp 1.37 Fbelt = µ du dy A = × − 131 10 10 002 3 . . (.6 × 4) = 15.7 N. Hp = F V × = × 746 15 7 10 746 . = 0.210 Hp 1.38 Assume a linear velocity so . du r dy h ω = Due to the area element shown, dT = dF × r = τdA × r = µ du dy 2πr dr × r. dr r τ T = 3 0 2 R r dr h µω π ∫ = 2 4 2 36 10 400 2 60 3 12 2 08 12 4 5 4 πµω π π h R = × × × × × × − . ( / ) . / = 91 × 10−5 ft-lb. 1.39 2 30(2 1/12) (1/12)   ×     2 2 0 0 [32 / ] 32 / . du r r r r dr τ µ µ µ = = = ∴τr = 0 = 0, τr=0.25 = 32 × 1 × 10−3 × 2 .25/100 (.5/100) = 3.2 Pa, τr=0.5 = 32 × 1 × 10−3 × 2 .5/100 (.5/100) = 6.4 Pa 1.40 (A) 3 [10 5000 ] 10 10 5000 0.02 1 Pa. du r dr τ µ µ − = = × = × × × = 1.41 The velocity at a radius r is rω. The shear stress is τ µ = ∆ ∆ u y . The torque is dT = τrdA on a differential element. We have
  • 7. 6 0.08 0 = = 2 0.0002 r T rdA rdx ω τ µ π ∫ ∫ , 2000 2 209.4 rad/s 60 π ω × = = where x is measured along the rotating surface. From the geometry 2 x = r, so that 0.08 0.08 2 3 0 0 209.4 / 2 329000 = 0.1 2 329000 (0.08 ) 0.0002 3 2 x x T dx x dx π × = = ∫ ∫ = 56.1 N . m 1.42 If τ µ = du dy = cons’t and µ= AeB/T = AeBy/K = AeCy , then AeCy du dy = cons’t. ∴ du dy = De−Cy . Finally, 0 0 y u Cy du De dy − = ∫ ∫ or u(y) = 0 y Cy D e C − − = E (e−Cy − 1) where A, B, C, D, E, and K are constants. 1.43 µ = = =    Ae Ae Ae B T B B / / / . . 001 000357 293 353 ∴A = 2.334 × 10−6 , B = 1776. µ40 = 2.334 × 10−6 e1776/313 = 6.80 × 10−4 N. s/m2 1.44 m = ρV . Then dm = ρd V + V dρ. Assume mass to be constant in a volume subjected to a pressure increase; then dm = 0. ∴ρd V = − V dρ, or d V V . d ρ ρ = − 1.45 B = V − p V ∆ ∆ 2200 MPa. = V ∴∆ V − = 2 10 2200 p B ∆ − × = = −0.00909 m3 or −9090 cm3 1.46 Use c = 1450 m/s. L = c∆t = 1450 × 0.62 = 899 m 1.47 = B V p ∆ ∆ − V = −2100 −13 20 . = 136.5 MPa 1.48 a) 327,000 144/1.93 c = × = 4670 fps b) 327,000 144/1.93 c = × = 4940 fps c) 308,000 144/1.87 c = × = 4870 fps 1.49 V ∆ =3.8 × 10−4 × −20 × 1 = .0076 m3 . ∆p = −B V ∆ V .0076 2270 1 − = − = 17.25 MPa 1.50 p = 2 2 0741 5 10 6 σ R = × × − . = 2.96 × 104 Pa or 29.6 kPa. Bubbles: p = 4σ/R = 59.3 kPa
  • 8. 7 1.51 Use Table B.1: σ= 0.00504 lb/ft. ∴p = 4 4 .00504 1/32 12 R σ × = × = 7.74 psf or 0.0538 psi 1.52 See Example 1.4: h = 4 cos 4 0.0736 0.866 0.130 m. 1000 9.81 0.0002 gD σ β ρ × × = = × × 1.53 (D) 6 4 cos 4 0.0736 1 3 m or 300 cm. 1000 9.81 10 10 h gD σ β ρ − × × = = = × × × 1.54 See Example 1.4: h = 4 cos 4 0.032cos130 1.94 13.6 32.2 0.8/12 gD σ β ρ × = × × × o = −0.00145 ft or −0.0174 in 1.55 force up = σ× L × 2 cosβ= force down = ρghtL. ∴h = 2σ β ρ cos . gt 1.56 Draw a free-body diagram: The force must balance: W = 2σL or π ρ σ d L g L 2 4 2       = . ∴ = d g 8σ πρ W σL σL needle 1.57 From the free-body diagram in No. 1.47, a force balance yields: Is π ρ d g 2 4 < 2σ? π(. ) . . 004 4 7850 9 81 2 0741 2 × < × 0.968 < 0.1482 ∴No 1.58 Each surface tension force = σ× πD. There is a force on the outside and one on the inside of the ring. ∴F = 2σπD neglecting the weight of the ring. F D 1.59 h(x) h dW σdl From the infinitesimal free-body shown: cos . d gh xdx σ θ ρ α = l cosθ= dx dl . / d d x d h g xdx g x σ σ ρ α ρ α ∴ = = l l We assumed small αso that the element thickness is αx.
  • 9. 8 1.60 The absolute pressure is p = −80 + 92 = 12 kPa. At 50°C water has a vapor pressure of 12.2 kPa; so T = 50°C is a maximum temperature. The water would “boil” above this temperature. 1.61 The engineer knew that water boils near the vapor pressure. At 82°C the vapor pressure from Table B.1 is 50.8 (by interpolation). From Table B.3, the elevation that has a pressure of 50.8 kPa is interpolated to be 5500 m. 1.62 At 40°C the vapor pressure from Table B.1 is 7.4 kPa. This would be the minimum pressure that could be obtained since the water would vaporize below this pressure. 1.63 The absolute pressure is 14.5 − 11.5 = 3.0 psia. If bubbles were observed to form at 3.0 psia (this is boiling), the temperature from Table B.1 is interpolated, using vapor pressure, to be 141°F. 1.64 The inlet pressure to a pump cannot be less than 0 kPa absolute. Assuming atmospheric pressure to be 100 kPa, we have 10 000 + 100 = 600 x. ∴x = 16.83 km. 1.65 (C) 1.66 ρ= = × + = p RT 1013 0 287 273 15 . . ( ) 1.226 kg/m3 . γ = 1.226 × 9.81 = 12.03 N/m3 1.67 3 in 101.3 1.226 kg/m . 0.287 (15 273) p RT ρ = = = × + 3 out 85 1.19 kg/m . 0.287 248 ρ = = × Yes. The heavier air outside enters at the bottom and the lighter air inside exits at the top. A circulation is set up and the air moves from the outside in and the inside out: infiltration. This is the “chimney” effect. 1.68 3 750 44 0.1339 slug/ft . 1716 470 p RT ρ × = = = × m V ρ = 0.1339 15 2.01 slug. = × = 1.69 (C) pV m = 800 4 59.95 kg 0.1886 (10 273) RT × = = × + 1.70 p W V RT = 100 (10 20 4) 9.81 9333 N. 0.287 293 g = × × × × = ×
  • 10. 9 1.71 Assume that the steel belts and tire rigidity result in a constant volume so that m1 = m2: V 1 V = 1 1 2 2 2 1 2 2 2 1 1 or . 150 460 (35 14.7) 67.4 psia or 52.7 psi gage. 10 460 m RT m RT p p T p p T = + ∴ = = + = − + 1.72 The pressure holding up the mass is 100 kPa. Hence, using pA = W, we have 100000 1 9.81. 10200 kg. m m × = × ∴ = Hence, pV m = 3 100 4 / 3 10200. 12.6 m or 25.2 m. 0.287 288 r r d RT π × = = ∴ = = × 1.73 2 2 1 0 ( 10). 20 32.2. 25.4 fps. 2 KE PE mV mg V V = ∆ + ∆ = + − ∴ = × ∴ = 2 2 1 0 ( 20). 40 32.2. 35.9 fps. 2 mV mg V V = + − ∴ = × ∴ = 1.74 2 2 1-2 1 . a) 200 0 5( 10 ). 19.15 m/s. 2 f f W KE V V = ∆ × = × − ∴ = b) 10 2 2 0 1 20 15( 10 ). 2 f sds V = × − ∫ 2 2 2 10 1 20 15( 10 ). 15.27 m/s. 2 2 f f V V × = × − ∴ = c) 10 2 2 0 1 200cos 15( 10 ). 20 2 f s ds V π = × − ∫ 2 2 20 1 200sin 15( 10 ). 16.42 m/s. 2 2 f f V V π π × = × − ∴ = 1.75 2 1 2 1 2 2 1 1 . 10 40 0.2 0 . 40000. 2 E E u u u u = × × + = + ∴ − = % % % % 40000 . 55.8 C where comes from Table B.4. 717 v v u c T T c ∆ = ∆ ∴∆ = = o % The following shows that the units check: 2 2 2 2 2 car 2 2 2 air kg m / s m kg C m kg C C kg J/(kg C) N m s (kg m/s ) m s m V m c   × ⋅ ⋅ ⋅ ⋅ ⋅ = = = =   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     o o o o where we used N = kg. m/s2 from Newton’s 2nd law.
  • 11. 10 1.76 2 2 2 1 H O 1 . . 2 E E mV m c T = = ∆ 2 6 1 100 1000 1500 1000 2000 10 4180 . 69.2 C. 2 3600 T T − ×   × × = × × × ∆ ∴∆ =     o We used c = 4180 J/kg. C o from Table B.5. (See Problem 1.75 for a units check.) 1.77 water . 0.2 40000 100 4.18 . 19.1 C. f f m h m c T T T = ∆ × = × ∆ ∴∆ = o The specific heat c was found in Table B.5. Note: We used kJ on the left and kJ on the right. 1.78. (B) ice water ice water water . 320 . E E m m c T ∆ = ∆ × = × ∆ 6 3 5 (40 10 ) 1000 320 (2 10 ) 1000 4.18 . 7.66 C. T T − − × × × × = × × × ∆ ∴∆ = o We assumed the density of ice to be equal to that of water, namely 1000 kg/m3 . Ice is actually slightly lighter than water, but it is not necessary for such accuracy in this problem. 1.79. W pdV = mRT V = ∫ d V d V mRT = ∫ V ln V mRT = ∫ 2 V 2 1 1 ln p mRT p = since, for the T = const process, 1 p V 1 2 p V = 2. Finally, 1-2 4 1 1716 530ln 78,310 ft-lb. 32.2 2 W = × × = − The 1st law states that 0. 78,310 ft-lb or 101 Btu. v Q W u mc T Q W − = ∆ = ∆ = ∴ = = − − % 1.80 If the volume is fixed the reversible work is zero since the boundary does not move. Also, since V 1 2 1 2 , mRT T T p p p = = so the temperature doubles if the pressure doubles. Hence, using Table B.4 and Eq. 1.7.17, 200 2 a) (1.004 0.287)(2 293 293) 999 kJ 0.287 293 v Q mc T × = ∆ = − × − = × b) 200 2 (1.004 0.287)(2 373 373) 999 kJ 0.287 373 v Q mc T × = ∆ = − × − = × c) 200 2 (1.004 0.287)(2 473 473) 999 kJ 0.287 473 v Q mc T × = ∆ = − × − = × 1.81 W pdV = ( p V = 2 V − 1 1). If = const, T p V 2 1 T V = 2 1 2 so if 2 , T T = ∫ then V 2 2V = 1 and (2 W p V = 1 V − 1) pV = 1 1. mRT = a) 2 0.287 333 191 kJ W = × × = b) 2 0.287 423 243 kJ W = × × =
  • 12. 11 c) 2 0.287 473 272 kJ W = × × = 1.82 = 1.4 287 318 357 m/s. 357 8.32 2970 m. c kRT L c t = × × = = ∆ = × = 1/ 0.4/1.4 2 2 1 1 500 (20 273) 151.8 K or 121.2 C 5000 k k p T T p −     = = + = −         o 1.83 We assume an isentropic process for the maximum pressure: / 1 1.4/0.4 2 2 1 1 423 (150 100) 904 kPa abs or 804 kPa gage. 293 k k T p p T −     = = + =         Note: We assumed patm = 100 kPa since it was not given. Also, a measured pressure is a gage pressure. 1.84 / 1 1.4/0.4 2 2 1 1 473 100 534 kPa abs. 293 k k T p p T −     = = =         2 1 ( ) (1.004 0.287)(473 293) 129 kJ/kg. v w u c T T =−∆ = − − = − − − = − We used Eq. 1.7.17 for cv. 1.85 a) 1.4 287 293 343.1 m/s c kRT = = × × = b) 1.4 188.9 293 266.9 m/s c kRT = = × × = c) 1.4 296.8 293 348.9 m/s c kRT = = × × = d) 1.4 4124 293 1301 m/s c kRT = = × × = e) 1.4 461.5 293 424.1 m/s c kRT = = × × = Note: We must use the units on R to be J/kg. K in the above equations. 1.86 (D) For this high-frequency wave, 287 323 304 m/s. c RT = = × = 1.87 At 10 000 m the speed of sound 1.4 287 223 299 m/s. c kRT = = × × = At sea level, 1.4 287 288 340 m/s. c kRT = = × × = 340 299 % decrease 100 12.06 %. 340 − = × = 1.88 a) = 1.4 287 253 319 m/s. 319 8.32 2654 m. c kRT L c t = × × = = ∆ = × = b) = 1.4 287 293 343 m/s. 343 8.32 2854 m. c kRT L c t = × × = = ∆ = × = c) = 1.4 287 318 357 m/s. 357 8.32 2970 m. c kRT L c t = × × = = ∆ = × =
  • 13. 12 C HAPTER 2 Fluid Statics 2.1 Σ ∆ ∆ ∆ ∆ F ma p z p s y z a y y y y = − = : sinα ρ 2 Σ ∆ ∆ ∆ ∆ ∆ ∆ F ma p y p s y z a g y z z z z z = − = + : cosα ρ ρ 2 2 Since ∆ ∆ s y cosα = and ∆ ∆ s z sin α = , we have p p y a y y − = ρ ∆ 2 and ( ) p p z a g z z − = + ρ ∆ 2 Let ∆y → 0 and ∆z → 0: p p p p y z − = − =    0 0 ∴ = = p p p y z . 2.2 p = γh. a) 9810 × 10 = 98 100 Pa or 98.1 kPa b) (0.8 × 9810) × 10 = 78 480 Pa or 78.5 kPa c) (13.6 × 9810) × 10 = 1 334 000 Pa or 1334 kPa d) (1.59 × 9810) × 10 = 155 980 Pa or 156.0 kPa e) (0.68 × 9810) × 10 = 66 710 Pa or 66.7 kPa 2.3 h = p/γ. a) h = 250 000/9810 = 25.5 m b) h = 250 000/(0.8 × 9810) = 31.9 m c) h = 250 000/(13.6 × 9810) = 1.874 m d) h = 250 000/(1.59 × 9810) = 16.0 m e) h = 250 000/(0.68 × 9810) = 37.5 m 2.4 (C) (13.6 9810) (28.5 0.0254) 96600 Pa Hg p h γ = = × × × = 2.5 S = 20 144 62.4 20 p h γ × = × = 2.31. ρ = 1.94 × 2.31 = 4.48 slug/ft3 . 2.6 a) p = γh = 0.76 × (13.6 × 9810) = 9810 h. ∴h = 10.34 m. b) (13.6 × 9810) × 0.75 = 9810 h. ∴h = 10.2 m. c) (13.6 × 9810) × 0.01 = 9810 h. ∴h = 0.136 m or 13.6 cm. 2.7 a) p = γ1h1 + γ2h2 = 9810 × 0.2 + (13.6 × 9810) × 0.02 = 4630 Pa or 4.63 kPa. b) 9810 × 0.052 + 15 630 × 0.026 = 916 Pa or 0.916 kPa. c) 9016 × 3 + 9810 × 2 + (13.6 × 9810) × 0.1 = 60 010 Pa or 60.0 kPa. y z pz∆y py∆z p∆s ∆s α ∆z ∆y ρg∆V
  • 14. 13 2.8 ∆p = ρgh = 0.0024 × 32.2 (–10,000) = –773 psf or –5.37 psi. 2.9 (D) 0 84000 1.00 9.81 4000 44760 Pa p p gh ρ = − = − × × = 2.10 inside 100 9.81 3 13.51 Pa .287 253 100 9.81 3 11.67 Pa .287 293 outside o o base i i pg p g h h RT p pg p g h h RT ρ ρ ×  ∆ = ∆ = ∆ = × =  ×  ∴∆  ×  ∆ = ∆ = ∆ = × =  ×  = 1.84 Pa If no wind is present this ∆pbase would produce a small infiltration since the higher pressure outside would force outside air into the bottom region (through cracks). 2.11 p = ρgdh where h = –z. From the given information S = 1.0 + h/100 since S(0) = 1 and S(10) = 1.1. By definition ρ = 1000 S, where ρwater = 1000 kg/m3 . Then dp = 1000 (1 + h/100) gdh. Integrate: dp h gdh p = + ∫ ∫ 1000 1 100 0 10 0 ( / ) p = × + × 1000 9 81 10 10 2 100 2 . ( ) = 103 000 Pa or 103 kPa Note: we could have used an average S: Savg = 1.05, so that ρavg = 1050 kg/m3 . 2.12 v ∇ = + + p p x i p y j p z k ∂ ∂ ∂ ∂ ∂ ∂ $ $ $ = – ρa i x $ – ρα y j $ – ρα z k $ – ρgk $ = – ( ) ρ a i a j a k x y z $ $ $ + + – ρgk $ = – ρ v a – ρ v g ∴ ∇ = − + v v v p a g ρ( ) 2.13 / 0 0 [( ) / ]g R atm p p T z T α α = − = 100 [(288 − 0.0065 × 300)/288]9.81/.0065 × 287 = 96.49 kPa p p gh atm = − = − × × × ρ 100 100 287 288 9 81 300 1000 . . / = 96.44 kPa % error = 96 96 96 100 .44 .49 .49 − × = −0.052% The density variation can be ignored over heights of 300 m or less.
