SlideShare a Scribd company logo
1 of 131
Download to read offline
Problem 3.2 [Difficulty: 2]
Given: Pure water on a standard day
Find: Boiling temperature at (a) 1000 m and (b) 2000 m, and compare with sea level value.
Solution:
We can determine the atmospheric pressure at the given altitudes from table A.3, Appendix A
The data are
Elevation
(m)
p/p o p (kPa)
0 1.000 101.3
1000 0.887 89.9
2000 0.785 79.5
We can also consult steam tables for the variation of saturation temperature with pressure:
p (kPa) T sat (ยฐC)
70 90.0
80 93.5
90 96.7
101.3 100.0
We can interpolate the data from the steam tables to correlate saturation temperature with altitude:
Elevation
(m)
p/p o p (kPa) T sat (ยฐC)
0 1.000 101.3 100.0
1000 0.887 89.9 96.7
2000 0.785 79.5 93.3
The data are plotted here. They
show that the saturation temperature
drops approximately 3.4ยฐC/1000 m.
Variation of Saturation Temperature with
Pressure
88
90
92
94
96
98
100
70 75 80 85 90 95 100 105
Absolute Pressure (kPa)
Saturation
Temperature(ยฐC)
2000 m
1000 m
Sea Level
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Full Download: https://alibabadownload.com/product/fox-and-mcdonalds-introduction-to-fluid-mechanics-9th-edition-pritchard-so
This sample only, Download all chapters at: AlibabaDownload.com
Problem 3.1
3.1
Problem 3.3 [Difficulty: 2]
Given: Data on flight of airplane
Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop."
Solution:
Assume the air density is approximately constant constant from 3000 m to 2900 m.
From table A.3
ฯSL 1.225
kg
m
3
โ‹…= ฯair 0.7423 ฯSLโ‹…= ฯair 0.909
kg
m
3
=
We also have from the manometer equation, Eq. 3.7
ฮ”p ฯairโˆ’ gโ‹… ฮ”zโ‹…= and also ฮ”p ฯHgโˆ’ gโ‹… ฮ”hHgโ‹…=
Combining ฮ”hHg
ฯair
ฯHg
ฮ”zโ‹…=
ฯair
SGHg ฯH2Oโ‹…
ฮ”zโ‹…= SGHg 13.55= from Table A.2
ฮ”hHg
0.909
13.55 999ร—
100ร— mโ‹…= ฮ”hHg 6.72 mmโ‹…=
For the ear popping descending from 8000 m, again assume the air density is approximately constant constant, this time at 8000 m.
From table A.3
ฯair 0.4292 ฯSLโ‹…= ฯair 0.526
kg
m
3
=
We also have from the manometer equation
ฯair8000 gโ‹… ฮ”z8000โ‹… ฯair3000 gโ‹… ฮ”z3000โ‹…=
where the numerical subscripts refer to conditions at 3000m and 8000m.
Hence
ฮ”z8000
ฯair3000 gโ‹…
ฯair8000 gโ‹…
ฮ”z3000โ‹…=
ฯair3000
ฯair8000
ฮ”z3000โ‹…= ฮ”z8000
0.909
0.526
100ร— mโ‹…= ฮ”z8000 173m=
Problem 3.2
3.2
Problem 3.4 [Difficulty: 3]
Given: Boiling points of water at different elevations
Find: Change in elevation
Solution:
From the steam tables, we have the following data for the boiling point (saturation temperature) of water
Tsat (
o
F) p (psia)
195 10.39
185 8.39
The sea level pressure, from Table A.3, is
pSL = 14.696 psia
Hence
Tsat (
o
F) p/pSL
195 0.707
185 0.571
From Table A.3
p/pSL Altitude (m) Altitude (ft)
0.7372 2500 8203
0.6920 3000 9843
0.6492 3500 11484
0.6085 4000 13124
0.5700 4500 14765
Then, any one of a number of Excel functions can be used to interpolate
(Here we use Excel 's Trendline analysis)
p/pSL Altitude (ft)
0.707 9303 Current altitude is approximately 9303 ft
0.571 14640
The change in altitude is then 5337 ft
Alternatively, we can interpolate for each altitude by using a linear regression between adjacent data points
p/pSL Altitude (m) Altitude (ft) p/pSL Altitude (m) Altitude (ft)
For 0.7372 2500 8203 0.6085 4000 13124
0.6920 3000 9843 0.5700 4500 14765
Then 0.7070 2834 9299 0.5730 4461 14637
The change in altitude is then 5338 ft
Altitude vs Atmospheric Pressure
z = -39217(p/pSL) + 37029
R2
= 0.999
2500
5000
7500
10000
12500
15000
0.55 0.60 0.65 0.70 0.75
p/pSL
Altitude(ft)
Data
Linear Trendline
Problem 3.3
3.3
Problem 3.9 [Difficulty: 2]
Given: Data on tire at 3500 m and at sea level
Find: Absolute pressure at 3500 m; pressure at sea level
Solution:
At an elevation of 3500 m, from Table A.3:
pSL 101 kPaโ‹…= patm 0.6492 pSLโ‹…= patm 65.6 kPaโ‹…=
and we have pg 0.25 MPaโ‹…= pg 250 kPaโ‹…= p pg patm+= p 316 kPaโ‹…=
At sea level patm 101 kPaโ‹…=
Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m, to 25oC.
At an elevation of 3500 m, from Table A.3 Tcold 265.4 Kโ‹…= and Thot 25 273+( ) Kโ‹…= Thot 298K=
Hence, assuming ideal gas behavior, pV = mRT, and that the tire is approximately a rigid container, the absolute pressure of the
hot tire is
phot
Thot
Tcold
pโ‹…= phot 354 kPaโ‹…=
Then the gage pressure is
pg phot patmโˆ’= pg 253 kPaโ‹…=
Problem 3.4
3.4
Problem 3.5 [Difficulty: 2]
Given: Data on system
Find: Force on bottom of cube; tension in tether
Solution:
Basic equation
dp
dy
ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… hโ‹…= where h is measured downwards
The absolute pressure at the interface is pinterface patm SGoil ฯโ‹… gโ‹… hoilโ‹…+=
Then the pressure on the lower surface is pL pinterface ฯ gโ‹… hLโ‹…+= patm ฯ gโ‹… SGoil hoilโ‹… hL+( )โ‹…+=
For the cube V 125 mLโ‹…= V 1.25 10
4โˆ’
ร— m
3
โ‹…=
Then the size of the cube is d V
1
3
= d 0.05m= and the depth in water to the upper surface is hU 0.3 mโ‹…=
Hence hL hU d+= hL 0.35m= where hL is the depth in water to the lower surface
The force on the lower surface is FL pL Aโ‹…= where A d
2
= A 0.0025m
2
=
FL patm ฯ gโ‹… SGoil hoilโ‹… hL+( )โ‹…+โŽกโŽฃ โŽคโŽฆ Aโ‹…=
FL 101 10
3
ร—
N
m
2
โ‹… 1000
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.8 0.5ร— mโ‹… 0.35 mโ‹…+( )ร—
N s
2
โ‹…
kg mโ‹…
ร—+
โŽก
โŽข
โŽข
โŽฃ
โŽค
โŽฅ
โŽฅ
โŽฆ
0.0025ร— m
2
โ‹…=
FL 270.894N= Note: Extra decimals needed for computing T later!
For the tension in the tether, an FBD gives ฮฃFy 0= FL FUโˆ’ Wโˆ’ Tโˆ’ 0= or T FL FUโˆ’ Wโˆ’=
where FU patm ฯ gโ‹… SGoil hoilโ‹… hU+( )โ‹…+โŽกโŽฃ โŽคโŽฆ Aโ‹…=
Problem 3.5
3.5
Note that we could instead compute ฮ”F FL FUโˆ’= ฯ gโ‹… SGoilโ‹… hL hUโˆ’( )โ‹… Aโ‹…= and T ฮ”F Wโˆ’=
Using FU
FU 101 10
3
ร—
N
m
2
โ‹… 1000
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.8 0.5ร— mโ‹… 0.3 mโ‹…+( )ร—
N s
2
โ‹…
kg mโ‹…
ร—+
โŽก
โŽข
โŽข
โŽฃ
โŽค
โŽฅ
โŽฅ
โŽฆ
0.0025ร— m
2
โ‹…=
FU 269.668N= Note: Extra decimals needed for computing T later!
For the oak block (Table A.1) SGoak 0.77= so W SGoak ฯโ‹… gโ‹… Vโ‹…=
W 0.77 1000ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 1.25ร— 10
4โˆ’
ร— m
3
โ‹…
N s
2
โ‹…
kg mโ‹…
ร—= W 0.944N=
T FL FUโˆ’ Wโˆ’= T 0.282N=
Problem 3.6 [Difficulty: 2]
Given: Data on system before and after applied force
Find: Applied force
Solution:
Basic equation
dp
dy
ฯโˆ’ gโ‹…= or, for constant ฯ p patm ฯ gโ‹… y y0โˆ’( )โ‹…โˆ’= with p y0( ) patm=
For initial state p1 patm ฯ gโ‹… hโ‹…+= and F1 p1 Aโ‹…= ฯ gโ‹… hโ‹… Aโ‹…= (Gage; F1 is hydrostatic upwards force)
For the initial FBD ฮฃFy 0= F1 Wโˆ’ 0= W F1= ฯ gโ‹… hโ‹… Aโ‹…=
For final state p2 patm ฯ gโ‹… Hโ‹…+= and F2 p2 Aโ‹…= ฯ gโ‹… Hโ‹… Aโ‹…= (Gage; F2 is hydrostatic upwards force)
For the final FBD ฮฃFy 0= F2 Wโˆ’ Fโˆ’ 0= F F2 Wโˆ’= ฯ gโ‹… Hโ‹… Aโ‹… ฯ gโ‹… hโ‹… Aโ‹…โˆ’= ฯ gโ‹… Aโ‹… H hโˆ’( )โ‹…=
F ฯH2O SGโ‹… gโ‹…
ฯ€ D
2
โ‹…
4
โ‹… H hโˆ’( )โ‹…=
From Fig. A.1 SG 13.54=
F 1000
kg
m
3
โ‹… 13.54ร— 9.81ร—
m
s
2
โ‹…
ฯ€
4
ร— 0.05 mโ‹…( )
2
ร— 0.2 0.025โˆ’( )ร— mโ‹…
N s
2
โ‹…
kg mโ‹…
ร—=
F 45.6N=
Problem 3.6
3.6
Problem 3.7
(Difficulty: 1)
3.7 Calculate the absolute pressure and gage pressure in an open tank of crude oil 2.4 ๐‘š below the
liquid surface. If the tank is closed and pressurized to 130 ๐‘˜๐‘˜๐‘˜, what are the absolute pressure and gage
pressure at this location.
Given: Location: โ„Ž = 2.4 ๐‘š below the liquid surface. Liquid: Crude oil.
Find: The absolute pressure ๐‘ ๐‘Ž and gage pressure ๐‘ ๐‘” for both open and closed tank .
Assumption: The gage pressure for the liquid surface is zero for open tank and closed tank. The oil is
incompressible.
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
The density for the crude oil is:
๐œŒ = 856
๐‘˜๐‘˜
๐‘š3
The atmosphere pressure is:
๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 101000 ๐‘ƒ๐‘ƒ
The pressure for the closed tank is:
๐‘ ๐‘ก๐‘ก๐‘ก๐‘ก = 130 ๐‘˜๐‘˜๐‘˜ = 130000 ๐‘ƒ๐‘ƒ
Using the hydrostatic relation, the gage pressure of open tank 2.4 m below the liquid surface is:
๐‘ ๐‘” = ๐œŒ๐œŒโ„Ž = 856
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 2.4 ๐‘š = 20100 ๐‘ƒ๐‘ƒ
The absolute pressure of open tank at this location is:
๐‘ ๐‘Ž = ๐‘ ๐‘” + ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 20100 ๐‘ƒ๐‘ƒ + 101000 ๐‘ƒ๐‘ƒ = 121100 ๐‘ƒ๐‘ƒ = 121.1 ๐‘˜๐‘˜๐‘˜
The gage pressure of closed tank at the same location below the liquid surface is the same as open tank:
๐‘ ๐‘” = ๐œŒ๐œŒโ„Ž = 856
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 2.4 ๐‘š = 20100 ๐‘ƒ๐‘ƒ
The absolute pressure of closed tank at this location is:
๐‘ ๐‘Ž = ๐‘ ๐‘” + ๐‘ ๐‘ก๐‘ก๐‘ก๐‘ก = 20100 ๐‘ƒ๐‘ƒ + 130000 ๐‘ƒ๐‘ƒ = 150100 ๐‘ƒ๐‘ƒ = 150.1 ๐‘˜๐‘˜๐‘˜
Problem 3.8
(Difficulty: 1)
3.8 An open vessel contains carbon tetrachloride to a depth of 6 ๐‘“๐‘“ and water on the carbon
tetrachloride to a depth of 5 ๐‘“๐‘“ . What is the pressure at the bottom of the vessel?
Given: Depth of carbon tetrachloride: โ„Ž ๐‘ = 6 ๐‘“๐‘“. Depth of water: โ„Ž ๐‘ค = 5 ๐‘“๐‘“.
Find: The gage pressure ๐‘ at the bottom of the vessel.
Assumption: The gage pressure for the liquid surface is zero. The fluid is incompressible.
Solution: Use the hydrostatic pressure relation to detmine pressures in a fluid.
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
The density for the carbon tetrachloride is:
๐œŒ๐‘ = 1.59 ร— 103
๐‘˜๐‘˜
๐‘š3
= 3.09
๐‘ ๐‘ ๐‘ ๐‘ 
๐‘“๐‘“3
The density for the water is:
๐œŒ ๐‘ค = 1.0 ร— 103
๐‘˜๐‘˜
๐‘š3
= 1.940
๐‘ ๐‘ ๐‘ ๐‘ 
๐‘“๐‘“3
Using the hydrostatic relation, the gage pressure ๐‘ at the bottom of the vessel is:
๐‘ = ๐œŒ๐‘ ๐‘”โ„Ž ๐‘ + ๐œŒ ๐‘ค ๐‘”โ„Ž ๐‘ค
๐‘ = 3.09
๐‘ ๐‘ ๐‘ ๐‘ 
๐‘“๐‘“3
ร— 32.2
๐‘“๐‘“
๐‘ 2
ร— 6 ๐‘“๐‘“ + 1.940
๐‘ ๐‘ ๐‘ ๐‘ 
๐‘“๐‘“3
ร— 32.2
๐‘“๐‘“
๐‘ 2
ร— 5 ๐‘“๐‘“ = 909
๐‘™๐‘™๐‘™
๐‘“๐‘“2
= 6.25 ๐‘๐‘๐‘
Problem 3.8 [Difficulty: 2]
Given: Properties of a cube floating at an interface
Find: The pressures difference between the upper and lower surfaces; average cube density
Solution:
The pressure difference is obtained from two applications of Eq. 3.7
pU p0 ฯSAE10 gโ‹… H 0.1 dโ‹…โˆ’( )โ‹…+= pL p0 ฯSAE10 gโ‹… Hโ‹…+ ฯH2O gโ‹… 0.9โ‹… dโ‹…+=
where pU and pL are the upper and lower pressures, p0 is the oil free surface pressure, H is the depth of the interface, and d
is the cube size
Hence the pressure difference is
ฮ”p pL pUโˆ’= ฯH2O gโ‹… 0.9โ‹… dโ‹… ฯSAE10 gโ‹… 0.1โ‹… dโ‹…+= ฮ”p ฯH2O gโ‹… dโ‹… 0.9 SGSAE10 0.1โ‹…+( )โ‹…=
From Table A.2 SGSAE10 0.92=
ฮ”p 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.1ร— mโ‹… 0.9 0.92 0.1ร—+( )ร—
N s
2
โ‹…
kg mโ‹…
ร—= ฮ”p 972Pa=
For the cube density, set up a free body force balance for the cube
ฮฃF 0= ฮ”p Aโ‹… Wโˆ’=
Hence W ฮ”p Aโ‹…= ฮ”p d
2
โ‹…=
ฯcube
m
d
3
=
W
d
3
gโ‹…
=
ฮ”p d
2
โ‹…
d
3
gโ‹…
=
ฮ”p
d gโ‹…
=
ฯcube 972
N
m
2
โ‹…
1
0.1 mโ‹…
ร—
s
2
9.81 mโ‹…
ร—
kg mโ‹…
N s
2
โ‹…
ร—= ฯcube 991
kg
m
3
=
Problem 3.9
3.9
these equations:
Problem 3.1 [Difficulty: 2]
Given: Data on nitrogen tank
Find: Pressure of nitrogen; minimum required wall thickness
Assumption: Ideal gas behavior
Solution:
Ideal gas equation of state: p Vโ‹… M Rโ‹… Tโ‹…=
where, from Table A.6, for nitrogen R 55.16
ft lbfโ‹…
lbm Rโ‹…
โ‹…=
Then the pressure of nitrogen is p
M Rโ‹… Tโ‹…
V
= M Rโ‹… Tโ‹…
6
ฯ€ D
3
โ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
p 140 lbmโ‹… 55.16ร—
ft lbfโ‹…
lbm Rโ‹…
โ‹… 77 460+( )ร— Rโ‹…
6
ฯ€ 2.5 ftโ‹…( )
3
ร—
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
ร—
ft
12 inโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—=
p 3520
lbf
in
2
โ‹…=
ฯƒcฯ€Dt
pฯ€D2
/4
To determine wall thickness, consider a free body diagram for one hemisphere:
ฮฃF 0= p
ฯ€ D
2
โ‹…
4
โ‹… ฯƒc ฯ€โ‹… Dโ‹… tโ‹…โˆ’=
where ฯƒc is the circumferential stress in the container
Then t
p ฯ€โ‹… D
2
โ‹…
4 ฯ€โ‹… Dโ‹… ฯƒcโ‹…
=
p Dโ‹…
4 ฯƒcโ‹…
=
t 3520
lbf
in
2
โ‹…
2.5 ftโ‹…
4
ร—
in
2
30 10
3
ร— lbfโ‹…
ร—=
t 0.0733 ftโ‹…= t 0.880 inโ‹…=
Problem 3.10
3.10
Problem 3.11
(Difficulty: 2)
3.11 If at the surface of a liquid the specific weight is ๐›พ0, with ๐‘ง and ๐‘ both zero, show that, if
๐ธ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘, the specific weight and pressure are given ๐›พ =
๐ธ
๏ฟฝ๐‘ง+
๐ธ
๐›พ0
๏ฟฝ
and ๐‘ = โˆ’๐ธ ln ๏ฟฝ1 +
๐›พ0 ๐‘
๐ธ
๏ฟฝ.
Calculate specific weight and pressure at a depth of 2 ๐‘˜๐‘˜ assuming ๐›พ0 = 10.0
๐‘˜๐‘˜
๐‘š3 and ๐ธ = 2070 ๐‘€๐‘€๐‘€.
Given: Depth: โ„Ž = 2 ๐‘˜๐‘˜. The specific weight at surface of a liquid: ๐›พ0 = 10.0
๐‘˜๐‘˜
๐‘š3.
Find: The specific weight and pressure at a depth of 2 ๐‘˜๐‘˜.
Assumption:. Bulk modulus is constant
Solution: Use the hydrostatic pressure relation and definition of bulk modulus to detmine pressures in
a fluid.
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
Definition of bulk modulus
๐ธ๐‘ฃ =
๐‘‘๐‘‘
๐‘‘๐‘‘
๐œŒ๏ฟฝ
=
๐‘‘๐‘‘
๐‘‘๐‘‘
๐›พ๏ฟฝ
Eliminating dp from the hydrostatic pressure relation and the bulk modulus definition:
๐‘‘๐‘‘ = โˆ’๐›พ ๐‘‘๐‘‘ = ๐ธ๐‘ฃ
๐‘‘๐‘‘
๐›พ
Or
๐‘‘๐‘‘ = โˆ’๐ธ๐‘ฃ
๐‘‘๐‘‘
๐›พ2
Integrating for both sides we get:
๐‘ง = ๐ธ๐‘ฃ
1
๐›พ
+ ๐‘
At ๐‘ง = 0, ๐›พ = ๐›พ0 so:
๐‘ = โˆ’๐ธ๐‘ฃ
1
๐›พ0
๐‘ง = ๐ธ๐‘ฃ
1
๐›พ
โˆ’ ๐ธ๐‘ฃ
1
๐›พ0
Solving for ๐›พ, we have:
๐›พ =
๐ธ๐‘ฃ
๏ฟฝ๐‘ง +
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ
Solving for the pressure using the hydrostatic relation:
๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ = โˆ’
๐ธ๐‘ฃ
๏ฟฝ๐‘ง +
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ
๐‘‘๐‘‘
Integrating both sides we to get:
๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ๐‘ง +
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ + ๐‘
At ๐‘ง = 0, ๐‘ = 0 so:
๐‘ = ๐ธ๐‘ฃ ln ๏ฟฝ
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ
๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ๐‘ง +
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ + ๐ธ๐‘ฃ ln ๏ฟฝ
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ1 +
๐›พ0 ๐‘ง
๐ธ๐‘ฃ
๏ฟฝ
For the specific case
โ„Ž = 2 ๐‘˜๐‘˜
๐›พ0 = 10.0
๐‘˜๐‘˜
๐‘š3
๐ธ๐‘ฃ = 2070 ๐‘€๐‘€๐‘€
The specific weight:
๐›พ =
๐ธ๐‘ฃ
๏ฟฝ๐‘ง +
๐ธ๐‘ฃ
๐›พ0
๏ฟฝ
=
2070 ร— 106
๐‘๐‘
๏ฟฝโˆ’2000 ๐‘ƒ๐‘ƒ +
2070 ร— 106 ๐‘ƒ๐‘ƒ
10 ร— 103 ๐‘
๐‘š3
๏ฟฝ
= 10100
๐‘
๐‘š3
= 10.1
๐‘˜๐‘˜
๐‘š3
Pressure:
๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ1 +
๐›พ0 ๐‘ง
๐ธ๐‘ฃ
๏ฟฝ = โˆ’2070 ร— 106
๐‘ƒ๐‘ƒ ร— ln ๏ฟฝ1 + 10000.0
๐‘˜๐‘˜
๐‘š3
ร— ๏ฟฝ
โˆ’2000 ๐‘š
2070 ร— 106 ๐‘ƒ๐‘ƒ
๏ฟฝ๏ฟฝ = 20100 ๐‘˜๐‘˜๐‘˜
Problem 3.12
(Difficulty: 2)
3.12 In the deep ocean the compressibility of seawater is significant in its effect on ๐œŒ and ๐‘. If
๐ธ = 2.07 ร— 109
๐‘ƒ๐‘ƒ, find the percentage change in the density and pressure at a depth of 10000 meters
as compared to the values obtained at the same depth under the incompressible assumption. Let
๐œŒ0 = 1020
๐‘˜๐‘˜
๐‘š3 and the absolute pressure ๐‘0 = 101.3 ๐‘˜๐‘˜๐‘˜.
Given: Depth: โ„Ž = 10000 ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š. The density: ๐œŒ0 = 1020
๐‘˜๐‘˜
๐‘š3. The absolute pressure: ๐‘0 = 101.3 ๐‘˜๐‘˜๐‘˜.
Find: The percent change in density ๐œŒ% and pressure ๐‘%.
Assumption: The bulk modulus is constant
Solution: Use the relations developed in problem 3.11 for specific weight and pressure for a
compressible liquid:
๐›พ =
๐ธ
๏ฟฝ๐‘ง +
๐ธ
๐›พ0
๏ฟฝ
๐‘ = โˆ’๐ธ ln ๏ฟฝ1 +
๐›พ0 ๐‘ง
๐ธ
๏ฟฝ
The specific weight at sea level is:
๐›พ0 = ๐œŒ0 ๐‘” = 1020
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
= 10010
๐‘
๐‘š3
The specific weight and density at 10000 m depth are
๐›พ =
๐ธ
๏ฟฝ๐‘ง +
๐ธ
๐›พ0
๏ฟฝ
=
2.07 ร— 109
๏ฟฝโˆ’10000 +
2.07 ร— 109
10010
๏ฟฝ
๐‘
๐‘š3
= 10520
๐‘
๐‘š3
๐œŒ =
๐›พ
๐‘”
=
10520
9.81
๐‘˜๐‘˜
๐‘š3
= 1072
๐‘˜๐‘˜
๐‘š3
The percentage change in density is
๐œŒ% =
๐œŒ โˆ’ ๐œŒ0
๐œŒ0
=
1072 โˆ’ 1020
1020
= 5.1 %
The gage pressure at a depth of 10000m is:
๐‘ = โˆ’๐ธ ln ๏ฟฝ1 +
๐›พ0 ๐‘ง
๐ธ
๏ฟฝ = 101.3 ๐‘˜๐‘˜๐‘˜ โˆ’ 2.07 ร— 109
ร— ln ๏ฟฝ1 +
10010 ร— (โˆ’10000)
2.07 ร— 109
๏ฟฝ ๐‘ƒ๐‘ƒ = 102600 ๐‘˜๐‘˜๐‘˜
The pressure assuming that the water is incompressible is:
๐‘๐‘–๐‘– = ๐œŒ๐œŒโ„Ž = 1020
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 10000 ๐‘š = 100062 ๐‘˜๐‘˜๐‘˜
The percent difference in pressure is:
๐‘% =
๐‘ โˆ’ ๐‘0
๐‘0
=
102600 ๐‘˜๐‘˜๐‘˜ โˆ’ 100062 ๐‘˜๐‘˜๐‘˜
100062 ๐‘˜๐‘˜๐‘˜
= 2.54 %
Problem 3.12 [Difficulty: 4]
Given: Model behavior of seawater by assuming constant bulk modulus
Find: (a) Expression for density as a function of depth h.
(b) Show that result may be written as
ฯ = ฯo + bh
(c) Evaluate the constant b
(d) Use results of (b) to obtain equation for p(h)
(e) Determine depth at which error in predicted pressure is 0.01%
Solution: From Table A.2, App. A: SGo 1.025= Ev 2.42 GPaโ‹… 3.51 10
5
ร— psiโ‹…==
Governing Equations:
dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
(Definition of Bulk Modulus)
Ev
dp
dฯ
ฯ
=
Then dp ฯ gโ‹… dhโ‹…= Ev
dฯ
ฯ
โ‹…= or
dฯ
ฯ
2
g
Ev
dh= Now if we integrate:
ฯo
ฯ
ฯ
1
ฯ
2
โŒ โŽฎ
โŽฎ
โŽฎ
โŒก
d
0
h
h
g
Ev
โŒ 
โŽฎ
โŽฎ
โŒก
d=
After integrating:
ฯ ฯoโˆ’
ฯ ฯoโ‹…
g hโ‹…
Ev
= Therefore: ฯ
Ev ฯoโ‹…
Ev g hโ‹… ฯoโ‹…โˆ’
= and
ฯ
ฯo
1
1
ฯo gโ‹… hโ‹…
Ev
โˆ’
=
(Binomial expansion may
be found in a host of
sources, e.g. CRC
Handbook of
Mathematics)
Now for
ฯo gโ‹… hโ‹…
Ev
<<1, the binomial expansion may be used to approximate the density:
ฯ
ฯo
1
ฯo gโ‹… hโ‹…
Ev
+=
In other words, ฯ ฯo b hโ‹…+= where b
ฯo
2
gโ‹…
Ev
=
Since dp ฯ gโ‹… dhโ‹…= then an approximate expression for the pressure as a function of depth is:
papprox patmโˆ’
0
h
hฯo b hโ‹…+( ) gโ‹…
โŒ 
โŽฎ
โŒก
d= papprox patmโˆ’
g hโ‹… 2 ฯoโ‹… b hโ‹…+( )โ‹…
2
=โ†’ Solving for papprox we get:
Problem 3.13
3.13
papprox patm
g hโ‹… 2 ฯoโ‹… b hโ‹…+( )โ‹…
2
+= patm ฯo gโ‹… hโ‹…+
b gโ‹… h
2
โ‹…
2
+= patm ฯo hโ‹…
b h
2
โ‹…
2
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
gโ‹…+=
Now if we subsitiute in the expression for b and simplify, we get:
papprox patm ฯo hโ‹…
ฯo
2
gโ‹…
Ev
h
2
2
โ‹…+
โŽ›
โŽœ
โŽœ
โŽ
โŽž
โŽŸ
โŽŸ
โŽ 
gโ‹…+= patm ฯo gโ‹… hโ‹… 1
ฯo gโ‹… hโ‹…
2 Evโ‹…
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…+= papprox patm ฯo gโ‹… hโ‹… 1
ฯo gโ‹… hโ‹…
2Ev
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…+=
The exact soution for p(h) is obtained by utilizing the exact solution for ฯ(h). Thus:
pexact patmโˆ’
ฯo
ฯ
ฯ
Ev
ฯ
โŒ 
โŽฎ
โŽฎ
โŒก
d= Ev ln
ฯ
ฯo
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…= Subsitiuting for
ฯ
ฯo
we get: pexact patm Ev ln 1
ฯo gโ‹… hโ‹…
Ev
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
1โˆ’
โ‹…+=
If we let x
ฯo gโ‹… hโ‹…
Ev
= For the error to be 0.01%:
ฮ”pexact ฮ”papproxโˆ’
ฮ”pexact
1
ฯo gโ‹… hโ‹… 1
x
2
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
Ev ln 1 xโˆ’( )
1โˆ’โŽกโŽฃ โŽคโŽฆโ‹…
โˆ’= 1
x 1
x
2
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
ln 1 xโˆ’( )
1โˆ’โŽกโŽฃ โŽคโŽฆ
โˆ’= 0.0001=
This equation requires an iterative solution, e.g. Excel's Goal Seek. The result is: x 0.01728= Solving x for h:
h
x Evโ‹…
ฯo gโ‹…
= h 0.01728 3.51ร— 10
5
ร—
lbf
in
2
โ‹…
ft
3
1.025 1.94ร— slugโ‹…
ร—
s
2
32.2 ftโ‹…
ร—
12 inโ‹…
ft
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—
slug ftโ‹…
lbf s
2
โ‹…
ร—= h 1.364 10
4
ร— ftโ‹…=
This depth is over 2.5 miles, so the
incompressible fluid approximation is a
reasonable one at all but the lowest depths
of the ocean.
Problem 3.14 [Difficulty: 3]
Air H
D Air H โ€“ y
y
y
Given: Cylindrical cup lowered slowly beneath pool surface
Find: Expression for y in terms of h and H.
Plot y/H vs. h/H.
Solution:
Governing Equations:
dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
p Vโ‹… M Rโ‹… Tโ‹…= (Ideal Gas Equation)
Assumptions: (1) Constant temperature compression of air inside cup
(2) Static liquid
(3) Incompressible liquid
First we apply the ideal gas equation (at constant temperature) for the pressure of the air in the cup: p Vโ‹… constant=
Therefore: p Vโ‹… pa
ฯ€
4
โ‹… D
2
โ‹… Hโ‹…= p
ฯ€
4
โ‹… D
2
โ‹… H yโˆ’( )โ‹…= and upon simplification: pa Hโ‹… p H yโˆ’( )โ‹…=
Now we look at the hydrostatic pressure equation for the pressure exerted by the water. Since ฯ is constant, we integrate:
p paโˆ’ ฯ gโ‹… h yโˆ’( )โ‹…= at the water-air interface in the cup.
Since the cup is submerged to a depth of h, these pressures must be equal:
pa Hโ‹… pa ฯ gโ‹… h yโˆ’( )โ‹…+โŽกโŽฃ โŽคโŽฆ H yโˆ’( )โ‹…= pa Hโ‹… pa yโ‹…โˆ’ ฯ gโ‹… h yโˆ’( )โ‹… H yโˆ’( )โ‹…+=