  • 15. 14 2.14 / 0 0 0 g R atm atm T z p p p p p T α α   − ∆ = − = −     = 100 288 0065 20 288 1 9 81 0065 287 − ×       −       × . . /. = −0.237 Pa or −0.000237 kPa This change is very small and can most often be ignored. 2.15 Eq. 1.5.11 gives 310,000 144 . dp d ρ ρ × = But, dp = ρgdh. Therefore, 7 4.464 10 gdh d ρ ρ ρ × = or 2 7 32.2 4.464 10 d dh ρ ρ = × Integrate, using 0 ρ = 2.00 slug/ft3 : 2 7 2 0 32.2 4.464 10 h d dh ρ ρ ρ = ∫ ∫ × . ∴ 1 1 2 ρ   − −     = 7.21 × 10-7 h or 7 2 1 14.42 10 h ρ − = − × Now, 7 7 7 0 0 2 2 ln(1 14.42 10 ) 1 14.42 10 14.42 10 h h g g p gdh dh h h ρ − − − = = = − × ∫ ∫ − × − × Assume ρ = const: 2.0 32.2 64.4 p gh h h ρ = = × × = a) For h = 1500 ft: paccurate = 96,700 psf and pestimate = 96,600 psf. 96,600 96,700 % error 100 0.103 % 96,700 − = × = − b) For h = 5000 ft: paccurate = 323,200 psf and pestimate = 322,000 psf. 322,000 323,200 % error 100 0.371 % 323,200 − = × = − c) For h = 15,000 ft: paccurate = 976,600 psf and pestimate = 966,000 psf. 966,000 976,600 % error 100 1.085 % 976,600 − = × = − 2.16 Use the result of Example 2.2: p = 101 e−gz/RT . a) p = 101 e−9.81 ×10 000/287 ×273 = 28.9 kPa. b) p = 101 e−9.81 ×10 000/287 ×288 = 30.8 kPa. c) p = 101 e−9.81 ×10 000/287 ×258 = 26.9 kPa. 2.17 Use Eq. 2.4.8: p = 9.81 0.0065 287 101(1 0.0065 /288) . z × − a) z = 3000. ∴p = 69.9 kPa. b) z = 6000. ∴p = 47.0 kPa. c) z = 9000. ∴p = 30.6 kPa. d) z = 11 000. ∴p = 22.5 kPa.
  • 16. 15 2.18 Use the result of Example 2.2: / 0 = . gz RT p e p − 0 ln . p gz p RT = − 0.001 32.2 ln . 14.7 1716 455 z = − × ∴z = 232,700 ft. 2.19 p = γh = (13.6 × 9810) × 0.25 = 33 350 Pa or 33.35 kPa. 2.20 a) p = γh. 450 000 = (13.6 × 9810) h. ∴h = 3.373 m b) p + 11.78 × 1.5 = (13.6 × 9810) h. Use p = 450 000, then h = 3.373 m % error is 0.000 %. 2.21 Referring to Fig. 2.6a, the pressure in the pipe is p = ρgh. If p = 2400 Pa, then 2400 = ρgh = ρ × 9.81 h. a) ρ = × 2400 981 36 . . = 680 kg/m3 . ∴gasoline b) ρ = × 2400 981 272 . . = 899 kg/m3 . ∴benzene c) ρ = × 2400 981 245 . . = 999 kg/m3 . ∴water d) ρ = × 2400 9 81 154 . . = 1589 kg/m3 . ∴carbon tetrachloride 2.22 Referring to Fig. 2.6a, the pressure is p = ρwgh = 2 1 . 2 aV ρ Then V gh w a 2 2 = ρ ρ . a) V2 2 1000 9 81 06 123 = × × × . . . = 957. ∴V = 30.9 m/s b) V2 2 194 32 2 3 12 00238 = × × × . . / . = 13,124. ∴V = 115 ft/sec c) V2 2 1000 9 81 1 123 = × × × . . . = 1595. ∴V = 39.9 m/s d) V2 2 194 32 2 5 12 00238 = × × × . . / . = 21,870. ∴V = 148 ft/sec 2.23 (C) 0 30000 0.3 9810 0.1 8020 Pa w atm x x water w p p h h γ γ = + − = + × − × = 2.24 See Fig. 2.6b: p1 = –γ1h + γ2H. p1 = –0.86 × 62.4 × 5 12 + 13.6 × 62.4 × 9 5 12 . = 649.5 psf or 4.51 psi. 2.25 0 1 1 2 2 3 3 4 4 p p gh gh gh gh ρ ρ ρ ρ = + + + + = 3200 + 917×9.81×0.2 + 1000×9.81×0.1 + 1258×9.81×0.15 + 1593×9.81×0.18 = 10 640 Pa or 10.64 kPa
  • 17. 16 2.26 ( ) ( ) ( ) p p p p p p p p 1 4 1 2 2 3 3 4 − = − + − + − (Use ∆ ∆ p g h = ρ ) 40 000 – 16 000 = 1000×9.81(–.2) + 13 600×9.81×H + 920×9.81×.3. ∴H = .1743 m or 17.43 cm 2.27 ( ) ( ) ( ) p p p p p p p p 1 4 1 2 2 3 3 4 − = − + − + − (Use ∆ ∆ p g h = ρ ) po – pw = 900×9.81(–.2) + 13 600×9.81(–.1) + 1000×9.81×.15 = –12 300Pa or –12.3 kPa 2.28 ( ) ( ) ( ) ( ) p p p p p p p p p p 1 5 1 2 2 3 3 4 4 5 − = − + − + − + − p1 = 9810(–.02) + 13 600×9.81(.–04) + 9810(–.02)+13 600×9.81×.16 = 15 620 Pa or 15.62 kPa 2.29 pw + 9810 × .15 – 13.6 × 9810 × .1 – .68 × 9810 × .2 + .86 × 9810 × .15 = po. ∴pw – po = 11 940 Pa or 11.94 kPa. 2.30 pw – 9810 × .12 – .68 × 9810 × .1 + .86 × 9810 × .1 = po. With pw = 15 000, po = 14 000 Pa or 14.0 kPa. 2.31 a) p + 9810 × 2 = 13.6 × 9810 × .1. ∴p = –6278 Pa or –6.28 kPa. b) p + 9810 × .8 = 13.6 × 9810 × .2. ∴p = 18 835 Pa or 18.84 kPa. c) p + 62.4 × 6 = 13.6 × 62.4 × 4/12. ∴p = –91.5 psf or –0.635 psi. d) p + 62.4 × 2 = 13.6 × 62.4 × 8/12. ∴p = 441 psf or 3.06 psi. 2.32 p – 9810 × 4 + 13.6 × 9810 × .16 = 0. ∴p = 17 890 Pa or 17.89 kPa. 2.33 (A) (13.6 9810) 0.16 21350 Pa. a p H γ = − = − × × = − , 21350 10000 11350 13.6 9810 . 0.0851 m aafter after after p H H = − + = − = × ∴ = 2.34 8200 + 9810 × .25 = 1.59 × 9810 × H. ∴H = 0.683 m Hnew = .683 + .273 = .956 m. ∆H = .273 2 = .1365. p + 9810 (.25 + .1365) = 1.59 × 9810 × .956. ∴p = 11 120 Pa or 11.12 kPa. 2.35 p + 9810 × .05 + 1.59 × 9810 × .07 – .8 × 9810 × .1 = 13.6 × 9810 × .05. ∴p = 5873 Pa or 5.87 kPa. Note: In our solutions we usually retain 3 significant digits in the answers (if a number starts with “1” then 4 digits are retained. In most problems a material property is used, i.e., S = 1.59. This is only 3 sig. digits! ∴ only 3 are usually retained in the answer! H ∆H ∆H
  • 18. 17 2.36 Before pressure is applied the air column on the right is 48" high. After pressure is applied, it is (4 – H/2) ft high. For an isothermal process 1 p V 1 2 p V = 2 using absolute pressures. Thus, 14.7 × 144 × 4A = p2(4 – H / 2 )A or p2 = 8467 4 2 − H / . From a pressure balance on the manometer (pressures in psf): 30 × 144 + 14.7 × 144 = 13.6 × 62.4 H + 8467 4 2 − H / , or H2 – 15.59 H + 40.73 = 0. ∴H = 12.27 or 3.32 ft. 2.37 a) ( ) ( ) ( ) ( ) p p p p p p p p p p 1 5 1 2 2 3 3 4 4 5 − = − + − + − + − 4000 = 9800(0.16–0.22) + 15 600(0.10–0.16) + 133 400H + 15 600(0.07–H). ∴H = .0376 m or 3.76 cm b) 0.6×144 = 62.4(–2/12) + 99.5(–2/12) + 849H + 99.5(2.5/12 – H). ∴H = .1236 ft or 1.483 in. 2.38 a) 2 2 2 2 1 1 2 3 2 2 / 2 2( ) / H D d p D d γ γ γ γ ∆ = ∆ − + + − 2 2 2(.1/.005) 9800 2 15 600 2(133 400 15 600)(.1/.005) = − + × + − = × − 8 10 6 .487 H ∴ = × × − ∆H 8 10 400 6 .487 = 0.0034 m or 3.4 mm b) ∆H = − + × + − × 2 4 2 62 2 99 5 2 99 5 4 2 06 144 2 2 ( /. ) .4 . (849 . )( /. ) . = 0.01153 ft or 0.138 in. 2.39 ( ) ( ) ( ) p p p p p p p p 1 4 1 2 2 3 3 4 − = − + − + − (poil = 14.0 kPa from No. 2.30) 15 500 – 14 000 = 9800(0.12 + ∆z) + 680(0.1 – 2∆z) + 860(–0.1 – ∆z). ∴∆z = 0.0451 m or 4.51 cm 2.40 a) pair = –6250 + 625 = –5620 Pa. –5620 + 9800(2 + ∆z) – 13 600 × 9.81(0.1 + 2∆z) = 0. ∴∆z = 0.0025. ∴h = 0.1 + 2∆z = .15 m or 15 cm b) pair = 18 800 + 1880 = 20 680 Pa. 20 680 + 9800(0.8 + ∆z) – 13 600 × 9.81(0.2 + 2∆z) = 0. ∴∆z = 0.00715 m ∴h = .2+ 2∆z = .214 or 21.4 cm c) pair = –91.5 + 9.15 = –82.4 psf. –82.4 + 62.4(6 + ∆z) – 13.6 × 62.4(4/12 + 2∆z) = 0. ∴∆z = 0.00558 ft. ∴h = 4/12 + 2 (0.00558) = 0.3445 ft or 4.13 in. d) pair = 441 + 44.1 = 485 psf 485 + 62.4(2 + ∆z) – 13.6 × 62.4(8/12 + 2∆z) = 0. ∴∆z = 0.0267 ft. ∴h = 8/12 + 2 (0.0267) = 0.7205 ft or 8.65 in.
  • 19. 18 2.41 F hA = γ = 9810 × 10 × π × .32 /4 = 6934 N. 2.42 5 1 5 5 (2 ) (2 ) [9800 1 3 (2 )]. 32670 N 3 3 3 3 P P × × = × × × × × × × ∴ = a) F = pc A = 9800 × 2 × 42 = 313 600 N or 313.6 kN b) 2 2 9800 1 (2 4) 9800 2 9800 1 98000 N or 98.0 kN 3 3 c F p A = = × × × + × × + × × = c) F = pc A = 9800 × 1 × 2 × 4 × 2 = 110 900 N or 110.9 kN d) F = pc A = 9800 × 1 × 2 × 4/.866 = 90 500 N or 90.5 kN 2.43 For saturated ground, the force on the bottom tending to lift the vault is F = pc A = 9800 × 1.5 × (2 × 1) = 29 400 N. The weight of the vault is approximately W gV ρ = 2400 9.81 walls = × [2(2×1.5×.1) + 2(2×1×.1) + 2(.8×1.3×.1)] = 28 400 N. The vault will tend to rise out of the ground. 2.44 F = pc A = 6660 × 2 × π × 22 = 167 400 N or 167.4 kN Find γ in Table B.5 in the Appendix. 2.45 a) F = pc A = 9800 (10 − 2.828/3) (2.828 × 2/2) = 251 000 N or 251 kN where the height of the triangle is (32 − 12 )1/2 = 2.828 m. b) F = pc A = 9800 × 10 (2.828 × 2/2) = 277 100 N or 277.1 kN c) F = pc A = 9800 (10 − 2.828 × .866/3) (2.828 × 2/2) = 254 500 N or 254.5 kN 2.46 a) F hA = = × × = γ 62 27 33 24 .4 . 40,930 lb. yp = + × × 27 33 6 8 36 27 33 24 3 . / . = 27.46'. ∴y = 30 – 27.46 = 2.54'. 8/5.46 = 3/x. ∴x = 2.05’. (2.05, 2.54) ft. b) F = 62.4 × 30 × 24 = 44,930 lb. The centroid is the center of pressure. y = 2.667'. 8/5.333 = 3/x. ∴x = 2.000' (2.000, 2.667) ft. c) F = 62.4 (30 – 2.667 × .707) × 24 = 42,100 lb. yp = + × × 39 77 6 8 36 39 77 24 3 . / . = 39.86'. y = 42.43 – 39.86 = 2.57' 8/5.43 = 3/x. ∴x = 2.04'. (2.04, 2.57) ft. 2.47 (B) The force acts 1/3 the distance from the hinge to the water line: 5 1 5 5 (2 ) (2 ) [9800 1 3 (2 )]. 32670 N 3 3 3 3 P P × × = × × × × × × × ∴ = (x, y) y x
  • 20. 19 2.48 a) F hA = = × × γ π 9810 6 22 = 739 700 N or 739.7 kN. y y I Ay p = + = + × × 6 2 4 4 6 4 π π / = 6.167 m. ∴(x, y)p = (0, –0.167) m b) F hA = = × × γ π 9810 6 2 = 369 800 N or 369.8 kN. yp = + × × 6 2 8 2 6 4 π π / = 6.167 m. x2 + y2 = 4 x F x pdA x y xdy y y dy p = = − = − − ∫ ∫ ∫ − − 2 2 6 2 4 6 2 2 2 2 2 γ γ ( ) ( )( ) . ∴ × = − − + = − ∫ x y y y dy pγ π γ γ 6 2 2 24 4 6 32 2 2 2 3 ( ) . ∴xp = 0.8488 m ∴(x, y)p = (0.8488, –0.167) m c) F = 9810 × (4 + 4/3) × 6 = 313 900 N or 313.9 kN. yp = + × × 5333 3 4 36 5 333 6 3 . / . = 5.500 m. ∴y = –1.5 4/2.5 = 1.5/x. ∴x = 0.9375. ∴(x,y)p = (0.9375, –1.5) m d) F = × + × 9810 4 2 3 4 ( sin 36.9°) × 6 = 330 000 N yp = + × × 5 6 5 2 36 6 5 6 3 . .4 / . = 5.657 m. ∴y = 0.343 m 3 cos 53.13° = 1.8, 2.5 – 1.8 = 0.7, 2.4/2.057 = . / 7 1 x . ∴ x1 = 0.6. x = 1.8 + 0.6 = 2.4. ∴(x,y)p = (2.4, 0.343) m. 2.49 F hA = = × × × γ 62 11 6 10 .4 ( ) = 41,180 lb. y y I yA p = + = + × × 11 6 10 12 11 60 3 / = 11.758'. (16 – 11.758) 41,180 = 10P. ∴P = 17,470 lb. 2.50 F hA = = × × γ 9810 6 20 = 1.777 × 106 N, or 1177 kN. y y I Ay p = + = + × × 7 5 4 5 12 7 5 20 3 . / . = 7.778 m. (10 – 7.778) 1177 = 5 P. ∴P = 523 kN. y x (x, y) dA dy x y 3 4 53.13 o yp P F
  • 21. 20 2.51 F hA = = × × γ 9810 12 20 = 2.354 × 106 N, or 2354 kN. y y I Ay p = + = + × × 15 4 5 12 15 20 3 / = 15.139 m. (17.5 – 15.139) 2354 = 5 P. ∴P = 1112 kN. 2.52 y y I Ay H bH bH H H H H p = + = + × = + = 2 12 2 2 6 2 3 3 / / . yp is measured from the surface. ∴From the bottom, H y H H H p − = − = 2 3 1 3 . Note: this result is independent of the angle α, so it is true for a vertical area or a sloped area. 2.53 3 1 sin40 3 . ( 2) sin40 . 2( 2) . 2 3 l F l l F l P l l P γ γ = × × = + ∴ = + o o a) 9810× 23 = 2(2 + 2)P. ∴P = 9810 N b) 9810× 43 = 2(4 + 2)P. ∴P = 52 300 N c) 9810× 53 = 2(5 + 2)P. ∴P = 87 600 N 2.54 h = − 122 2 . .4 = 1.1314 m. A = 1.2 × 1.1314 + .4 × 1.1314 = 1.8102 m2 Use 2 forces: F h A c 1 1 9800 5657 1 2 11314 = = × × × γ . ( . . ) = 7527 N F h A c 2 2 9800 11314 3 11314 = = × × × γ . (.4 . ) = 1673 N yp1 2 3 11314 = ( . ). y y I A y p2 2 2 3 11314 3 11314 36 11314 2 11314 3 = + = + × × × . .4 . / .4 . / . / = 0.5657 m ΣMhinge = 0: 7527 11314 3 1673 11314 0 5657 11314 × + × − − . ( . . ) . P = 0. ∴P = 3346 N. 2.55 To open, the resultant force must be just above the hinge, i.e., yp must be just less than h. Let yp = h, the condition when the gate is about to open: y h H A h H I h H h H = + = + = + + ( ) / , ( ) , [ ( )]( ) / 3 2 36 2 3 ∴ = + + + + + = + + + = + y h H h H h H h H h H h H h H p 3 2 36 3 3 6 2 4 2 ( ) / ( ) ( ) / a) h h H = + 2 . ∴h = H = 0.9 m b) h = H = 1.2 m c) h = H = 1.5 m 2.56 The gate is about to open when the center of pressure is at the hinge. a) y H H b H b p = + = + + × + 12 18 2 18 12 9 18 3 . ( . / ) . / (. ) . . ∴H = 0.
  • 22. 21 b) y H H b H b p = + = + + × + 12 2 0 2 2 12 1 2 3 . ( . / ) / ( ) . ∴H = 0.6667 m. c) y H H b H b p = + = + + × + 12 2 2 2 2 2 12 11 2 2 3 . ( . / ) . / ( . ) . . ∴H = 2.933 m. 2.57 (A) The gate opens when the center of pressure in at the hinge: 3 1.2 11.2 (1.2 ) /12 5. 5 1.2. 2 2 (1.2 ) (11.2 ) / 2 p h I h b h y y y Ay h b h + + + = + = + = + = + + + This can be solved by trial-and –error, or we can simply substitute one of the answers into the equation and check to see if it is correct. This yields h = 1.08 m. 2.58 F H bH bH 1 2 2 1 2 = × = γ γ F H b b H 2 = × = γ γ l l 1 2 3 2 2 γ γ bH H b H × = × l l . ∴ = H 3l a) H = × 3 2 = 3.464 m b) H = 1.732 m c) H = 10.39' d) H = 5.196' Assume 1 m deep 2.59 The dam will topple if the moment about “O” of F1 and F3 exceeds the restoring moment of W and F2. a) W = × × + × ( .4 )( / ) 2 9810 6 50 24 50 2 = 21.19 × 106 N dw = × + × + 300 27 600 16 300 600 = 19.67 m. F2 = 9810 × 5 × 11.09 = 0.544 × 106 N. d2 11 09 3 = . = 3.697 m. F1 9810 45 2 45 = × × = 9.933 × 106 N. d1 = 15 m. F3 9810 45 10 2 30 = × + × = 8.093 × 106 N. d3 2 943 15 5150 20 2 943 5150 = × + × + . . . . = 18.18 m. Wd F d Fd F d w + = × ⋅ + = × ⋅    2 2 6 1 1 3 3 6 418 8 10 2961 10 . . N m N m ∴will not topple. b) W = (2.4 × 9810) (6 × 65 + 65 × 12) = 27.55 × 106 N. dw = 390 27 780 16 390 780 × + × + = 19.67 m. F2 6 0 54 10 ≅ × . N. d2 3 70 ≅ . m. F1 = 9810 × 30 × 60 = 17.66 × 106 N. d1 = 20 m. F3 9810 60 10 2 30 = × + × = 10.3 × 106 N. d3 2 943 15 7358 20 2 943 7 358 = × + × + . . . . = 18.57 m. F2 F1 H/3 l/2 F1 F2 F3 W O
  • 23. 22 Wd F d Fd F d w + = × ⋅ + = × ⋅    2 2 6 1 1 3 3 6 543 9 10 544 5 10 . . N m N m ∴it will topple. c) Since it will topple for H = 60, it certainly will topple if H = 75 m. assume 1 m deep 2.60 The dam will topple if there is a net clockwise moment about “O.” a) W W W W = + = × × × × 1 2 1 6 43 1 62 2 . ( ) .4 .4 = 38,640 lb. W2 24 43 2 62 2 = × × × ( / ) .4 .4 = 77,280 lb. W3 40 22 33 2 62 = × × ( . / ) .4 = 27,870 lb @ 20.89 ft. F1 62 20 40 1 = × × × .4 ( ) = 49,920 lb @ 40/3 ft. F2 62 5 10 1 = × × × .4 ( ) = 3120 lb @ 3.33 ft 1 3 2 = 18,720 lb @ 15 ft = 28,080 lb @ 20 ft p p F F F   =    O M Σ : (49,920)(40/3) + (18,720)(15) + (28,080)(20) − (38,640)(3) − (77,280)(14) − (27,870)(20.89) − (3120)(3.33) < 0. ∴won’t tip. b) W1 = 6 × 63 × 62.4 × 2.4 = 56,610 lb. W2 = (24 × 63/2) × 62.4 × 2.4 = 113,220 lb. F1 62 30 60 = × × .4 = 112,300 lb. 3 (60 22.86/2) 62.4 W = × × = 42,790 lb. F2 62 5 10 = × × .4 = 3120 lb Fp1 62 10 30 = × × .4 = 18,720 lb. Fp2 62 50 30 2 = × × .4 / = 46,800 lb. O M Σ : (112,300)(20) + (18,720)(15) + (46,800)(20) − (56,610)(3) − (113,220)(14) − 42,790(21.24) = 799,000 > 0. ∴will tip. c) Since it will topple for H = 60 ft., it will also topple for H = 80 ft. 2.61 ΣMhinge = 0. 2.5P – dw × W – d1 × F1 = 0. ∴ P = × × × + × × × × ×       1 2 5 2 3 9800 1 8 4 2 3 9800 2 4 4 2 . π π = 62 700 N Note: This calculation is simpler than that of Example 2.7. Actually, We could have moved the horizontal force FH and a vertical force FV (equal to W) simultaneously to the center of the circle and then 2.5P = 2FH.=2F1. This was outlined at the end of Example 2.7. 2.62 Since all infinitesimal pressure forces pass thru the center, we can place the resultant forces at the center. Since the vertical components pass thru the bottom point, they produce no moment about that point. Hence, consider only horizontal forces: ( ) 9810 2 (4 10) 784 800N ( ) 0.86 9810 1 20 168 700N water H H oil F F = × × × = = × × × = ΣM P : . . . 2 784 8 2 168 7 2 = × − × ∴P = 616.1 kN. F1 F2 F3 W O W3 F1 dw d1 P W
  • 24. 23 2.63 Place the resultant force v v F F H V + at the center of the circular arc. v FH passes thru the hinge showing that P FV = . a) P FV = = × × + × = 9810 6 2 4 4 594 ( ) π 200 N or 594.2 kN. b) P = FV = 62.4 (20 × 6 × 12 + 9π × 12) = 111,000 lb. 2.64 (D) Place the force v v F F H V + at the center of the circular arc. FH passes through the hinge: 2 4 1.2 9800 ( 1.2 /4) 9800 300000. 5.16 m. V P F w w w π ∴ = = × × + × × = ∴ = 2.65 Place the resultant v v F F H V + at the circular arc center. v FH passes thru the hinge so that P FV = . Use the water that could be contained above the gate; it produces the same pressure distribution and hence the same FV . P FV = = 9810 (6 × 3 × 4 + 9π) = 983 700 N or 983.7 kN. 2.66 Place the resultant v v F F H V + at the center. v FV passes thru the hinge 2 × (9810 × 1 × 10) = 2.8 P. ∴P = 70 070 N or 70.07 kN. 2.67 The incremental pressure forces on the circular quarter arc pass through the hinge so that no moment is produced by such forces. Moments about the hinge gives: 3 P = 0.9 W = 0.9 × 400. ∴P = 120 N. 2.68 The resultant v v F F H V + of the unknown liquid acts thru the center of the circular arc. v FV passes thru the hinge. Thus we use only ( ) . FH oil Assume 1 m wide. a) ΣM R R R R S R R R R x : . 3 9810 2 4 3 9800 4 2 2       +       =       π π γ ∴γ x = 4580 N/m3 b) ΣM R R R R S R R R R x : . . . 3 62 4 2 4 3 62 4 4 2 2       +       =       π π γ ∴γ x = 29.1 lb/ft3 2.69 The force of the water is only vertical (FV)w, acting thru the center. The force of the oil can also be positioned at the center: a) P FH o = = × × × ( ) ( . ) . . 0 8 9810 0 3 3 6 = 8476 N. ΣF W F F y V o V w = = + − 0 ( ) ( ) 0 = S × 9810 π × .62 × 6 + . . 36 36 4 −       π × 6 × (.8 × 9810) – 9810 × π × .18 × 6 − × × × − 9810 8 2 6 6 2 . . . ∴ = S 0 955 . . b) g V ρ . W = = 1996 lb. ΣF W F F y V o V w = = + − 0 ( ) ( )
  • 25. 24 0 = S × 62.4 × π × 22 × 20 + 4 4 4 −       π × 20 × .8 × 62.4 – 62.4 × π × 2 × 20 − × × × × 62 4 8 2 2 20 2 . . . ∴ = S 0 955 . . 2.70 The pressure in the dome is a) p = 60 000 – 9810 × 3 – 0.8 × 9810 × 2 = 14 870 Pa or 14.87 kPa. The force is F = pAprojected = (π × 32 ) × 14.87 = 420.4 kN. b) From a free-body diagram of the dome filled with oil: Fweld + W = pA Using the pressure from part (a): Fweld = 14 870 × π × 32 – (.8 × 9810) × 1 2 4 3 33 π ×       = –23 400 N or –23.4 kN 2.71 A free-body diagram of the gate and water is shown. H F d W H P w 3 + = × . a) H = 2 m. F = 9810 × 1 × 4 = 39 240 N. W xdy y dy = = = × ∫ ∫ 9810 2 9810 2 2 2 9810 2 2 3 2 1 2 0 2 0 2 3 2 / / / = 26 160 N. d x x xdy xdy x dx x dx w = = = =       ∫ ∫ ∫ ∫ 2 1 2 4 4 1 2 1 4 1 3 3 0 1 2 0 1 / / = 0.375 m. ∴ = × + × P 1 3 39 0 375 2 26 160 240 . = 17 980 N or 17.98 kN. b) H = 8'. F = 62.4 × 4 × 32 = 7,987 lb. W xdy x dx = = × = × × ∫ ∫ 62 4 62 4 4 62 16 2 3 2 0 2 3 .4 .4 .4 / = 2,662 lb. d x x dx x dx w = = =       ∫ ∫ 1 2 4 4 1 2 16 4 8 3 3 0 2 2 0 2 / / = 0.75'. 1 8 7,987 0.75 2,662 2910 lb 8 3 P   = × + × =     2.72 (A) W V γ = 900 9.81 9810 0.01 15 . 6 m w w × = × × ∴ = W pA Fweld dA=xdy y x F h/3
  • 26. 25 2.73 W = weight of displaced water. a) 20 000 + 250 000 = 9810 × 3 2 (6 /2). d d + ∴d2 + 12d – 18.35 = 0. ∴d = 1.372 m. b) 270 000 = 1.03 × 9810 × 3 2 (6 /2). d d + d2 + 12d – 17.81 = 0. ∴d = 1.336 m. 2.74 25 + FB = 100. ∴FB = 75 = 9810 − V . ∴ − V = 7.645 × 10−3 m3 γ × 7.645 × 10−3 = 100. or 7645 cm3 ∴γ = 13 080 N/m3 . 2.75 3000 × 60 = 25 × 300 ∆d × 62.4. ∴∆d = 0.3846' or 4.62". 2.76 100 000 × 9.81 + 6 000 000 = (12 × 30 + 8h × 30) 9810 ∴h = 1.465 m. ∴distance from top = 2 – 1.465 = 0.535 m 2.77 T + FB = W. (See Fig. 2.11 c.) T = 40 000 – 1.59 × 9810 × 2 = 8804 N or 8.804 kN. 2.78 The forces acting on the balloon are its weight W, the buoyant force FB, and the weight of the air in the balloon Fa. Sum forces: FB = W + Fa or 4 3 1000 4 3 3 3 π ρ π ρ R g R g a = + 4 3 5 100 9 81 287 293 1000 4 3 5 100 981 287 3 3 π π × × × = + × × . . . . . Ta ∴Ta = 350.4 K or 77.4°C 2.79 The forces acting on the blimp are the payload Fp, the weight of the blimp W, the buoyant force FB, and the weight of the helium Fh: FB = Fp + W + Fh 1500 150 100 9 81 287 288 2 π × × × × . . = Fp + 0.1 Fp + 1500 π × 1502 × 100 981 2 077 288 × × . . 4 o /64. I d π = . Npeople = 986 10 800 8 . × = 1.23 × 106 Of course equipment and other niceties such as gyms, pools, restaurants, etc., would add significant weight. 2.80 Neglect the bouyant force of air. A force balance yields FB = W + F = 50 + 10 = 60 = 9800 − V . ∴ − V = .006122 m3 Density: g V ρ . W = ρ × × 9 81 006122 . . = 50. ∴ρ = 832.5 kg/m3 Specific wt: γ = ρg = 832.5 × 9.81 = 8167 N/m3 Specific gravity: S = ρ/ρwater = 832.5/1000 = 0.8325
  • 27. 26 2.81 From a force balance FB = W + pA. a) The buoyant force is found as follows (h > 16'): cos , θ = − − h R R 15 Area = θR2 – (h – 15 – R) R sinθ ∴FB = 10 × 62.4[πR2 − θR2 + (h – 15 – R) R sinθ]. FB = 1500 + γhA. The h that makes the above 2 FB’s equal is found by trial-and- error: h = 16.5: 1859 ? 1577 h = 16.8: 1866 ? 1858 h = 17.0: 1870 ? 1960 ∴h = 16.82 ft. b) Assume h > 16 1 3 ft. and use the above equations with R = 1.333': h = 16.4: 1857 ? 1853 ∴h = 16.4 ft. c) Assume h < 16 2 3 ft. With R = 1.667', FB = 10 × 62.4[θR2 − (R – h + 15) R sinθ]. FB = 1500 + γhA. cos θ = − + R h R 15 Trial-and-error for h: h = 16: 1849 ? 1374 h = 16.2: 1853 ? 1765 h = 16.4: 1857 ? 2170 ∴h = 16.25 ft. 2.82 a) W FB = . [ ] 0 01 136 1000 015 4 9 81 9810 2 . . . / . . + × × × × = − h V π − = × × + × × = × − V π π . . . . . . 015 4 15 005 4 06 2 769 10 2 2 5 3 m ∴h = 7.361 × 10−3 m ∴ = mHg 2 13.6 1000 .015 / 4 hπ × × × = 0.01769 kg b) (.01 + .01769) 9.81 = 9810 π π × × + × ×       . . . . . 015 4 15 005 4 12 2 2 Sx ∴Sx = 0.959. c) (.01 + .01769) 9.81 = 9810 π× × . . 015 4 15 2 Sx. ∴Sx = 1.045. 2.83 (. ) . . . . . . 01 9 81 9810 015 4 15 005 4 12 2 2 + = × × + × ×       mHg π π ∴mHg = 0.01886. a) (.01 + .01886) 9.81 = 9810 π× × . . 015 4 15 2 Sx. ∴Sx = 1.089. b) mHg = 0.01886 kg. h − 15 θ R pA FB W h − 15 θ R
  • 28. 27 2.84 a) 4 4 o (10/12) 64 64 d I π π × = = = 0.02367 ft4 . − = = × × × × V W rH O 2 8 62 5 12 12 12 62 2 . .4 ( / ) / .4 π = 0.4363. depth = .4363 ( / ) π 5 12 2 = 0.8' ∴ = − − GM . /.4363 (. .4) 02367 5 = –0.0457'. ∴It will not float with ends horizontal. b) Io = 0.02367 ft4 , − V = 0.3636 ft3 , depth = 0.6667' GM = − − . /. ( ) / 02367 3636 5 4 12 = –0.01823'. ∴It will not float as given. c) − V = 0.2909, depth = 6.4", GM = . . . 02367 2909 4 3 2 12 − − = 0.0147. ∴It will float. 2.85 With ends horizontal 4 o /64. I d π = The displaced volume is − = × = × − V d h d x x γ π γ 2 5 3 4 9800 8 014 10 / . since h = d. The depth the cylinder will sink is depth = − = × = × − − V A d d d x x 8 014 10 4 10 20 10 5 3 2 5 . / / . γ π γ The distance CG is CG h d x = − × − 2 10 2 10 2 5 . / γ . Then GM d d d d x x = × − + × > − − π γ γ 4 5 3 5 64 8 014 10 2 10 2 10 2 0 / . . / . This gives (divide by d and multiply by γx): 612.5 – .5 γx + 5.1 × 10-5 γ x 2 > 0. Consequently, γx > 8369 N/m3 or γx < 1435 N/m3 2.86 3 3 . water water water S d W V S d γ γ γ − = = = 3 3 . water water water S d W V S d γ γ γ − = = = ∴h = Sd. GM d Sd d Sd d S S = − − = − + 4 3 12 2 2 1 12 1 2 2 / ( / / ) ( ). If GM = 0 the cube is neutral and 6S2 – 6S + 1 = 0. ∴ = ± − S 6 36 24 12 = 0.7887, 0.2113. The cube is unstable if 0.2113 < S < 0.7887. Note: Try S = 0.8 and S = 0.1 to see if GM > 0. This indicates stability. 2.87 As shown, y = × + × + 16 9 16 4 16 16 = 6.5 cm above the bottom edge. G S S A A = × + × + × × + × + × 4 9 5 16 8 5 16 4 5 8 2 8 16 γ γ γ γ γ γ . . . = 6.5 cm. C G h