Explanding out the right hand side of this expression:
0 paโˆ’ yโ‹… ฯ gโ‹… h yโˆ’( )โ‹… H yโˆ’( )โ‹…+= ฯ gโ‹… hโ‹… Hโ‹… ฯ gโ‹… hโ‹… yโ‹…โˆ’ ฯ gโ‹… Hโ‹… yโ‹…โˆ’ ฯ gโ‹… y
2
โ‹…+ pa yโ‹…โˆ’=
ฯ gโ‹… y
2
โ‹… pa ฯ gโ‹… h H+( )โ‹…+โŽกโŽฃ โŽคโŽฆ yโ‹…โˆ’ ฯ gโ‹… hโ‹… Hโ‹…+ 0= y
2 pa
ฯ gโ‹…
h H+( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
yโ‹…โˆ’ h Hโ‹…+ 0=
We now use the quadratic equation: y
pa
ฯ gโ‹…
h H+( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
pa
ฯ gโ‹…
h H+( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
2
4 hโ‹… Hโ‹…โˆ’โˆ’
2
= we only use the minus sign because y
can never be larger than H.
Problem 3.14
3.14
Now if we divide both sides by H, we get an expression for y/H:
y
H
pa
ฯ gโ‹… Hโ‹…
h
H
+ 1+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
pa
ฯ gโ‹… Hโ‹…
h
H
+ 1+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
4
h
H
โ‹…โˆ’โˆ’
2
=
The exact shape of this curve will depend upon the height of the cup. The plot below was generated assuming:
pa 101.3 kPaโ‹…=
H 1 mโ‹…=
0 20 40 60 80 100
0.2
0.4
0.6
0.8
Depth Ratio, h/H
HeightRatio,y/H
Problem 3.16 [Difficulty: 2]
patmA
pbaseA
Cover
Given: Data on water tank and inspection cover
Find: If the support bracket is strong enough; at what water depth would it fail
Assumptions: Water is incompressible and static
Solution:
Basic equation
dp
dy
ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… hโ‹…= where h is measured downwards
The absolute pressure at the base is pbase patm ฯ gโ‹… hโ‹…+= where h 16 ftโ‹…=
The gage pressure at the base is pbase ฯ gโ‹… hโ‹…= This is the pressure to use as we have patm on the outside of the cover.
The force on the inspection cover is F pbase Aโ‹…= where A 1 inโ‹… 1ร— inโ‹…= A 1 in
2
โ‹…=
F ฯ gโ‹… hโ‹… Aโ‹…=
F 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 16ร— ftโ‹… 1ร— in
2
โ‹…
ft
12 inโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—
lbf s
2
โ‹…
slug ftโ‹…
ร—=
F 6.94 lbfโ‹…= The bracket is strong enough (it can take 9 lbf).
To find the maximum depth we start with F 9.00 lbfโ‹…=
h
F
ฯ gโ‹… Aโ‹…
=
h 9 lbfโ‹…
1
1.94
ร—
ft
3
slug
โ‹…
1
32.2
ร—
s
2
ft
โ‹…
1
in
2
ร—
12 inโ‹…
ft
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—
slug ftโ‹…
lbf s
2
โ‹…
ร—=
h 20.7 ftโ‹…=
Problem 3.15
3.15
Problem 3.18 [Difficulty: 2]
Given: Data on partitioned tank
Find: Gage pressure of trapped air; pressure to make water and mercury levels equal
Solution:
The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from Eq. 3.8. Starting
from the right air chamber
pgage SGHg ฯH2Oร— gร— 3 mโ‹… 2.9 mโ‹…โˆ’( )ร— ฯH2O gร— 1ร— mโ‹…โˆ’=
pgage ฯH2O gร— SGHg 0.1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—=
pgage 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 13.55 0.1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—
N s
2
โ‹…
kg mโ‹…
ร—= pgage 3.48 kPaโ‹…=
If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to
pgage SGHg ฯH2Oร— gร— 1.0ร— mโ‹… ฯH2O gร— 1.0ร— mโ‹…โˆ’=
pgage ฯH2O gร— SGHg 1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—=
pgage 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 13.55 1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—
N s
2
โ‹…
kg mโ‹…
ร—= pgage 123 kPaโ‹…=
Problem 3.16
3.16
Problem 3.20 [Difficulty: 2]
Given: Two-fluid manometer as shown
l 10.2 mmโ‹…= SGct 1.595= (From Table A.1, App. A)
Find: Pressure difference
Solution: We will apply the hydrostatics equation.
Governing equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
d
z
Assumptions: (1) Static liquid
(2) Incompressible liquid
Starting at point 1 and progressing to point 2 we have:
p1 ฯwater gโ‹… d l+( )โ‹…+ ฯct gโ‹… lโ‹…โˆ’ ฯwater gโ‹… dโ‹…โˆ’ p2=
Simplifying and solving for p2 p1โˆ’ we have:
ฮ”p p2 p1โˆ’= ฯct gโ‹… lโ‹… ฯwater gโ‹… lโ‹…โˆ’= SGct 1โˆ’( ) ฯwaterโ‹… gโ‹… lโ‹…=
Substituting the known data:
ฮ”p 1.591 1โˆ’( ) 1000ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 10.2ร— mmโ‹…
m
10
3
mmโ‹…
ร—= ฮ”p 59.1Pa=
Problem 3.17
3.17
Problem 3.22 [Difficulty: 2]
Given: Two fluid manometer contains water and kerosene. With both tubes
open to atmosphere, the difference in free surface elevations is known
Ho 20 mmโ‹…= SGk 0.82= (From Table A.1, App. A)
Find: The elevation difference, H, between the free surfaces of the fluids
when a gage pressure of 98.0 Pa is applied to the right tube.
Solution: We will apply the hydrostatics equation.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
Assumptions: (1) Static liquid
(2) Incompressible liquid
When the gage pressure ฮ”p is applied to the right tube, the water in the
right tube is displaced downward by a distance, l. The kerosene in the
left tube is displaced upward by the same distance, l.
Under the applied gage pressure ฮ”p, the elevation difference, H, is:
h H
A B
l
l
H0
H1
A B
ฮ”p
H Ho 2 lโ‹…+=
Since points A and B are at the same elevation in the same fluid, their
pressures are the same. Initially:
pA ฯk gโ‹… Ho H1+( )โ‹…= pB ฯwater gโ‹… H1โ‹…=
Setting these pressures equal:
ฯk gโ‹… Ho H1+( )โ‹… ฯwater gโ‹… H1โ‹…=
Solving for H1
H1
ฯk Hoโ‹…
ฯwater ฯkโˆ’
=
SGk Hoโ‹…
1 SGkโˆ’
= H1
0.82 20ร— mmโ‹…
1 0.82โˆ’
= H1 91.11 mmโ‹…=
Now under the applied gage pressure:
pA ฯk gโ‹… Ho H1+( )โ‹… ฯwater gโ‹… lโ‹…+= pB ฮ”p ฯwater gโ‹… H1 lโˆ’( )โ‹…+=
Problem 3.18
3.18
Setting these pressures equal:
SGk Ho H1+( )โ‹… l+
ฮ”p
ฯwater gโ‹…
H1 lโˆ’( )+= l
1
2
ฮ”p
ฯwater gโ‹…
H1+ SGk Ho H1+( )โ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
=
Substituting in known values we get:
l
1
2
98.0
N
m
2
โ‹…
1
999
ร—
m
3
kg
1
9.81
ร—
s
2
m
โ‹…
kg mโ‹…
N s
2
โ‹…
ร— 91.11 mmโ‹… 0.82 20 mmโ‹… 91.11 mmโ‹…+( )ร—โˆ’[ ]
m
10
3
mmโ‹…
ร—+
โŽก
โŽข
โŽข
โŽฃ
โŽค
โŽฅ
โŽฅ
โŽฆ
ร—= l 5.000 mmโ‹…=
Now we solve for H:
H 20 mmโ‹… 2 5.000ร— mmโ‹…+= H 30.0 mmโ‹…=
Problem 3.24 [Difficulty: 2]
Given: Data on manometer
Find: Gage pressure at point a
Assumption: Water, liquids A and B are static and incompressible
Solution:
Basic equation
dp
dy
ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… ฮ”hโ‹…=
where ฮ”h is height difference
Starting at point a p1 pa ฯH2O gโ‹… h1โ‹…โˆ’= where h1 0.125 mโ‹… 0.25 mโ‹…+= h1 0.375m=
Next, in liquid A p2 p1 SGA ฯH2Oโ‹… gโ‹… h2โ‹…+= where h2 0.25 mโ‹…=
Finally, in liquid B patm p2 SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’= where h3 0.9 mโ‹… 0.4 mโ‹…โˆ’= h3 0.5m=
Combining the three equations
patm p1 SGA ฯH2Oโ‹… gโ‹… h2โ‹…+( ) SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’= pa ฯH2O gโ‹… h1โ‹…โˆ’ SGA ฯH2Oโ‹… gโ‹… h2โ‹…+ SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’=
pa patm ฯH2O gโ‹… h1 SGA h2โ‹…โˆ’ SGB h3โ‹…+( )โ‹…+=
or in gage pressures pa ฯH2O gโ‹… h1 SGA h2โ‹…โˆ’ SGB h3โ‹…+( )โ‹…=
pa 1000
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.375 1.20 0.25ร—( )โˆ’ 0.75 0.5ร—( )+[ ]ร— mโ‹…
N s
2
โ‹…
kg mโ‹…
ร—=
pa 4.41 10
3
ร— Pa= pa 4.41 kPaโ‹…= (gage)
Problem 3.19
3.19
Problem 3.20
(Difficulty: 1)
3.20 With the manometer reading as shown, calculate ๐‘ ๐‘ฅ.
Given: Oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.85 Depth: โ„Ž1 = 60 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž2 = 30 ๐‘–๐‘–๐‘–โ„Ž.
Find: The pressure ๐‘ ๐‘ฅ.
Assumption: Fluids are incompressible
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference
over a difference in elevation (h):
โˆ†๐‘ = ๐œŒ๐œŒโ„Ž
Repeated application of this relation yields
๐‘ ๐‘ฅ = ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž1 + ๐›พ ๐‘€โ„Ž2
The specific weight for mercury is:
๐›พ ๐‘€ = 845
๐‘™๐‘™๐‘™
๐‘“๐‘“3
The pressure at the desired location is
๐‘ ๐‘ฅ = 0.85 ร— 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— ๏ฟฝ
60
12
๏ฟฝ ๐‘“๐‘“ + 845
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— ๏ฟฝ
30
12
๏ฟฝ ๐‘“๐‘“ = 2380
๐‘™๐‘™๐‘™
๐‘“๐‘“2
= 16.5 ๐‘๐‘๐‘
Problem 3.21
(Difficulty: 2)
3.21 Calculate ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ for this inverted U-tube manometer.
Given: Oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.90 Depth: โ„Ž1 = 65 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž2 = 20 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž3 = 10 ๐‘–๐‘–๐‘–โ„Ž.
Find: The pressure difference ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ.
Assume: The fluids are incompressible
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference
over a difference in elevation (h):
โˆ†๐‘ = ๐œŒ๐œŒโ„Ž
Starting at the location of the unknown pressure px, we have the following relations for the hydrostatic
pressure:
๐‘ ๐‘ฅ โˆ’ ๐‘1 = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž1
๐‘1 โˆ’ ๐‘2 = โˆ’๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž3
๐‘2 โˆ’ ๐‘ ๐‘ฆ = โˆ’๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž1 โˆ’ โ„Ž2 โˆ’ โ„Ž3)
Adding these three equations together
๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž2 + โ„Ž3) โˆ’ ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž3
The pressure difference is then
๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร—
(10 + 20)
12
๐‘“๐‘“ โˆ’ 0.9 ร— 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร—
10
12
๐‘“๐‘“ = 109.2
๐‘™๐‘™๐‘™
๐‘“๐‘“2
= 0.758 ๐‘๐‘๐‘
Problem 3.22
(Difficulty: 2)
3.22 An inclined gage having a tube of 3 mm bore, laid on a slope of 1:20, and a reservoir of 25 mm
diameter contains silicon oil (SG 0.84). What distance will the oil move along the tube when a pressure
of 25 mm of water is connected to the gage?
Given: Silicon oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.84. Diameter: ๐ท1 = 3 ๐‘š๐‘š. ๐ท2 = 25 ๐‘š๐‘š.
Depth: โ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = 25 ๐‘š๐‘š. Slope angle: 1: 20.
Find: The distance ๐‘ฅ of the oil move along the tube.
Assumption: Fluids are incompressible
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference
over a difference in elevation (h):
โˆ†๐‘ = ๐œŒ๐œŒโ„Ž
We have the volume of the oil as constant, so:
๐ด ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿโˆ†โ„Ž = ๐ด ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘ฅ
or
โˆ†โ„Ž
๐‘ฅ
=
๐ด ๐‘ก๐‘ก๐‘ก๐‘ก
๐ด ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ
=
๐ท1
2
๐ท2
2 =
9
625
When a pressure of 25 ๐‘š๐‘š of water is connected with the gage we have:
๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž
โ„Ž =
โ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค
๐‘†๐‘† ๐‘œ๐‘œ๐‘œ
= 29.8 ๐‘š๐‘š
Using these relations, we obtain, accounting for the slope of the manometer:
โ„Ž = โˆ†โ„Ž +
๐‘ฅ
โˆš202 + 12
= ๏ฟฝ
9
625
+
1
โˆš202 + 12
๏ฟฝ ๐‘ฅ
โ„Ž = โˆ†โ„Ž +
๐‘ฅ
โˆš401
= ๏ฟฝ
9
625
+
1
โˆš401
๏ฟฝ ๐‘ฅ
๐‘ฅ =
โ„Ž
๏ฟฝ
9
625
+
1
โˆš401
๏ฟฝ
= 463 ๐‘š๐‘š
Problem 3.26 [Difficulty: 2]
Given: Water flow in an inclined pipe as shown. The pressure difference is
measured with a two-fluid manometer
L 5 ftโ‹…= h 6 inโ‹…= SGHg 13.55= (From Table A.1, App. A)
Find: Pressure difference between A and B
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
Assumptions: (1) Static liquid
(2) Incompressible liquid
(3) Gravity is constant
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯ gโ‹… ฮ”hโ‹…=
Progressing through the manometer from A to B:
pA ฯwater gโ‹… Lโ‹… sin 30 degโ‹…( )โ‹…+ ฯwater gโ‹… aโ‹…+ ฯwater gโ‹… hโ‹…+ ฯHg gโ‹… hโ‹…โˆ’ ฯwater gโ‹… aโ‹…โˆ’ pB=
Simplifying terms and solving for the pressure difference:
ฮ”p pA pBโˆ’= ฯwater gโ‹… h SGHg 1โˆ’( )โ‹… L sin 30 degโ‹…( )โ‹…โˆ’โŽกโŽฃ โŽคโŽฆโ‹…=
Substituting in values:
ฮ”p 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
6 inโ‹…
ft
12 inโ‹…
ร— 13.55 1โˆ’( )ร— 5 ftโ‹… sin 30 degโ‹…( )ร—โˆ’โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
ร—
lbf s
2
โ‹…
slugftโ‹…
ร—
ft
12 inโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—= ฮ”p 1.638 psiโ‹…=
Problem 3.23
3.23
Problem 3.28 [Difficulty: 2]
Given: Reservoir manometer with vertical tubes of knowm diameter. Gage liquid is Meriam red oil
D 18 mmโ‹…= d 6 mmโ‹…= SGoil 0.827= (From Table A.1, App. A)
Find: The manometer deflection, L when a gage pressure equal to 25 mm of
water is applied to the reservoir.
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
Assumptions: (1) Static liquid
(2) Incompressible liquid
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯ gโ‹… ฮ”hโ‹…=
Beginning at the free surface of the reservoir, and accounting for the changes in pressure with elevation:
patm ฮ”p+ ฯoil gโ‹… x L+( )โ‹…+ patm=
Upon simplification: x L+
ฮ”p
ฯoil gโ‹…
= The gage pressure is defined as: ฮ”p ฯwater gโ‹… ฮ”hโ‹…= where ฮ”h 25 mmโ‹…=
Combining these two expressions: x L+
ฯwater gโ‹… hโ‹…
ฯoil gโ‹…
=
ฮ”h
SGoil
=
x and L are related through the manometer dimensions:
ฯ€
4
D
2
โ‹… xโ‹…
ฯ€
4
d
2
โ‹… Lโ‹…= x
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
L=
Therefore: L
ฮ”h
SGoil 1
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
= Substituting values into the expression: L
25 mmโ‹…
0.827 1
6 mmโ‹…
18 mmโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
=
(Note: s
L
ฮ”h
= which yields s 1.088= for this manometer.) L 27.2 mmโ‹…=
Problem 3.24
3.24
Problem 3.29 [Difficulty: 2]
Given: A U-tube manometer is connected to the open tank filled with water as
shown (manometer fluid is Meriam blue)
D1 2.5 mโ‹…= D2 0.7 mโ‹…= d 0.2 mโ‹…= SGoil 1.75= (From Table A.1, App. A)
Find: The manometer deflection, l
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
Assumptions: (1) Static liquid
(2) Incompressible liquid
D1
D2
d
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯ gโ‹… ฮ”hโ‹…=
When the tank is filled with water, the oil in the left leg of the manometer is displaced
downward by l/2. The oil in the right leg is displaced upward by the same distance, l/2.
Beginning at the free surface of the tank, and accounting for the changes in pressure with
elevation:
patm ฯwater gโ‹… D1 D2โˆ’ d+
l
2
+โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…+ ฯoil gโ‹… lโ‹…โˆ’ patm=
Upon simplification:
ฯwater gโ‹… D1 D2โˆ’ d+
l
2
+โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… ฯoil gโ‹… lโ‹…= D1 D2โˆ’ d+
l
2
+ SGoil lโ‹…= l
D1 D2โˆ’ d+
SGoil
1
2
โˆ’
=
l
2.5 mโ‹… 0.7 mโ‹…โˆ’ 0.2 mโ‹…+
1.75
1
2
โˆ’
= l 1.600m=
Problem 3.25
3.25
Problem 3.26
(Difficulty: 2)
3.26 The sketch shows a sectional view through a submarine. Calculate the depth of submarine, y.
Assume the specific weight of the seawater is 10.0
๐‘˜๐‘˜
๐‘š3.
Given: Atmos. Pressure: ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 740 ๐‘š๐‘š ๐ป๐ป. Seawater specific weight:๐›พ = 10.0
๐‘˜๐‘˜
๐‘š3. All the
dimensional relationship is shown in the figure.
Find: The depth ๐‘ฆ.
Assumption: Fluids are incompressible
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference
over a difference in elevation (h):
โˆ†๐‘ = ๐œŒ๐œŒโ„Ž
Using the barometer reading with 760 mm as atmospheric pressure, the pressure inside the submarine is:
๐‘ =
840 ๐‘š๐‘š
760 ๐‘š๐‘š
ร— 101.3 ร— 103
๐‘ƒ๐‘ƒ = 111.6 ร— 103
๐‘ƒ๐‘ƒ
However, the actual atmosphere pressure is:
๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž =
740 ๐‘š๐‘š
760 ๐‘š๐‘š
ร— 101.3 ร— 103
๐‘ƒ๐‘ƒ = 98.3 ร— 103
๐‘ƒ๐‘ƒ
For the manometer, using the hydrostatic relation, we have for the pressure, where y is the depth of the
submarine:
๐‘ = ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐›พ๐›พ + ๐›พ ร— 200 ๐‘š๐‘š โˆ’ ๐›พ ๐ป๐ป ร— 400 ๐‘š๐‘š
๐‘ฆ =
๐‘ + ๐›พ ๐ป๐ป ร— 400 ๐‘š๐‘š โˆ’ ๐›พ ร— 200 ๐‘š๐‘š โˆ’ ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž
๐›พ
The specific weight for mercury is:
๐›พ ๐ป๐ป = 133.1
๐‘˜๐‘˜
๐‘š3
So we have for the depth y:
๐‘ฆ =
111.6 ร— 103
๐‘ƒ๐‘ƒ + 133.1 ร— 1000
๐‘
๐‘š3 ร— 0.4 ๐‘š โˆ’ 1000
๐‘
๐‘š3 ร— 0.2 ๐‘š โˆ’ 98.3 ร— 103
๐‘ƒ๐‘ƒ
1000
๐‘
๐‘š3
๐‘ฆ = 6.45 ๐‘š
Problem 3.27
(Difficulty: 1)
3.27 The manometer reading is 6 in. when the tank is empty (water surface at A). Calculate the
manometer reading when the cone is filled with water.
Find: The manometer reading when the tank is filled with water.
Assumption: Fluids are static and incompressible
Solution: Use the hydrostatic relations for pressure
When the tank is empty, we have the equation as:
โ„Ž ๐‘€๐‘€ โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ™ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž
๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 13.57
โ„Ž = โ„Ž ๐‘€๐‘€ โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 150 ๐‘š๐‘š ร— 13.57 = 2.04 ๐‘š
When the tank is filled with water, we assume the mercury interface moves by ๐‘ฅ:
๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž ๐‘ก๐‘ก๐‘ก๐‘ก + โ„Ž + ๐‘ฅ) = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(โ„Ž ๐‘€๐‘€ + 2๐‘ฅ)
(3 ๐‘š + 2.04 ๐‘š + ๐‘ฅ) = 13.57(0.15๐‘š + 2๐‘ฅ)
Thus
๐‘ฅ = 0.115 ๐‘š
The new manometer reading is:
โ„Ž ๐‘€๐‘€
โ€ฒ
= โ„Ž ๐‘€๐‘€ + 2๐‘ฅ = 0.15 ๐‘š + 2 ร— 0.115 ๐‘š = 0.38 ๐‘š
Problem 3.30 [Difficulty: 2]
Given: Reservoir manometer with dimensions shown. The manometer fluid
specific gravity is given.
D
5
8
inโ‹…= d
3
16
inโ‹…= SGoil 0.827=
Find: The required distance between vertical marks on the scale
corresponding to ฮ”p of 1 in water.
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dz
ฯโˆ’ gโ‹…= (Hydrostatic Pressure - z is positive upwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
Assumptions: (1) Static liquid
(2) Incompressible liquid
h
x
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯโˆ’ gโ‹… ฮ”zโ‹…=
Beginning at the free surface of the tank, and accounting for the changes in pressure with
elevation:
patm ฮ”p+ ฯoil gโ‹… x h+( )โ‹…โˆ’ patm=
Upon simplification: ฮ”p ฯoil gโ‹… x h+( )โ‹…= The applied pressure is defined as: ฮ”p ฯwater gโ‹… lโ‹…= where l 1 inโ‹…=
Therefore: ฯwater gโ‹… lโ‹… ฯoil gโ‹… x h+( )โ‹…= x h+
l
SGoil
=
x and h are related through the manometer dimensions:
ฯ€
4
D
2
โ‹… xโ‹…
ฯ€
4
d
2
โ‹… hโ‹…= x
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
h=
Solving for h: h
l
SGoil 1
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
= Substituting values into the expression: h
1 inโ‹…
0.827 1
0.1875 inโ‹…
0.625 inโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
=
h 1.109 inโ‹…=
Problem 3.28
3.28
Problem 3.32 [Difficulty: 3]
Given: Inclined manometer as shown.
D 96 mmโ‹…= d 8 mmโ‹…=
Angle ฮธ is such that the liquid deflection L is five times that of a regular
U-tube manometer.
Find: Angle ฮธ and manometer sensitivity.
Solution: We will apply the hydrostatics equations to this system.
Governing Equation: dp
dz
ฯโˆ’ gโ‹…= (Hydrostatic Pressure - z is positive upwards)
Assumptions: (1) Static liquid
(2) Incompressible liquid
x
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯโˆ’ gโ‹… ฮ”zโ‹…=
Applying this equation from point 1 to point 2:
p1 ฯ gโ‹… x L sin ฮธ( )โ‹…+( )โ‹…โˆ’ p2=
Upon simplification: p1 p2โˆ’ ฯ gโ‹… x L sin ฮธ( )โ‹…+( )โ‹…=
Since the volume of the fluid must remain constant:
ฯ€
4
D
2
โ‹… xโ‹…
ฯ€
4
d
2
โ‹… Lโ‹…= x
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
Lโ‹…=
Therefore: p1 p2โˆ’ ฯ gโ‹… Lโ‹…
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
sin ฮธ( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
Now for a U-tube manometer: p1 p2โˆ’ ฯ gโ‹… hโ‹…= Hence:
p1incl p2inclโˆ’
p1U p2Uโˆ’
ฯ gโ‹… Lโ‹…
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
sin ฮธ( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
ฯ gโ‹… hโ‹…
=
For equal applied pressures: L
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
sin ฮธ( )+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹… h= Since L/h = 5: sin ฮธ( )
h
L
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’=
1
5
8 mmโ‹…
96 mmโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’=
ฮธ 11.13 degโ‹…=
The sensitivity of the manometer: s
L
ฮ”he
=
L
SG hโ‹…
= s
5
SG
=
Problem 3.29
3.29
Problem 3.33 [Difficulty: 3]
Given: Data on inclined manometer
Find: Angle ฮธ for given data; find sensitivity
Solution:
Basic equation
dp
dy
ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… ฮ”hโ‹…= where ฮ”h is height difference
Under applied pressure ฮ”p SGMer ฯโ‹… gโ‹… L sin ฮธ( )โ‹… x+( )โ‹…= (1)
From Table A.1 SGMer 0.827=
and ฮ”p = 1 in. of water, or ฮ”p ฯ gโ‹… hโ‹…= where h 25 mmโ‹…= h 0.025m=
ฮ”p 1000