  • 29. 28 ∴130 + 104 SA = 174 + 64 SA. ∴ SA = 1.1. 2.88 a) y = × + × + × + + 16 4 8 1 8 7 16 8 8 = 4. x = × + × + × + + 16 1 8 4 8 4 16 8 8 = 2.5. For G: y = × × + × × + × × × + × + × 12 16 4 5 8 1 1 5 8 7 1 2 16 5 8 15 8 . . . . . . = 4.682. x = × + × × + × × × + × + × 12 16 5 8 4 15 8 4 12 16 5 8 15 8 . . . . . . = 2.364. G must be directly under C. tan . . . θ = 136 682 ∴θ =11.3°. b) y = × + × + × + + 4 2 2 1 2 2 3 5 4 2 2 . = 2. x = × + × + × + + 4 1 2 2 2 2 2 4 2 2 = 1.25 For G:y = × × + × + × × + × + × 12 4 2 5 1 15 7 12 4 5 2 15 2 . . . . . . = 2.34. x = × + × + × × + × + × 12 2 5 4 15 4 1 2 4 5 2 15 2 . . . . . . = 1.182 ∆y = 0.34, ∆x = 0.068. tan . . . θ = 068 34 ∴θ = 11.3°. 2.89 The centroid C is 1.5 m below the water surface. ∴ CG = 1.5 m. Using Eq. 2.4.47: GM = × × × − = − = > l l 8 12 8 3 15 1777 15 0 277 0 3 / . . . . . ∴The barge is stable. 2.90 y = × + × + 8 3 16 97 1 8 16 97 .485 .414 . .485 . = 1.8 m. ∴CG = − 18 15 . . = 0.3 m. Using Eq. 2.4.47: GM = × − = − = l l 8 12 34 97 3 1 3 116 3 .485 / . . .46 . . . ∴Stable. 2.91 (A) 2 5 20000 20000 6660 (1.2 ) 24070 Pa 9.81 24070 0.02 30.25 N plug plug plug p h F p A γ π = + = + × × = = = × × = . 2.92 a) tan . . α = = 20 9 81 4 H ∴H = 8.155 m. pmax = 9810 (8.155 + 2) = 99 620 Pa b) pmax = ρ(g + az) h = 1000 (9.81 + 20) × 2 = 59 620 Pa c) pmax = 1.94 × 60 (–12) – 1.94 (32.2 + 60) (–6) = 2470 psf or 17.15 psi d) pmax = 1.94 (32.2 + 60) (–6) = 1073 psf or 7.45 psi 0.682 C 0.136 G
  • 30. 29 2.93 The air volume is the same before and after. ∴ 0.5 × 8 = hb/2. tan . . α = = 10 9 81 h b 4 9 81 10 = h h 2 . . ∴h = 2.856. ∴Use dotted line. 2 5 1 2 2 5 2 4 . . .452 . w + × × = ∴w = 0.374 m. a) pA = –1000 × 10 (0 – 7.626) – 1000 × 9.81 × 2.5 = 51 740 Pa or 51.74 kPa b) pB = –1000 × 10 (0 – 7.626) = 76 260 Pa or 76.26 kPa c) pC = 0. Air fills the space to the dotted line. 2.94 Use Eq. 2.5.2: Assume an air-water surface as shown in the above figure. a) 60 000 = –1000 ax (0–8) – 1000 × 9.81 0 2 5 8 981 − −               . . ax 4 = h ax 2 9 81 2 × . 60 = 8 ax + 24.52 – 9.81 8 9 81 ax . . ax – 4.435 = 1.1074 ax . ax 2 – 10.1 ax + 19.67 = 0 ∴ax = 2.64, 7.46 m/s2 b) 60 000 = –1000 ax (–8) – 1000 (9.81 + 10) − +       2 5 8 9 81 . . . ax 60 = 8 ax + 49.52 – 19.81 8 19 81 ax . . ax – 1.31 = 1.574 ax . ax 2 – 5.1 ax + 1.44 = 0 ∴ax = 0.25, 4.8 m/s2 c) 60 000 = –1000 ax (–8) – 1000 (9.81 + 5) (–2.5 + 8 14 81 ax . ). 60 = 8 ax + 37.0 – 14.81 8 14 81 ax . . ax – 2.875 = 1.361 ax . ax 2 – 7.6 ax + 8.266 = 0 ∴ax = 1.32, 6.28 m/s2 2.95 a) ax = 20 × .866 = 17.32 m/s2 , az = 10 m/s2 . Use Eq. 2.5.2 with the peep hole as position 1. The x-axis is horizontal passing thru A. We have pA = –1000 × 17.32 (0 – 1.232) – 1000 (9.81 + 10) (0 – 1.866) = 58 290 Pa b) pA = –1000 × 8.66 (0 – 1.848) – 1000 (9.81 + 5) (0 – 2.799) = 57 460 Pa c) The peep hole is located at (3.696, 5.598). Use Eq. 2.5.2: pA = –1.94 × 51.96 (0 – 3.696) – 1.94 (32.2 + 30) (0 – 5.598) = 1048 psf d) The peep hole is located at (4.928, 7.464). Use Eq. 2.5.2: pA = –1.94 × 25.98 (–4.928) – 1.94 (32.2 + 15) (–7.464) = 932 psf 2.96 a) The pressure on the end AB (z is zero at B) is, using Eq. 2.5.2, p(z) = –1000 × 10 (–7.626) – 1000 × 9.81(z) = 76 260 – 9810 z α b h A B z 1 x w C
  • 31. 30 ∴ = − ∫ F z dz AB ( ) . 76 260 9810 4 0 2 5 = 640 000 N or 640 kN b) The pressure on the bottom BC is p(x) = –1000 × 10 (x – 7.626) = 76 260 – 10 000 x. ∴ = − ∫ F x dx BC ( ) . 76 260 10 000 4 0 7 626 = 1.163 × 106 N or 1163 kN c) On the top p(x) = –1000 × 10 (x – 5.174) where position 1 is on the top surface: ∴ = − ∫ F x dx top ( ) . 51 740 10 000 4 0 5 174 = 5.35 × 105 N or 535 kN 2.97 a) The pressure at A is 58.29 kPa. At B it is pB = –1000 × 17.32 (1.732–1.232) – 1000 (19.81) (1–1.866) = 8495 Pa. Since the pressure varies linearly over AB, we can use an average pressure times the area: FAB = + × × 58 290 8495 2 15 2 . = 100 200 N or 100.2 kN b) pD = 0. pC = –1000 × 17.32 (–.5–1.232) − 1000 × 19.81(.866–1.866) = 49 810 Pa. FCD = × × × 1 2 49 810 15 2 . = 74 720 N or 74.72 kN. c) pA = 58 290 Pa. pC = 49 810 Pa. ∴ = + × FAC 58 29 49 81 2 15 . . . = 81.08 kN. 2.98 Use Eq. 2.5.2 with position 1 at the open end: a) pA = 0 since z2 = z1. pB = 1000 × 19.81 × 0.6 = 11 890 Pa. pC = 11 890 Pa. b) pA = –1000 × 10 (.9–0) = –9000 Pa. pB = –000 × 10 (.9)–1000 × 9.81(-.6) = –3114 Pa pC = –1000 × 9.81 × (–.6) = 5886 Pa. c) pA = –1000×20 (0.9) = –18 000 Pa. pB = –1000 × 20 × 0.9–1000×19.81(−0.6) = –6110 Pa. pC = 11 890 Pa d) pA = 0. pB = 1.94 × (32.2-60) 25 12       = −112 psf. pC = –112 psf. e) pA = 1.94 × 60 −       37 5 12 . = −364 psf. pB = 1.94 × 60 −       37 5 12 . – 1.94 × 32.2 −       25 12 = –234 psf. x z A B C x z 1
  • 32. 31 pC = –1.94 × 32.2 −       25 12 = 130 psf. f) pA = 1.94 × 30 37 5 12 .       = 182 psf. pB = –1.94(–30) 37 5 12 .       – 1.94 × 62.2 −       25 12 = 433 psf. pC = –1.94 × 62.2 × −       25 12 = 251 psf. 2.99 Use Eq. 2.6.4 with position 1 at the open end: ω π = × 50 2 60 = 5.236 rad/s. a) pA = × × × 1000 5 236 2 6 15 2 2 . (. . ) = 11 100 Pa. pB = 1 2 × 1000 × 5.2362 × .92 + 9810 × .6 = 16 990 Pa. pC = 9810 × .6 = 5886 Pa. b) pA = 1 2 × 1000 × 5.2362 × 0.62 = 4935 Pa. pB = 1 2 × 1000 × 5.2362 × 0.62 + 9810 × 0.4 = 8859 Pa. pC = 9810 × 0.4 = 3924 Pa. c) pA = 1 2 × 1.94 × 5.2362 × 37 5 12 2 .       = 259.7 psf. pB = 1 2 × 1.94 × 5.2362 × 37 5 12 62 25 12 2 . .4       + × = 389.7 psf. pC =62 25 12 .4 × = 130 psf. d) pA = 1 2 × 1.94 × 5.2362 × 22 5 12 2 .       = 93.5 psf. pB = 1 2 × 1.94 × 5.2362 × 22 5 12 2 .       + 62 15 12 .4 × = 171.5 psf. pC = 62 15 12 .4 × = 78 psf. A B C z 1 r ω
  • 33. 32 2.100 Use Eq. 2.6.4 with position 1 at the open end. a) pA = 1 2 × 1000 × 102 (0 – 0.92 ) = –40 500 Pa. pB = –40 500 + 9810 × 0.6 = –34 600 Pa. pC = 9810 × 0.6 = 5886 Pa. b) pA = 1 2 × 1000 × 102 (0 – 0.62 ) = –18 000 Pa. pB = –18 000 + 9810 × 0.4 = –14 080 Pa. pC = 9810 × 0.4 = 3924 Pa. c) pA = 1 2 × 1.94 × 102 0 37 5 144 2 −       . = –947 psf. pB = -947 + 62.4 × 25 12 = –817 psf. pC = 62.4 × 25 12 = 130 psf. d) pA = 1 2 × 1.94 × 102 −       22 5 12 2 2 . = –341 psf. pB = –341 + 62.4 × 15 12 = –263 psf. pC = 62.4 × 15 12 = 78 psf. 2.101.1Use Eq. 2.6.4 with position 1 at the open end and position 2 at the origin. Given: p2 = 0. a) 0 = 1 2 × 1000 ω2 (0 – 0.452 ) – 9810 (0 – 0.6). ∴ω = 7.62 rad/s. b) 0 = 1 2 × 1000 ω2 (0 – 0.32 ) – 9810 (0 – 0.4). ∴ω = 9.34 rad/s. c) 0 = 1 2 × 1.94 ω2 0 18 75 12 2 2 −       . – 62.4 −       25 12 . ∴ω = 7.41 rad/s. d) 0 = 1 2 × 1.94 ω2 −       11 25 12 2 2 . – 62.4 −       15 12 . ∴ω = 9.57 rad/s. 2.102 The air volume before and after is equal. ∴ = × × 1 2 6 2 0 2 2 π π r h . . . ∴ r h 0 2 = 0.144. a) Using Eq. 2.6.5: r0 2 2 5 2 × / = 9.81 h ∴h = 0.428 m ∴pA = 1 2 × 1000 × 52 × 0.62 – 9810 (–0.372) = 8149 Pa. b) r0 2 2 7 2 × / = 9.81 h. ∴h = 0.6 m. ∴pA = 1000 2 × 72 × 0.62 + 9810 × 0.2 = 10 780 Pa. A B C z 1 r ω z 1 r ω 2 1 2 h z r A r0
  • 34. 33 c) For ω = 10, part of the bottom is bared. π π π × × = − . . . 6 2 1 2 1 2 2 0 2 1 2 1 r h r h Using Eq. 2.6.5: ω2 0 2 2 r g h = , ω2 1 2 2 r g h = 1. ∴ = − 0144 2 2 2 2 2 1 2 . g h g h ω ω or h h 2 1 2 2 0 144 10 2 981 − = × × . . . Also, h – h1 = 0.8. 1.6h – 0.64 = .7339. ∴h = 0.859 m, r1 = 0.108 m. ∴pA = 1 2 × 1000 × 102 (0.62 – 0.1082 ) = 17 400 Pa. d) Following part (c): h h 2 1 2 2 0144 20 2 9 81 − = × × . . . 1.6h – .64 = 2.936.∴ h = 2.235 m. ∴pA = 1 2 × 1000 × 202 (0.62 – 0.2652 ) = 57 900 Pa r1 = 0.265 m 2.103 The answers to Problem 2.102 are increased by 25 000 Pa. a) 33 150 Pa b) 35 780 Pa c) 42 400 Pa d) 82 900 Pa 2.104 p r r g h ( ) [ (. )]. = − − − 1 2 0 8 2 2 ρω ρ p r r h ( ) (. ) = + − 500 9810 8 2 2 ω if h < .8. p r r r ( ) ( ) = − 500 2 2 1 2 ω if h > .8. a) F p rdr r r dr = = + ∫ ∫ 2 2 12 500 3650 3 0 6 π π ( ) . = 6670 N. (We used h = .428 m) b) F p rdr r r dr = = + ∫ ∫ 2 2 24 500 1962 3 0 6 π π ( ) . = 7210 N. (We used h = 0.6 m) c) F p rdr r r dr = = − − ∫ ∫ 2 2 50 000 108 3 108 6 2 π π ( ( . ) . . = 9520 N. (We used r1 = 0.108 m) d) F p rdr r r dr = = − ∫ ∫ 2 2 200 000 265 3 265 6 2 π π ( ( . ) . . = 26 400 N. (r1 = 0.265 m) 1 h z r A r0 h1 dr dA = 2πrdr
  • 35. 34 CHAPTER 3 Introduction to Fluids in Motion 3.1 3.2 Pathlines: Release several at an instant in time and take a time exposure of the subsequent motions of the bulbs. Sreakline: Continue to release the devises at a given location and after the last one is released, take a snapshot of the “line” of bulbs. Repeat this for several different release locations for additional streaklines. 3.3 3.4 streakline pathline streamline streakline pathline hose boy time t t = 0 streamlines t = 2 hr pathline t = 2 hr streakline at t = 3 hr y x
  • 36. 35 3.5 a)u dx dt t v dy dt t = = + = = 2 2 2 x t t c y t c = + + = + 2 1 2 2 2 = + y y 2 ∴ − + = x xy y y 2 2 2 4 ∴parabola. b) x t t c c c = + + ∴ = − = − 2 1 1 2 2 8 4 . , . and = + + ± + − y y 4 2 4 8 ( ) ∴ − + + − = x xy y x y 2 2 2 8 12 0. ∴parabola. 3.6 ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ using , . z V dr udy vdx V ui vj wk dr dxi dy j dzk i j k j i k  × = − = + +   = + + × = × = −   v v v v 3.7 Lagrangian: Several college students would be hired to ride bikes around the various roads, making notes of quantities of interest. Eulerian: Several college students would be positioned at each intersection and quantities would be recorded as a function of time. 3.8 a) At t V = = = 2 0 0 0 2 2 2 and m / s ( , , ) . At t V = − = + = 2 1 2 0 3 2 3 606 2 2 and m / s ( , , ) . . b) At t V = = 2 0 0 0 0 and ( , , ) . At t V = − = − + − = 2 1 2 0 2 8 8 246 2 2 and m/ s ( , , ) ( ) ( ) . . c) At t V = = − = 2 0 0 0 4 4 2 and m / s ( , , ) ( ) . At t V = − = + − + − = 2 1 2 0 2 4 4 6 2 2 2 and m / s ( , , ) ( ) ( ) . 3.9 (D) 5 ˆ ( 51.4 10 ) j − − × A simultaneous solution yields 4/5 and 3/5. x y n n = = (They must both have the same sign. 3.10 a) cos $ / ( )/ . . . α α = ⋅ = + + = ∴ = v o V i V 1 2 3 2 0 832 33 69 2 2 v V n i j n i n j n n n n n n n n x y x y x y y x x x ⋅ = + ⋅ + = + = + =    ∴ = − + = $ . ( $ $) ( $ $) . 0 3 2 0 3 2 0 1 3 2 9 4 1 2 2 2 2 ∴ = = − = − n n n i j x y 2 13 3 13 1 13 2 3 , $ ( $ $). or 39.8o y x streamlines t = 5 s (27, 21) (35, 25)
  • 37. 36 b) cos $ / / ( ) ( ) . . α α = ⋅ = − − + − = − ∴ = v o V i V 2 2 8 0 2425 104 2 2 v V n i j n i n j n n n n n n n n x y x y x y x y y y ⋅ = − − ⋅ + = − − = + =    ∴ = − + = $ . ( $ $) ( $ $) . 0 2 8 0 2 8 0 1 4 16 1 2 2 2 2 ∴ = = − = − + n n n i j y x 1 17 4 17 1 17 4 , $ ( $ $). or c) cos $ / / ( ) . . . α α = ⋅ = + − = ∴ = − v o V i V 5 5 8 0 6202 51 67 2 2 v V n i j n i n j n n n n n n n n x y x y x y x y y y ⋅ = − ⋅ + = − = + =    ∴ = + = $ . ( $ $) ( $ $) . 0 5 8 0 5 8 0 1 8 5 64 25 1 2 2 2 2 ∴ = = = + n n n i j y x 5 89 8 89 1 89 8 5 , $ ( $ $). or 3.11 a) [ ] v v V dr x i xtj dxi dyj × = + + × + = 0 2 0 . ( )$ $ ( $ $) . ∴ + − = + = ( ) . x dy xtdx t xdx x dy 2 0 2 or Integrate: [ ] t xdx x dy t x n x y C + = − + = + ∫ ∫ 2 2 2 . . l 2 1 2 3 2 ( ) . − = − + ∴ ln C C = 0.8028. [ ] t x n x y − + = + 2 2 0 8028 l . b) [ ] v v V dr xyi y j dxi dyj × = − × + = 0 2 0 2 . $ $ ( $ $) . ∴ + = = − xydy y dx dx x dy y 2 0 2 2 or . Integrate: 2 2 1 2 l l l l nx n y C n n C = − = − − ( / ). ( ) ( / ). ∴ = − = − − ∴ = − C nx n y x y 2 2 2 2 2 . ( / ). . l l c) [ ] v v V dr x i y tj dxi dyj × = + − × + = 0 4 0 2 2 . ( )$ $ ( $ $) . ( ) . x dy y tdx tdx x dy y 2 2 2 2 4 0 4 + + = + = − or Integrate: t x C y C 2 2 1 2 2 1 2 1 2 1 1 tan . tan . − − +       = +       = − ∴ = − −       = − C yt x 0 9636 2 0 9636 2 1 . . tan .
  • 38. 37 3.12 (C) 2 ˆ ˆ ˆ ˆ ˆ ˆ 2 (2 ) (2 2 ) 16 8 16 . V V V V a u v w xy yi y xi yj i i j t x y z ∂ ∂ ∂ ∂ = + + + = − − = − − + ∂ ∂ ∂ ∂ v v v v v 2 2 8 16 17.89 m/s a ∴ = + = 3.13 a) DV Dt u V x v V y w V z V t v v v v v = + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =0. b) u V x v V y w V z V t x i y j xi yj ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ v v v v + + + = + = + 2 2 2 2 4 4 ( $) ( $) $ $ = 8 4 $ $ i j − c) u V x v V y w V z V t x t xti ytj xyt xtj ztk x i xyj ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ v v v v + + + = + + + + + 2 2 2 2 2 2 2 2 ( $ $) ( $ $) $ + = − − 2 68 100 54 yzk i j k $ $ $ d) u V x v V y w V z V t x i yzj xyz xzj tz xyj tk zk ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ v v v v + + + = − − − + − + + ($ $) ( $) ( $ $) $ 2 2 2 2 = xi yz x yz xyzt j zt z k $ ( )$ ( ) $ − − + + + 2 4 2 2 2 2 =2 114 15 $ $ $ i j k − + 3.14 v Ω = −       + −       + −       1 2 1 2 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ w y v z i u z w x j v x u y k $ $ $. a) v Ω = − = 1 2 20 ∂ ∂ u y k yk $ $ = −20 $ k b) v Ω = − + − + − 1 2 0 0 1 2 0 0 1 2 0 0 ( )$ ( )$ ( ) $ i j k = 0 c) v Ω = − + − + − 1 2 2 0 1 2 0 0 1 2 2 0 ( )$ ( )$ ( ) $ zt i j yt k = 6 2 $ $ i k − d) v Ω = + + − + − − 1 2 0 2 1 2 0 0 1 2 2 0 ( )$ ( )$ ( )$ xy i j yz k = − + 2 3 $ $ i k 3.15 The vorticity v v ω = 2Ω. Using the results of Problem 3.7: a) v ω = −40$ i b) v ω = 0 c) v ω = 12 4 $ $ i k − d) v ω = − + 4 6 $ $ i k 3.16 a) ε ∂ ∂ ε ∂ ∂ ε ∂ ∂ xx yy zz u x v y w z = = = = = = 0 0 0 , , . ε ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ xy xz u y v x y u z w x = +       = − = = +       = 1 2 20 20 1 2 0 , , ε ∂ ∂ ∂ ∂ yz v z w y = +       = ∴ =           1 2 0 0 20 0 20 0 0 0 0 0 . rate - of strain
  • 39. 38 b) ε ε ε ε ε ε xx yy zz xy xz yz = = = = = = 2 2 0 0 0 0 , , . , , . rate-of strain = 2 0 0 0 2 0 0 0 0           c) ε ε ε xx yy zz xt xt yt = = = = = = − 2 8 2 8 2 4 , , . ε ε ε xy xz yz yt zt = = − = = = = 1 2 2 2 1 2 0 0 1 2 2 6 ( ) , ( ) , ( ) . rate-of strain = 8 2 0 2 8 6 0 6 4 − − −           d) ε ε ε xx yy zz xz t = = − = − = = 1 2 12 2 , , . ε ε ε xy xz yz yz xy = − = = = = − = 1 2 2 3 1 2 0 0 1 2 2 2 ( ) , ( ) , ( ) . rate-of strain = 1 3 0 3 12 2 0 2 2 −           3.17 a) a r r r r r r = −             − +       −       − 10 40 80 10 40 1 40 2 3 2 2 cos cos sin ( sin ) θ θ θ θ − +       = − − − 1 10 40 10 2 1 125 1 2 2 2 r r sin ( .5)( ) . ( ) θ = 9.375 m/s2. a r r r r r θ θ θ θ θ = −             + +       +       10 40 80 10 40 10 40 2 3 2 2 cos sin sin cos − −       1 100 1600 4 r r sin cos θ θ = 0 since sin 180° = 0. aφ = 0. b) ω ω ω θ θ θ r z r r r r = = = − +       − −       − 0 0 1 10 40 1 10 40 2 2 , , sin ( sin ) = 0. At (4, 180°) v ω = 0 since v ω = 0 everywhere. 3.18 a) a r r r r r r = −             − +       − −       10 80 240 10 80 10 80 3 4 3 3 cos cos sin ( sin ) θ θ θ θ − +       = − − 10 80 8 75 1 9375 1 3 2 2 r r sin . ( )(. )( ) θ = 8.203 m/s2 aθ = 0 since sin 180° = 0. aφ = 0 since vφ = 0. b) ω r = 0, ω θ = 0, ω φ = 0, since sin 180° = 0.
  • 40. 39 3.19 V V a u t x ∂ ∂ ∂ ∂ = + v v v v + V w y ∂ + ∂ v ˆ. V u i z t ∂ ∂ ∂ = ∂ v For steady flow ∂ ∂ u t a / . = = 0 0 so that v 3.20 Assume u(r,x) and v(r,x) are not zero. Then, replacing z with x in the appropriate equations of Table 3.1 and recognizing that vθ ∂ ∂θ = = 0 0 and / : r x v v u u a v u a v u r x r x ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + = + 3.21 a) u e t t = − − = = ∞ − 2 1 0 1 10 ( )( ) . / 2 m / s at ( ) a u t e t x t = = −       = = − ∂ ∂ 2 1 0 1 10 0 2 0 10 ( ) . . / m / s at 2 b) u e t t = − − = = ∞ − 2 1 0 1 2 10 ( .5 )( ) . / 1.875 m / s at a e t x t = −       = = − 2 1 0 2 1 10 0 0125 0 2 2 10 ( .5 / ) . . / m / s at 2 c) u e t t = − − = − 2 1 2 2 1 2 2 10 ( / )( ) . / 0 for all a e t x t = −       = − 2 1 2 2 1 10 0 2 2 10 ( / ) . / for all 3.22 DT T u Dt x ∂ ∂ = v + T w y ∂ ∂ + 2 20(1 ) sin 0.5878 100 100 5 T T t y z t ∂ ∂ π π π ∂ ∂   + = − − = − ×     = −0.3693 °C/s. 3.23 D Dt u x v y w z t e ρ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ = + + + = − × − − × − 10 1 23 10 4 3000 10 4 ( . ) = − × ⋅ − 9 11 10 4 . . kg m s 3 3.24 D Dt u x v y w z t ρ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ = + + + = −       10 1000 4 = − ⋅ 2500 kg m s 3 . 3.25 D Dt u x ρ ∂ρ ∂ = = × 4 01 (. ) = 0.04 kg/m3⋅s 3.26 (D) 2 2 10 [10(4 ) ] (4 ) x u u u u u a u v w u x t x y z x x x − ∂ ∂ ∂ ∂ ∂ ∂ = + + + = = − ∂ ∂ ∂ ∂ ∂ ∂ − 3 2 2 10 10 1 10( 2)( 1)(4 ) 20 6.25 m/s . 4 8 (4 ) x x − = − − − = × × = − 3.27 D Dt V t = ⋅∇ + v v ∂ ∂ observing that the dot product of two vectors v A A i A j A k x y z = + + $ $ $ and v v v B B i B j B k A B A B A B A B x y z x x y y z z = + + ⋅ = + + $ $ $ . is
  • 41. 40 3.28 a u t V u a v t V v a w t V w a V t V V x y z = + ⋅∇ = + ⋅∇ = + ⋅∇          ∴ = + ⋅∇ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ v v v v v v v v v v v ( ) 3.29 Using Eq. 3.2.12: a) v v v v v v v v v v A a d s dt V r d dt r = + + × + × × + × 2 2 2Ω Ω Ω Ω ( ) = 2 20 4 20 20 1 ( $ $) $ ( $ .5$) k i k k i × + × × = 160 600 $ $ j i − m / s 2 b) v v v v v v o A V r k j k k i = × + × × = × − + × × 2 2 20 20 30 20 20 3 Ω Ω Ω ( ) ( $ cos $) $ ( $ $) = −507$ i 3.30 v Ω = × × = × − 2 24 60 60 7 272 10 5 π $ . $ k k rad/s. v v i k i k = − − = − − 5 707 707 3 3 ( . $ . $) .535$ .535$ m/s. v v v v v v A V r = × + × × 2Ω Ω Ω ( ) = 2 7 272 10 3 3 7 272 10 5 5 × × × − − + × × − − . $ ( .535$ .535 $) . $ k i k k [ . $ ( . $ . $)] 7 272 10 6 10 707 707 5 6 × × × − + − k i k = − × + − 51 4 10 0 0224 5 . $ . $ j i m / s2 . Note: We have neglected the acceleration of the earth relative to the sun since it is quite small (it is d s dt 2 2 v / ). The component 5 ˆ ( 51.4 10 ) j − − × is the Coriolis acceleration and causes air motions to move c.w. or c.c.w. in the two hemispheres. 3.31 a) two-dimensional (r, z) b) two-dimensional (x, y) c) two-dimensional (r, z) d) two-dimensional (r, z) e) three-dimensional (x, y, z) f) three-dimensional (x, y, z) g) two-dimensional (r, z) h) one-dimensional (r) 3.32 Steady: a, c, e, f, h Unsteady: b, d, g 3.33 b. It is an unsteady plane flow. 3.34 a) d) e) 3.35 f, h
  • 42. 41 3.36 a) inviscid. b) inviscid. c) inviscid. d) viscous inside the boundary layer. e) viscous inside the boundary layers and separated regions. f) viscous. g) viscous. h) viscous. 3.37 d and e. Each flow possesses a stagnation point. 3.38 3.39 (C) The only velocity component is u(x). We have neglected v(x) since it is quite small. If v(x) in not negligible, the flow would be two-dimensional. 3.40 Re = VL/ ν = 2 × .015/.77 × 10-6 = 39 000. ∴Turbulent. 3.41 Re = = VL ν .2 × .8/1.4 × 10-5 = 11 400. ∴Turbulent. 3.42 Re . . = = × × − VL ν 4 06 17 10 5 = 14 100. ∴Turbulent. Note: We used the smallest dimension to be safe! 3.43 a) Re . . .51 = = × × = − V D ν 1 2 0 01 1 10 795. 5 Always laminar. b) Re . .51 = = × × = − VD ν 12 1 1 10 79 5 500. May not be laminar. 3.44 Re = 3 × 105 = T Vx ν . ν µ ρ = / where µ µ = ( ). T a) T = 223 K or −50°C. ∴ = × ⋅ − µ 1 10 5 .5 N s / m . 2 ∴ = × × = × − − ν 1 5 10 3376 1 23 2 5 10 5 5 . . . . . m /s 2 3 10 900 1000 3600 2 10 5 5 × = × × × − xT .5 . ∴xT = 0.03 m or 3 cm b) T = −48°F. ∴µ = 3.3 × 10−7 lb-sec/ft2. ν = × = × − − 3 3 10 00089 3 7 10 7 4 . . . ft2/sec. 3 10 600 5280 3600 3 7 10 5 4 × = × × × − xT . . ∴xT = 0.13' or 1.5"
  • 43. 42 3.45 Assume the flow is parallel to the leaf. Then 3 × 105 =VxT / . ν ∴ = × = × × × = − x V T 3 10 3 10 1 4 10 6 8 17 5 5 4 ν / .5 . / . m. The flow is expected to be laminar. 3.46 a) M V c = = × × = 100 14 287 236 0 325 . . . For accurate calculations the flow is compressible. Assume incompressible flow if an error of 4%, or so, is acceptable. b) M V c = = × × = 80 14 287 288 0 235 . . . ∴Assume incompressible. c) M V c = = × × = 100 14 287 373 0 258 . . . ∴Assume incompressible. 3.47 D Dt u x v y w z t ρ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ = + + + = 0. For a steady, plane flow ∂ρ ∂ / t = 0 and w = 0. Then u x v y ∂ρ ∂ ∂ρ ∂ + = 0. 3.48 D u Dt x ρ ∂ρ ∂ = v y ∂ρ ∂ + w + z t ∂ρ ∂ρ ∂ ∂ + 0. = ∴incompressible. 3.49 (B) 2 9810 0.800 . 113 m/s. 2 1.23 water air h V p V γ ρ ρ × = = = ∴ = 3.50 V p 2 2 = ρ . Use ρ = 0.0021 slug/ft3. a) v p = = × × 2 2 3 144 0021 / . / . ρ = 203 ft/sec. b) v p = = × × 2 2 9 144 0021 / . / . ρ = 351 ft/sec. c) v p = = × × 2 2 09 144 0021 / . / . ρ = 111 ft/sec. 3.51 p V = = ×       ρ 2 2 2 123 120 1000 3600 2 . / = 683 Pa. ∴F = pA = 683 π × 0.0752 = 12.1 N. 3.52 V p 2 2 0 + = ρ . ∴ = − = × V p 2 2 2000 123 ρ . = 57.0 m/s
  • 44. 43 3.53 (C) 2 2 2 1 2 1 . 0.200 0.600. 2 9.81 0.400 2.80 m/s. 2 2 2 V V V p V g g g γ + = + = ∴ = × × = 3.54 (B) The manometer reading h implies: 2 2 2 1 1 2 2 2 2 2 or (60 10.2). 9.39 m/s 2 2 1.13 V p V p V V ρ ρ + = + = − ∴ = The temperature (the viscosity of the water) and the diameter of the pipe are not needed. 3.55 a) 2 2 0 2 2 V V p ρ + = 2 2 ( 10 ) . . 50 2 o o o p p x p p p x ρ ρ ρ ρ − + + = ∴ = − b) 2 2 0 2 2 V V p ρ + = 2 2 (10 ) . . 50 2 o o o p p y p p p y ρ ρ ρ ρ + + = ∴ = − 3.56 2 2 2 2 U p V p ρ ρ ∞ ∞ + = + . a) v v U r r r c θ θ = = = − − ∞ 0 180 1 1 2 2 and o : ( / )( ). ( ) ∴ = − = −               ∞ ∞ p U v U r r r r r c c ρ ρ 2 2 2 2 2 2 2 2 4 . b) Let r r p U c T = = ∞ : ρ 2 2 c) ( ) [ ] v r r v U p v U r c = = − ∴ = − = − ∞ ∞ ∞ 0 2 2 2 1 4 2 2 2 and = U 2 : sin . sin θ θ θ ρ ρ θ d) Let θ ρ = = − ∞ 90 3 2 90 2 o : p U 3.57 2 2 2 2 U p V p ρ ρ ∞ ∞ + = + . a) vθ θ = = 0 180 and o : ( ) p U v U r r r r r c c = − =       −               ∞ ∞ ρ ρ 2 2 2 2 2 2 3 6 . b) Let r r p U c T = = ∞ : 1 2 2 ρ . c) ( ) [ ] v r r p v U r c = = − = − ∞ ∞ 0 2 2 1 4 2 2 2 and = U 2 : sin ρ ρ θ θ d) Let θ ρ = = − ∞ 90 3 2 90 2 o : p U
  • 45. 44 3.58 2 2 2 2 U p V p ρ ρ ∞ ∞ + = + . a) ( ) p U u x x = − = − +             = − +             ∞ ρ ρ π π ρ 2 2 10 10 20 2 50 1 1 1 2 2 2 2 2 = − +       50 2 1 2 ρ x x b) 1 0 when 1. 50 ( 2 1) 50 u x p ρ ρ − = = − = − − + = c) ( ) 2 2 2 2 2 60 1 30 30 450 1 1 2 2 2 p U u x x ρ ρ π ρ π ∞         = − = − + = − +                     = − +       450 2 1 2 ρ x x d) 1 0 when 1. 450 ( 2 1) 450 u x p ρ ρ − = = − = − − + = 3.59 V p V p V p p 1 2 1 2 2 2 1 1 2 2 2 0 20 + = + = − = ρ ρ . and kPa. ( ) V p p V 2 2 1 2 2 2 2 1000 20 6 32 = − = ∴ = ρ ( . 000) = 40. m / s 3.60 Assume the velocity in the plenum is zero. Then 2 2 2 1 1 2 2 2 2 2 or (60 10.2). 9.39 m/s 2 2 1.13 V p V p V V ρ ρ + = + = − ∴ = We found ρ = 113 . kg / m3 in Table B.2. 3.61 Bernoulli from the stream to the pitot probe: p V p T = + ρ 2 2 . Manometer: . T Hg p H H h p h γ γ γ γ + − − = − Then, 2 2 Hg V p H H p ρ γ γ + + − = . 2 (2 ) Hg V H γ γ ρ − ∴ = a) V V 2 13 6 1 9800 1000 2 0 04 3 14 = − × ∴ = ( . ) ( . ). . m / s b) V V 2 13 6 1 9800 1000 2 0 1 4 97 = − × ∴ = ( . ) ( . ). . m / s c) V V 2 13 6 1 62 4 194 2 2 12 1162 = − × ∴ = ( . ) . . ( / ). . fps d) V V 2 13 6 1 62 4 194 2 4 12 16 44 = − × ∴ = ( . ) . . ( / ). . fps