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.025ร— mโ‹…
N s
2
โ‹…
kg mโ‹…
ร—= ฮ”p 245Pa=
The volume of liquid must remain constant, so x Aresโ‹… L Atubeโ‹…= x L
Atube
Ares
โ‹…= L
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โ‹…= (2)
Combining Eqs 1 and 2 ฮ”p SGMer ฯโ‹… gโ‹… L sin ฮธ( )โ‹… L
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
Solving for ฮธ sin ฮธ( )
ฮ”p
SGMer ฯโ‹… gโ‹… Lโ‹…
d
D
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’=
sin ฮธ( ) 245
N
m
2
โ‹…
1
0.827
ร—
1
1000
ร—
m
3
kg
โ‹…
1
9.81
ร—
s
2
m
โ‹…
1
0.15
ร—
1
m
โ‹…
kg mโ‹…
s
2
Nโ‹…
ร—
8
76
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’= 0.186=
ฮธ 11 degโ‹…=
The sensitivity is the ratio of manometer deflection to a vertical water manometer
s
L
h
=
0.15 mโ‹…
0.025 mโ‹…
= s 6=
Problem 3.30
3.30
Problem 3.34 [Difficulty: 4]
Given: Barometer with water on top of the mercury column, Temperature is
known:
h2 6.5 inโ‹…= h1 28.35 inโ‹…= SGHg 13.55= (From Table A.2, App. A) T 70 ยฐF=
pv 0.363 psiโ‹…= (From Table A.7, App. A)
Find: (a) Barometric pressure in psia
(b) Effect of increase in ambient temperature on length of mercury
column for the same barometric pressure: Tf 85 ยฐF=
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯโˆ’ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity)
h2
Water vapor
h1
Water
Mercury
Assumptions: (1) Static liquid
(2) Incompressible liquid
Integrating the hydrostatic pressure equation we get:
ฮ”p ฯ gโ‹… ฮ”hโ‹…=
Start at the free surface of the mercury and progress through the barometer to the vapor
pressure of the water:
patm ฯHg gโ‹… h1โ‹…โˆ’ ฯwater gโ‹… h2โ‹…โˆ’ pv=
patm pv ฯwater gโ‹… SGHg h1โ‹… h2+( )โ‹…+=
patm 0.363
lbf
in
2
โ‹… 1.93
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹…
lbf s
2
โ‹…
slug ftโ‹…
ร— 13.55 28.35ร— inโ‹… 6.5 inโ‹…+( )ร—
ft
12 inโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
3
ร—+= patm 14.41
lbf
in
2
โ‹…=
At the higher temperature, the vapor pressure of water increases to 0.60 psi. Therefore, if the atmospheric pressure
were to remain constant, the length of the mercury column would have to decrease - the increased water vapor would
push the mercury out of the tube!
Problem 3.31
3.31
Problem 3.36 [Difficulty: 3]
Given: Water column standin in glass tube
ฮ”h 50 mmโ‹…= D 2.5 mmโ‹…= ฯƒ 72.8 10
3โˆ’
ร—
N
m
= (From Table A.4, App. A)
Find: (a) Column height if surface tension were zero.
(b) Column height in 1 mm diameter tube
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฮ”hp
ฮ”hc
ฮ”h
ฮ”hc
ฯ€Dฮด
ฮธ
Mg = ฯgV
ฮฃFz 0= (Static Equilibrium)
Assumptions: (1) Static, incompressible liquid
(2) Neglect volume under meniscus
(3) Applied pressure remains constant
(4) Column height is sum of capillary rise and pressure
difference
Assumption #4 can be written as: ฮ”h ฮ”hc ฮ”hp+=
Choose a free-body diagram of the capillary rise portion of the column for analysis:
ฮฃFz ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹…
ฯ€
4
D
2
โ‹… ฯโ‹… gโ‹… ฮ”hcโ‹…โˆ’= 0= Therefore: ฮ”hc
4 ฯƒโ‹…
ฯ gโ‹… Dโ‹…
cos ฮธ( )โ‹…=
Substituting values:
ฮ”hc 4 72.8ร— 10
3โˆ’
ร—
N
m
โ‹…
1
999
ร—
m
3
kg
โ‹…
1
9.81
ร—
s
2
m
โ‹…
1
2.5
ร—
1
mm
โ‹…
kg mโ‹…
N s
2
โ‹…
ร—
10
3
mmโ‹…
m
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—=
ฮ”hc 11.89 mmโ‹…=
Therefore: ฮ”hp ฮ”h ฮ”hcโˆ’= ฮ”hp 50 mmโ‹… 11.89 mmโ‹…โˆ’= ฮ”hp 38.1 mmโ‹…= (result for ฯƒ = 0)
For the 1 mm diameter tube:
ฮ”hc 4 72.8ร— 10
3โˆ’
ร—
N
m
โ‹…
1
999
ร—
m
3
kg
โ‹…
1
9.81
ร—
s
2
m
โ‹…
1
1
ร—
1
mm
โ‹…
kg mโ‹…
N s
2
โ‹…
ร—
10
3
mmโ‹…
m
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
ร—=
ฮ”hc 29.71 mmโ‹…=
ฮ”h 29.7 mmโ‹… 38.1 mmโ‹…+= ฮ”h 67.8 mmโ‹…=
Problem 3.32
3.32
Problem 3.38 [Difficulty :2]
Fluid 1
Fluid 2
ฯƒฯ€Dcosฮธ
ฯ1gฮ”hฯ€D2
/4
Given: Two fluids inside and outside a tube
Find: (a) An expression for height ฮ”h
(b) Height difference when D =0.040 in for water/mercury
Assumptions: (1) Static, incompressible fluids
(2) Neglect meniscus curvature for column height and
volume calculations
Solution:
A free-body vertical force analysis for the section of fluid 1 height ฮ”h in the tube below
the "free surface" of fluid 2 leads to
F
โˆ‘ 0= ฮ”p
ฯ€ D
2
โ‹…
4
โ‹… ฯ1 gโ‹… ฮ”hโ‹…
ฯ€ D
2
โ‹…
4
โ‹…โˆ’ ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹…+=
where ฮ”p is the pressure difference generated by fluid 2 over height ฮ”h, ฮ”p ฯ2 gโ‹… ฮ”hโ‹…=
Hence ฮ”p
ฯ€ D
2
โ‹…
4
โ‹… ฯ1 gโ‹… ฮ”hโ‹…
ฯ€ D
2
โ‹…
4
โ‹…โˆ’ ฯ2 gโ‹… ฮ”hโ‹…
ฯ€ D
2
โ‹…
4
โ‹… ฯ1 gโ‹… ฮ”hโ‹…
ฯ€ D
2
โ‹…
4
โ‹…โˆ’= ฯ€โˆ’ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹…=
Solving for ฮ”h ฮ”h
4 ฯƒโ‹… cos ฮธ( )โ‹…
g Dโ‹… ฯ2 ฯ1โˆ’( )โ‹…
โˆ’=
For fluids 1 and 2 being water and mercury (for mercury ฯƒ = 375 mN/m and ฮธ = 140o, from Table A.4), solving for ฮ”h when
D = 0.040 in
ฮ”h 4โˆ’ 0.375ร—
N
m
โ‹…
lbf
4.448 Nโ‹…
ร—
0.0254m
in
ร— cos 140 degโ‹…( )ร—
s
2
32.2 ftโ‹…
ร—
1
0.040 inโ‹…
ร—
ft
3
1.94 slugโ‹…
ร—
12 inโ‹…
ft
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
3
ร—
1
13.6 1โˆ’( )
ร—
slugftโ‹…
lbf s
2
โ‹…
ร—=
ฮ”h 0.360 inโ‹…=
Problem 3.33
3.33
Problem 3.40 [Difficulty: 2]
Water
Given: Water in a tube or between parallel plates
Find: Height ฮ”h for each system
Solution:
a) Tube: A free-body vertical force analysis for the section of water height ฮ”h above the "free surface" in the tube, as
shown in the figure, leads to
F
โˆ‘ 0= ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… ฮ”hโ‹…
ฯ€ D
2
โ‹…
4
โ‹…โˆ’=
Assumption: Neglect meniscus curvature for column height and volume calculations
Solving for ฮ”h ฮ”h
4 ฯƒโ‹… cos ฮธ( )โ‹…
ฯ gโ‹… Dโ‹…
=
b) Parallel Plates: A free-body vertical force analysis for the section of water height ฮ”h above the "free surface" between
plates arbitrary width w (similar to the figure above), leads to
F
โˆ‘ 0= 2 wโ‹… ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… ฮ”hโ‹… wโ‹… aโ‹…โˆ’=
Solving for ฮ”h ฮ”h
2 ฯƒโ‹… cos ฮธ( )โ‹…
ฯ gโ‹… aโ‹…
=
For water ฯƒ = 72.8 mN/m and ฮธ = 0o (Table A.4), so
a) Tube ฮ”h
4 0.0728ร—
N
m
โ‹…
999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.005ร— mโ‹…
kg mโ‹…
N s
2
โ‹…
ร—= ฮ”h 5.94 10
3โˆ’
ร— m= ฮ”h 5.94 mmโ‹…=
b) Parallel Plates ฮ”h
2 0.0728ร—
N
m
โ‹…
999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 0.005ร— mโ‹…
kg mโ‹…
N s
2
โ‹…
ร—= ฮ”h 2.97 10
3โˆ’
ร— m= ฮ”h 2.97 mmโ‹…=
Problem 3.34
3.34
p SL = 101 kPa
R = 286.9 J/kg.K
ฯ = 999 kg/m3
The temperature can be computed from the data in the figure.
The pressures are then computed from the appropriate equation. From Table A.3
Agreement between calculated and tabulated data is very good (as it should be, considering the table data are also computed!)
Atmospheric Pressure vs Elevation
0.00000
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
0 10 20 30 40 50 60 70 80 90 100
Elevation (km)
PressureRatiop/pSL
Computed
Table A.3
Problem 3.35
3.35
z (km) T (o
C) T (K) p /p SL z (km) p /p SL
0.0 15.0 288.0 m = 1.000 0.0 1.000
2.0 2.0 275.00 0.0065 0.784 0.5 0.942
4.0 -11.0 262.0 (K/m) 0.608 1.0 0.887
6.0 -24.0 249.0 0.465 1.5 0.835
8.0 -37.0 236.0 0.351 2.0 0.785
11.0 -56.5 216.5 0.223 2.5 0.737
12.0 -56.5 216.5 T = const 0.190 3.0 0.692
14.0 -56.5 216.5 0.139 3.5 0.649
16.0 -56.5 216.5 0.101 4.0 0.609
18.0 -56.5 216.5 0.0738 4.5 0.570
20.1 -56.5 216.5 0.0530 5.0 0.533
22.0 -54.6 218.4 m = 0.0393 6.0 0.466
24.0 -52.6 220.4 -0.000991736 0.0288 7.0 0.406
26.0 -50.6 222.4 (K/m) 0.0211 8.0 0.352
28.0 -48.7 224.3 0.0155 9.0 0.304
30.0 -46.7 226.3 0.0115 10.0 0.262
32.2 -44.5 228.5 0.00824 11.0 0.224
34.0 -39.5 233.5 m = 0.00632 12.0 0.192
36.0 -33.9 239.1 -0.002781457 0.00473 13.0 0.164
38.0 -28.4 244.6 (K/m) 0.00356 14.0 0.140
40.0 -22.8 250.2 0.00270 15.0 0.120
42.0 -17.2 255.8 0.00206 16.0 0.102
44.0 -11.7 261.3 0.00158 17.0 0.0873
46.0 -6.1 266.9 0.00122 18.0 0.0747
47.3 -2.5 270.5 0.00104 19.0 0.0638
50.0 -2.5 270.5 T = const 0.000736 20.0 0.0546
52.4 -2.5 270.5 0.000544 22.0 0.0400
54.0 -5.6 267.4 m = 0.000444 24.0 0.0293
56.0 -9.5 263.5 0.001956522 0.000343 26.0 0.0216
58.0 -13.5 259.5 (K/m) 0.000264 28.0 0.0160
60.0 -17.4 255.6 0.000202 30.0 0.0118
61.6 -20.5 252.5 0.000163 40.0 0.00283
64.0 -29.9 243.1 m = 0.000117 50.0 0.000787
66.0 -37.7 235.3 0.003913043 0.0000880 60.0 0.000222
68.0 -45.5 227.5 (K/m) 0.0000655 70.0 0.0000545
70.0 -53.4 219.6 0.0000482 80.0 0.0000102
72.0 -61.2 211.8 0.0000351 90.0 0.00000162
74.0 -69.0 204.0 0.0000253
76.0 -76.8 196.2 0.0000180
78.0 -84.7 188.3 0.0000126
80.0 -92.5 180.5 T = const 0.00000861
82.0 -92.5 180.5 0.00000590
84.0 -92.5 180.5 0.00000404
86.0 -92.5 180.5 0.00000276
88.0 -92.5 180.5 0.00000189
90.0 -92.5 180.5 0.00000130
Problem 3.44 [Difficulty: 3]
Given: Atmospheric conditions at ground level (z = 0) in Denver, Colorado are p0 = 83.2 kPa, T0 = 25ยฐC.
Pike's peak is at elevation z = 2690 m.
Find: p/p0 vs z for both cases.
Solution:
Governing Equations:
dp
dz
ฯโˆ’ gโ‹…= p ฯ Rโ‹… Tโ‹…=
Assumptions: (1) Static fluid
(2) Ideal gas behavior
(a) For an incompressible atmosphere:
dp
dz
ฯโˆ’ gโ‹…= becomes p p0โˆ’
0
z
zฯ gโ‹…
โŒ 
โŽฎ
โŒก
dโˆ’= or p p0 ฯ0 gโ‹… zโ‹…โˆ’= p0 1
g zโ‹…
R T0โ‹…
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…= (1)
At z 2690 mโ‹…= p 83.2 kPaโ‹… 1 9.81
m
s
2
โ‹… 2690ร— mโ‹…
kg Kโ‹…
287 Nโ‹… mโ‹…
ร—
1
298 Kโ‹…
ร—
N s
2
โ‹…
kg mโ‹…
ร—โˆ’
โŽ›
โŽœ
โŽœ
โŽ
โŽž
โŽŸ
โŽŸ
โŽ 
ร—= p 57.5 kPaโ‹…=
(b) For an adiabatic atmosphere:
p
ฯ
k
const= ฯ ฯ0
p
p0
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
1
k
โ‹…=
dp
dz
ฯโˆ’ gโ‹…= becomes dp ฯ0โˆ’
p
p0
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
1
k
โ‹… gโ‹… dzโ‹…= or
1
p
1
k
dp
ฯ0 gโ‹…
p0
1
k
โˆ’ dzโ‹…=
But
p0
p
p
1
p
1
k
โŒ 
โŽฎ
โŽฎ
โŽฎ
โŽฎ
โŒก
d
k
k 1โˆ’
p p0โˆ’( )
k 1โˆ’
k
โ‹…= hence
k
k 1โˆ’
p
k 1โˆ’
k
p0
k 1โˆ’
k
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ โ‹…
ฯ0 gโ‹…
p0
1
k
โˆ’ gโ‹… zโ‹…=
Solving for the pressure ratio
p
p0
1
k 1โˆ’
k
ฯ0
p0
โ‹… gโ‹… zโ‹…โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
k
k 1โˆ’
= or
p
p0
1
k 1โˆ’
k
g zโ‹…
R T0โ‹…
โ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
k
k 1โˆ’
= (2)
At z 2690 mโ‹…= p 83.2 kPaโ‹… 1
1.4 1โˆ’
1.4
9.81ร—
m
s
2
โ‹… 2690ร— mโ‹…
kg Kโ‹…
287 Nโ‹… mโ‹…
ร—
1
298 Kโ‹…
ร—
N s
2
โ‹…
kg mโ‹…
ร—โˆ’
โŽ›
โŽœ
โŽœ
โŽ
โŽž
โŽŸ
โŽŸ
โŽ 
1.4
1.4 1โˆ’
ร—= p 60.2 kPaโ‹…=
Problem 3.36
3.36
Equations 1 and 2 can be plotted:
0.4 0.6 0.8 1
0
1 10
3
ร—
2 10
3
ร—
3 10
3
ร—
4 10
3
ร—
5 10
3
ร—
Incompressible
Adiabatic
Temperature Variation with Elevation
Pressure Ratio (-)
ElevationaboveDenver(m)
Problem 3.37
(Difficulty: 2)
3.37 If atmospheric pressure at the ground is 101.3 ๐‘˜๐‘˜๐‘˜ and temperature is 15 โ„ƒ, calculate the
pressure 7.62 ๐‘˜๐‘˜ above the ground, assuming (a) no density variation, (b) isothermal variation of
density with pressure, and (c) adiabatic variation of density with pressure.
Assumption: Atmospheric air is stationary and behaves as an ideal gas.
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘
๐‘‘๐‘‘
= โˆ’๐œŒ ๐‘” = โˆ’๐›พ
(a) For this case with no density variation, we integrate with respect to z from the ground level pressure
p0 to the pressure at any height h. The pressure is
๐‘ = ๐‘0 โˆ’ ๐›พโ„Ž
From Table A.10, the density of air at sea level is
๐œŒ = 1.23
๐‘˜๐‘˜
๐‘š3
Or the specific weight is
๐›พ = ๐œŒ๐œŒ = 1.23
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
= 12.07
๐‘
๐‘š3
Thus the pressure at 7.62 km is
๐‘ = 101.3 ๐‘˜๐‘˜๐‘˜ โˆ’ 12.07
๐‘
๐‘š3
ร— 7.62 ร— 1000 ๐‘š = 9.63 ๐‘˜๐‘˜๐‘˜
(b) For isothermal condition we have for an ideal gas:
๐‘
๐œŒ
=
๐‘0
๐œŒ0
= ๐‘…๐‘… = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘
Therefore, since ฯ = ฮณ g and g is a constant
๐‘
๐›พ
=
๐‘0
๐›พ0
=
101.3 ๐‘˜๐‘˜๐‘˜
12.07
๐‘
๐‘š3
= 8420 ๐‘š = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘
From the hydrostatic relation we have:
๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ
๐‘‘๐‘‘
๐‘
= โˆ’
๐›พ
๐‘
๐‘‘๐‘‘
๏ฟฝ
๐‘‘๐‘‘
๐‘
๐‘
๐‘0
= โˆ’
1
8420๐‘š
๏ฟฝ ๐‘‘๐‘‘
๐‘ง
0
ln ๏ฟฝ
๐‘
๐‘0
๏ฟฝ = โˆ’
1
8420๐‘š
๐‘ง
Thus the pressure at 7.62 km is
๐‘
๐‘0
= ๐‘’โˆ’ โˆ’
7620 ๐‘š
8420๐‘š = ๐‘’โˆ’ 0.905
= 0.4045
๐‘ = 101.3๐‘˜๐‘˜๐‘˜ ร— 0.4045 = 41.0 ๐‘˜๐‘˜๐‘˜
(c) For a reversible and adiabatic variation of density we have:
๐‘๐‘ฃ ๐‘˜
=
๐‘
๐œŒ ๐‘˜
= ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘
Where k is the specific heat ratio
๐‘˜ = 1.4
Or, since gravity g is constant, we can write in terms of the specific weight
๐‘
๐›พ ๐‘˜
=
๐‘0
๐›พ0
๐‘˜
= ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘
Or the specific weight is
๐›พ = ๐›พ0 ๏ฟฝ
๐‘
๐‘0
๏ฟฝ
1
๐‘˜๏ฟฝ
The hydrostatic expression becomes
๐‘‘๐‘‘ = โˆ’๐›พ0 ๏ฟฝ
๐‘
๐‘0
๏ฟฝ
1
๐‘˜๏ฟฝ
๐‘‘๐‘‘
Separating variables
๐‘0
1/๐‘˜
๐›พ0
๏ฟฝ
๐‘‘๐‘‘
(๐‘)1/๐‘˜
๐‘
๐‘0
= โˆ’ ๏ฟฝ ๐‘‘๐‘‘
๐‘ง
0
Integrating between the limits p=p0 at z=0 and p = p at z = z
๏ฟฝ
๐‘˜
๐‘˜ โˆ’ 1
๏ฟฝ
๐‘0
1/๐‘˜
๐›พ0
๏ฟฝ๐‘
๐‘˜โˆ’1
๐‘˜ โˆ’ ๐‘0
๐‘˜โˆ’1
๐‘˜
๏ฟฝ = โˆ’ ๐‘ง
Or
๏ฟฝ
๐‘
๐‘0
๏ฟฝ
๐‘˜โˆ’1
๐‘˜
= 1 โˆ’ ๏ฟฝ
๐‘˜ โˆ’ 1
๐‘˜
๏ฟฝ
๐›พ0 ๐‘ง
๐‘0
The pressure is then
๐‘ = ๐‘0 ๏ฟฝ1 โˆ’ ๏ฟฝ
๐‘˜ โˆ’ 1
๐‘˜
๏ฟฝ
๐›พ0 ๐‘ง
๐‘0
๏ฟฝ
๐‘˜
๐‘˜โˆ’1๏ฟฝ
= 101.3๐‘˜๐‘˜๐‘˜ ๏ฟฝ1 โˆ’ ๏ฟฝ
1.4 โˆ’ 1
1.4
๏ฟฝ ร—
12.07
๐‘
๐‘š3 ร— 7620๐‘š
101.3 ร— 1000 ๐‘ƒ๐‘ƒ
๏ฟฝ
1.4
1.4โˆ’1๏ฟฝ
๐‘ = 35.4 ๐‘˜๐‘˜๐‘˜
The calculation of pressure depends heavily on the assumption we make about how density
changes.
Problem 3.38
(Difficulty: 2)
3.38 If the temperature in the atmosphere is assumed to vary linearly with altitude so T = T0 - ฮฑz where
T0 is the sea level temperature and ฮฑ = - dT / dz is the temperature lapse rate, find p(z) when air is taken
to be a perfect gas. Give the answer in terms of p0, a, g, R, and z only.
Assumption: Atmospheric air is stationary and behaves as an ideal gas.
Solution: Use the hydrostatic relation to find the pressures in the fluid
Governing equation: Hydrostatic pressure in a liquid, with z measured upward:
๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ
The ideal gas relation is
๐‘
๐œŒ
= ๐‘…๐‘…
Or in terms of the specific weight, the pressure is
๐‘ = ๐œŒ๐œŒ๐œŒ =
๐›พ
๐‘”
๐‘…๐‘…
Relating the temperature to the adiabatic lapse rate
๐‘ =
๐›พ
๐‘”
๐‘…(๐‘‡0 โˆ’ ๐›ผ๐›ผ)
Inserting the expression for specific weight into the hydrostatic equation
๐‘‘๐‘‘ = โˆ’
๐‘”๐‘”
๐‘…(๐‘‡0 โˆ’ ๐›ผ๐›ผ)
๐‘‘๐‘‘
Separating variables
๐‘‘๐‘‘
๐‘
= โˆ’
๐‘”
๐‘…
๐‘‘๐‘‘
(๐‘‡0 โˆ’ ๐›ผ๐›ผ)
Integrating between the surface and any height z
๏ฟฝ
๐‘‘๐‘‘
๐‘
๐‘
๐‘0
= โˆ’
๐‘”
๐‘…
๏ฟฝ
๐‘‘๐‘‘
(๐‘‡0 โˆ’ ๐›ผ๐›ผ)
๐‘ง
0
Or
๐‘™๐‘™ ๏ฟฝ
๐‘
๐‘0
๏ฟฝ = โˆ’
๐‘”
๐‘…
๐‘™๐‘™ ๏ฟฝ
๐‘‡0 โˆ’ ๐›ผ๐›ผ
๐‘‡0
๏ฟฝ
In terms of p
๐‘
๐‘0
= ๏ฟฝ1 โˆ’
๐›ผ๐›ผ
๐‘‡0
๏ฟฝ
๐‘”
๐›ผ๐›ผ๏ฟฝ
Problem 3.46 [Difficulty: 3]
Given: Door located in plane vertical wall of water tank as shown
c
ps
a
yโ€™
y
b
a 1.5 mโ‹…= b 1 mโ‹…= c 1 mโ‹…=
Atmospheric pressure acts on outer surface of door.
Find: Resultant force and line of action:
(a) for
(b) for
ps patm=
psg 0.3 atmโ‹…=
Plot F/Fo and y'/yc over range of ps/patm (Fo is force
determined in (a), yc is y-ccordinate of door centroid).
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dy
ฯ gโ‹…= (Hydrostatic Pressure - y is positive downwards)
FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Hydrostatic Force on door)
y' FRโ‹… Ay pโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
d= (First moment of force)
Assumptions: (1) Static fluid
(2) Incompressible fluid
We will obtain a general expression for the force and line of action, and then simplify for parts (a) and (b).
Since dp ฯ gโ‹… dhโ‹…= it follows that p ps ฯ gโ‹… yโ‹…+=
Now because patm acts on the outside of the door, psg is the surface gage pressure: p psg ฯ gโ‹… yโ‹…+=
FR Ap
โŒ โŽฎ
โŽฎ
โŒก
d=
c
c a+
yp bโ‹…
โŒ 
โŽฎ
โŒก
d=
c
c a+
ypsg ฯ gโ‹… yโ‹…+( ) bโ‹…
โŒ 
โŽฎ
โŒก
d= b psg aโ‹…
ฯ gโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…+โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…= 1( )
y' FRโ‹… Ay pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
d= Therefore: y'
1
FR
Ay pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
d=
1
FR c
c a+
yy psg ฯ gโ‹… yโ‹…+( )โ‹… bโ‹…
โŒ 
โŽฎ
โŒก
dโ‹…=
Evaluating the integral: y'
b
FR
psg
2
c a+( )
2
c
2
โˆ’โŽกโŽฃ โŽคโŽฆ
ฯ gโ‹…
3
c a+( )
3
c
3
โˆ’โŽกโŽฃ โŽคโŽฆโ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
=
Problem 3.39
3.39
Simplifying: y'
b
FR
psg
2
a
2
2 aโ‹… cโ‹…+( ) ฯ gโ‹…
3
a
3
3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…= 2( )
For part (a) we know psg 0= so substituting into (1) we get: Fo
ฯ gโ‹… bโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…=
Fo
1
2
999ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 1ร— mโ‹… 1.5 mโ‹…( )
2
2 1.5ร— mโ‹… 1ร— mโ‹…+โŽกโŽฃ โŽคโŽฆร—
N s
2
โ‹…
kg mโ‹…
ร—= Fo 25.7 kNโ‹…=
Substituting into (2) for the line of action we get: y'
ฯ gโ‹… bโ‹…
3 Foโ‹…
a
3
3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…=
y'
1
3
999ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 1ร— mโ‹…
1
25.7 10
3
ร—
โ‹…
1
N
โ‹… 1.5 mโ‹…( )
3
3 1.5ร— mโ‹… 1ร— mโ‹… 1.5 mโ‹… 1 mโ‹…+( )ร—+โŽกโŽฃ โŽคโŽฆร—
N s
2
โ‹…
kg mโ‹…
ร—=
y' 1.9m=
For part (b) we know psg 0.3 atmโ‹…= . Substituting into (1) we get:
FR 1 mโ‹… 0.3 atmโ‹…
1.013 10
5
ร— Nโ‹…
m
2
atmโ‹…
ร— 1.5ร— mโ‹…
1
2
999ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 1.5 mโ‹…( )
2
2 1.5ร— mโ‹… 1ร— mโ‹…+โŽกโŽฃ โŽคโŽฆร—
N s
2
โ‹…
kg mโ‹…
ร—+
โŽก
โŽข
โŽข
โŽฃ
โŽค
โŽฅ
โŽฅ
โŽฆ
ร—=
FR 71.3 kNโ‹…=
Substituting into (2) for the line of action we get:
y'
1 mโ‹…
0.3 atmโ‹…
2
1.013 10
5
ร— Nโ‹…
m
2
atmโ‹…
ร— 1.5( )
2
2 1.5โ‹… 1โ‹…+โŽกโŽฃ โŽคโŽฆร— m
2
โ‹…
999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹…
3
1.5( )
3
3 1.5โ‹… 1โ‹… 1.5 1+( )โ‹…+โŽกโŽฃ โŽคโŽฆร— m
3
โ‹…
N s
2
โ‹…
kg mโ‹…
ร—+
โŽก
โŽข
โŽข
โŽข
โŽฃ
โŽค
โŽฅ
โŽฅ
โŽฅ
โŽฆ
ร—
71.3 10
3
ร— Nโ‹…
=
y' 1.789m=
The value of F/Fo is obtained from Eq. (1) and our result from part (a):
F
Fo
b psg aโ‹…
ฯ gโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
ฯ gโ‹… bโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…
= 1
2 psgโ‹…
ฯ gโ‹… a 2 cโ‹…+( )โ‹…
+=
For the gate yc c
a
2
+= Therefore, the value of y'/yc is obtained from Eqs. (1) and (2):
y'
yc
2 bโ‹…
FR 2 cโ‹… a+( )โ‹…
psg
2
a
2
2 aโ‹… cโ‹…+( ) ฯ gโ‹…
3
a
3
3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
2 bโ‹…
2 cโ‹… a+( )
psg
2
a
2
2 aโ‹… cโ‹…+( ) ฯ gโ‹…
3
a
3
3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
b psg aโ‹…
ฯ gโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…+โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
Simplifying this expression we get:
y'
yc
2
2 cโ‹… a+( )
psg
2
a
2
2 aโ‹… cโ‹…+( ) ฯ gโ‹…
3
a
3
3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+
psg aโ‹…
ฯ gโ‹…
2
a
2
2 aโ‹… cโ‹…+( )โ‹…+
โ‹…=
Based on these expressions we see that the force on the gate varies linearly with the increase in surface pressure, and that the line of
action of the resultant is always below the centroid of the gate. As the pressure increases, however, the line of action moves closer to
the centroid.
Plots of both ratios are shown below:
0 1 2 3 4 5
0
10
20
30
40
Force Ratio vs. Surface Pressure
Surface Pressure (atm)
ForceRatioF/Fo
0 1 2 3 4 5
1
1.01
1.02
1.03
1.04
1.05
Line of Action Ratio vs. Surface Pressure
Surface Pressure (atm)
LineofActionRatioy'/yc
Problem 3.48 [Difficulty: 5]
Discussion: The design requirements are specified except that a typical floor height is about 12 ft, making the total required lift
about 36 ft. A spreadsheet was used to calculate the system properties for various pressures. Results are presented on the next page,
followed by a sample calculation. Total cost dropped quickly as system pressure was increased. A shallow minimum was reached in
the 100-110 psig range. The lowest-cost solution was obtained at a system pressure of about 100 psig. At this pressure, the reservoir
of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in wall thickness. The welding cost was $155 and the material cost
$433, for a total cost of $588. Accumulator wall thickness was constrained at 0.250 in for pressures below 100 psi; it increased for
higher pressures (this caused the discontinuity in slope of the curve at 100 psig). The mass of steel became constant above 110 psig.