  • 46. 45 3.62 The pressure at 90° from Problem 3.56 is 2 90 3 /2. p U ρ ∞ = − The pressure at the stagnation point is 2 /2. T p U ρ ∞ = The manometer provides: p H p T − = γ 90 2 2 1 3 1.204 9800 0.04 1.204 . 12.76 m/s 2 2 U U U ∞ ∞ ∞ × − × = − × ∴ = 3.63 The pressure at 90° from Problem 3.57 is 2 90 3 /2. p U ρ ∞ = − The pressure at the stagnation point is 2 /2. T p U ρ ∞ = The manometer provides: p H p T − = γ 90 2 2 1 3 1.204 9800 0.04 1.204 . 12.76 m/s 2 2 U U U ∞ ∞ ∞ × − × = − × ∴ = 3.64 Assume an incompressible flow with point 1 outside in the room where p1 0 = and v1 0 = . The Bernoulli’s equation gives, with p h w 2 2 = γ , 2 1 2 V 1 p ρ + 2 2 2 . 2 V p ρ = + a) 0 2 9800 0 02 1 204 18 04 2 2 2 = + − × ∴ = V V . . . . m / s b) 0 2 9800 0 08 1 204 36 1 2 2 2 = + − × ∴ = V V . . . . m / s c) 0 2 62 4 1 12 0 00233 66 8 2 2 2 = + − × ∴ = V V . / . . . fps d) 0 2 62 4 4 12 0 00233 133 6 2 2 2 = + − × ∴ = V V . / . . . fps 3.65 Assume incompressible flow (V < 100 m/s) with point 1 outside the wind tunnel where p V 1 1 0 0 = = and . Bernoulli’s equation gives 0 2 1 2 2 2 2 2 2 2 = + ∴ = − V p p V ρ ρ . a) ρ = = × = ∴ = − × × = − p RT p 90 0 287 253 1 239 1 2 1239 100 6195 2 2 . . . . kg / m Pa 3 b) ρ = = × = ∴ = − × × = − p RT p 95 0 287 273 1 212 1 2 1212 100 6060 2 2 . . . . kg / m Pa 3 c) ρ = = × = ∴ = − × × = − p RT p 92 0 287 293 1 094 1 2 1094 100 5470 2 2 . . . . kg / m Pa 3 d) ρ = = × = ∴ = − × × = − p RT p 100 0 287 313 1113 1 2 1113 100 5566 2 2 . . . . kg / m Pa 3 3.66 (A) 2 1 2 V g 2 1 2 2 2 p V p g γ γ + = + 2 2 2 800000 . . 40 m/s. 9810 2 9.81 V V = ∴ = ×
  • 47. 46 3.67 a) p h V h h A A A = = × = = = γ 9800 4 39 0 2 200 Pa, Using . , 2 2 A V g A A p h γ + + 2 2 2 2 2 V p h g γ = + + 2 2 2 . 2 A V p p g γ = − = − × × = − 39 14 2 9 81 9800 58 2 200 700 Pa . b) 0 and 0. B B p V = = Bernoulli’s eq. gives, with the datum through the pipe, V g p h V g p h p B B B 2 2 2 2 2 2 2 2 2 4 14 2 9 81 9800 58 + + = + + = − ×       = − γ γ . . 700 Pa 3.68 Bernoulli: 2 2 2 2 V p g γ + 2 1 1 2 V p g γ = + Manometer: 2 2 1 2 2 Hg V p z H H z p g γ γ γ γ γ + + − − = + Substitute Bernoulli’s into the manometer equation: ( ) 2 1 1 1. 2 Hg V p H p g γ γ γ + − = + a) Use H = 0.01 m: V V 1 2 1 9800 2 9 81 13 6 1 9800 0 01 1 × × = − × ∴ = . ( . ) . .572 m / s Substitute into Bernoulli: p V V g 1 2 2 1 2 2 2 2 20 1 2 9 81 9800 198 = − = − × × = γ .572 . 600 Pa b) Use H = 0.05 m: V V 1 2 1 9800 2 9 81 13 6 1 9800 0 05 3 × × = − × ∴ = . ( . ) . .516 m / s Substitute into Bernoulli: p V V g 1 2 2 1 2 2 2 2 20 3 2 9 81 9800 193 = − = − × × = γ .516 . 600 Pa c) Use H = 0.1 m: V V 1 2 1 9800 2 9 81 13 6 1 9800 0 1 4 972 × × = − × ∴ = . ( . ) . . m / s Substitute into Bernoulli: p V V g 1 2 2 1 2 2 2 2 20 4 972 2 9 81 9800 187 = − = − × × = γ . . 400 Pa
  • 48. 47 3.69 Bernoulli across nozzle: 2 1 2 V 2 1 2 2 2 p V p ρ ρ + = + 2 1 . 2 / V p ρ ∴ = Bernoulli to max. height: 2 1 2 V g 1 1 p h γ + + 2 2 2 V g = 2 p γ + 2 2 1 . / . h h p γ + ∴ = a) V p 2 1 2 2 700 1000 37 42 = = × = / / . ρ 000 m / s h p 2 1 700 = = / γ 000 / 9800 = 71.4 m b) V p 2 1 2 2 1 1000 52 92 = = × = / / . ρ 400 000 m / s h p 2 1 = = / γ 1 400 000/ 9800 = 142.9 m c) V p 2 1 2 2 100 194 1218 = = × × = / / . . ρ 144 fps h p 2 1 = = × / γ 100 144 / 62.4 = 231 ft d) V p 2 1 2 2 200 194 172 3 = = × × = / / . . ρ 144 fps h p 2 1 200 = = × / γ 144/ 62.4 = 462 ft 3.70 a) Apply Bernoulli’s eq. from the surface to a point on top of the downstream flow: 2 1 2 V g 1 p γ + 2 2 2 1 2 V p h g γ + = + 2 2 . 2 ( ) h V g H h + ∴ = − b) Apply Bernoulli’s eq. from a point near the bottom upstream to a point on the bottom of the downstream flow: 2 1 2 V g 2 1 2 2 1 2. 2 p V p h h g γ γ + + = + + Using p H p h h h V g H h 1 2 1 2 2 2 = = = = − γ γ , , ( ) and 3.71 2 1 2 V 2 1 2 2 . 2 p V p ρ ρ + = + p2 = −100 000 Pa, the lowest possible pressure. a) 600 2 2 2 000 1000 100 000 1000 = − V . ∴V2 = 37.4 m/s. b) 300 2 2 2 000 1000 100 000 1000 = − V . ∴V2 = 28.3 m/s.
  • 49. 48 c) 80 144 1.94 14.7 144 1.94 × = − × V2 2 2 . ∴V2 = 118.6 ft/sec. d) 40 144 1.94 14.7 144 1.94 × = − × V2 2 2 . ∴V2 = 90.1 ft/sec. 3.72 A water system must never have a negative pressure, since a leak could ingest impurities. ∴ The least pressure is zero gage. V p gz V p gz 1 2 1 1 2 2 2 2 2 2 + + = + + ρ ρ . V V 1 2 = . Let z1 0 = , and p2 0 = . 500 000 1000 = 9 81 2 . . z ∴ z2 = 51.0 m. 3.73 a) ( ) ( ) p V V 1 2 2 1 2 2 2 2 1000 2 2 10 = − = − ρ = −48 000 Pa b) ( ) ( ) 2 2 2 2 1 2 1 902 2 10 43300 Pa 2 2 p V V ρ = − = − = − c) ( ) ( ) 2 2 2 2 1 2 1 680 2 10 32600 Pa 2 2 p V V ρ = − = − = − d) ( ) ( ) 2 2 2 2 1 2 1 1.23 2 10 59.0 Pa 2 2 p V V ρ = − = − = − 3.74 V p V p 1 2 1 2 2 2 2 2 + = + ρ ρ . ( ) ( ) 2 2 2 2 1 2 1 1.23 2 8 2 2 p V V ρ = − = − = −36.9 Pa 3.75 (D) ( ) ( ) 2 2 2 2 1 2 1 902 30 15 304400 Pa 2 2 p V V ρ = − = − = 3.76 Apply Bernoulli’s equation between the exit (point 2) where the radius is R and a point 1 in between the exit and the center of the tube at a radius r less than R: V p V p p V V 1 2 1 2 2 2 1 2 2 1 2 2 2 2 + = + ∴ = − ρ ρ ρ . . Since V V 2 1 < , we see that p1 is negative (a vacuum) so that the envelope would tend to rise due to the negative pressure over most of its area (except for a small area near the end of the tube). 3.77 Re . = V D ν For air ν ≅ × − 1 10 5 .5 . Use reasonable dimensions from your experience!
  • 50. 49 a) Re . .5 . = × × = × − 20 0 03 1 10 4 10 5 4 ∴Separate b) Re . .5 . = × × = − 20 0 005 1 10 6700 5 ∴Separate c) Re .5 . . = × × = × − 20 2 1 10 2 7 10 5 6 ∴Separate d) Re . .5 . = × × = − 5 0 002 1 10 670 5 ∴Separate e) Re .5 . . = × × = × − 20 2 1 10 2 7 10 5 6 ∴Separate f) Re .5 . = × × = × − 100 3 1 10 2 10 5 7 ∴It will tend to separate, except streamlining the components eliminates separation. 3.78 A burr downstream of the opening will create a region that acts similar to a stagnation region thereby creating a high pressure since the velocity will be relatively low in that region. 3.79 ∆ ∆ p V R n = = × = ρ 2 2 1000 10 0 05 0 02 . . 40 000 Pa Along AB, we expect V V A B > < 10 10 m / s and m /s. 3.80 The higher pressure at B will force the fluid toward the lower pressure at A, especially in the wall region of slow moving fluid, thereby causing a secondary flow normal to the pipe’s axis. This results in a relatively high loss for an elbow. 3.81 Refer to Bernoulli’s equation: V p V p 1 2 1 2 2 2 2 2 + = + ρ ρ p p A B > since V V A B < p p C D < since V V C D > p p B D > since V V D B > stagnation region A B VA VB
  • 51. 50 CHAPTER 4 The Integral Forms of the Fundamental Laws 4.1 a) No net force may act on the system: Σ v F = 0. b) The energy transferred to or from the system must be zero: Q - W = 0. c) If 3 3 2 ˆ ˆ ˆ 10 ( ) 0 n V V n i j = ⋅ = ⋅ − = v is the same for all volume elements then Σ v v F D Dt V dm = ∫ , or Σ v v F D Dt mV = ( ). Since mass is constant for a system Σ v v F m DV Dt = . Since DV Dt a F ma v v v v = = , . Σ 4.2 Extensive properties: Mass, m; Momentum, mV v ; kinetic energy, 1 2 mV 2 ; potential energy, mgh; enthalpy, H. Associated intensive properties (divide by the mass): unity, 1; velocity, v V;V2/2; gh; H/m = h (specific enthalpy). Intensive properties: Temperature, T; time, t; pressure, p; density, ρ; viscosity, µ. 4.3 (B) 4.4 System ( ) t V = 1 c.v.( ) t V = 1 System ( ) t t V + ∆ = 1 V + 2 c.v.( ) t t V + ∆ = 1 4.5 System ( ) t V = 1 V + 2 c.v.( ) t V = 1 V + 2 System ( ) t t V + ∆ = 2 V + 3 c.v.( ) t t V + ∆ = 1 V + 2 1 2 1 2 3 pump
  • 52. 51 4.6 a) The energy equation (the 1st law of Thermo). b) The conservation of mass. c) Newton’s 2nd law. d) The energy equation. e) The energy equation. 4.7 4.8 4.9 4.10 $ $ $ . ($ $) n i j i j 1 1 2 1 2 0 707 = − − = − + . $ . $ .5$ n i j 2 0 866 0 = − . $ $ n j 3 = − . 1 1 1 ˆ ˆ ˆ ˆ 10 [ 0.707( )] 7.07 fps n V V n i i j = ⋅ = ⋅ − + = − v V V n i i j n 2 2 2 10 0866 05 866 = ⋅ = ⋅ − = v $ $ ( . $ . $) . fps 3 3 2 ˆ ˆ ˆ 10 ( ) 0 n V V n i j = ⋅ = ⋅ − = v 4.11 flux = ηρ$ n VA ⋅ v flux1 = ηρ ηρ [ . ($ $)] $ / . − + ⋅ = − 0 707 10 0 707 10 i j iA A flux2 = ηρ ηρ ( . $ .5$) $ / . 0 866 0 10 0 866 10 i j iA A − ⋅ = flux3 = ηρ( $) $ − ⋅ = j iA 10 0 3 n̂ v n̂ v ω n̂ v n̂ v n̂ v n̂ v n̂ n̂ n̂ v v v v n̂ n̂ n̂ n̂ v v v v n̂ n̂ v v
  • 53. 52 4.12 ( $) ( .5$ . $) $( ) v B n A i j j ⋅ = + ⋅ × 15 0 0 866 10 12 = × × = 15 0 866 120 1559 . cm 3 Volume = 15 60 10 12 1559 sin cm 3 o × × = 4.13 The control volume must be independent of time. Since all space coordinates are integrated out on the left, only time remains; thus, we use an ordinary derivative to differentiate a function of time. But, on the right, we note that ρ and η may be functions of (x, y, z, t); hence, the partial derivative is used. 4.14 4.15 4.16 4.17 If fluid crosses the control surface only on areas A1 and A2, ρ ρ ρ $ $ $ . . n VdA n VdA n VdA A A c s ⋅ = ⋅ + ⋅ = ∫ ∫ ∫ v v v 0 2 1 For uniform flow all quantities are constant over each area: ρ ρ 1 1 1 2 2 2 0 2 1 $ $ n V dA n V dA A A ⋅ + ⋅ = ∫ ∫ v v Let A1 be the inlet so $ n V V A 1 1 1 2 ⋅ = − v and be the outlet so $ . n V V 2 2 2 ⋅ = v Then − + = ρ ρ 1 1 1 2 2 2 0 V A V A or ρ ρ 2 2 2 1 1 1 A V A V = 1 2 1 system (∆t) is in volumes 1 and 2 c.v. (0) = c.v. (∆t) = volume 1 1 2 3 system (∆t) = V1 + V2 + V3 c.v. (∆t) = V1 + V2 system boundary at (t + ∆t)
  • 54. 53 4.18 Use Eq. 4.4.2 with mV representing the mass in the volume: 0 = + ⋅ ∫ dm dt n VdA V c s ρ$ . . v = + − dm dt A V A V V ρ ρ 2 2 1 1 = + − dm dt Q m V ρ &. Finally, dm dt m Q V = − & . ρ 4.19 Use Eq. 4.4.2 with mS representing the mass in the sponge: 0 = + ⋅ ∫ dm dt n VdA S ρ$ v = + + − dm dt A V A V A V S ρ ρ ρ 2 2 3 3 1 1 = + + − dm dt m A V Q S & . 2 3 3 1 ρ ρ Finally, dm dt Q m A V S = − − ρ ρ 1 2 3 3 & . 4.20 (D) 2 200 0.04 70 0.837 kg/s 0.287 293 p m AV AV RT ρ π = = = × × = × & . 4.21 A1V1 = A2V2. π × 125 144 2 . × 60 = π × 2 5 144 2 . V2. ∴V2 = 15 ft/sec. & . . m AV = = × ρ π 194 1 25 144 60 2 = 3.968 slug/sec. Q = AV = π 125 144 2 . × 60 = 2 045 . / . ft sec 3 4.22 A1V1 = A2V2.π × .0252 × 10 = (2π × .6 × .003)V2. ∴V2 = 1.736 m/s. & . m AV = = × × ρ π 1000 025 10 2 = 19.63 kg/s. Q = AV=π × .0252 × 10 =0 01963 . . m / s 3 4.23 & min = ρA1V1 + ρA2V2. 200 = 1000 π × .0252 × 25 + 1000 Q2. ∴Q2 =0 1509 . . m / s 3 4.24 ρ1 1 1 40 144 1716 520 = = × × p RT = .006455 slug/ft3. ρ2 7 144 1716 610 = × × = .000963 slug/ft3. & . & . ( / ). . m AV V m A = ∴ = = × ρ ρ π 1 1 1 2 2 2 144 006455 ∴V1 = 355 fps. & . . ( / ) . m V 2 2 0 2 000963 2 3 144 = = × × ∴V2 = 4984 fps.
  • 55. 54 4.25 ρ ρ ρ ρ 1 1 1 2 2 2 1 1 2 500 287 393 4 1246 287 522 8 317 A V A V p RT = = = × = = × = . . .433 . . . kg m kg m 3 3 4.433 π × .052 × 600 = 8.317 π × .052 V2. ∴V2 = 319.8 m/s. & m A V = ρ1 1 1 = 20.89 kg/s. Q A V 1 1 1 = = 4 712 . . m / s 3 Q2 =2.512 . m / s 3 4.26 ρ ρ 1 1 1 2 2 2 A V A V = p RT A V p RT A V 1 1 1 1 2 2 2 2 = 200 293 0 05 40 120 0 03 120 2 2 2 π π × × = × × . . . T ∴ = − T2 189 9 83 . . K or C o 4.27 a) A V A V 1 1 2 2 = . (2 × 1.5 + 1.5 × 1.5) 3 =π d2 2 4 2 × . ∴d2 = 3.167 m b) (2 × 1.5 + 1.5 × 1.5) 3 =π d2 2 4 2 2 × . ∴d2 = 4.478 m c) (2 × 1.5 + 1.5 × 1.5) 3 = 1 3 2 866 2 2 πR R R − ×       × . . ∴R = 3.581 m. ∴d2 = 7.162 m 4.28 (A) Refer to the circle of Problem 4.27: 2 3 75.7 2 ( 0.4 0.10 0.40 sin75.5 ) 3 0.516 m /s. 360 Q AV π × = = × × − × × × = o 4.29 a) v r r r V vdA r r rdr r r r dr r r r = −       = = −       = −       ∫ ∫ ∫ 10 1 10 1 2 20 0 0 2 0 0 0 2 0 0 0 0 0 . . π π π ∴ = −       = V r r r 20 2 3 10 3 0 2 0 2 0 2 = 3.333 m/s. & . . m AV = = × × × ρ π 1000 04 3 33 2 = 16 75 . . kg / s Q = AV =0 01675 . . m / s 3 b) v r r r V r r rdr r r r = −       = −       = −       ∫ 10 1 10 1 2 20 2 4 2 0 2 0 2 2 0 2 0 0 2 0 2 0 . . π π π ∴V = 5 m/s & . m AV = = × × × ρ π 1000 04 5 2 = 25 13 . kg / s. Q = AV =0 02513 . m / s. 3 c) v r r r V r r rdr r r r = −       = −       + ∫ 20 1 20 1 2 10 4 0 0 2 0 2 0 2 0 0 . / . / π π π ∴V = 5.833 m/s & . . m AV = = × × × ρ π 1000 04 5833 2 = 29 32 . kg / s. Q =0 02932 . . m / s 3 θ R cosθ = 1/2 θ = 60o
  • 56. 55 4.30 a) Since the area is rectangular, V = 5 m/s. & . . m A V = = × × × ρ 1000 08 8 5 = 320 kg / s. Q = & m ρ = 0 32 . . m / s 3 b) v y h y h = −       40 2 2 with y = 0 at the lower wall. ∴ = −       = × ∫ Vhw y h y h wdy h w h 40 40 6 2 2 0 . ∴V = 6.667 m/s. & . . . m A V = = × × × ρ 1000 08 8 6 667 = 426 7 . kg / s. Q = 0 4267 . . m / s 3 c) V × .08 = 10 × .04 + 5 × .02 + 5 × .02. ∴V = 7.5 m/s. & . . .5 m A V = = × × × ρ 1000 08 8 7 = 480 kg / s. & & Q m = ρ = 0 48 . . m / s 3 4.31 a) A V v dA 1 1 2 = ∫ . π π π ×       × = −       = ∫ 1 24 6 1 2 2 4 2 0 2 0 2 0 2 0 v r r rdr v r r max max . With r0 1 24 = , vmax = 12 fps. ∴ = v r ( ) 12 1 576 2 ( ) . − r fps b) A V v dA 1 1 2 = ∫ . 1 12 6 1 4 3 2 2 × × = −       = − ∫ w v y h wdy v w h h h max max . With h = 1 24 , vmax = 9 fps. ∴ = v y ( ) 9 1 576 2 ( ) . − y fps c) 1 1 2 . AV v dA = ∫ 0 2 2 2 0 max max 2 0 0 0.01 2 1 2 2 . 4 r r r v rdr v r π π π   × × = − =   ∫     With r0 = 0.01 m, max v = 4 m/s. ( ) v r ∴ = 2 4(1 10000 ) m/s. r − d) n̂ 2 max max 2 4 0.02 2 1 . 3 h h y h w v wdy v w h −   × × = − =   ∫     With h = 0.01 m, max v = 3 m/s. ( ) v y ∴ = 2 3(1 10000 ) m/s. y − 4.32 If dm dt / , = 0 then ρ ρ ρ 1 1 1 2 2 2 3 3 3 A V A V A V = + . In terms of & m Q 2 3 and this becomes, letting ρ ρ ρ 1 2 3 = = , 1000 0 02 12 1000 0 01 2 2 × × × = + × π . & . . m ∴ = & . . m2 5 08 kg / s 4.33 v dA A V r 1 0 2 2 1 ∫ = . v r r rdr r max . . 0 2 1 2 2 1 1 2 0025 2 ∫ −       = × × π π ∴ = × × 2 005 4 0025 2 2 2 π π vmax . . . ∴vmax = 1 m/s. ∴ = v r ( ) 1 005 2 2 −       r . . m / s
  • 57. 56 4.34 & & &. . ( ) . &. . m m m y y dy m in out = + × × × = − + × × ×       + ∫ ρ ρ ρ 2 2 10 10 20 100 2 1 2 10 2 0 1 Note: We see that at y = 0.1 m the velocity u(.1) = 10 m/s. Thus we integrate to y = 0.1, and between y = 0.1 and 0.2 the velocity u = 10. 4 4 3 2 ρ ρ ρ = +       + &. m ∴ = & . m 0 6667ρ = 0.82 kg/s. 4.35 V h u y dy h 1 1 0 = ∫ ( ) . 10 05 10 20 100 2 0 × = − ∫ . ( ) y y dy h = −       10 10 100 3 2 3 h h . ∴666.7 h3 − 200 h2 = −1. This can be solved by trial-and-error: h = .06: −.576? −1. h = .07: −.751? −1. h = .08: −.939? −1. h = .083: −.997? −1. h = .084: −1.016? −1. ∴h = 0.0832: or 8.32 cm. Note: Fluid does not cross a streamline so all the flow that enters on the left leaves on the right. The streamline simply moves further from the wall. 4.36 ( ) & . . ( ) / m VdA y y y dy = = − − × ∫ ∫ρ 2 2 1 3545 6 9 2 5 0 1 3 2 ( ) = − − + ∫ 22 6 2 127 9 3 19 2 2 3 0 1 3 y y y y dy . . / = 4.528 slug/sec. V u = = × = 2 3 2 3 2 4 3 max . fps (See Prob. 4.31b). ρ = + 2 2 194 2 . . = 2.07 slug/ft3. ∴ = × × ×       ρV A 2 07 4 3 5 1 3 . = 4.6 slug/sec. Thus, ρVA m ≠ & since ρ = ρ(y) and V = V(y) so that V V ρ ρ ≠ . 4.37 A V A V 1 1 2 2 = . π π × × = × × . ( . . ) . 01 8 2 2 04 2 2 V cos 30o ∴V2 = 0.05774 m/s. 4.38 2000 4 3 0015 9000 5 3 3 3 3 × × × × π . m of H O m of air m of air s 2 = 1.5 × (1.5h). ∴h = 0.565 m. 4.39 Use Eq. 4.3.3: 0 1 1 1 1 = − + ⋅ ∫ ∂ρ ∂ ρ t d V V n A v $ . v V n V 1 1 1 ⋅ = − $ . ∴ = − ρ ∂ρ ∂ 1 1 1 A V t Vtire . ( . ) . 37 14 7 144 1716 520 1 96 180 17 2 + × × ×       × = × π ∂ρ ∂t
  • 58. 57 ∴ = ∂ρ ∂t 3 01 10 5 . . × − − slug ft sec 3 4.40 & & & . m m m in = + 2 3 V1 = 20 m/s (see Prob. 4.31c). 20 1000 02 10 1000 02 2 2 3 × × = + × π π . . . V ∴ V3 = 12.04 m/s. 4.41 0 2 3 1 = + = + + − d dt m m d dt m m m m c v net c v . . . . & & & & ∴ = − − = × × × − − × × d dt m m m m c v . . & & & . . 1 2 3 2 2 1000 02 20 10 1000 02 10 π π = 2.57 kg/s. 4.42 The control surface is close to the interface at the instant shown. ∴Vi = interface velocity. ρ ρ e e e i i i A V A V = . 1 15 300 8000 287 673 1 2 2 .5 . . . × × × = × × π π Vi ∴Vi = 0.244 m/s. 4.43 Assume an incompressible flow: 4 1 2 2 Q A V = . 4 1500 60 2 4 2 × = × / ( ) . V ∴ = V2 12.5 . fps 4.44 For an incompressible flow (low speed air flow) udA A V A = ∫ 2 2 1 . 20 0 8 0 15 1 5 2 2 0 0 2 y dy V / . . . . × = × ∫ π 20 0 8 5 6 0 2 015 6 5 2 2 × = × . . . . / π V ∴ = V2 27 3 . . m / s 4.45 A V v dA A V e e 1 1 2 + = ∫ π π π ( . . ) . . . 01 0 025 4 200 1 0 025 2 0 1 2 2 2 2 2 0 0 025 − × + −       = × ∫ r rdr Ve 0 1178 01963 0 0314 . . . . + = Ve ∴ = Ve 10 0 . . m / s 4.46 Draw a control volume around the entire set-up: 0 2 2 1 1 = + − dm dt V A V A tissue ρ ρ = + −       − & & ( tan ) & m d d h h h tissue ρπ ρπ φ 2 2 2 2 1 2 1 4 Ve n̂ n̂ Vi
  • 59. 58 or & & & tan . m d d h h h tissue = − +       ρπ φ 2 2 2 2 1 2 1 2 4 4.47 The width w of the channel is constant throughout the flow. Then 0 2 2 1 1 = + − dm dt A V A V ρ ρ . 0 2 2 1 1 = + − d dt whL A V A V ( ) ρ ρ ρ 0 100 0 2 8 4 0 2 = × + × − × ρ ρ ρ dh dt w w w . . . ∴ = & . . h 0 008 m / s 4.48 0 2 2 1 1 = + − dm dt A V A V ρ ρ = + × × − × − & ( . . / ). m 1000 0 003 0 02 10 10 60 2 6 π ∴ = × − & . . m 3 99 10 4 kg / s 4.49 ρ ρ 1 1 1 2 2 2 A V A V = . & m A V 1 2 2 2 = ρ . 400 10 900 0 2 0 05 10 100 6 2 e Ve − − × × = × × / . . . π ∴ = Ve 207 m / s. 4.50 0 3 3 1 1 1 2 = + − − dm dt Q A V m ρ ρ & where m Ah = ρ . a) 0 1000 0 6 1000 0 6 60 1000 0 02 10 10 2 2 = × + × − × × − π π . & . / . . h ∴ = & . h 0 0111 m / s or 11.1 mm / s b) 0 1000 0 6 1000 0 01 0 20 2 = × + × − − π . & . . h ∴ = & . . h 0 00884 m / s or 8.84 mm/ s c) 2 2 0 1000 0.6 1000 1.0/60 1000 0.02 5 10. h π π = × + × − × × − & 0.000339 m/s or 0.339 mm/s. h ∴ = & 4.51 A V A V 1 1 2 2 = where A2 is an area just under the top surface. a) π π × × = × − 0 02 10 60 2 10 2 . ( tan ) / e h dh dt t o ∴ = − h dh e dt t 2 10 0 001333 . . / ∴ = − + − h e t 3 10 0 04 0 04 . . . / Finally, h t e t ( ) . ( ) . / / = − − 0 342 1 10 1 3 b) 0 04 10 10 60 10 10 . ( tan ) & / × × = × − e h h t o ∴ = − hdh e dt t 0 2309 10 . . / ∴ = − + − h e t 2 10 4 62 4 62 . . . / Finally, /10 1/2 ( ) 2.15(1 ) . t h t e− = −
  • 60. 59 4.52 & W T pAV du dy Abelt = + + ω µ = × × + × × × + × × × × − 20 500 2 60 400 0 4 0 10 181 10 100 0 0 8 5 π / . .5 . .5 . = + + = 1047 800 0 000724 1847 . W 4.53 If the temperature is essentially constant, the internal energy of the c.v. does not change and the flux of internal energy into the pipe is the same as that leaving the pipe. Hence, the two integral terms are zero. The losses are equal to the heat transfer exiting the pipe. 4.54 80% of the power is used to increase the pressure while 20% increases the internal energy ( & Q = 0 because of the insulation). Hence, & ~ . & m u W ∆ = 0 2 1000 0 02 4 18 0 2 500 × × = × . . . . ∆T ∴ = ∆T 0 836 . . C o 4.55 (D) 2 2 2 1 2 P W V V Q g γ − = & 2 1 1200 200 . . 0.040 P p p W γ γ γ − − + = × & 40 40 kW and energy req'd = 47.1 kW. 0.85 P W ∴ = = & 4.56 & . W Q H P P p = γ η 5 746 9800 20 0 87 × = × × Q . . ∴ = Q 0 01656 . . m / s 3 4.57 − = − × & & . . W mg T 40 0 89 a) & . . WT = × × × = 40 0 89 200 9 81 69 850 W b) & . ( / ) . WT = × × × = 40 0 89 90 000 60 9 81 523 900 W c) & . ( / ) . WT = × × × × = 40 0 89 8 10 3600 9 81 776 6 100 W 4.58 10000000 . 0.89 50. 1.273 m/s 100 3 60 9.8 T T W z V AVg V η ρ − = ∆ = × ∴ = × × × × & 4.59 V g p z V g p z 1 2 1 1 2 2 2 2 2 2 + + = + + γ γ . 12 2 32 2 6 36 64 4 2 2 2 2 2 × + = + . . . h h 8 236 20 1 2 2 2 . . . = + h h Continuity: 3 × 12 = h2 V2. 3 ft V1 h2 V2
  • 61. 60 This can be solved by trial-and-error. 2 8': 8.24 ? 8.31 h = 2 7.9': 8.24 ? 8.22 h = Qh2 = 7 93 . . ' 2 1.8': 8.24 ? 8.00 h = 2 1.75': 8.24 ? 8.31 h = Qh2 = 176 . '. 4.60 V g z V g z hL 1 2 1 2 2 2 2 2 + = + + . ∴ × + = × + + 4 2 9 81 2 16 2 9 81 0 2 2 2 2 2 . . . . h h ∴2 615 0 815 2 2 2 . . / . = + h h Trial-and-error provides the following: h2 2 2 615 2 63 = = .5: . ? . h2 2 45 615 2 = = . : . ? .59. 2 ∴ = h2 2 47 . m h2 0 65 2 615 2 = = . : . ? .58 h2 0 64 615 2 63 = = . : . ? . . 2 ∴ = h2 0 646 . m 4.61 Manometer: Position the datum at the top of the right mercury level. 9810 4 9810 2 1000 9810 13 6 4 9810 2 2 2 2 2 1 × + + + × = × × + × + . ( . ) . z p V p Divide by γ = 9810: . . . . 4 2 13 6 4 2 2 2 2 2 1 + + + = × + + z p V g p γ γ (1) Energy: V g p z V g p z 1 2 1 1 2 2 2 2 2 2 + + = + + γ γ . (2) Subtract (1) from (2): With z1 = 2 m, V g 1 2 2 12 6 4 = × . . . ∴V1 = 9.94 m/s 4.62 The manometer equation (see Prob. 4.61) is 0 4 2 13 6 4 2 2 2 2 2 1 . . . . + + + = × + + z p V g p γ γ (1) Energy: V g p z V g p z V g 1 2 1 1 2 2 2 2 2 2 2 2 0 05 2 + + = + + + γ γ . . (2) Subtract (1) from (2): With z1 = 2 m, and with V2 = 4V1 (continuity) 18 2 12 6 0 4 1 2 . . . . V g = × ∴V1 = 7.41 m/s. 4.63 (A) 2 2 0 V = 2 1 2 1 2 V p p g − − + 2 2 2 120 . 0 . 7 200000 Pa. 2 9.8 9810 p p γ − = + ∴ = × 4.64 Q = 120 × 0.002228 = π × 1 12 2 1       V . ∴V1 = 12.25 fps.