No allowance was made for the extra volume needed to pressurize the accumulator. Fail-safe design is essential for an elevator to be
used by the public. The control circuitry should be redundant. Failures must be easy to spot. For this reason, hydraulic actuation is
good: leaks will be readily apparent. The final design must be reviewed, approved, and stamped by a professional engineer since the
design involves public safety. The terminology used in the solution is defined in the following table:
Symbol Definition Units
p System pressure psig
Ap Area of lift piston in2
Voil Volume of oil gal
Ds Diameter of spherical accumulator ft
t Wall thickness of accumulator in
Aw Area of weld in2
Cw Cost of weld $
Ms Mass of steel accumulator lbm
Cs Cost of steel $
Ct Total Cost $
A sample calculation and the results of the system simulation in Excel are presented below.
Problem 3.40
3.40
ฯƒฯ€ tDS
4
2
SD
p
ฯ€
Results of system simulation:
Problem 3.50 [Difficulty: 3]
FA
H = 25 ft
yR = 10 ft
h
A
B z x
y
Given: Geometry of gate
Find: Force FA for equilibrium
Solution:
Basic equation FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d=
dp
dh
ฯ gโ‹…= ฮฃMz 0=
or, use computing equations FR pc Aโ‹…= y' yc
Ixx
A ycโ‹…
+= where y would be measured
from the free surface
Assumptions: static fluid; ฯ = constant; patm on other side; door is in equilibrium
Instead of using either of these approaches, we note the following, using y as in the sketch
ฮฃMz 0= FA Rโ‹… Ay pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
d= with p ฯ gโ‹… hโ‹…= (Gage pressure, since p =
patm on other side)
FA
1
R
Ay ฯโ‹… gโ‹… hโ‹…
โŒ โŽฎ
โŽฎ
โŒก
dโ‹…= with dA r drโ‹… dฮธโ‹…= and y r sin ฮธ( )โ‹…= h H yโˆ’=
Hence FA
1
R 0
ฯ€
ฮธ
0
R
rฯ gโ‹… rโ‹… sin ฮธ( )โ‹… H r sin ฮธ( )โ‹…โˆ’( )โ‹… rโ‹…
โŒ 
โŽฎ
โŒก
d
โŒ 
โŽฎ
โŒก
dโ‹…=
ฯ gโ‹…
R
0
ฯ€
ฮธ
H R
3
โ‹…
3
sin ฮธ( )โ‹…
R
4
4
sin ฮธ( )
2
โ‹…โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
FR
ฯ gโ‹…
R
2 Hโ‹… R
3
โ‹…
3
ฯ€ R
4
โ‹…
8
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…= ฯ gโ‹…
2 Hโ‹… R
2
โ‹…
3
ฯ€ R
3
โ‹…
8
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
Using given data FR 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹…
2
3
25ร— ftโ‹… 10 ftโ‹…( )
2
ร—
ฯ€
8
10 ftโ‹…( )
3
ร—โˆ’โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
ร—
lbf s
2
โ‹…
slug ftโ‹…
ร—= FR 7.96 10
4
ร— lbfโ‹…=
Problem 3.41
3.41
Problem 3.42
(Difficulty: 2)
3.42 A circular gate 3 ๐‘š in diameter has its center 2.5 ๐‘š below a water surface and lies in a plane
sloping at 60ยฐ. Calculate magnitude, direction and location of total force on the gate.
Find: The direction, magnitude of the total force ๐น.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the
surface of the liquid:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘
๐‘ฆโ€ฒ
๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘
For the magnitude of the force we have:
๐น = ๏ฟฝ ๐‘๐‘๐‘
๐ด
A free body diagram of the gate is
The pressure on the gate is the pressure at the centroid, which is yc = 2.5 m. So the force can be
calculated as:
๐น = ๐œŒ๐œŒโ„Ž ๐‘ ๐ด = 999
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 2.5 ๐‘š ร—
๐œ‹
4
ร— (3 ๐‘š)2
= 173200 ๐‘ = 173.2 ๐‘˜๐‘˜
The direction is perpendicular to the gate.
For the location of the force we have:
๐‘ฆโ€ฒ
= ๐‘ฆ๐‘ +
๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ
๐ด๐‘ฆ๐‘
The y axis is along the plate so the distance to the centroid is:
๐‘ฆ๐‘ =
2.5 ๐‘š
sin 60ยฐ
= 2.89 ๐‘š
The area moment of inertia is
๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ =
๐œ‹๐ท4
64
=
๐œ‹
64
ร— (3 ๐‘š)4
= 3.976 ๐‘š4
The area is
๐ด =
๐œ‹
4
๐ท2
=
๐œ‹
4
ร— (3 ๐‘š)2
= 7.07 ๐‘š2
So
๐‘ฆโ€ฒ
= 2.89 ๐‘š +
3.976 ๐‘š4
7.07 ๐‘š2 ร— 2.89 ๐‘š
= 2.89 ๐‘š + 0.1946 ๐‘š = 3.08 ๐‘š
The vertical location on the plate is
โ„Žโ€ฒ
= ๐‘ฆโ€ฒ
sin 60ยฐ = 3.08 ๐‘š ร—
โˆš3
2
= 2.67 ๐‘š
The force acts on the point which has the depth of 2.67 ๐‘š.
Problem 3.43
(Difficulty: 2)
3.43 For the situation shown, find the air pressure in the tank in psi. Calculate the force exerted on the
gate at the support B if the gate is 10 ๐‘“๐‘“ wide. Show a free body diagram of the gate with all the forces
drawn in and their points of application located.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure and force, and the static relation for moments:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
The specfic weight for water is:
๐›พ = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
The pressure of the air equals that at the surface of the water in the tank. As shown by the manometer,
the pressure at the surface is less than atmospheric due to the three foot head of water. The gage
pressure of the air is then:
๐‘ ๐‘Ž๐‘Ž๐‘Ž = โˆ’๐›พโ„Ž = โˆ’62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— 3๐‘“๐‘“ = โˆ’187.2
๐‘™๐‘™๐‘™
๐‘“๐‘“2
A free body diagram for the gate is
For the force in the horizontal direction, we have:
๐น1 = ๐›พโ„Ž ๐‘ ๐ด = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— 3 ๐‘“๐‘“ ร— (6 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 11230 ๐‘™๐‘™๐‘™
๐น2 = ๐‘ ๐‘Ž๐‘Ž๐‘Ž ๐ด = โˆ’187.2
๐‘™๐‘™๐‘™
๐‘“๐‘“2
ร— (8 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 14980 ๐‘™๐‘™๐‘™
With the momentume balance about hinge we have:
๏ฟฝ ๐‘€ = ๐น1โ„Ž ๐‘ โˆ’ ๐‘ƒโ„Ž โˆ’ ๐น2
โ„Ž
2
= 11230 ๐‘™๐‘™๐‘™ ร— 6๐‘“๐‘“ โˆ’ ๐‘ƒ ร— 8๐‘“๐‘“ โˆ’ 14980 ๐‘™๐‘™๐‘™ ร— 4๐‘“๐‘“ = 0
So the force exerted on B is:
๐‘ƒ = 933 ๐‘™๐‘™๐‘™
Problem 3.44
(Difficulty: 3)
3.44 What is the pressure at A? Draw a free body diagram of the 10 ft wide gate showing all forces and
locations of their lines of action. Calculate the minimum force ๐‘ƒ necessary to keep the gate closed.
Given: All the parameters are shown in the figure.
Find: The pressure ๐‘ ๐ด. The minimum force ๐‘ƒ necessary to keep the gate closed.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the
surface of the liquid:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘
๐‘ฆโ€ฒ
๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘
The specfic weight of the water is:
๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
The gage pressure at A is given by integrating the hydrostatic relation:
๐‘ ๐ด = ๐›พ ๐‘œ๐‘œ๐‘œโ„Ž ๐ด = ๐‘†๐‘†๐›พ ๐‘œ๐‘–๐‘–โ„Ž ๐ด = 0.9 ร— 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— 6 ๐‘“๐‘“ = 337
๐‘™๐‘™๐‘™
๐‘“๐‘“2
A free body diagram of the gate is
The horizontal force F1 as shown in the figure is given by the pressure at the centroid of the submerged
area (3 ft):
๐น1 = ๐›พ ๐‘œ๐‘œ๐‘œโ„Ž ๐‘ ๐ด = 0.9 ร— 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— 3 ๐‘“๐‘“ ร— (6 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 10110 ๐‘™๐‘™๐‘™
The vertical force F2 is given by the pressure at the depth of the surface (4 ft)
๐น2 = ๐‘ ๐ด ๐ด = 337
๐‘™๐‘™๐‘™
๐‘“๐‘“2
ร— (4๐‘“๐‘“ ร— 10๐‘“๐‘“) = 13480 ๐‘™๐‘™๐‘™
The force F1 acts two-thirds of the distance down from the water surface and the force F2 acts at the
centroid..
Taking the moments about the hinge:
โˆ’๐น1 ร— 6 ๐‘“๐‘“โˆ’๐น2 ร— 2 ๐‘“๐‘“ + ๐‘ƒ ร— 4 ๐‘“๐‘“ = 0
So we have for the force at the support:
๐‘ƒ =
10110 ๐‘™๐‘™๐‘™ ร— 6๐‘“๐‘“ + 13480 ๐‘™๐‘™๐‘™ ร— 2๐‘“๐‘“
4 ๐‘“๐‘“
= 21900 ๐‘™๐‘™๐‘™
Problem 3.52 [Difficulty: 3]
Given: Geometry of plane gate
W
h
L = 3 m
dF
y
L/2
w = 2 m
Find: Minimum weight to keep it closed
Solution:
Basic equation FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d=
dp
dh
ฯ gโ‹…= ฮฃMO 0=
or, use computing equations FR pc Aโ‹…= y' yc
Ixx
A ycโ‹…
+=
Assumptions: static fluid; ฯ = constant; patm on other side; door is in equilibrium
Instead of using either of these approaches, we note the following, using y as in the sketch
ฮฃMO 0= W
L
2
โ‹… cos ฮธ( )โ‹… Fy
โŒ โŽฎ
โŽฎ
โŒก
d=
We also have dF p dAโ‹…= with p ฯ gโ‹… hโ‹…= ฯ gโ‹… yโ‹… sin ฮธ( )โ‹…= (Gage pressure, since p = patm on other side)
Hence W
2
L cos ฮธ( )โ‹…
Ay pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
dโ‹…=
2
L cos ฮธ( )โ‹…
yy ฯโ‹… gโ‹… yโ‹… sin ฮธ( )โ‹… wโ‹…
โŒ โŽฎ
โŽฎ
โŒก
dโ‹…=
W
2
L cos ฮธ( )โ‹…
Ay pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
dโ‹…=
2 ฯโ‹… gโ‹… wโ‹… tan ฮธ( )โ‹…
L 0
L
yy
2โŒ 
โŽฎ
โŒก
dโ‹…=
2
3
ฯโ‹… gโ‹… wโ‹… L
2
โ‹… tan ฮธ( )โ‹…=
Using given data W
2
3
1000โ‹…
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 2ร— mโ‹… 3 mโ‹…( )
2
ร— tan 30 degโ‹…( )ร—
N s
2
โ‹…
kg mโ‹…
ร—= W 68 kNโ‹…=
Problem 3.45
3.45
Problem 3.54 [Difficulty: 3]
Given: Gate geometry
Find: Depth H at which gate tips
Solution:
This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the
center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H)
y' yc
Ixx
A ycโ‹…
+= and Ixx
w L
3
โ‹…
12
= with yc H
L
2
โˆ’=
where L = 1 m is the plate height and w is the plate width
Hence y' H
L
2
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
w L
3
โ‹…
12 wโ‹… Lโ‹… H
L
2
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
+= H
L
2
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
L
2
12 H
L
2
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
+=
But for equilibrium, the center of force must always be at or below the level of the hinge so that the stop can hold the gate in
place. Hence we must have
y' H 0.45 mโ‹…โˆ’>
Combining the two equations H
L
2
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
L
2
12 H
L
2
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
+ H 0.45 mโ‹…โˆ’โ‰ฅ
Solving for H H
L
2
L
2
12
L
2
0.45 mโ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
+โ‰ค H
1 mโ‹…
2
1 mโ‹…( )
2
12
1 mโ‹…
2
0.45 mโ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร—
+โ‰ค H 2.17 mโ‹…โ‰ค
Problem 3.46
3.46
Problem 3.56 [Difficulty: 3]
Ry
Rx
FR
Fn
Given: Geometry of lock system
Find: Force on gate; reactions at hinge
Solution:
Basic equation FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d=
dp
dh
ฯ gโ‹…=
or, use computing equation FR pc Aโ‹…=
Assumptions: static fluid; ฯ = constant; patm on other side
The force on each gate is the same as that on a rectangle of size
h D= 10 mโ‹…= and w
W
2 cos 15 degโ‹…( )โ‹…
=
FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d= Aฯ gโ‹… yโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
d= but dA w dyโ‹…=
Hence FR
0
h
yฯ gโ‹… yโ‹… wโ‹…
โŒ 
โŽฎ
โŒก
d=
ฯ gโ‹… wโ‹… h
2
โ‹…
2
=
Alternatively FR pc Aโ‹…= and FR pc Aโ‹…= ฯ gโ‹… ycโ‹… Aโ‹…= ฯ gโ‹…
h
2
โ‹… hโ‹… wโ‹…=
ฯ gโ‹… wโ‹… h
2
โ‹…
2
=
Using given data FR
1
2
1000โ‹…
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹…
34 mโ‹…
2 cos 15 degโ‹…( )โ‹…
ร— 10 mโ‹…( )
2
ร—
N s
2
โ‹…
kg mโ‹…
ร—= FR 8.63 MNโ‹…=
For the force components Rx and Ry we do the following
ฮฃMhinge 0= FR
w
2
โ‹… Fn wโ‹… sin 15 degโ‹…( )โ‹…โˆ’= Fn
FR
2 sin 15 degโ‹…( )โ‹…
= Fn 16.7 MNโ‹…=
ฮฃFx 0= FR cos 15 degโ‹…( )โ‹… Rxโˆ’= 0= Rx FR cos 15 degโ‹…( )โ‹…= Rx 8.34 MNโ‹…=
ฮฃFy 0= Ryโˆ’ FR sin 15 degโ‹…( )โ‹…โˆ’ Fn+= 0= Ry Fn FR sin 15 degโ‹…( )โ‹…โˆ’= Ry 14.4 MNโ‹…=
R 8.34 MNโ‹… 14.4 MNโ‹…,( )= R 16.7 MNโ‹…=
Problem 3.47
3.47
Problem 3.48
(Difficulty: 2)
3.48 Calculate the minimum force ๐‘ƒ necessary to hold a uniform 12 ๐‘“๐‘“ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  gate weighing
500 ๐‘™๐‘™๐‘™closed on a tank of water under a pressure of 10 ๐‘๐‘๐‘. Draw a free body of the gate as part of
your solution.
Given: All the parameters are shown in the figure.
Find: The minimum force ๐‘ƒ to hold the system.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the
surface of the liquid:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘
๐‘ฆโ€ฒ
๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘
A free body diagram of the gate is
The gage pressure of the air in the tank is:
๐‘ ๐‘Ž๐‘Ž๐‘Ž = 10 ๐‘๐‘๐‘ = 1440
๐‘™๐‘™๐‘™
๐‘“๐‘“2
This produces a uniform force on the gate of
๐น1 = ๐‘ ๐‘Ž๐‘Ž๐‘Ž ๐ด = 1440
๐‘™๐‘™๐‘™
๐‘“๐‘“2
ร— (12 ๐‘“๐‘“ ร— 12 ๐‘“๐‘“) = 207360 ๐‘™๐‘™๐‘™
This pressure acts at the centroid of the area, which is the center of the gate. In addition, there is a force
on the gate applied by water. This force is due to the pressure at the centroid of the area. The depth of
the centroid is:
๐‘ฆ๐‘ =
12 ๐‘“๐‘“
2
ร— sin 45ยฐ
The force is them
๐น2 = ๐›พโ„Ž ๐‘ ๐ด = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร—
12 ๐‘“๐‘“
2
ร— sin 45ยฐ ร— 12 ๐‘“๐‘“ ร— 12 ๐‘“๐‘“ = 38123 ๐‘™๐‘™๐‘™
The force F2 acts two-thirds of the way down from the hinge, or ๐‘ฆโ€ฒ
= 8 ๐‘“๐‘“.
Take the moments about the hinge:
โˆ’๐น๐ต
๐ฟ
2
sin 45ยฐ + ๐น1
๐ฟ
2
+ ๐น2 ร— 8 ๐‘“๐‘“ โˆ’ ๐‘ƒ ร— 12 ๐‘“๐‘“ = 0
Thus
๐‘ƒ =
โˆ’500 ๐‘™๐‘™๐‘™ ร— 6 ๐‘“๐‘“ ร— sin 45ยฐ + 207360 ๐‘™๐‘™๐‘™ ร— 6 ๐‘“๐‘“ + 38123 ๐‘™๐‘™๐‘™ ร— 8 ๐‘“๐‘“
12 ๐‘“๐‘“
= 128900 ๐‘™๐‘™๐‘™
Problem 3.49
(Difficulty: 2)
3.49 Calculate magnitude and location of the resultant force of water on this annular gate.
Given: All the parameters are shown in the figure.
Find: Resultant force of water on this annular gate.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the
surface of the liquid:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘
๐‘ฆโ€ฒ
๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘
For the magnitude of the force we have:
๐น = ๏ฟฝ ๐‘๐‘๐‘
๐ด
= ๐œŒ๐œŒโ„Ž ๐‘ ๐ด
The pressure is determined at the location of the centroid of the area
โ„Ž ๐‘ = 1 ๐‘š + 1.5 ๐‘š = 2.5 ๐‘š
๐ด =
๐œ‹
4
(๐ท2
2
โˆ’ ๐ท1
2) =
๐œ‹
4
((3 ๐‘š)2
โˆ’ (1.5 ๐‘š)2) = 5.3014 ๐‘š2
๐น = 999
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 2.5 ๐‘š ร— 5.3014 ๐‘š2
= 129900 ๐‘ = 129.9 ๐‘˜๐‘˜
The y axis is in the vertical direction. For the location of the force, we have:
๐‘ฆโ€ฒ
= ๐‘ฆ๐‘ +
๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ
๐ด๐‘ฆ๐‘
Where:
๐‘ฆ๐‘ = 2.5 ๐‘š
๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ =
๐œ‹(๐ท2
4
โˆ’ ๐ท1
4)
64
=
๐œ‹
64
ร— ((3 ๐‘š)4
โˆ’ (1.5 ๐‘š)4) = 3.7276 ๐‘š4
๐‘ฆโ€ฒ
= ๐‘ฆ๐‘ +
๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ
๐ด๐‘ฆ๐‘
= 2.5 ๐‘š +
3.7276 ๐‘š4
2.5 ๐‘š ร— 5.3014 ๐‘š2
= 2.78 ๐‘š
So the force acts on the depth of ๐‘ฆโ€ฒ
= 2.78 ๐‘š.
Problem 3.50
(Difficulty: 2)
3.50 A vertical rectangular gate 2.4 ๐‘š wide and 2.7 ๐‘š high is subjected to water pressure on one side,
the water surface being at the top of the gate. The gate is hinged at the bottom and is held by a
horizontal chain at the top. What is the tension in the chain?
Given: The gate wide: ๐‘ค = 2.4 ๐‘š. Height of the gate: โ„Ž = 2.7 ๐‘š.
Find: The tension ๐น๐‘ in the chain.
Assumptions: Fluid is static and incompressible
Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the
surface of the liquid:
๐‘‘๐‘‘
๐‘‘๐‘‘
= ๐œŒ ๐‘” = ๐›พ
๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘
๐‘ฆโ€ฒ
๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘
For the magnitude of the force we have:
๐น = ๏ฟฝ ๐‘๐‘๐‘
๐ด
= ๐œŒ๐œŒโ„Ž ๐‘ ๐ด
Where hc is the depth at the centroid
โ„Ž ๐‘ =
2.7 ๐‘š
2
= 1.35 ๐‘š
๐ด = ๐‘คโ„Ž = 2.4 ๐‘š ร— 2.7 ๐‘š = 6.48 ๐‘š2
๐น = 999
๐‘˜๐‘˜
๐‘š3
ร— 9.81
๐‘š
๐‘ 2
ร— 1.35 ๐‘š ร— 6.48 ๐‘š2
= 85.7 ๐‘˜๐‘˜
The y axis is in the vertical direction. For the location of the force, we have:
โ„Ž ๐‘ =
2
3
ร— 2.7 ๐‘š = 1.8 ๐‘š
Taking the momentum about the hinge:
๐น๏ฟฝโ„Ž โˆ’ โ„Ž ๐‘๏ฟฝ โˆ’ ๐น๐‘โ„Ž = 0
๐น๐‘ = ๐น
๏ฟฝโ„Ž โˆ’ โ„Ž ๐‘๏ฟฝ
โ„Ž
= 85.7 ๐‘˜๐‘˜ ร—
0.9 ๐‘š
2.7 ๐‘š
= 28.6 ๐‘˜๐‘˜
Problem 3.58 [Difficulty: 4]
Given: Window, in shape of isosceles triangle and hinged at the top is located in
the vertical wall of a form that contains concrete.
a 0.4 mโ‹…= b 0.3 mโ‹…= c 0.25 mโ‹…= SGc 2.5= (From Table A.1, App. A)
Find: The minimum force applied at D needed to keep the window closed.
Plot the results over the range of concrete depth between 0 and a.
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
FR Ap
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Hydrostatic Force on door)
y' FRโ‹… Ay pโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
d= (First moment of force)
ฮฃM 0= (Rotational equilibrium)
d
dA
h
aw
b
D
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts at free surface and on the
outside of the window.
Integrating the pressure equation yields: p ฯ gโ‹… h dโˆ’( )โ‹…= for h > d
p 0= for h < d
where d a cโˆ’= d 0.15 mโ‹…=
Summing moments around the hinge: FDโˆ’ aโ‹… Ah pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
d+ 0=
FD
dF = pdA
h a
FD
1
a
Ah pโ‹…
โŒ โŽฎ
โŽฎ
โŒก
dโ‹…=
1
a d
a
hh ฯโ‹… gโ‹… h dโˆ’( )โ‹… wโ‹…
โŒ 
โŽฎ
โŒก
dโ‹…=
ฯ gโ‹…
a d
a
hh h dโˆ’( )โ‹… wโ‹…
โŒ 
โŽฎ
โŒก
dโ‹…=
From the law of similar triangles:
w
b
a hโˆ’
a
= Therefore: w
b
a
a hโˆ’( )=
Problem 3.51
3.51
Into the expression for the force at D: FD
ฯ gโ‹…
a
d
a
h
b
a
hโ‹… h dโˆ’( )โ‹… a hโˆ’( )โ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
ฯ gโ‹… bโ‹…
a
2
d
a
hh
3
โˆ’ a d+( ) h
2
โ‹…+ a dโ‹… hโ‹…โˆ’โŽกโŽฃ โŽคโŽฆ
โŒ 
โŽฎ
โŒก
dโ‹…=
Evaluating this integral we get:
FD
ฯ gโ‹… bโ‹…
a
2
a
4
d
4
โˆ’( )
4
โˆ’
a d+( ) a
3
d
3
โˆ’( )โ‹…
3
+
a dโ‹… a
2
d
2
โˆ’( )โ‹…
2
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…= and after collecting terms:
FD ฯ gโ‹… bโ‹… a
2
โ‹…
1
4
โˆ’ 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
4
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
1
3
1
d
a
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
3
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…+
1
2
d
a
โ‹… 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…= 1( )
The density of the concrete is: ฯ 2.5 1000ร—
kg
m
3
โ‹…= ฯ 2.5 10
3
ร—
kg
m
3
=
d
a
0.15
0.4
= 0.375=
Substituting in values for the force at D:
FD 2.5 10
3
ร—
kg
m
3
โ‹… 9.81โ‹…
m
s
2
โ‹… 0.3โ‹… mโ‹… 0.4 mโ‹…( )
2
โ‹…
1
4
โˆ’ 1 0.375( )
4
โˆ’โŽกโŽฃ โŽคโŽฆโ‹…
1
3
1 0.375+( )โ‹… 1 0.375( )
3
โˆ’โŽกโŽฃ โŽคโŽฆโ‹…+
0.375
2
1 0.375( )
2
โˆ’โŽกโŽฃ โŽคโŽฆโ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
N s
2
โ‹…
kg mโ‹…
ร—=
To plot the results for different values of c/a, we use Eq. (1) and remember that d a cโˆ’= FD 32.9N=
Therefore, it follows that
d
a
1
c
a
โˆ’= In addition, we can maximize the force by the maximum force
(when c = a or d = 0):
Fmax ฯ gโ‹… bโ‹… a
2
โ‹…
1
4
โˆ’
1
3
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
ฯ gโ‹… bโ‹… a
2
โ‹…
12
= and so
FD
Fmax
12
1
4
โˆ’ 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
4
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…
1
3
1
d
a
+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
3
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…+
1
2
d
a
โ‹… 1
d
a
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
Concrete Depth Ratio (c/a)
ForceRatio(FD/Fmax)
Problem 3.60 [Difficulty: 2]
Given: Plug is used to seal a conduit. ฮณ 62.4
lbf
ft
3
โ‹…=
Find: Magnitude, direction and location of the force of water on the plug.
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฮณ= (Hydrostatic Pressure - y is positive downwards)
FR pc Aโ‹…= (Hydrostatic Force)
y' yc
Ixx
A ycโ‹…
+= (Location of line of action)
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts on the outside of the plug.
Integrating the hydrostatic pressure equation: p ฮณ hโ‹…= FR pc Aโ‹…= ฮณ hcโ‹…
ฯ€
4
โ‹… D
2
โ‹…=
FR 62.4
lbf
ft
3
โ‹… 12ร— ftโ‹…
ฯ€
4
ร— 6 ftโ‹…( )
2
ร—= FR 2.12 10
4
ร— lbfโ‹…=
For a circular area: Ixx
ฯ€
64
D
4
โ‹…= Therefore: y' yc
ฯ€
64
D
4
โ‹…
ฯ€
4
D
2
โ‹… ycโ‹…
+= yc
D
2
16 ycโ‹…
+= y' 12 ftโ‹…
6 ftโ‹…( )
2
16 12ร— ftโ‹…
+=
y' 12.19 ftโ‹…=
The force of water is to the right and
perpendicular to the plug.
Problem 3.52
3.52
Problem 3.62 [Difficulty: 2]
Given: Circular access port of known diameter in side of water standpipe of
known diameter. Port is held in place by eight bolts evenly spaced
around the circumference of the port.
Center of the port is located at a know distance below the free surface of
the water.
d 0.6 mโ‹…= D 7 mโ‹…= L 12 mโ‹…=
Find: (a) Total force on the port
(b) Appropriate bolt diameter
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - y is positive downwards)
d
L
D
h
FR pc Aโ‹…= (Hydrostatic Force)
ฯƒ
F
A
= (Normal Stress in bolt)
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Force is distributed evenly over all bolts
(4) Appropriate working stress in bolts is 100 MPa
(5) Atmospheric pressure acts at free surface of water and on
outside of port.
Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…=
The resultant force on the port is: FR pc Aโ‹…= ฯ gโ‹… Lโ‹…
ฯ€
4
โ‹… d
2
โ‹…= FR 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 12ร— mโ‹…
ฯ€
4
ร— 0.6 mโ‹…( )
2
ร—
N s
2
โ‹…
kg mโ‹…
ร—=
FR 33.3 kNโ‹…=
To find the bolt diameter we consider: ฯƒ
FR
A
= where A is the area of all of the bolts: A 8
ฯ€
4
ร— db
2
โ‹…= 2 ฯ€โ‹… db
2
โ‹…=
Therefore: 2 ฯ€โ‹… db
2
โ‹…
FR
ฯƒ
= Solving for the bolt diameter we get: db
FR
2 ฯ€โ‹… ฯƒโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
1
2
=
db
1
2 ฯ€ร—
33.3ร— 10
3
ร— Nโ‹…
1
100 10
6
ร—
ร—
m
2
N
โ‹…
โŽ›
โŽœ
โŽœ
โŽ
โŽž
โŽŸ
โŽŸ
โŽ 
1
2
10
3
mmโ‹…
m
ร—= db 7.28 mmโ‹…=
Problem 3.53
3.53
Problem 3.64 [Difficulty: 3]
Given: Gate AOC, hinged along O, has known width;
Weight of gate may be neglected. Gate is sealed at C.
b 6 ftโ‹…=
Find: Force in bar AB
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
FR pc Aโ‹…= (Hydrostatic Force)
y' yc
Ixx
A ycโ‹…
+= (Location of line of action)
ฮฃMz 0= (Rotational equilibrium)
F1
h1โ€™
F2
L1
L2
x2โ€™
FAB
L1
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts at free surface of water and on
outside of gate
(4) No resisting moment in hinge at O
(5) No vertical resisting force at C
Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…=
The free body diagram of the gate is shown here:
F1is the resultant of the distributed force on AO
F2is the resultant of the distributed force on OC
FAB is the force of the bar
Cx is the sealing force at C
First find the force on AO: F1 pc A1โ‹…= ฯ gโ‹… hc1โ‹… bโ‹… L1โ‹…=
F1 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 6ร— ftโ‹… 6ร— ftโ‹… 12ร— ftโ‹…
lbf s
2
โ‹…
slugftโ‹…
ร—= F1 27.0 kipโ‹…=
Problem 3.54
3.54
h'1 hc1
Ixx
A hc1โ‹…
+= hc1
b L1
3
โ‹…
12 bโ‹… L1โ‹… hc1โ‹…
+= hc1
L1
2
12 hc1โ‹…
+= h'1 6 ftโ‹…
12 ftโ‹…( )
2
12 6ร— ftโ‹…
+= h'1 8 ftโ‹…=
Next find the force on OC: F2 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 12ร— ftโ‹… 6ร— ftโ‹… 6ร— ftโ‹…
lbf s
2
โ‹…
slug ftโ‹…
ร—= F2 27.0 kipโ‹…=
F1
h1โ€™
F2
L1
L2
x2โ€™
FAB
L1
Since the pressure is uniform over OC, the force acts at the centroid of OC, i.e., x'2 3 ftโ‹…=
Summing moments about the hinge gives: FAB L1 L3+( )โ‹… F1 L1 h'1โˆ’( )โ‹…โˆ’ F2 x'2โ‹…+ 0=
Solving for the force in the bar: FAB
F1 L1 h'1โˆ’( )โ‹… F2 x'2โ‹…โˆ’
L1 L3+
=
Substituting in values: FAB
1
12 ftโ‹… 3 ftโ‹…+
27.0 10
3
ร— lbfโ‹… 12 ftโ‹… 8 ftโ‹…โˆ’( )ร— 27.0 10
3
ร— lbfโ‹… 3ร— ftโ‹…โˆ’โŽกโŽฃ โŽคโŽฆโ‹…=
FAB 1800 lbfโ‹…= Thus bar AB is in compression
Problem 3.66 [Difficulty: 3]
Given: Geometry of gate
h
D
FR
y
FA
yโ€™
Find: Force at A to hold gate closed
Solution:
Basic equation
dp
dh
ฯ gโ‹…= ฮฃMz 0=
Computing equations FR pc Aโ‹…= y' yc
Ixx
A ycโ‹…
+= Ixx
w L
3
โ‹…
12
=
Assumptions: Static fluid; ฯ = constant; patm on other side; no friction in hinge
For incompressible fluid p ฯ gโ‹… hโ‹…= where p is gage pressure and h is measured downwards
The hydrostatic force on the gate is that on a rectangle of size L and width w.
Hence FR pc Aโ‹…= ฯ gโ‹… hcโ‹… Aโ‹…= ฯ gโ‹… D
L
2
sin 30 degโ‹…( )โ‹…+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… Lโ‹… wโ‹…=
FR 1000
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 1.5
3
2
sin 30 degโ‹…( )+
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร— mโ‹… 3ร— mโ‹… 3ร— mโ‹…
N s
2
โ‹…
kg mโ‹…
ร—= FR 199 kNโ‹…=
The location of this force is given by y' yc
Ixx
A ycโ‹…
+= where y' and y
c
are measured along the plane of the gate to the free surface
yc
D
sin 30 degโ‹…( )
L
2
+= yc
1.5 mโ‹…
sin 30 degโ‹…( )
3 mโ‹…
2
+= yc 4.5m=
y' yc
Ixx
A ycโ‹…
+= yc
w L
3
โ‹…
12
1
w Lโ‹…
โ‹…
1
yc
โ‹…+= yc
L
2
12 ycโ‹…
+= 4.5 mโ‹…
3 mโ‹…( )
2
12 4.5โ‹… mโ‹…
+= y' 4.67m=
Taking moments about the hinge ฮฃMH 0= FR y'
D
sin 30 degโ‹…( )
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… FA Lโ‹…โˆ’=
FA FR
y'
D
sin 30 degโ‹…( )
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
L
โ‹…= FA 199 kNโ‹…
4.67
1.5
sin 30 degโ‹…( )
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
3
โ‹…= FA 111 kNโ‹…=
Problem 3.55
3.55
Problem 3.68 [Difficulty: 4]
Given: Various dam cross-sections
Find: Which requires the least concrete; plot cross-section area A as a function of ฮฑ
Solution:
For each case, the dam width b has to be large enough so that the weight of the dam exerts enough moment to balance the
moment due to fluid hydrostatic force(s). By doing a moment balance this value of b can be found
a) Rectangular dam
Straightforward application of the computing equations of Section 3-5 yields
b
D
FH
y mg
O
FH pc Aโ‹…= ฯ gโ‹…
D
2
โ‹… wโ‹… Dโ‹…=
1
2
ฯโ‹… gโ‹… D
2
โ‹… wโ‹…=
y' yc
Ixx
A ycโ‹…
+=
D
2
w D
3
โ‹…
12 wโ‹… Dโ‹…
D
2
โ‹…
+=
2
3
Dโ‹…=
so y D y'โˆ’=
D
3
=
Also m ฯcement gโ‹… bโ‹… Dโ‹… wโ‹…= SG ฯโ‹… gโ‹… bโ‹… Dโ‹… wโ‹…=
Taking moments about O M0.โˆ‘ 0= FHโˆ’ yโ‹…
b
2
mโ‹… gโ‹…+=
so
1
2
ฯโ‹… gโ‹… D
2
โ‹… wโ‹…โŽ›
โŽœ
โŽ
โŽž
โŽ 
D
3
โ‹…
b
2
SG ฯโ‹… gโ‹… bโ‹… Dโ‹… wโ‹…( )โ‹…=
Solving for b b
D
3 SGโ‹…
=
The minimum rectangular cross-section area is A b Dโ‹…=
D
2
3 SGโ‹…
=
For concrete, from Table A.1, SG = 2.4, so A
D
2
3 SGโ‹…
=
D
2
3 2.4ร—
= A 0.373 D
2
โ‹…=
Problem 3.56
3.56
FH
b
ฮฑb
D
FV
y
x
m1g m2g
O
b) Triangular dams
Instead of analysing right-triangles, a general analysis is made, at the end of
which right triangles are analysed as special cases by setting ฮฑ = 0 or 1.
Straightforward application of the computing equations of Section 3-5 yields
FH pc Aโ‹…= ฯ gโ‹…
D
2
โ‹… wโ‹… Dโ‹…=
1
2
ฯโ‹… gโ‹… D
2
โ‹… wโ‹…=
y' yc
Ixx
A ycโ‹…
+=
D
2
w D
3
โ‹…
12 wโ‹… Dโ‹…
D
2
โ‹…
+=
2
3
Dโ‹…=
so y D y'โˆ’=
D
3
=
Also FV ฯ Vโ‹… gโ‹…= ฯ gโ‹…
ฮฑ bโ‹… Dโ‹…
2
โ‹… wโ‹…=
1
2
ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…= x b ฮฑ bโ‹…โˆ’( )
2
3
ฮฑโ‹… bโ‹…+= b 1
ฮฑ
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽ 
โ‹…=
For the two triangular masses
m1
1
2
SGโ‹… ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…= x1 b ฮฑ bโ‹…โˆ’( )
1
3
ฮฑโ‹… bโ‹…+= b 1
2 ฮฑโ‹…
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽ 
โ‹…=
m2
1
2
SGโ‹… ฯโ‹… gโ‹… 1 ฮฑโˆ’( )โ‹… bโ‹… Dโ‹… wโ‹…= x2
2
3
b 1 ฮฑโˆ’( )โ‹…=
Taking moments about O
M0.โˆ‘ 0= FHโˆ’ yโ‹… FV xโ‹…+ m1 gโ‹… x1โ‹…+ m2 gโ‹… x2โ‹…+=
so
1
2
ฯโ‹… gโ‹… D
2
โ‹… wโ‹…โŽ›
โŽœ
โŽ
โŽž
โŽ 
โˆ’
D
3
โ‹…
1
2
ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…โŽ›
โŽœ
โŽ
โŽž
โŽ 
bโ‹… 1
ฮฑ
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽ 
โ‹…+
1
2
SGโ‹… ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…โŽ›
โŽœ
โŽ
โŽž
โŽ 
bโ‹… 1
2 ฮฑโ‹…
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽ 
โ‹…
1
2
SGโ‹… ฯโ‹… gโ‹… 1 ฮฑโˆ’( )โ‹… bโ‹… Dโ‹… wโ‹…โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
2
3
โ‹… b 1 ฮฑโˆ’( )โ‹…++
... 0=
Solving for b b
D
3 ฮฑโ‹… ฮฑ
2
โˆ’( ) SG 2 ฮฑโˆ’( )โ‹…+
=
For a right triangle with the hypotenuse in contact with the water, ฮฑ = 1, and
b
D
3 1โˆ’ SG+
=
D
3 1โˆ’ 2.4+
= b 0.477 Dโ‹…=
The cross-section area is A
b Dโ‹…
2
= 0.238 D
2
โ‹…= A 0.238 D
2
โ‹…=
For a right triangle with the vertical in contact with the water, ฮฑ = 0, and
b
D
2 SGโ‹…
=
D
2 2.4โ‹…
= b 0.456 Dโ‹…=
The cross-section area is A
b Dโ‹…
2
= 0.228 D
2
โ‹…= A 0.228 D
2
โ‹…=
For a general triangle A
b Dโ‹…
2
=
D
2
2 3 ฮฑโ‹… ฮฑ
2
โˆ’( ) SG 2 ฮฑโˆ’( )โ‹…+โ‹…
= A
D
2
2 3 ฮฑโ‹… ฮฑ
2
โˆ’( ) 2.4 2 ฮฑโˆ’( )โ‹…+โ‹…
=
The final result is A
D
2
2 4.8 0.6 ฮฑโ‹…+ ฮฑ
2
โˆ’โ‹…
=
The dimensionless area, A /D 2
, is plotted
Alpha A /D 2
0.0 0.2282
0.1 0.2270
0.2 0.2263
0.3 0.2261
0.4 0.2263
0.5 0.2270
0.6 0.2282
0.7 0.2299
0.8 0.2321
0.9 0.2349
1.0 0.2384
Solver can be used to
find the minimum area
Alpha A /D 2
0.300 0.2261
Dam Cross Section vs Coefficient
0.224
0.226
0.228
0.230
0.232
0.234
0.236
0.238
0.240
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coefficient
DimensionlessAreaA/D2
From the Excel workbook, the minimum area occurs at ฮฑ = 0.3
Amin
D
2
2 4.8 0.6 0.3ร—+ 0.3
2
โˆ’โ‹…
= A 0.226 D
2
โ‹…=
The final results are that a triangular cross-section with ฮฑ = 0.3 uses the least concrete; the next best is a right triangle with the
vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and the cross-section
requiring the most concrete is the rectangular cross-section.
Problem 3.70 [Difficulty: 2]
Given: Geometry of dam
Find: Vertical force on dam
Assumptions: (1) water is static and incompressible
(2) since we are asked for the force of the water, all pressures will be written as gage
Solution:
Basic equation:
dp
dh
ฯ gโ‹…=
For incompressible fluid p ฯ gโ‹… hโ‹…= where p is gage pressure and h is measured downwards from the free surface
The force on each horizontal section (depth d and width w) is
F p Aโ‹…= ฯ gโ‹… hโ‹… dโ‹… wโ‹…= (Note that d and w will change in terms of x and y for each section of the dam!)
Hence the total force is (allowing for the fact that some faces experience an upwards (negative) force)
FT p Aโ‹…= ฮฃฯ gโ‹… hโ‹… dโ‹… wโ‹…= ฯ gโ‹… dโ‹… ฮฃโ‹… h wโ‹…=
Starting with the top and working downwards
FT 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 3ร— ftโ‹… 3 ftโ‹… 12ร— ftโ‹…( ) 3 ftโ‹… 6ร— ftโ‹…( )+ 9 ftโ‹… 6ร— ftโ‹…( )โˆ’ 12 ftโ‹… 12ร— ftโ‹…( )โˆ’[ ]ร—
lbf s
2
โ‹…
slug ftโ‹…
ร—=
FT 2.70โˆ’ 10
4
ร— lbfโ‹…= The negative sign indicates a net upwards force (it's actually a buoyancy effect on the three middle sections)
Problem 3.57
3.57
Problem 3.72 [Difficulty: 3]
Given: Parabolic gate, hinged at O has a constant width.
b 2 mโ‹…= c 0.25 m
1โˆ’
โ‹…= D 2 mโ‹…= H 3 mโ‹…=
Find: (a) Magnitude and line of action of the vertical force on the gate due to water
(b) Horizontal force applied at A required to maintain equilibrium
(c) Vertical force applied at A required to maintain equilibrium
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards)
ฮฃMz 0= (Rotational equilibrium)
Fv Ayp
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Vertical Hydrostatic Force)
x' Fvโ‹… Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Location of line of action)
FH pc Aโ‹…= (Horizontal Hydrostatic Force)
h' hc
Ixx
A hcโ‹…
+= (Location of line of action)
Oy
hโ€™
B
xโ€™
x
FV
Ox
FH
y
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts at free surface of water and on
outside of gate
Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…=
(a) The magnitude and line of action of the vertical component of hydrostatic force:
Fv Ayp
โŒ โŽฎ
โŽฎ
โŒก
d=
0
D
c
xฯ gโ‹… hโ‹… bโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
d=
0
D
c
xฯ gโ‹… D yโˆ’( )โ‹… b
โŒ 
โŽฎ
โŽฎ
โŒก
d=
0
D
c
xฯ gโ‹… D c x
2
โ‹…โˆ’( )โ‹… b
โŒ 
โŽฎ
โŽฎ
โŒก
d= ฯ gโ‹… bโ‹…
0
D
c
xD c x
2
โ‹…โˆ’( )
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
Evaluating the integral: Fv ฯ gโ‹… bโ‹…
D
3
2
c
1
2
1
3
D
3
2
c
1
2
โ‹…โˆ’
โŽ›
โŽœ
โŽœ
โŽœ
โŽœ
โŽ
โŽž
โŽŸ
โŽŸ
โŽŸ
โŽŸ
โŽ 
โ‹…=
2 ฯโ‹… gโ‹… bโ‹…
3
D
3
2
c
1
2
โ‹…= 1( )
Problem 3.58
3.58
Substituting values: Fv
2
3
999ร—
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 2ร— mโ‹… 2 mโ‹…( )
3
2
ร—
1
0.25
mโ‹…
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
1
2
ร—
N s
2
โ‹…
kg mโ‹…
ร—= Fv 73.9 kNโ‹…=
To find the line of action of this force: x' Fvโ‹… Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
d= Therefore, x'
1
Fv
Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
1
Fv
Ayx pโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
Using the derivation for the force: x'
1
Fv 0
D
c
xx ฯโ‹… gโ‹… D c x
2
โ‹…โˆ’( )โ‹… bโ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
ฯ gโ‹… bโ‹…
Fv 0
D
c
xD xโ‹… c x
3
โ‹…โˆ’( )
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
Evaluating the integral: x'
ฯ gโ‹… bโ‹…
Fv
D
2
D
c
โ‹…
c
4
D
c
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
2
โ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…=
ฯ gโ‹… bโ‹…
Fv
D
2
4 cโ‹…
โ‹…= Now substituting values into this equation:
x' 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 2ร— mโ‹…
1
73.9 10
3
ร—
ร—
1
N
โ‹…
1
4
ร— 2 mโ‹…( )
2
ร—
1
0.25
ร— mโ‹…
N s
2
โ‹…
kg mโ‹…
ร—= x' 1.061m=
To find the required force at A for equilibrium, we need to find the horizontal force of the water on the gate and its
line of action as well. Once this force is known we take moments about the hinge (point O).
FH pc Aโ‹…= ฯ gโ‹… hcโ‹… bโ‹… Dโ‹…= ฯ gโ‹…
D
2
โ‹… bโ‹… Dโ‹…= ฯ gโ‹… bโ‹…
D
2
2
โ‹…= since hc
D
2
= Therefore the horizontal force is:
FH 999
kg
m
3
โ‹… 9.81ร—
m
s
2
โ‹… 2ร— mโ‹…
2 mโ‹…( )
2
2
ร—
N s
2
โ‹…
kg mโ‹…
ร—= FH 39.2 kNโ‹…=
To calculate the line of action of this force:
h' hc
Ixx
A hcโ‹…
+=
D
2
b D
3
โ‹…
12
1
b Dโ‹…
โ‹…
2
D
โ‹…+=
D
2
D
6
+=
2
3
Dโ‹…= h'
2
3
2โ‹… mโ‹…= h' 1.333m=
Oy
hโ€™ H
xโ€™
x
FV
Ox
FH
FA
y
D
Now we have information to solve parts (b) and (c):
(b) Horizontal force applied at A for equilibrium: take moments about O:
FA Hโ‹… Fv x'โ‹…โˆ’ FH D h'โˆ’( )โ‹…โˆ’ 0= Solving for FA FA
Fv x'โ‹… FH D h'โˆ’( )โ‹…+
H
=
FA
1
3
1
m
โ‹… 73.9 kNโ‹… 1.061ร— mโ‹… 39.2 kNโ‹… 2 mโ‹… 1.333 mโ‹…โˆ’( )ร—+[ ]ร—= FA 34.9 kNโ‹…=
Oy
hโ€™
L
xโ€™
x
FV
Ox
FH
FA
y
D
(c) Vertical force applied at A for equilibrium: take moments about O:
FA Lโ‹… Fv x'โ‹…โˆ’ FH D h'โˆ’( )โ‹…โˆ’ 0=
Solving for FA FA
Fv x'โ‹… FH D h'โˆ’( )โ‹…+
L
=
L is the value of x at y = H. Therefore: L
H
c
= L 3 mโ‹…
1
0.25
ร— mโ‹…= L 3.464m=
FA
1
3.464
1
m
โ‹… 73.9 kNโ‹… 1.061ร— mโ‹… 39.2 kNโ‹… 2 mโ‹… 1.333 mโ‹…โˆ’( )ร—+[ ]ร—= FA 30.2 kNโ‹…=
Problem 3.74 [Difficulty: 2]
Given: Open tank as shown. Width of curved surface b 10 ftโ‹…=
Find: (a) Magnitude of the vertical force component on the curved surface
(b) Line of action of the vertical component of the force
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฮณ= (Hydrostatic Pressure - h is positive downwards)
L
xโ€™
x
FRy
y
Fv Ayp
โŒ 
โŽฎ
โŽฎ
โŒก
dโˆ’= (Vertical Hydrostatic Force)
x' Fvโ‹… Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Moment of vertical force)
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts at free surface of water
and on outside of wall
Integrating the hydrostatic pressure equation: p ฮณ hโ‹…= We can define along the surface h L R
2
x
2
โˆ’( )
1
2
โˆ’=
We also define the incremental area on the curved surface as: dAy b dxโ‹…= Substituting these into the force equation we get:
Fv Ayp
โŒ โŽฎ
โŽฎ
โŒก
dโˆ’=
0
R
xฮณ L R
2
x
2
โˆ’( )
1
2
โˆ’
โŽกโŽข
โŽข
โŽฃ
โŽคโŽฅ
โŽฅ
โŽฆโ‹… bโ‹…
โŒ 
โŽฎ
โŽฎ
โŽฎ
โŒก
dโˆ’= ฮณโˆ’ bโ‹…
0
R
xL R
2
x
2
โˆ’โˆ’( )โŒ 
โŽฎ
โŒก
dโ‹…= ฮณโˆ’ bโ‹… Rโ‹… L R
ฯ€
4
โ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
Fv 62.4
lbf
ft
3
โ‹… 10ร— ftโ‹… 4ร— ftโ‹… 10 ftโ‹… 4 ftโ‹…
ฯ€
4
ร—โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร—โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โˆ’= Fv 17.12โˆ’ 10
3
ร— lbfโ‹…= (negative indicates downward)
To find the line of action of the force: x' Fvโ‹… Fvx
โŒ โŽฎ
โŽฎ
โŒก
d= where dFv ฮณโˆ’ bโ‹… L R
2
x
2
โˆ’โˆ’( )โ‹… dxโ‹…=
Therefore: x'
x' Fvโ‹…
Fv
=
1
ฮณ bโ‹… Rโ‹… L R
ฯ€
4
โ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… 0
R
xx ฮณโ‹… bโ‹… L R
2
x
2
โˆ’โˆ’( )โ‹…
โŒ 
โŽฎ
โŒก
dโ‹…=
1
R L R
ฯ€
4
โ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… 0
R
xL xโ‹… x R
2
x
2
โˆ’โ‹…โˆ’( )โŒ 
โŽฎ
โŒก
dโ‹…=
Evaluating the integral: x'
4
R 4 Lโ‹… ฯ€ Rโ‹…โˆ’( )โ‹…
1
2
Lโ‹… R
2
โ‹…
1
3
R
3
โ‹…โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
4 R
2
โ‹…
R 4 Lโ‹… ฯ€ Rโ‹…โˆ’( )โ‹…
L
2
R
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
4 Rโ‹…
4 Lโ‹… ฯ€ Rโ‹…โˆ’
L
2
R
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…=
Substituting known values: x'
4 4โ‹… ftโ‹…
4 10โ‹… ftโ‹… ฯ€ 4โ‹… ftโ‹…โˆ’
10 ftโ‹…
2
4 ftโ‹…
3
โˆ’โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…= x' 2.14 ftโ‹…=
Problem 3.59
3.59
Problem 3.76 [Difficulty: 3]
Given: Dam with cross-section shown. Width of dam
b 160 ftโ‹…=
Find: (a) Magnitude and line of action of the vertical force component on the dam
(b) If it is possible for the water to overturn dam
Solution: We will apply the hydrostatics equations to this system.
Governing Equations: dp
dh
ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards from
free surface)
Fv Ayp
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Vertical Hydrostatic Force)
FH pc Aโ‹…= (Horizontal Hydrostatic Force)
x' Fvโ‹… Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
d= (Moment of vertical force)
A
xโ€™
x
FH
y
yโ€™
hโ€™FV
B
h' hc
Ixx
hc Aโ‹…
+= (Line of action of vertical force)
ฮฃMz 0= (Rotational Equilibrium)
Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts at free surface of water
and on outside of dam
Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…=
Into the vertical force equation: Fv Ayp
โŒ โŽฎ
โŽฎ
โŒก
d=
xA
xB
xฯ gโ‹… hโ‹… bโ‹…
โŒ 
โŽฎ
โŒก
d= ฯ gโ‹… bโ‹…
xA
xB
xH yโˆ’( )
โŒ 
โŽฎ
โŒก
dโ‹…=
From the definition of the dam contour: x yโ‹… A yโ‹…โˆ’ B= Therefore: y
B
x Aโˆ’
= and xA
10 ft
2
โ‹…
9 ftโ‹…
1 ftโ‹…+= xA 2.11 ftโ‹…=
Problem 3.60
3.60
Into the force equation: Fv ฯ gโ‹… bโ‹…
xA
xB
xH
B
x Aโˆ’
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…= ฯ gโ‹… bโ‹… H xB xAโˆ’( )โ‹… B ln
xB Aโˆ’
xA Aโˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
โ‹…= Substituting known values:
Fv 1.94
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 160ร— ftโ‹… 9 ftโ‹… 7.0 ftโ‹… 2.11 ftโ‹…โˆ’( )ร— 10 ft
2
โ‹… ln
7.0 1โˆ’
2.11 1โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร—โˆ’
โŽก
โŽข
โŽฃ
โŽค
โŽฅ
โŽฆ
ร—
lbf s
2
โ‹…
slug ftโ‹…
โ‹…= Fv 2.71 10
5
ร— lbfโ‹…=
To find the line of action of the force: x' Fvโ‹… Fvx
โŒ 
โŽฎ
โŽฎ
โŒก
d= where dFv ฯ gโ‹… bโ‹… H
B
x Aโˆ’
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹… dxโ‹…= Therefore:
x'
x' Fvโ‹…
Fv
=
1
Fv
xA
xB
xx ฯโ‹… gโ‹… bโ‹… H
B
x Aโˆ’
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
1
H xB xAโˆ’( )โ‹… B ln
xB Aโˆ’
xA Aโˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…โˆ’ xA
xB
xH xโ‹…
B xโ‹…
x Aโˆ’
โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โŒ 
โŽฎ
โŽฎ
โŒก
dโ‹…=
Evaluating the integral: x'
H
2
xB
2
xA
2
โˆ’โŽ›
โŽ
โŽž
โŽ โ‹… B xB xAโˆ’( )โ‹…โˆ’ B Aโ‹… ln
xB Aโˆ’
xA Aโˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…โˆ’
H xB xAโˆ’( )โ‹… B ln
xB Aโˆ’
xA Aโˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
โ‹…โˆ’
= Substituting known values we get:
x'
9 ftโ‹…
2
7
2
2.11
2
โˆ’( )ร— ft
2
โ‹… 10 ft
2
โ‹… 7 2.11โˆ’( )ร— ftโ‹…โˆ’ 10 ft
2
โ‹… 1ร— ftโ‹… ln
7 1โˆ’
2.11 1โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร—โˆ’
9 ftโ‹… 7 2.11โˆ’( )ร— ftโ‹… 10 ft
2
โ‹… ln
7 1โˆ’
2.11 1โˆ’
โŽ›
โŽœ
โŽ
โŽž
โŽŸ
โŽ 
ร—โˆ’
= x' 4.96 ftโ‹…=
To determine whether or not the water can overturn the dam, we need the horizontal force and its line of action:
FH pc Aโ‹…= ฯ gโ‹…
H
2
โ‹… Hโ‹… bโ‹…=
ฯ gโ‹… bโ‹… H
2
โ‹…
2
=
Substituting values: FH
1
2
1.94ร—
slug
ft
3
โ‹… 32.2ร—
ft
s
2
โ‹… 160ร— ftโ‹… 9 ftโ‹…( )
2
ร—
lbf s
2
โ‹…
slug ftโ‹…
ร—= FH 4.05 10
5
ร— lbfโ‹…=
For the line of action: h' hc
Ixx
hc Aโ‹…
+= where hc
H
2
= A H bโ‹…= Ixx
b H
3
โ‹…
12
=
Therefore: h'
H
2
b H
3
โ‹…
12
2
H
โ‹…
1
b Hโ‹…
โ‹…+=
H
2
H
6
+=
2
3
Hโ‹…= h'
2
3
9โ‹… ftโ‹…= h' 6.00 ftโ‹…=
Taking moments of the hydrostatic forces about the origin:
Mw FH H h'โˆ’( )โ‹… Fv x'โ‹…โˆ’= Mw 4.05 10
5
ร— lbfโ‹… 9 6โˆ’( )ร— ftโ‹… 2.71 10
5
ร— lbfโ‹… 4.96ร— ftโ‹…โˆ’= Mw 1.292โˆ’ 10
5
ร— lbf ftโ‹…โ‹…=
The negative sign indicates that this is a clockwise moment about the origin. Since the weight of the dam will also contribute a clockwise
moment about the origin, these two moments should not cause the dam to tip to the left.
Therefore, the water can not overturn the dam.
Problem 3.61
(Difficulty: 2)
3.61 The quarter cylinder ๐ด๐ด is 10 ๐‘“๐‘“ long. Calculate magnitude, direction, and location of the resultant
force of the water on ๐ด๐ด.
Given: All the parameters are shown in the figure.
Assumptions: Fluid is incompressible and static
Find: The resultant force.
Solution: Apply the hydrostatic relations for pressure as a function of depth and for the location of
forces on submerged objects.
โˆ†๐‘ = ๐œŒ๐œŒโ„Ž
A freebody diagram for the cylinder is:
The force balance in the horizontal direction yields thathorizontal force is due to the water pressure:
๐น ๐ป = ๐‘ƒ ๐ป
Where the depth is the distance to the centroid of the horizontal area (8 + 5/2 ft):
๐น ๐ป = ๐›พโ„Ž ๐‘ ๐ด = 62.4
๐‘™๐‘™๐‘™
๐‘“๐‘“3
ร— ๏ฟฝ8 ๐‘“๐‘“ +
5 ๐‘“๐‘“
2
๏ฟฝ ร— (5 ๐‘“๐‘“ ร— 10 ๐‘“๐‘ก) = 32800 ๐‘™๐‘™๐‘™
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual

More Related Content

What's hot

[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonaldIISc Bangalore
ย 
assignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsassignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsasghar123456
ย 
Unit 3 Fluid Static
Unit 3 Fluid StaticUnit 3 Fluid Static
Unit 3 Fluid StaticMalaysia
ย 
Solucion semana 16
Solucion semana 16Solucion semana 16
Solucion semana 16Steven Jimenez
ย 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holePraditaFirmansyah
ย 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualGyn172
ย 
2- Stress.pdf
2- Stress.pdf2- Stress.pdf
2- Stress.pdfYusfarijerjis
ย 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19Rafi Flydarkzz
ย 
Fox solution
Fox   solutionFox   solution
Fox solutionkuhlblitz
ย 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Thแบฏng Nguyแป…n
ย 
Fluid tutorial 3_ans dr.waleed. 01004444149
Fluid tutorial 3_ans dr.waleed. 01004444149 Fluid tutorial 3_ans dr.waleed. 01004444149
Fluid tutorial 3_ans dr.waleed. 01004444149 dr walid
ย 
Fluid mechanics prolem hour 3
Fluid mechanics prolem hour 3Fluid mechanics prolem hour 3
Fluid mechanics prolem hour 3drguven
ย 
Ch08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsCh08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsDario Ch
ย 
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6Rafi Flydarkzz
ย 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
ย 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...Abrar Hussain
ย 
Hoop strain2
Hoop strain2Hoop strain2
Hoop strain2Mayank Pathak
ย 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...qedobose
ย 
Engineering economy 8th edition blank solutions manual
Engineering economy 8th edition blank solutions manualEngineering economy 8th edition blank solutions manual
Engineering economy 8th edition blank solutions manualcutera123
ย 

What's hot (20)

[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald
ย 
assignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanicsassignment 1 properties of fluids-Fluid mechanics
assignment 1 properties of fluids-Fluid mechanics
ย 
Unit 3 Fluid Static
Unit 3 Fluid StaticUnit 3 Fluid Static
Unit 3 Fluid Static
ย 
Solucion semana 16
Solucion semana 16Solucion semana 16
Solucion semana 16
ย 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
ย 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manual
ย 
2- Stress.pdf
2- Stress.pdf2- Stress.pdf
2- Stress.pdf
ย 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
ย 
Fox solution
Fox   solutionFox   solution
Fox solution
ย 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
ย 
H#8
H#8H#8
H#8
ย 
Fluid tutorial 3_ans dr.waleed. 01004444149
Fluid tutorial 3_ans dr.waleed. 01004444149 Fluid tutorial 3_ans dr.waleed. 01004444149
Fluid tutorial 3_ans dr.waleed. 01004444149
ย 
Fluid mechanics prolem hour 3
Fluid mechanics prolem hour 3Fluid mechanics prolem hour 3
Fluid mechanics prolem hour 3
ย 
Ch08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsCh08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformations
ย 
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6
ย 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
ย 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
ย 
Hoop strain2
Hoop strain2Hoop strain2
Hoop strain2
ย 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
ย 
Engineering economy 8th edition blank solutions manual
Engineering economy 8th edition blank solutions manualEngineering economy 8th edition blank solutions manual
Engineering economy 8th edition blank solutions manual
ย 

Similar to Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual

Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Bruno Reyes A.
ย 
Chapter 11
Chapter 11Chapter 11
Chapter 11Younes Sina
ย 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltosJOSETARAZONARIOS
ย 
Practica fรญsica II Estรกtica de fluidos
Practica fรญsica II Estรกtica de fluidosPractica fรญsica II Estรกtica de fluidos
Practica fรญsica II Estรกtica de fluidosjoseluis1261
ย 
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioEdgar Ortiz Sรกnchez
ย 
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Beckham000
ย 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualVeronicaIngramss
ย 
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01Rodolpho Montavoni
ย 
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualEngineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualNortoner
ย 
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑ
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑ
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑฮ’ฮฑฯ„ฮฌฯ„ฮถฮทฯ‚ .
ย 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Samandar Yuldoshev
ย 
Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upsyed ahmed taran
ย 
Form 4 forces and-pressure[1]
Form 4 forces and-pressure[1]Form 4 forces and-pressure[1]
Form 4 forces and-pressure[1]Shantipa
ย 
Mechanical engineer's manual(by. engr. yuri g. melliza)
Mechanical engineer's manual(by. engr. yuri g. melliza)Mechanical engineer's manual(by. engr. yuri g. melliza)
Mechanical engineer's manual(by. engr. yuri g. melliza)Yuri Melliza
ย 
Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Alisson Moreira
ย 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)Mike Mentzos
ย 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Alamin Md
ย 
solved problems in hydrostatic
solved problems in hydrostatic solved problems in hydrostatic
solved problems in hydrostatic Dr. Ezzat Elsayed Gomaa
ย 

Similar to Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual (20)

Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2
ย 
Chapter 11
Chapter 11Chapter 11
Chapter 11
ย 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
ย 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
ย 
Practica fรญsica II Estรกtica de fluidos
Practica fรญsica II Estรกtica de fluidosPractica fรญsica II Estรกtica de fluidos
Practica fรญsica II Estรกtica de fluidos
ย 
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecรกnica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
ย 
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
Solutions manual for fluid mechanics 1st edition by hibbeler ibsn 9780133770001
ย 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
ย 
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01
Solucionรกrio Introduรงรฃo ร  mecรขnica dos Fluidos - Chapter 01
ย 
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualEngineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
ย 
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑ
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑ
ฮกฮตฯ…ฯƒฯ„ฮฌ ฯƒฮต ฮšฮฏฮฝฮทฯƒฮท ฮ“ฮ„ ฮ›ฯ…ฮบฮตฮฏฮฟฯ… - ฮ ฯฮฟฮฒฮปฮฎฮผฮฑฯ„ฮฑ
ย 
Ch18
Ch18Ch18
Ch18
ย 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
ย 
Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2up
ย 
Form 4 forces and-pressure[1]
Form 4 forces and-pressure[1]Form 4 forces and-pressure[1]
Form 4 forces and-pressure[1]
ย 
Mechanical engineer's manual(by. engr. yuri g. melliza)
Mechanical engineer's manual(by. engr. yuri g. melliza)Mechanical engineer's manual(by. engr. yuri g. melliza)
Mechanical engineer's manual(by. engr. yuri g. melliza)
ย 
Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)
ย 
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
ย 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
ย 
solved problems in hydrostatic
solved problems in hydrostatic solved problems in hydrostatic
solved problems in hydrostatic
ย 

Recently uploaded

Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
ย 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
ย 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
ย 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
ย 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)Dr. Mazin Mohamed alkathiri
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
ย 

Recently uploaded (20)

Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
ย 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
ย 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
ย 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
ย 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
ย 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
ย 

Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual

  • 1. Problem 3.2 [Difficulty: 2] Given: Pure water on a standard day Find: Boiling temperature at (a) 1000 m and (b) 2000 m, and compare with sea level value. Solution: We can determine the atmospheric pressure at the given altitudes from table A.3, Appendix A The data are Elevation (m) p/p o p (kPa) 0 1.000 101.3 1000 0.887 89.9 2000 0.785 79.5 We can also consult steam tables for the variation of saturation temperature with pressure: p (kPa) T sat (ยฐC) 70 90.0 80 93.5 90 96.7 101.3 100.0 We can interpolate the data from the steam tables to correlate saturation temperature with altitude: Elevation (m) p/p o p (kPa) T sat (ยฐC) 0 1.000 101.3 100.0 1000 0.887 89.9 96.7 2000 0.785 79.5 93.3 The data are plotted here. They show that the saturation temperature drops approximately 3.4ยฐC/1000 m. Variation of Saturation Temperature with Pressure 88 90 92 94 96 98 100 70 75 80 85 90 95 100 105 Absolute Pressure (kPa) Saturation Temperature(ยฐC) 2000 m 1000 m Sea Level Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solutions Manual Full Download: https://alibabadownload.com/product/fox-and-mcdonalds-introduction-to-fluid-mechanics-9th-edition-pritchard-so This sample only, Download all chapters at: AlibabaDownload.com Problem 3.1 3.1
  • 2. Problem 3.3 [Difficulty: 2] Given: Data on flight of airplane Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop." Solution: Assume the air density is approximately constant constant from 3000 m to 2900 m. From table A.3 ฯSL 1.225 kg m 3 โ‹…= ฯair 0.7423 ฯSLโ‹…= ฯair 0.909 kg m 3 = We also have from the manometer equation, Eq. 3.7 ฮ”p ฯairโˆ’ gโ‹… ฮ”zโ‹…= and also ฮ”p ฯHgโˆ’ gโ‹… ฮ”hHgโ‹…= Combining ฮ”hHg ฯair ฯHg ฮ”zโ‹…= ฯair SGHg ฯH2Oโ‹… ฮ”zโ‹…= SGHg 13.55= from Table A.2 ฮ”hHg 0.909 13.55 999ร— 100ร— mโ‹…= ฮ”hHg 6.72 mmโ‹…= For the ear popping descending from 8000 m, again assume the air density is approximately constant constant, this time at 8000 m. From table A.3 ฯair 0.4292 ฯSLโ‹…= ฯair 0.526 kg m 3 = We also have from the manometer equation ฯair8000 gโ‹… ฮ”z8000โ‹… ฯair3000 gโ‹… ฮ”z3000โ‹…= where the numerical subscripts refer to conditions at 3000m and 8000m. Hence ฮ”z8000 ฯair3000 gโ‹… ฯair8000 gโ‹… ฮ”z3000โ‹…= ฯair3000 ฯair8000 ฮ”z3000โ‹…= ฮ”z8000 0.909 0.526 100ร— mโ‹…= ฮ”z8000 173m= Problem 3.2 3.2
  • 3. Problem 3.4 [Difficulty: 3] Given: Boiling points of water at different elevations Find: Change in elevation Solution: From the steam tables, we have the following data for the boiling point (saturation temperature) of water Tsat ( o F) p (psia) 195 10.39 185 8.39 The sea level pressure, from Table A.3, is pSL = 14.696 psia Hence Tsat ( o F) p/pSL 195 0.707 185 0.571 From Table A.3 p/pSL Altitude (m) Altitude (ft) 0.7372 2500 8203 0.6920 3000 9843 0.6492 3500 11484 0.6085 4000 13124 0.5700 4500 14765 Then, any one of a number of Excel functions can be used to interpolate (Here we use Excel 's Trendline analysis) p/pSL Altitude (ft) 0.707 9303 Current altitude is approximately 9303 ft 0.571 14640 The change in altitude is then 5337 ft Alternatively, we can interpolate for each altitude by using a linear regression between adjacent data points p/pSL Altitude (m) Altitude (ft) p/pSL Altitude (m) Altitude (ft) For 0.7372 2500 8203 0.6085 4000 13124 0.6920 3000 9843 0.5700 4500 14765 Then 0.7070 2834 9299 0.5730 4461 14637 The change in altitude is then 5338 ft Altitude vs Atmospheric Pressure z = -39217(p/pSL) + 37029 R2 = 0.999 2500 5000 7500 10000 12500 15000 0.55 0.60 0.65 0.70 0.75 p/pSL Altitude(ft) Data Linear Trendline Problem 3.3 3.3
  • 4. Problem 3.9 [Difficulty: 2] Given: Data on tire at 3500 m and at sea level Find: Absolute pressure at 3500 m; pressure at sea level Solution: At an elevation of 3500 m, from Table A.3: pSL 101 kPaโ‹…= patm 0.6492 pSLโ‹…= patm 65.6 kPaโ‹…= and we have pg 0.25 MPaโ‹…= pg 250 kPaโ‹…= p pg patm+= p 316 kPaโ‹…= At sea level patm 101 kPaโ‹…= Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m, to 25oC. At an elevation of 3500 m, from Table A.3 Tcold 265.4 Kโ‹…= and Thot 25 273+( ) Kโ‹…= Thot 298K= Hence, assuming ideal gas behavior, pV = mRT, and that the tire is approximately a rigid container, the absolute pressure of the hot tire is phot Thot Tcold pโ‹…= phot 354 kPaโ‹…= Then the gage pressure is pg phot patmโˆ’= pg 253 kPaโ‹…= Problem 3.4 3.4
  • 5. Problem 3.5 [Difficulty: 2] Given: Data on system Find: Force on bottom of cube; tension in tether Solution: Basic equation dp dy ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… hโ‹…= where h is measured downwards The absolute pressure at the interface is pinterface patm SGoil ฯโ‹… gโ‹… hoilโ‹…+= Then the pressure on the lower surface is pL pinterface ฯ gโ‹… hLโ‹…+= patm ฯ gโ‹… SGoil hoilโ‹… hL+( )โ‹…+= For the cube V 125 mLโ‹…= V 1.25 10 4โˆ’ ร— m 3 โ‹…= Then the size of the cube is d V 1 3 = d 0.05m= and the depth in water to the upper surface is hU 0.3 mโ‹…= Hence hL hU d+= hL 0.35m= where hL is the depth in water to the lower surface The force on the lower surface is FL pL Aโ‹…= where A d 2 = A 0.0025m 2 = FL patm ฯ gโ‹… SGoil hoilโ‹… hL+( )โ‹…+โŽกโŽฃ โŽคโŽฆ Aโ‹…= FL 101 10 3 ร— N m 2 โ‹… 1000 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.8 0.5ร— mโ‹… 0.35 mโ‹…+( )ร— N s 2 โ‹… kg mโ‹… ร—+ โŽก โŽข โŽข โŽฃ โŽค โŽฅ โŽฅ โŽฆ 0.0025ร— m 2 โ‹…= FL 270.894N= Note: Extra decimals needed for computing T later! For the tension in the tether, an FBD gives ฮฃFy 0= FL FUโˆ’ Wโˆ’ Tโˆ’ 0= or T FL FUโˆ’ Wโˆ’= where FU patm ฯ gโ‹… SGoil hoilโ‹… hU+( )โ‹…+โŽกโŽฃ โŽคโŽฆ Aโ‹…= Problem 3.5 3.5
  • 6. Note that we could instead compute ฮ”F FL FUโˆ’= ฯ gโ‹… SGoilโ‹… hL hUโˆ’( )โ‹… Aโ‹…= and T ฮ”F Wโˆ’= Using FU FU 101 10 3 ร— N m 2 โ‹… 1000 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.8 0.5ร— mโ‹… 0.3 mโ‹…+( )ร— N s 2 โ‹… kg mโ‹… ร—+ โŽก โŽข โŽข โŽฃ โŽค โŽฅ โŽฅ โŽฆ 0.0025ร— m 2 โ‹…= FU 269.668N= Note: Extra decimals needed for computing T later! For the oak block (Table A.1) SGoak 0.77= so W SGoak ฯโ‹… gโ‹… Vโ‹…= W 0.77 1000ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 1.25ร— 10 4โˆ’ ร— m 3 โ‹… N s 2 โ‹… kg mโ‹… ร—= W 0.944N= T FL FUโˆ’ Wโˆ’= T 0.282N=
  • 7. Problem 3.6 [Difficulty: 2] Given: Data on system before and after applied force Find: Applied force Solution: Basic equation dp dy ฯโˆ’ gโ‹…= or, for constant ฯ p patm ฯ gโ‹… y y0โˆ’( )โ‹…โˆ’= with p y0( ) patm= For initial state p1 patm ฯ gโ‹… hโ‹…+= and F1 p1 Aโ‹…= ฯ gโ‹… hโ‹… Aโ‹…= (Gage; F1 is hydrostatic upwards force) For the initial FBD ฮฃFy 0= F1 Wโˆ’ 0= W F1= ฯ gโ‹… hโ‹… Aโ‹…= For final state p2 patm ฯ gโ‹… Hโ‹…+= and F2 p2 Aโ‹…= ฯ gโ‹… Hโ‹… Aโ‹…= (Gage; F2 is hydrostatic upwards force) For the final FBD ฮฃFy 0= F2 Wโˆ’ Fโˆ’ 0= F F2 Wโˆ’= ฯ gโ‹… Hโ‹… Aโ‹… ฯ gโ‹… hโ‹… Aโ‹…โˆ’= ฯ gโ‹… Aโ‹… H hโˆ’( )โ‹…= F ฯH2O SGโ‹… gโ‹… ฯ€ D 2 โ‹… 4 โ‹… H hโˆ’( )โ‹…= From Fig. A.1 SG 13.54= F 1000 kg m 3 โ‹… 13.54ร— 9.81ร— m s 2 โ‹… ฯ€ 4 ร— 0.05 mโ‹…( ) 2 ร— 0.2 0.025โˆ’( )ร— mโ‹… N s 2 โ‹… kg mโ‹… ร—= F 45.6N= Problem 3.6 3.6
  • 8. Problem 3.7 (Difficulty: 1) 3.7 Calculate the absolute pressure and gage pressure in an open tank of crude oil 2.4 ๐‘š below the liquid surface. If the tank is closed and pressurized to 130 ๐‘˜๐‘˜๐‘˜, what are the absolute pressure and gage pressure at this location. Given: Location: โ„Ž = 2.4 ๐‘š below the liquid surface. Liquid: Crude oil. Find: The absolute pressure ๐‘ ๐‘Ž and gage pressure ๐‘ ๐‘” for both open and closed tank . Assumption: The gage pressure for the liquid surface is zero for open tank and closed tank. The oil is incompressible. Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ The density for the crude oil is: ๐œŒ = 856 ๐‘˜๐‘˜ ๐‘š3 The atmosphere pressure is: ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 101000 ๐‘ƒ๐‘ƒ The pressure for the closed tank is: ๐‘ ๐‘ก๐‘ก๐‘ก๐‘ก = 130 ๐‘˜๐‘˜๐‘˜ = 130000 ๐‘ƒ๐‘ƒ Using the hydrostatic relation, the gage pressure of open tank 2.4 m below the liquid surface is: ๐‘ ๐‘” = ๐œŒ๐œŒโ„Ž = 856 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 2.4 ๐‘š = 20100 ๐‘ƒ๐‘ƒ The absolute pressure of open tank at this location is: ๐‘ ๐‘Ž = ๐‘ ๐‘” + ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 20100 ๐‘ƒ๐‘ƒ + 101000 ๐‘ƒ๐‘ƒ = 121100 ๐‘ƒ๐‘ƒ = 121.1 ๐‘˜๐‘˜๐‘˜ The gage pressure of closed tank at the same location below the liquid surface is the same as open tank: ๐‘ ๐‘” = ๐œŒ๐œŒโ„Ž = 856 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 2.4 ๐‘š = 20100 ๐‘ƒ๐‘ƒ The absolute pressure of closed tank at this location is: ๐‘ ๐‘Ž = ๐‘ ๐‘” + ๐‘ ๐‘ก๐‘ก๐‘ก๐‘ก = 20100 ๐‘ƒ๐‘ƒ + 130000 ๐‘ƒ๐‘ƒ = 150100 ๐‘ƒ๐‘ƒ = 150.1 ๐‘˜๐‘˜๐‘˜
  • 9. Problem 3.8 (Difficulty: 1) 3.8 An open vessel contains carbon tetrachloride to a depth of 6 ๐‘“๐‘“ and water on the carbon tetrachloride to a depth of 5 ๐‘“๐‘“ . What is the pressure at the bottom of the vessel? Given: Depth of carbon tetrachloride: โ„Ž ๐‘ = 6 ๐‘“๐‘“. Depth of water: โ„Ž ๐‘ค = 5 ๐‘“๐‘“. Find: The gage pressure ๐‘ at the bottom of the vessel. Assumption: The gage pressure for the liquid surface is zero. The fluid is incompressible. Solution: Use the hydrostatic pressure relation to detmine pressures in a fluid. Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ The density for the carbon tetrachloride is: ๐œŒ๐‘ = 1.59 ร— 103 ๐‘˜๐‘˜ ๐‘š3 = 3.09 ๐‘ ๐‘ ๐‘ ๐‘  ๐‘“๐‘“3 The density for the water is: ๐œŒ ๐‘ค = 1.0 ร— 103 ๐‘˜๐‘˜ ๐‘š3 = 1.940 ๐‘ ๐‘ ๐‘ ๐‘  ๐‘“๐‘“3 Using the hydrostatic relation, the gage pressure ๐‘ at the bottom of the vessel is: ๐‘ = ๐œŒ๐‘ ๐‘”โ„Ž ๐‘ + ๐œŒ ๐‘ค ๐‘”โ„Ž ๐‘ค ๐‘ = 3.09 ๐‘ ๐‘ ๐‘ ๐‘  ๐‘“๐‘“3 ร— 32.2 ๐‘“๐‘“ ๐‘ 2 ร— 6 ๐‘“๐‘“ + 1.940 ๐‘ ๐‘ ๐‘ ๐‘  ๐‘“๐‘“3 ร— 32.2 ๐‘“๐‘“ ๐‘ 2 ร— 5 ๐‘“๐‘“ = 909 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 = 6.25 ๐‘๐‘๐‘
  • 10. Problem 3.8 [Difficulty: 2] Given: Properties of a cube floating at an interface Find: The pressures difference between the upper and lower surfaces; average cube density Solution: The pressure difference is obtained from two applications of Eq. 3.7 pU p0 ฯSAE10 gโ‹… H 0.1 dโ‹…โˆ’( )โ‹…+= pL p0 ฯSAE10 gโ‹… Hโ‹…+ ฯH2O gโ‹… 0.9โ‹… dโ‹…+= where pU and pL are the upper and lower pressures, p0 is the oil free surface pressure, H is the depth of the interface, and d is the cube size Hence the pressure difference is ฮ”p pL pUโˆ’= ฯH2O gโ‹… 0.9โ‹… dโ‹… ฯSAE10 gโ‹… 0.1โ‹… dโ‹…+= ฮ”p ฯH2O gโ‹… dโ‹… 0.9 SGSAE10 0.1โ‹…+( )โ‹…= From Table A.2 SGSAE10 0.92= ฮ”p 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.1ร— mโ‹… 0.9 0.92 0.1ร—+( )ร— N s 2 โ‹… kg mโ‹… ร—= ฮ”p 972Pa= For the cube density, set up a free body force balance for the cube ฮฃF 0= ฮ”p Aโ‹… Wโˆ’= Hence W ฮ”p Aโ‹…= ฮ”p d 2 โ‹…= ฯcube m d 3 = W d 3 gโ‹… = ฮ”p d 2 โ‹… d 3 gโ‹… = ฮ”p d gโ‹… = ฯcube 972 N m 2 โ‹… 1 0.1 mโ‹… ร— s 2 9.81 mโ‹… ร— kg mโ‹… N s 2 โ‹… ร—= ฯcube 991 kg m 3 = Problem 3.9 3.9 these equations:
  • 11. Problem 3.1 [Difficulty: 2] Given: Data on nitrogen tank Find: Pressure of nitrogen; minimum required wall thickness Assumption: Ideal gas behavior Solution: Ideal gas equation of state: p Vโ‹… M Rโ‹… Tโ‹…= where, from Table A.6, for nitrogen R 55.16 ft lbfโ‹… lbm Rโ‹… โ‹…= Then the pressure of nitrogen is p M Rโ‹… Tโ‹… V = M Rโ‹… Tโ‹… 6 ฯ€ D 3 โ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= p 140 lbmโ‹… 55.16ร— ft lbfโ‹… lbm Rโ‹… โ‹… 77 460+( )ร— Rโ‹… 6 ฯ€ 2.5 ftโ‹…( ) 3 ร— โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ ร— ft 12 inโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร—= p 3520 lbf in 2 โ‹…= ฯƒcฯ€Dt pฯ€D2 /4 To determine wall thickness, consider a free body diagram for one hemisphere: ฮฃF 0= p ฯ€ D 2 โ‹… 4 โ‹… ฯƒc ฯ€โ‹… Dโ‹… tโ‹…โˆ’= where ฯƒc is the circumferential stress in the container Then t p ฯ€โ‹… D 2 โ‹… 4 ฯ€โ‹… Dโ‹… ฯƒcโ‹… = p Dโ‹… 4 ฯƒcโ‹… = t 3520 lbf in 2 โ‹… 2.5 ftโ‹… 4 ร— in 2 30 10 3 ร— lbfโ‹… ร—= t 0.0733 ftโ‹…= t 0.880 inโ‹…= Problem 3.10 3.10
  • 12. Problem 3.11 (Difficulty: 2) 3.11 If at the surface of a liquid the specific weight is ๐›พ0, with ๐‘ง and ๐‘ both zero, show that, if ๐ธ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘, the specific weight and pressure are given ๐›พ = ๐ธ ๏ฟฝ๐‘ง+ ๐ธ ๐›พ0 ๏ฟฝ and ๐‘ = โˆ’๐ธ ln ๏ฟฝ1 + ๐›พ0 ๐‘ ๐ธ ๏ฟฝ. Calculate specific weight and pressure at a depth of 2 ๐‘˜๐‘˜ assuming ๐›พ0 = 10.0 ๐‘˜๐‘˜ ๐‘š3 and ๐ธ = 2070 ๐‘€๐‘€๐‘€. Given: Depth: โ„Ž = 2 ๐‘˜๐‘˜. The specific weight at surface of a liquid: ๐›พ0 = 10.0 ๐‘˜๐‘˜ ๐‘š3. Find: The specific weight and pressure at a depth of 2 ๐‘˜๐‘˜. Assumption:. Bulk modulus is constant Solution: Use the hydrostatic pressure relation and definition of bulk modulus to detmine pressures in a fluid. Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ Definition of bulk modulus ๐ธ๐‘ฃ = ๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐œŒ๏ฟฝ = ๐‘‘๐‘‘ ๐‘‘๐‘‘ ๐›พ๏ฟฝ Eliminating dp from the hydrostatic pressure relation and the bulk modulus definition: ๐‘‘๐‘‘ = โˆ’๐›พ ๐‘‘๐‘‘ = ๐ธ๐‘ฃ ๐‘‘๐‘‘ ๐›พ Or ๐‘‘๐‘‘ = โˆ’๐ธ๐‘ฃ ๐‘‘๐‘‘ ๐›พ2 Integrating for both sides we get: ๐‘ง = ๐ธ๐‘ฃ 1 ๐›พ + ๐‘ At ๐‘ง = 0, ๐›พ = ๐›พ0 so: ๐‘ = โˆ’๐ธ๐‘ฃ 1 ๐›พ0
  • 13. ๐‘ง = ๐ธ๐‘ฃ 1 ๐›พ โˆ’ ๐ธ๐‘ฃ 1 ๐›พ0 Solving for ๐›พ, we have: ๐›พ = ๐ธ๐‘ฃ ๏ฟฝ๐‘ง + ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ Solving for the pressure using the hydrostatic relation: ๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ = โˆ’ ๐ธ๐‘ฃ ๏ฟฝ๐‘ง + ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ ๐‘‘๐‘‘ Integrating both sides we to get: ๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ๐‘ง + ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ + ๐‘ At ๐‘ง = 0, ๐‘ = 0 so: ๐‘ = ๐ธ๐‘ฃ ln ๏ฟฝ ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ ๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ๐‘ง + ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ + ๐ธ๐‘ฃ ln ๏ฟฝ ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ1 + ๐›พ0 ๐‘ง ๐ธ๐‘ฃ ๏ฟฝ For the specific case โ„Ž = 2 ๐‘˜๐‘˜ ๐›พ0 = 10.0 ๐‘˜๐‘˜ ๐‘š3 ๐ธ๐‘ฃ = 2070 ๐‘€๐‘€๐‘€ The specific weight: ๐›พ = ๐ธ๐‘ฃ ๏ฟฝ๐‘ง + ๐ธ๐‘ฃ ๐›พ0 ๏ฟฝ = 2070 ร— 106 ๐‘๐‘ ๏ฟฝโˆ’2000 ๐‘ƒ๐‘ƒ + 2070 ร— 106 ๐‘ƒ๐‘ƒ 10 ร— 103 ๐‘ ๐‘š3 ๏ฟฝ = 10100 ๐‘ ๐‘š3 = 10.1 ๐‘˜๐‘˜ ๐‘š3 Pressure: ๐‘ = โˆ’๐ธ๐‘ฃ ln ๏ฟฝ1 + ๐›พ0 ๐‘ง ๐ธ๐‘ฃ ๏ฟฝ = โˆ’2070 ร— 106 ๐‘ƒ๐‘ƒ ร— ln ๏ฟฝ1 + 10000.0 ๐‘˜๐‘˜ ๐‘š3 ร— ๏ฟฝ โˆ’2000 ๐‘š 2070 ร— 106 ๐‘ƒ๐‘ƒ ๏ฟฝ๏ฟฝ = 20100 ๐‘˜๐‘˜๐‘˜
  • 14. Problem 3.12 (Difficulty: 2) 3.12 In the deep ocean the compressibility of seawater is significant in its effect on ๐œŒ and ๐‘. If ๐ธ = 2.07 ร— 109 ๐‘ƒ๐‘ƒ, find the percentage change in the density and pressure at a depth of 10000 meters as compared to the values obtained at the same depth under the incompressible assumption. Let ๐œŒ0 = 1020 ๐‘˜๐‘˜ ๐‘š3 and the absolute pressure ๐‘0 = 101.3 ๐‘˜๐‘˜๐‘˜. Given: Depth: โ„Ž = 10000 ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š. The density: ๐œŒ0 = 1020 ๐‘˜๐‘˜ ๐‘š3. The absolute pressure: ๐‘0 = 101.3 ๐‘˜๐‘˜๐‘˜. Find: The percent change in density ๐œŒ% and pressure ๐‘%. Assumption: The bulk modulus is constant Solution: Use the relations developed in problem 3.11 for specific weight and pressure for a compressible liquid: ๐›พ = ๐ธ ๏ฟฝ๐‘ง + ๐ธ ๐›พ0 ๏ฟฝ ๐‘ = โˆ’๐ธ ln ๏ฟฝ1 + ๐›พ0 ๐‘ง ๐ธ ๏ฟฝ The specific weight at sea level is: ๐›พ0 = ๐œŒ0 ๐‘” = 1020 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 = 10010 ๐‘ ๐‘š3 The specific weight and density at 10000 m depth are ๐›พ = ๐ธ ๏ฟฝ๐‘ง + ๐ธ ๐›พ0 ๏ฟฝ = 2.07 ร— 109 ๏ฟฝโˆ’10000 + 2.07 ร— 109 10010 ๏ฟฝ ๐‘ ๐‘š3 = 10520 ๐‘ ๐‘š3 ๐œŒ = ๐›พ ๐‘” = 10520 9.81 ๐‘˜๐‘˜ ๐‘š3 = 1072 ๐‘˜๐‘˜ ๐‘š3 The percentage change in density is ๐œŒ% = ๐œŒ โˆ’ ๐œŒ0 ๐œŒ0 = 1072 โˆ’ 1020 1020 = 5.1 % The gage pressure at a depth of 10000m is: ๐‘ = โˆ’๐ธ ln ๏ฟฝ1 + ๐›พ0 ๐‘ง ๐ธ ๏ฟฝ = 101.3 ๐‘˜๐‘˜๐‘˜ โˆ’ 2.07 ร— 109 ร— ln ๏ฟฝ1 + 10010 ร— (โˆ’10000) 2.07 ร— 109 ๏ฟฝ ๐‘ƒ๐‘ƒ = 102600 ๐‘˜๐‘˜๐‘˜
  • 15. The pressure assuming that the water is incompressible is: ๐‘๐‘–๐‘– = ๐œŒ๐œŒโ„Ž = 1020 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 10000 ๐‘š = 100062 ๐‘˜๐‘˜๐‘˜ The percent difference in pressure is: ๐‘% = ๐‘ โˆ’ ๐‘0 ๐‘0 = 102600 ๐‘˜๐‘˜๐‘˜ โˆ’ 100062 ๐‘˜๐‘˜๐‘˜ 100062 ๐‘˜๐‘˜๐‘˜ = 2.54 %
  • 16. Problem 3.12 [Difficulty: 4] Given: Model behavior of seawater by assuming constant bulk modulus Find: (a) Expression for density as a function of depth h. (b) Show that result may be written as ฯ = ฯo + bh (c) Evaluate the constant b (d) Use results of (b) to obtain equation for p(h) (e) Determine depth at which error in predicted pressure is 0.01% Solution: From Table A.2, App. A: SGo 1.025= Ev 2.42 GPaโ‹… 3.51 10 5 ร— psiโ‹…== Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) (Definition of Bulk Modulus) Ev dp dฯ ฯ = Then dp ฯ gโ‹… dhโ‹…= Ev dฯ ฯ โ‹…= or dฯ ฯ 2 g Ev dh= Now if we integrate: ฯo ฯ ฯ 1 ฯ 2 โŒ โŽฎ โŽฎ โŽฎ โŒก d 0 h h g Ev โŒ  โŽฎ โŽฎ โŒก d= After integrating: ฯ ฯoโˆ’ ฯ ฯoโ‹… g hโ‹… Ev = Therefore: ฯ Ev ฯoโ‹… Ev g hโ‹… ฯoโ‹…โˆ’ = and ฯ ฯo 1 1 ฯo gโ‹… hโ‹… Ev โˆ’ = (Binomial expansion may be found in a host of sources, e.g. CRC Handbook of Mathematics) Now for ฯo gโ‹… hโ‹… Ev <<1, the binomial expansion may be used to approximate the density: ฯ ฯo 1 ฯo gโ‹… hโ‹… Ev += In other words, ฯ ฯo b hโ‹…+= where b ฯo 2 gโ‹… Ev = Since dp ฯ gโ‹… dhโ‹…= then an approximate expression for the pressure as a function of depth is: papprox patmโˆ’ 0 h hฯo b hโ‹…+( ) gโ‹… โŒ  โŽฎ โŒก d= papprox patmโˆ’ g hโ‹… 2 ฯoโ‹… b hโ‹…+( )โ‹… 2 =โ†’ Solving for papprox we get: Problem 3.13 3.13
  • 17. papprox patm g hโ‹… 2 ฯoโ‹… b hโ‹…+( )โ‹… 2 += patm ฯo gโ‹… hโ‹…+ b gโ‹… h 2 โ‹… 2 += patm ฯo hโ‹… b h 2 โ‹… 2 + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  gโ‹…+= Now if we subsitiute in the expression for b and simplify, we get: papprox patm ฯo hโ‹… ฯo 2 gโ‹… Ev h 2 2 โ‹…+ โŽ› โŽœ โŽœ โŽ โŽž โŽŸ โŽŸ โŽ  gโ‹…+= patm ฯo gโ‹… hโ‹… 1 ฯo gโ‹… hโ‹… 2 Evโ‹… + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…+= papprox patm ฯo gโ‹… hโ‹… 1 ฯo gโ‹… hโ‹… 2Ev + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…+= The exact soution for p(h) is obtained by utilizing the exact solution for ฯ(h). Thus: pexact patmโˆ’ ฯo ฯ ฯ Ev ฯ โŒ  โŽฎ โŽฎ โŒก d= Ev ln ฯ ฯo โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= Subsitiuting for ฯ ฯo we get: pexact patm Ev ln 1 ฯo gโ‹… hโ‹… Ev โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  1โˆ’ โ‹…+= If we let x ฯo gโ‹… hโ‹… Ev = For the error to be 0.01%: ฮ”pexact ฮ”papproxโˆ’ ฮ”pexact 1 ฯo gโ‹… hโ‹… 1 x 2 + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… Ev ln 1 xโˆ’( ) 1โˆ’โŽกโŽฃ โŽคโŽฆโ‹… โˆ’= 1 x 1 x 2 + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… ln 1 xโˆ’( ) 1โˆ’โŽกโŽฃ โŽคโŽฆ โˆ’= 0.0001= This equation requires an iterative solution, e.g. Excel's Goal Seek. The result is: x 0.01728= Solving x for h: h x Evโ‹… ฯo gโ‹… = h 0.01728 3.51ร— 10 5 ร— lbf in 2 โ‹… ft 3 1.025 1.94ร— slugโ‹… ร— s 2 32.2 ftโ‹… ร— 12 inโ‹… ft โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร— slug ftโ‹… lbf s 2 โ‹… ร—= h 1.364 10 4 ร— ftโ‹…= This depth is over 2.5 miles, so the incompressible fluid approximation is a reasonable one at all but the lowest depths of the ocean.
  • 18. Problem 3.14 [Difficulty: 3] Air H D Air H โ€“ y y y Given: Cylindrical cup lowered slowly beneath pool surface Find: Expression for y in terms of h and H. Plot y/H vs. h/H. Solution: Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) p Vโ‹… M Rโ‹… Tโ‹…= (Ideal Gas Equation) Assumptions: (1) Constant temperature compression of air inside cup (2) Static liquid (3) Incompressible liquid First we apply the ideal gas equation (at constant temperature) for the pressure of the air in the cup: p Vโ‹… constant= Therefore: p Vโ‹… pa ฯ€ 4 โ‹… D 2 โ‹… Hโ‹…= p ฯ€ 4 โ‹… D 2 โ‹… H yโˆ’( )โ‹…= and upon simplification: pa Hโ‹… p H yโˆ’( )โ‹…= Now we look at the hydrostatic pressure equation for the pressure exerted by the water. Since ฯ is constant, we integrate: p paโˆ’ ฯ gโ‹… h yโˆ’( )โ‹…= at the water-air interface in the cup. Since the cup is submerged to a depth of h, these pressures must be equal: pa Hโ‹… pa ฯ gโ‹… h yโˆ’( )โ‹…+โŽกโŽฃ โŽคโŽฆ H yโˆ’( )โ‹…= pa Hโ‹… pa yโ‹…โˆ’ ฯ gโ‹… h yโˆ’( )โ‹… H yโˆ’( )โ‹…+= Explanding out the right hand side of this expression: 0 paโˆ’ yโ‹… ฯ gโ‹… h yโˆ’( )โ‹… H yโˆ’( )โ‹…+= ฯ gโ‹… hโ‹… Hโ‹… ฯ gโ‹… hโ‹… yโ‹…โˆ’ ฯ gโ‹… Hโ‹… yโ‹…โˆ’ ฯ gโ‹… y 2 โ‹…+ pa yโ‹…โˆ’= ฯ gโ‹… y 2 โ‹… pa ฯ gโ‹… h H+( )โ‹…+โŽกโŽฃ โŽคโŽฆ yโ‹…โˆ’ ฯ gโ‹… hโ‹… Hโ‹…+ 0= y 2 pa ฯ gโ‹… h H+( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ yโ‹…โˆ’ h Hโ‹…+ 0= We now use the quadratic equation: y pa ฯ gโ‹… h H+( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ pa ฯ gโ‹… h H+( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ 2 4 hโ‹… Hโ‹…โˆ’โˆ’ 2 = we only use the minus sign because y can never be larger than H. Problem 3.14 3.14
  • 19. Now if we divide both sides by H, we get an expression for y/H: y H pa ฯ gโ‹… Hโ‹… h H + 1+ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  pa ฯ gโ‹… Hโ‹… h H + 1+ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 4 h H โ‹…โˆ’โˆ’ 2 = The exact shape of this curve will depend upon the height of the cup. The plot below was generated assuming: pa 101.3 kPaโ‹…= H 1 mโ‹…= 0 20 40 60 80 100 0.2 0.4 0.6 0.8 Depth Ratio, h/H HeightRatio,y/H
  • 20. Problem 3.16 [Difficulty: 2] patmA pbaseA Cover Given: Data on water tank and inspection cover Find: If the support bracket is strong enough; at what water depth would it fail Assumptions: Water is incompressible and static Solution: Basic equation dp dy ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… hโ‹…= where h is measured downwards The absolute pressure at the base is pbase patm ฯ gโ‹… hโ‹…+= where h 16 ftโ‹…= The gage pressure at the base is pbase ฯ gโ‹… hโ‹…= This is the pressure to use as we have patm on the outside of the cover. The force on the inspection cover is F pbase Aโ‹…= where A 1 inโ‹… 1ร— inโ‹…= A 1 in 2 โ‹…= F ฯ gโ‹… hโ‹… Aโ‹…= F 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 16ร— ftโ‹… 1ร— in 2 โ‹… ft 12 inโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร— lbf s 2 โ‹… slug ftโ‹… ร—= F 6.94 lbfโ‹…= The bracket is strong enough (it can take 9 lbf). To find the maximum depth we start with F 9.00 lbfโ‹…= h F ฯ gโ‹… Aโ‹… = h 9 lbfโ‹… 1 1.94 ร— ft 3 slug โ‹… 1 32.2 ร— s 2 ft โ‹… 1 in 2 ร— 12 inโ‹… ft โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร— slug ftโ‹… lbf s 2 โ‹… ร—= h 20.7 ftโ‹…= Problem 3.15 3.15
  • 21. Problem 3.18 [Difficulty: 2] Given: Data on partitioned tank Find: Gage pressure of trapped air; pressure to make water and mercury levels equal Solution: The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from Eq. 3.8. Starting from the right air chamber pgage SGHg ฯH2Oร— gร— 3 mโ‹… 2.9 mโ‹…โˆ’( )ร— ฯH2O gร— 1ร— mโ‹…โˆ’= pgage ฯH2O gร— SGHg 0.1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—= pgage 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 13.55 0.1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร— N s 2 โ‹… kg mโ‹… ร—= pgage 3.48 kPaโ‹…= If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to pgage SGHg ฯH2Oร— gร— 1.0ร— mโ‹… ฯH2O gร— 1.0ร— mโ‹…โˆ’= pgage ฯH2O gร— SGHg 1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร—= pgage 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 13.55 1ร— mโ‹… 1.0 mโ‹…โˆ’( )ร— N s 2 โ‹… kg mโ‹… ร—= pgage 123 kPaโ‹…= Problem 3.16 3.16