  • 62. 61 Continuity: π π ×       = ×       1 12 1 12 2 1 2 2 V V .5 . ∴V2 = 5.44 fps. Energy: V g p V g p V g 1 2 1 2 2 2 1 2 2 2 0 37 2 + = + + γ γ . . ∴ = × + −       p2 2 2 60 144 62 4 0 63 12 25 64 4 5 44 64 4 . . . . . . = 8702.9 psf or 60.44 psi 4.65 Q = 600 × 10-3/60 = π × .022 V1. ∴V1 = 7.958 m/s. 3 2 0.02 3 3 3 3 2 0 1 1 10 1 0.02 6.67 0.02 y V dA wdy AV w α   = = −   ∫ ∫   × ×   V A V A 2 1 1 2 2 2 04 7 958 06 = = × . . . = 3.537 m/s. Energy: V g p V g p hL 1 2 1 2 2 2 2 2 + = + + γ γ . ∴ = − × + − hL 7 958 3 2 9 81 690 000 700 000 9810 2 2 . .537 . = 1.571 m 4.66 V Q A 1 1 2 0 08 03 = = × / . . π = 28.29 m/s. ∴V2 = 9V1 = 254.6 m/s. Energy: V g p V g p V g 1 2 1 2 2 2 1 2 2 2 2 2 + = + + γ γ . . ∴ = × − ×       p1 2 2 9810 254 6 2 9 81 0 8 28 29 2 9 81 . . . . . = 32 1 106 . . × Pa 4.67 a) Across the nozzle: 2 2 1 2 .07 .025 . V V π π × = × ∴V2 = 7.84 V1. Energy: V g p V g p 1 2 1 2 2 2 2 2 + = + γ γ . 2 2 1 1 7.84 1 9810 . 2 9.81 p V − ∴ = × For the contraction: π π × = × . . . 07 05 2 1 2 3 V V ∴V3 = 1.96 V1. Energy: V g p V g p 1 2 1 3 2 3 2 2 + = + γ γ . Manometer: γ γ × + = × + . . . . 15 136 15 1 3 p p ∴ = × + p p 1 3 12 6 15 γ γ . . . Subtract the above 2 eqns: V g V g V g 1 2 3 2 2 1 2 2 12 6 15 2 196 2 + × = = . . . . ∴ − = × × ( . ) . . . 196 1 12 6 15 2 2 1 2 V g ∴V1 = 3.612 m/s. ∴p1 = 394 400 Pa.
  • 63. 62 From the reservoir surface to section 1: V g p z V g p z 0 2 0 0 1 2 1 1 2 2 + + = + + γ γ H = + 3 612 19 62 2 . . 394 400 9810 = 40.0 m. b) Manometer: γ γ × + = × + . . . . 2 136 2 1 3 p p ∴ = × + p p 1 3 12 6 2 γ γ . . . Energy: V g p V g p 1 2 1 3 2 3 2 2 + = + γ γ . Also, V3 = 1.96 V1. ∴ + × = V g V g 1 2 2 1 2 2 12 6 2 196 2 . . . . ∴V1 = 4.171 m/s. The nozzle is the same as in part (a): ∴p1 = 534 700 Pa. From the reservoir surface to the nozzle exit: V g p z V g p z 0 2 0 0 2 2 2 2 2 2 + + = + + γ γ . ∴ = = × H V g 2 2 2 2 32 7 2 9 81 . . = 54.5 m. 4.68 a) Energy: V g p z V g p z 0 2 0 0 2 2 2 2 2 2 + + = + + γ γ . ∴ = = × × V gz 2 0 2 2 9 81 2 4 . . = 6.862 m/s. Q = AV = .8 × 1 × 6.862 = 5 49 . . m / s 3 For the second geometry the pressure on the surface is zero but it increases with depth. The elevation of the surface is 0.8 m. ∴ = + z V g h 0 2 2 2 . ∴ = − = × × V g z h 2 0 2 2 9 81 2 ( ) . = 6.264 m/s. ∴Q = .8 × 6.264 = 5 01 . . m / s 3 Note: z0 is measured from the channel bottom in the 2nd geometry. ∴z0 = H + h. b) V g p z V g p z 0 2 0 0 2 2 2 2 2 2 + + = + + γ γ . ∴ = = × × +       = V gz 2 0 2 2 32 2 6 2 2 2123 . . fps. ∴Q = AV = (2 × 1) × 21.23 = 42.5 cfs. For the second geometry, the bottom is used as the datum: ∴ = + + z V g h 0 2 2 2 0 . ∴ = + − V g H h h 2 2 2 ( ) . ∴ = = × × V gH 2 2 2 32 2 6 . = 19.66 fps. ∴Q = 39.3 cfs.
  • 64. 63 4.69 From the reservoir surface to the exit: Continuity: V g p z V g p z K V g 0 2 0 0 2 2 2 2 1 2 2 2 2 + + = + + + γ γ . V V 1 2 2 2 03 08 = . . = .1406 V2. 10 2 5 1406 2 2 2 2 2 2 = + × V g V g . ∴V2 = 13.36 m/s. ∴Q = 13.36 × π × .0152 =0 00944 . . m / s 3 The velocity in the pipe is V1 = 1.878 m/s. Energy 0 → A: 10 1878 2 9 81 9810 8 1878 2 9 81 3 2 2 = × + + × + . . . . . . pA ∴pA = 65 500 Pa. Energy 0 → B: 10 1878 2 9 81 9810 2 0 1878 2 9 81 10 2 2 = × + + × + . . . . . . pB ∴pB = −5290 Pa. Energy 0 → C: 10 1878 2 9 81 9810 12 2 8 1878 2 9 81 2 2 = × + + + × . . . . . . pC ∴pC = −26 300 Pa. Energy 0 → D: 10 1878 2 9 81 9810 0 5 1878 2 9 81 2 2 = × + + + × . . . . . pD ∴pD = 87 500 Pa. 4.70 V g p z V g p z 0 2 0 0 2 2 2 2 2 2 + + = + + γ γ . 80 000 9810 + = × 4 2 9 81 2 2 V . . ∴V2 = 19.04 m/s. a) Q A V = = × × 2 2 2 025 19 04 π . . = 0 0374 . . m / s 3 b) Q A V = = × × 2 2 2 09 19 04 π . . = 0 485 . . m / s 3 c) Q A V = = × × 2 2 2 05 19 04 π . . = 0 1495 . . m / s 3 4.71 a) p z V g V g 0 0 2 2 1 2 2 1 2 γ + = + .54 . 80 000 9810 + = + 4 16 2 1 2 1 2 1 2 V g V g .54 . ∴V1 = 3.687 m/s. Q A V = = × × 1 1 2 05 3 687 π . . = 0 0290 . . m / s 3 b) A V A V 1 1 2 2 = . V V V 1 2 2 2 2 09 05 3 24 = = . . . . 80 000 9810 + = + 4 2 2 3 3 24 2 2 2 2 2 2 V g V g . . . ∴V2 = 3.08 m/s. ∴Q A V = 2 2 = 0 0784 . . m / s 3 c) 80 000 9810 + = + 4 2 1 2 2 2 2 2 V g V g .5 . ∴V2 = 9.77 m/s. ∴Q A V = 2 2 = 0 0767 . . m / s 3 4.72 (C) Manometer: 2 2 1 2 2 V H p g p g γ ρ + = + or 2 2 1 9810 0.02 . 2 V p g g ρ × + = Energy: 2 100000 7.96 . 3.15. 2 9.81 9810 K K = ∴ = ×
  • 65. 64 Combine the equations: 2 1 1 9810 0.02 1.2 . 18.1 m/s. 2 V V × = × ∴ = 4.73 Manometer: . 6 . 13 2 1 p z H p z H + + = + + γ γ γ γ ∴ = + p H p 1 2 12 6 γ γ . . Energy: p V g p V g 1 1 2 2 2 2 2 2 γ γ + = + . Combine energy and manometer: 12 6 2 2 2 1 2 . . H V V g = − Continuity: V d d V 2 1 2 2 2 1 = . ∴ = × −       V H g d d 1 2 1 4 2 4 12 6 2 1 . / . ∴ = = × −       Q V d H g d d d 1 1 2 1 4 2 4 1 2 1 2 4 4 12 6 2 1 π π . / / = 12 35 1 2 2 2 1 4 2 4 1 2 . / d d H d d −       4.74 Use the result of Problem 4.73: a) Q = 12.35 ×. . . . . / 16 08 2 16 08 2 2 4 4 1 2 × −       = 0 0365 . . m / s 3 b) Q = 12.35 ×. . . . . / 24 08 4 24 08 2 2 4 4 1 2 × −       = 0 0503 . . m / s 3 c) Using English units with g = 32.2: Q d d H d d = −       22 37 1 2 2 2 1 4 2 4 1 2 . . / Q = ×             −       22 37 1 2 1 4 10 12 25 2 2 4 4 1 2 . / .5 . / = 1.318 cfs. d) Q = 22.37 ×1 1 3 15 12 1 3333 2 2 4 4 1 2 ×       −       / . / = 2.796 cfs. 4.75 (B) 2 2 0.040 . 7.96 m/s. 2 0.04 L V p Q h K V g A γ π ∆ = = = = = × 2 100000 7.96 . 3.15. 2 9.81 9810 K K = ∴ = × 4.76 a) Energy from surface to outlet: V g H 2 2 2 = . ∴ = V gH 2 2 2 . Energy from constriction to outlet: p V g p V g 1 1 2 2 2 2 2 2 γ γ + = + .
  • 66. 65 Continuity: V V 1 2 4 = . With p1 = pv = 2450 Pa and p2 = 100 000 Pa, 2450 9810 16 2 9 81 2 100 000 9810 1 2 9 81 2 + × × = + × × . . . gH gH ∴H = 0.663 m. b) With p1 = 0.34 psia, p2 = 14.7 psia, . . . . . 34 144 62 4 16 2 2 14 7 144 62 4 1 2 2 × + = × + g gH g gH ∴H = 2.21 ft. 4.77 Continuity: V V 1 2 4 = . Energy  surface to exit: V g H 2 2 2 = . Energy constriction to exit: p V g p V g v γ γ + = + 1 2 2 2 2 2 2 . ∴ = + − = − = − × × p p V V g p H v 2 2 2 2 2 2 16 2 15 100 000 15 65 9810 γ γ . = 4350 Pa. From Table B.1, T = 30°C. 4.78 Energy  surface to surface: z z hL 0 2 = + . ∴ = + 30 20 2 2 2 2 V g . Continuity: V1 = 4V2. ∴V1 2 = 160 g. ∴V2 2 = 10 g. Energy  surface to constriction: 30 160 2 94 000 9810 1 = + − + g g z ( ) ∴z1 = −40.4 m. ∴H = 40.4 + 20 = 60.4 m. 4.79 Continuity: V V 2 2 2 1 10 6 = = 2.778 V1. Energy: V g p V g p 1 2 1 2 2 2 2 2 + = + γ γ . V g V g 1 2 2 1 2 2 200 2 778 2 2450 9810 + = + 000 9810 . . ∴V1 = 7.67 m/s. ∴Q = π × .052 × 7.67 = 0 0602 . . m / s 3 4.80 Velocity at exit = Ve . Velocity in constriction = V1. Velocity in pipe = V2 . Energy — surface to exit: V g H e 2 2 = . ∴ = V gH e 2 2 . Continuity across nozzle: V D d Ve 2 2 2 = . Also, V V 1 2 4 = . Energy — surface to constriction: H V g pv = + 1 2 2 γ .
  • 67. 66 a) 5 1 2 16 2 2 5 97 4 4 = × × ×       + − g D g . . 550 9810 ∴ = D 0131 . m b) 15 1 2 16 8 12 2 15 34 14 7 144 62 4 4 4 = × ×       + − g D g ( / ) (. . ) . . ∴ = ′ ′′ D 0 446 . or 5.35 4.81 Energy — surface to exit: 3 2 4 2 1177 2 2 2 2 2 2 = + ∴ = V g V g V . . . Energy — surface to “A”: 3 1177 2 9 81 1176 100 3 1 1177 2 9 81 2 = × + − + + + × . . ( ) .5 . . . 000 9810 H ∴ = H 8.57 . m 4.82 & . . m AV = = × ×       × = ρ π 1 94 1 12 120 5 079 2 slug / sec. & . . . . / . , . WP = × − × + ×       = 5 079 32 2 30 120 2 32 2 120 144 62 4 0 85 12 950 2 2 ft - lb sec or 23.5 Hp 4.83 & . . m AV = = × × × = ρ π 1000 02 40 50 27 2 kg / s. 20 40 2 9 81 9810 0 82 2 000 = 50.27 9.81 102 × − × +       . / . . ∆p ∴ = × ∆p 1088 106 . . Pa 4.84 (C) 2 2 2 1 2 P W V V Q g γ − = & . p γ ∆ + 16 0.040 400 16 kW. 18.0 kW. 0.89 P P W W Q p η = ∆ = × = = = & & 4.85 − = × × − × + −       × & . . . . . WT 2 1000 9 81 0 10 2 2 9 81 600 0 87 2 000 9810 ∴ = × & . . WT 1304 106 W We used V Q A 2 2 2 2 25 10 2 = = × = / . . π m / s. 4.86 V V 1 2 2 2 450 3 15 9 450 3 75 10 19 = × = = × = π π . . . . . fps fps −       × = × × − × + −       10 000 1 746 550 450 194 32 2 1019 159 2 32 2 18 140 144 62 4 2 2 , . . . . . . ( ) . . ηT ∴ = ηT 0924 .