  • 22. Problem 3.20 [Difficulty: 2] Given: Two-fluid manometer as shown l 10.2 mmโ‹…= SGct 1.595= (From Table A.1, App. A) Find: Pressure difference Solution: We will apply the hydrostatics equation. Governing equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) d z Assumptions: (1) Static liquid (2) Incompressible liquid Starting at point 1 and progressing to point 2 we have: p1 ฯwater gโ‹… d l+( )โ‹…+ ฯct gโ‹… lโ‹…โˆ’ ฯwater gโ‹… dโ‹…โˆ’ p2= Simplifying and solving for p2 p1โˆ’ we have: ฮ”p p2 p1โˆ’= ฯct gโ‹… lโ‹… ฯwater gโ‹… lโ‹…โˆ’= SGct 1โˆ’( ) ฯwaterโ‹… gโ‹… lโ‹…= Substituting the known data: ฮ”p 1.591 1โˆ’( ) 1000ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 10.2ร— mmโ‹… m 10 3 mmโ‹… ร—= ฮ”p 59.1Pa= Problem 3.17 3.17
  • 23. Problem 3.22 [Difficulty: 2] Given: Two fluid manometer contains water and kerosene. With both tubes open to atmosphere, the difference in free surface elevations is known Ho 20 mmโ‹…= SGk 0.82= (From Table A.1, App. A) Find: The elevation difference, H, between the free surfaces of the fluids when a gage pressure of 98.0 Pa is applied to the right tube. Solution: We will apply the hydrostatics equation. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) Assumptions: (1) Static liquid (2) Incompressible liquid When the gage pressure ฮ”p is applied to the right tube, the water in the right tube is displaced downward by a distance, l. The kerosene in the left tube is displaced upward by the same distance, l. Under the applied gage pressure ฮ”p, the elevation difference, H, is: h H A B l l H0 H1 A B ฮ”p H Ho 2 lโ‹…+= Since points A and B are at the same elevation in the same fluid, their pressures are the same. Initially: pA ฯk gโ‹… Ho H1+( )โ‹…= pB ฯwater gโ‹… H1โ‹…= Setting these pressures equal: ฯk gโ‹… Ho H1+( )โ‹… ฯwater gโ‹… H1โ‹…= Solving for H1 H1 ฯk Hoโ‹… ฯwater ฯkโˆ’ = SGk Hoโ‹… 1 SGkโˆ’ = H1 0.82 20ร— mmโ‹… 1 0.82โˆ’ = H1 91.11 mmโ‹…= Now under the applied gage pressure: pA ฯk gโ‹… Ho H1+( )โ‹… ฯwater gโ‹… lโ‹…+= pB ฮ”p ฯwater gโ‹… H1 lโˆ’( )โ‹…+= Problem 3.18 3.18
  • 24. Setting these pressures equal: SGk Ho H1+( )โ‹… l+ ฮ”p ฯwater gโ‹… H1 lโˆ’( )+= l 1 2 ฮ”p ฯwater gโ‹… H1+ SGk Ho H1+( )โ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ = Substituting in known values we get: l 1 2 98.0 N m 2 โ‹… 1 999 ร— m 3 kg 1 9.81 ร— s 2 m โ‹… kg mโ‹… N s 2 โ‹… ร— 91.11 mmโ‹… 0.82 20 mmโ‹… 91.11 mmโ‹…+( )ร—โˆ’[ ] m 10 3 mmโ‹… ร—+ โŽก โŽข โŽข โŽฃ โŽค โŽฅ โŽฅ โŽฆ ร—= l 5.000 mmโ‹…= Now we solve for H: H 20 mmโ‹… 2 5.000ร— mmโ‹…+= H 30.0 mmโ‹…=
  • 25. Problem 3.24 [Difficulty: 2] Given: Data on manometer Find: Gage pressure at point a Assumption: Water, liquids A and B are static and incompressible Solution: Basic equation dp dy ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… ฮ”hโ‹…= where ฮ”h is height difference Starting at point a p1 pa ฯH2O gโ‹… h1โ‹…โˆ’= where h1 0.125 mโ‹… 0.25 mโ‹…+= h1 0.375m= Next, in liquid A p2 p1 SGA ฯH2Oโ‹… gโ‹… h2โ‹…+= where h2 0.25 mโ‹…= Finally, in liquid B patm p2 SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’= where h3 0.9 mโ‹… 0.4 mโ‹…โˆ’= h3 0.5m= Combining the three equations patm p1 SGA ฯH2Oโ‹… gโ‹… h2โ‹…+( ) SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’= pa ฯH2O gโ‹… h1โ‹…โˆ’ SGA ฯH2Oโ‹… gโ‹… h2โ‹…+ SGB ฯH2Oโ‹… gโ‹… h3โ‹…โˆ’= pa patm ฯH2O gโ‹… h1 SGA h2โ‹…โˆ’ SGB h3โ‹…+( )โ‹…+= or in gage pressures pa ฯH2O gโ‹… h1 SGA h2โ‹…โˆ’ SGB h3โ‹…+( )โ‹…= pa 1000 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.375 1.20 0.25ร—( )โˆ’ 0.75 0.5ร—( )+[ ]ร— mโ‹… N s 2 โ‹… kg mโ‹… ร—= pa 4.41 10 3 ร— Pa= pa 4.41 kPaโ‹…= (gage) Problem 3.19 3.19
  • 26. Problem 3.20 (Difficulty: 1) 3.20 With the manometer reading as shown, calculate ๐‘ ๐‘ฅ. Given: Oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.85 Depth: โ„Ž1 = 60 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž2 = 30 ๐‘–๐‘–๐‘–โ„Ž. Find: The pressure ๐‘ ๐‘ฅ. Assumption: Fluids are incompressible Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference over a difference in elevation (h): โˆ†๐‘ = ๐œŒ๐œŒโ„Ž Repeated application of this relation yields ๐‘ ๐‘ฅ = ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž1 + ๐›พ ๐‘€โ„Ž2 The specific weight for mercury is: ๐›พ ๐‘€ = 845 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 The pressure at the desired location is ๐‘ ๐‘ฅ = 0.85 ร— 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— ๏ฟฝ 60 12 ๏ฟฝ ๐‘“๐‘“ + 845 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— ๏ฟฝ 30 12 ๏ฟฝ ๐‘“๐‘“ = 2380 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 = 16.5 ๐‘๐‘๐‘
  • 27. Problem 3.21 (Difficulty: 2) 3.21 Calculate ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ for this inverted U-tube manometer. Given: Oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.90 Depth: โ„Ž1 = 65 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž2 = 20 ๐‘–๐‘–๐‘–โ„Ž. โ„Ž3 = 10 ๐‘–๐‘–๐‘–โ„Ž. Find: The pressure difference ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ. Assume: The fluids are incompressible Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference over a difference in elevation (h): โˆ†๐‘ = ๐œŒ๐œŒโ„Ž Starting at the location of the unknown pressure px, we have the following relations for the hydrostatic pressure: ๐‘ ๐‘ฅ โˆ’ ๐‘1 = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž1 ๐‘1 โˆ’ ๐‘2 = โˆ’๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž3 ๐‘2 โˆ’ ๐‘ ๐‘ฆ = โˆ’๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž1 โˆ’ โ„Ž2 โˆ’ โ„Ž3) Adding these three equations together ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž2 + โ„Ž3) โˆ’ ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž3
  • 28. The pressure difference is then ๐‘ ๐‘ฅ โˆ’ ๐‘ ๐‘ฆ = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— (10 + 20) 12 ๐‘“๐‘“ โˆ’ 0.9 ร— 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 10 12 ๐‘“๐‘“ = 109.2 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 = 0.758 ๐‘๐‘๐‘
  • 29. Problem 3.22 (Difficulty: 2) 3.22 An inclined gage having a tube of 3 mm bore, laid on a slope of 1:20, and a reservoir of 25 mm diameter contains silicon oil (SG 0.84). What distance will the oil move along the tube when a pressure of 25 mm of water is connected to the gage? Given: Silicon oil specific gravity: ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 0.84. Diameter: ๐ท1 = 3 ๐‘š๐‘š. ๐ท2 = 25 ๐‘š๐‘š. Depth: โ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = 25 ๐‘š๐‘š. Slope angle: 1: 20. Find: The distance ๐‘ฅ of the oil move along the tube. Assumption: Fluids are incompressible Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference over a difference in elevation (h): โˆ†๐‘ = ๐œŒ๐œŒโ„Ž We have the volume of the oil as constant, so: ๐ด ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿโˆ†โ„Ž = ๐ด ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘ฅ or โˆ†โ„Ž ๐‘ฅ = ๐ด ๐‘ก๐‘ก๐‘ก๐‘ก ๐ด ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = ๐ท1 2 ๐ท2 2 = 9 625 When a pressure of 25 ๐‘š๐‘š of water is connected with the gage we have: ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž
  • 30. โ„Ž = โ„Ž ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค ๐‘†๐‘† ๐‘œ๐‘œ๐‘œ = 29.8 ๐‘š๐‘š Using these relations, we obtain, accounting for the slope of the manometer: โ„Ž = โˆ†โ„Ž + ๐‘ฅ โˆš202 + 12 = ๏ฟฝ 9 625 + 1 โˆš202 + 12 ๏ฟฝ ๐‘ฅ โ„Ž = โˆ†โ„Ž + ๐‘ฅ โˆš401 = ๏ฟฝ 9 625 + 1 โˆš401 ๏ฟฝ ๐‘ฅ ๐‘ฅ = โ„Ž ๏ฟฝ 9 625 + 1 โˆš401 ๏ฟฝ = 463 ๐‘š๐‘š
  • 31. Problem 3.26 [Difficulty: 2] Given: Water flow in an inclined pipe as shown. The pressure difference is measured with a two-fluid manometer L 5 ftโ‹…= h 6 inโ‹…= SGHg 13.55= (From Table A.1, App. A) Find: Pressure difference between A and B Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) Assumptions: (1) Static liquid (2) Incompressible liquid (3) Gravity is constant Integrating the hydrostatic pressure equation we get: ฮ”p ฯ gโ‹… ฮ”hโ‹…= Progressing through the manometer from A to B: pA ฯwater gโ‹… Lโ‹… sin 30 degโ‹…( )โ‹…+ ฯwater gโ‹… aโ‹…+ ฯwater gโ‹… hโ‹…+ ฯHg gโ‹… hโ‹…โˆ’ ฯwater gโ‹… aโ‹…โˆ’ pB= Simplifying terms and solving for the pressure difference: ฮ”p pA pBโˆ’= ฯwater gโ‹… h SGHg 1โˆ’( )โ‹… L sin 30 degโ‹…( )โ‹…โˆ’โŽกโŽฃ โŽคโŽฆโ‹…= Substituting in values: ฮ”p 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 6 inโ‹… ft 12 inโ‹… ร— 13.55 1โˆ’( )ร— 5 ftโ‹… sin 30 degโ‹…( )ร—โˆ’โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ ร— lbf s 2 โ‹… slugftโ‹… ร— ft 12 inโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร—= ฮ”p 1.638 psiโ‹…= Problem 3.23 3.23
  • 32. Problem 3.28 [Difficulty: 2] Given: Reservoir manometer with vertical tubes of knowm diameter. Gage liquid is Meriam red oil D 18 mmโ‹…= d 6 mmโ‹…= SGoil 0.827= (From Table A.1, App. A) Find: The manometer deflection, L when a gage pressure equal to 25 mm of water is applied to the reservoir. Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) Assumptions: (1) Static liquid (2) Incompressible liquid Integrating the hydrostatic pressure equation we get: ฮ”p ฯ gโ‹… ฮ”hโ‹…= Beginning at the free surface of the reservoir, and accounting for the changes in pressure with elevation: patm ฮ”p+ ฯoil gโ‹… x L+( )โ‹…+ patm= Upon simplification: x L+ ฮ”p ฯoil gโ‹… = The gage pressure is defined as: ฮ”p ฯwater gโ‹… ฮ”hโ‹…= where ฮ”h 25 mmโ‹…= Combining these two expressions: x L+ ฯwater gโ‹… hโ‹… ฯoil gโ‹… = ฮ”h SGoil = x and L are related through the manometer dimensions: ฯ€ 4 D 2 โ‹… xโ‹… ฯ€ 4 d 2 โ‹… Lโ‹…= x d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 L= Therefore: L ฮ”h SGoil 1 d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 + โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… = Substituting values into the expression: L 25 mmโ‹… 0.827 1 6 mmโ‹… 18 mmโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 + โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… = (Note: s L ฮ”h = which yields s 1.088= for this manometer.) L 27.2 mmโ‹…= Problem 3.24 3.24
  • 33. Problem 3.29 [Difficulty: 2] Given: A U-tube manometer is connected to the open tank filled with water as shown (manometer fluid is Meriam blue) D1 2.5 mโ‹…= D2 0.7 mโ‹…= d 0.2 mโ‹…= SGoil 1.75= (From Table A.1, App. A) Find: The manometer deflection, l Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) Assumptions: (1) Static liquid (2) Incompressible liquid D1 D2 d Integrating the hydrostatic pressure equation we get: ฮ”p ฯ gโ‹… ฮ”hโ‹…= When the tank is filled with water, the oil in the left leg of the manometer is displaced downward by l/2. The oil in the right leg is displaced upward by the same distance, l/2. Beginning at the free surface of the tank, and accounting for the changes in pressure with elevation: patm ฯwater gโ‹… D1 D2โˆ’ d+ l 2 +โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…+ ฯoil gโ‹… lโ‹…โˆ’ patm= Upon simplification: ฯwater gโ‹… D1 D2โˆ’ d+ l 2 +โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… ฯoil gโ‹… lโ‹…= D1 D2โˆ’ d+ l 2 + SGoil lโ‹…= l D1 D2โˆ’ d+ SGoil 1 2 โˆ’ = l 2.5 mโ‹… 0.7 mโ‹…โˆ’ 0.2 mโ‹…+ 1.75 1 2 โˆ’ = l 1.600m= Problem 3.25 3.25
  • 34. Problem 3.26 (Difficulty: 2) 3.26 The sketch shows a sectional view through a submarine. Calculate the depth of submarine, y. Assume the specific weight of the seawater is 10.0 ๐‘˜๐‘˜ ๐‘š3. Given: Atmos. Pressure: ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 740 ๐‘š๐‘š ๐ป๐ป. Seawater specific weight:๐›พ = 10.0 ๐‘˜๐‘˜ ๐‘š3. All the dimensional relationship is shown in the figure. Find: The depth ๐‘ฆ. Assumption: Fluids are incompressible Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ Integrating with respect to z for an incompressible fluid, we have the relation for the pressure difference over a difference in elevation (h): โˆ†๐‘ = ๐œŒ๐œŒโ„Ž Using the barometer reading with 760 mm as atmospheric pressure, the pressure inside the submarine is: ๐‘ = 840 ๐‘š๐‘š 760 ๐‘š๐‘š ร— 101.3 ร— 103 ๐‘ƒ๐‘ƒ = 111.6 ร— 103 ๐‘ƒ๐‘ƒ
  • 35. However, the actual atmosphere pressure is: ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 740 ๐‘š๐‘š 760 ๐‘š๐‘š ร— 101.3 ร— 103 ๐‘ƒ๐‘ƒ = 98.3 ร— 103 ๐‘ƒ๐‘ƒ For the manometer, using the hydrostatic relation, we have for the pressure, where y is the depth of the submarine: ๐‘ = ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐›พ๐›พ + ๐›พ ร— 200 ๐‘š๐‘š โˆ’ ๐›พ ๐ป๐ป ร— 400 ๐‘š๐‘š ๐‘ฆ = ๐‘ + ๐›พ ๐ป๐ป ร— 400 ๐‘š๐‘š โˆ’ ๐›พ ร— 200 ๐‘š๐‘š โˆ’ ๐‘ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐›พ The specific weight for mercury is: ๐›พ ๐ป๐ป = 133.1 ๐‘˜๐‘˜ ๐‘š3 So we have for the depth y: ๐‘ฆ = 111.6 ร— 103 ๐‘ƒ๐‘ƒ + 133.1 ร— 1000 ๐‘ ๐‘š3 ร— 0.4 ๐‘š โˆ’ 1000 ๐‘ ๐‘š3 ร— 0.2 ๐‘š โˆ’ 98.3 ร— 103 ๐‘ƒ๐‘ƒ 1000 ๐‘ ๐‘š3 ๐‘ฆ = 6.45 ๐‘š
  • 36. Problem 3.27 (Difficulty: 1) 3.27 The manometer reading is 6 in. when the tank is empty (water surface at A). Calculate the manometer reading when the cone is filled with water. Find: The manometer reading when the tank is filled with water. Assumption: Fluids are static and incompressible Solution: Use the hydrostatic relations for pressure When the tank is empty, we have the equation as: โ„Ž ๐‘€๐‘€ โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š โˆ™ ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 13.57 โ„Ž = โ„Ž ๐‘€๐‘€ โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 150 ๐‘š๐‘š ร— 13.57 = 2.04 ๐‘š When the tank is filled with water, we assume the mercury interface moves by ๐‘ฅ: ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค(โ„Ž ๐‘ก๐‘ก๐‘ก๐‘ก + โ„Ž + ๐‘ฅ) = ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค โˆ™ ๐‘†๐‘† ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(โ„Ž ๐‘€๐‘€ + 2๐‘ฅ) (3 ๐‘š + 2.04 ๐‘š + ๐‘ฅ) = 13.57(0.15๐‘š + 2๐‘ฅ) Thus ๐‘ฅ = 0.115 ๐‘š The new manometer reading is: โ„Ž ๐‘€๐‘€ โ€ฒ = โ„Ž ๐‘€๐‘€ + 2๐‘ฅ = 0.15 ๐‘š + 2 ร— 0.115 ๐‘š = 0.38 ๐‘š
  • 37. Problem 3.30 [Difficulty: 2] Given: Reservoir manometer with dimensions shown. The manometer fluid specific gravity is given. D 5 8 inโ‹…= d 3 16 inโ‹…= SGoil 0.827= Find: The required distance between vertical marks on the scale corresponding to ฮ”p of 1 in water. Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dz ฯโˆ’ gโ‹…= (Hydrostatic Pressure - z is positive upwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) Assumptions: (1) Static liquid (2) Incompressible liquid h x Integrating the hydrostatic pressure equation we get: ฮ”p ฯโˆ’ gโ‹… ฮ”zโ‹…= Beginning at the free surface of the tank, and accounting for the changes in pressure with elevation: patm ฮ”p+ ฯoil gโ‹… x h+( )โ‹…โˆ’ patm= Upon simplification: ฮ”p ฯoil gโ‹… x h+( )โ‹…= The applied pressure is defined as: ฮ”p ฯwater gโ‹… lโ‹…= where l 1 inโ‹…= Therefore: ฯwater gโ‹… lโ‹… ฯoil gโ‹… x h+( )โ‹…= x h+ l SGoil = x and h are related through the manometer dimensions: ฯ€ 4 D 2 โ‹… xโ‹… ฯ€ 4 d 2 โ‹… hโ‹…= x d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 h= Solving for h: h l SGoil 1 d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 + โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… = Substituting values into the expression: h 1 inโ‹… 0.827 1 0.1875 inโ‹… 0.625 inโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 + โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… = h 1.109 inโ‹…= Problem 3.28 3.28
  • 38. Problem 3.32 [Difficulty: 3] Given: Inclined manometer as shown. D 96 mmโ‹…= d 8 mmโ‹…= Angle ฮธ is such that the liquid deflection L is five times that of a regular U-tube manometer. Find: Angle ฮธ and manometer sensitivity. Solution: We will apply the hydrostatics equations to this system. Governing Equation: dp dz ฯโˆ’ gโ‹…= (Hydrostatic Pressure - z is positive upwards) Assumptions: (1) Static liquid (2) Incompressible liquid x Integrating the hydrostatic pressure equation we get: ฮ”p ฯโˆ’ gโ‹… ฮ”zโ‹…= Applying this equation from point 1 to point 2: p1 ฯ gโ‹… x L sin ฮธ( )โ‹…+( )โ‹…โˆ’ p2= Upon simplification: p1 p2โˆ’ ฯ gโ‹… x L sin ฮธ( )โ‹…+( )โ‹…= Since the volume of the fluid must remain constant: ฯ€ 4 D 2 โ‹… xโ‹… ฯ€ 4 d 2 โ‹… Lโ‹…= x d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 Lโ‹…= Therefore: p1 p2โˆ’ ฯ gโ‹… Lโ‹… d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 sin ฮธ( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= Now for a U-tube manometer: p1 p2โˆ’ ฯ gโ‹… hโ‹…= Hence: p1incl p2inclโˆ’ p1U p2Uโˆ’ ฯ gโ‹… Lโ‹… d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 sin ฮธ( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… ฯ gโ‹… hโ‹… = For equal applied pressures: L d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 sin ฮธ( )+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… h= Since L/h = 5: sin ฮธ( ) h L d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’= 1 5 8 mmโ‹… 96 mmโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’= ฮธ 11.13 degโ‹…= The sensitivity of the manometer: s L ฮ”he = L SG hโ‹… = s 5 SG = Problem 3.29 3.29
  • 39. Problem 3.33 [Difficulty: 3] Given: Data on inclined manometer Find: Angle ฮธ for given data; find sensitivity Solution: Basic equation dp dy ฯโˆ’ gโ‹…= or, for constant ฯ ฮ”p ฯ gโ‹… ฮ”hโ‹…= where ฮ”h is height difference Under applied pressure ฮ”p SGMer ฯโ‹… gโ‹… L sin ฮธ( )โ‹… x+( )โ‹…= (1) From Table A.1 SGMer 0.827= and ฮ”p = 1 in. of water, or ฮ”p ฯ gโ‹… hโ‹…= where h 25 mmโ‹…= h 0.025m= ฮ”p 1000 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.025ร— mโ‹… N s 2 โ‹… kg mโ‹… ร—= ฮ”p 245Pa= The volume of liquid must remain constant, so x Aresโ‹… L Atubeโ‹…= x L Atube Ares โ‹…= L d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โ‹…= (2) Combining Eqs 1 and 2 ฮ”p SGMer ฯโ‹… gโ‹… L sin ฮธ( )โ‹… L d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= Solving for ฮธ sin ฮธ( ) ฮ”p SGMer ฯโ‹… gโ‹… Lโ‹… d D โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’= sin ฮธ( ) 245 N m 2 โ‹… 1 0.827 ร— 1 1000 ร— m 3 kg โ‹… 1 9.81 ร— s 2 m โ‹… 1 0.15 ร— 1 m โ‹… kg mโ‹… s 2 Nโ‹… ร— 8 76 โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’= 0.186= ฮธ 11 degโ‹…= The sensitivity is the ratio of manometer deflection to a vertical water manometer s L h = 0.15 mโ‹… 0.025 mโ‹… = s 6= Problem 3.30 3.30
  • 40. Problem 3.34 [Difficulty: 4] Given: Barometer with water on top of the mercury column, Temperature is known: h2 6.5 inโ‹…= h1 28.35 inโ‹…= SGHg 13.55= (From Table A.2, App. A) T 70 ยฐF= pv 0.363 psiโ‹…= (From Table A.7, App. A) Find: (a) Barometric pressure in psia (b) Effect of increase in ambient temperature on length of mercury column for the same barometric pressure: Tf 85 ยฐF= Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯโˆ’ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฯ SG ฯwaterโ‹…= (Definition of Specific Gravity) h2 Water vapor h1 Water Mercury Assumptions: (1) Static liquid (2) Incompressible liquid Integrating the hydrostatic pressure equation we get: ฮ”p ฯ gโ‹… ฮ”hโ‹…= Start at the free surface of the mercury and progress through the barometer to the vapor pressure of the water: patm ฯHg gโ‹… h1โ‹…โˆ’ ฯwater gโ‹… h2โ‹…โˆ’ pv= patm pv ฯwater gโ‹… SGHg h1โ‹… h2+( )โ‹…+= patm 0.363 lbf in 2 โ‹… 1.93 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… lbf s 2 โ‹… slug ftโ‹… ร— 13.55 28.35ร— inโ‹… 6.5 inโ‹…+( )ร— ft 12 inโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  3 ร—+= patm 14.41 lbf in 2 โ‹…= At the higher temperature, the vapor pressure of water increases to 0.60 psi. Therefore, if the atmospheric pressure were to remain constant, the length of the mercury column would have to decrease - the increased water vapor would push the mercury out of the tube! Problem 3.31 3.31
  • 41. Problem 3.36 [Difficulty: 3] Given: Water column standin in glass tube ฮ”h 50 mmโ‹…= D 2.5 mmโ‹…= ฯƒ 72.8 10 3โˆ’ ร— N m = (From Table A.4, App. A) Find: (a) Column height if surface tension were zero. (b) Column height in 1 mm diameter tube Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฮ”hp ฮ”hc ฮ”h ฮ”hc ฯ€Dฮด ฮธ Mg = ฯgV ฮฃFz 0= (Static Equilibrium) Assumptions: (1) Static, incompressible liquid (2) Neglect volume under meniscus (3) Applied pressure remains constant (4) Column height is sum of capillary rise and pressure difference Assumption #4 can be written as: ฮ”h ฮ”hc ฮ”hp+= Choose a free-body diagram of the capillary rise portion of the column for analysis: ฮฃFz ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹… ฯ€ 4 D 2 โ‹… ฯโ‹… gโ‹… ฮ”hcโ‹…โˆ’= 0= Therefore: ฮ”hc 4 ฯƒโ‹… ฯ gโ‹… Dโ‹… cos ฮธ( )โ‹…= Substituting values: ฮ”hc 4 72.8ร— 10 3โˆ’ ร— N m โ‹… 1 999 ร— m 3 kg โ‹… 1 9.81 ร— s 2 m โ‹… 1 2.5 ร— 1 mm โ‹… kg mโ‹… N s 2 โ‹… ร— 10 3 mmโ‹… m โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร—= ฮ”hc 11.89 mmโ‹…= Therefore: ฮ”hp ฮ”h ฮ”hcโˆ’= ฮ”hp 50 mmโ‹… 11.89 mmโ‹…โˆ’= ฮ”hp 38.1 mmโ‹…= (result for ฯƒ = 0) For the 1 mm diameter tube: ฮ”hc 4 72.8ร— 10 3โˆ’ ร— N m โ‹… 1 999 ร— m 3 kg โ‹… 1 9.81 ร— s 2 m โ‹… 1 1 ร— 1 mm โ‹… kg mโ‹… N s 2 โ‹… ร— 10 3 mmโ‹… m โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 ร—= ฮ”hc 29.71 mmโ‹…= ฮ”h 29.7 mmโ‹… 38.1 mmโ‹…+= ฮ”h 67.8 mmโ‹…= Problem 3.32 3.32
  • 42. Problem 3.38 [Difficulty :2] Fluid 1 Fluid 2 ฯƒฯ€Dcosฮธ ฯ1gฮ”hฯ€D2 /4 Given: Two fluids inside and outside a tube Find: (a) An expression for height ฮ”h (b) Height difference when D =0.040 in for water/mercury Assumptions: (1) Static, incompressible fluids (2) Neglect meniscus curvature for column height and volume calculations Solution: A free-body vertical force analysis for the section of fluid 1 height ฮ”h in the tube below the "free surface" of fluid 2 leads to F โˆ‘ 0= ฮ”p ฯ€ D 2 โ‹… 4 โ‹… ฯ1 gโ‹… ฮ”hโ‹… ฯ€ D 2 โ‹… 4 โ‹…โˆ’ ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹…+= where ฮ”p is the pressure difference generated by fluid 2 over height ฮ”h, ฮ”p ฯ2 gโ‹… ฮ”hโ‹…= Hence ฮ”p ฯ€ D 2 โ‹… 4 โ‹… ฯ1 gโ‹… ฮ”hโ‹… ฯ€ D 2 โ‹… 4 โ‹…โˆ’ ฯ2 gโ‹… ฮ”hโ‹… ฯ€ D 2 โ‹… 4 โ‹… ฯ1 gโ‹… ฮ”hโ‹… ฯ€ D 2 โ‹… 4 โ‹…โˆ’= ฯ€โˆ’ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹…= Solving for ฮ”h ฮ”h 4 ฯƒโ‹… cos ฮธ( )โ‹… g Dโ‹… ฯ2 ฯ1โˆ’( )โ‹… โˆ’= For fluids 1 and 2 being water and mercury (for mercury ฯƒ = 375 mN/m and ฮธ = 140o, from Table A.4), solving for ฮ”h when D = 0.040 in ฮ”h 4โˆ’ 0.375ร— N m โ‹… lbf 4.448 Nโ‹… ร— 0.0254m in ร— cos 140 degโ‹…( )ร— s 2 32.2 ftโ‹… ร— 1 0.040 inโ‹… ร— ft 3 1.94 slugโ‹… ร— 12 inโ‹… ft โŽ› โŽœ โŽ โŽž โŽŸ โŽ  3 ร— 1 13.6 1โˆ’( ) ร— slugftโ‹… lbf s 2 โ‹… ร—= ฮ”h 0.360 inโ‹…= Problem 3.33 3.33
  • 43. Problem 3.40 [Difficulty: 2] Water Given: Water in a tube or between parallel plates Find: Height ฮ”h for each system Solution: a) Tube: A free-body vertical force analysis for the section of water height ฮ”h above the "free surface" in the tube, as shown in the figure, leads to F โˆ‘ 0= ฯ€ Dโ‹… ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… ฮ”hโ‹… ฯ€ D 2 โ‹… 4 โ‹…โˆ’= Assumption: Neglect meniscus curvature for column height and volume calculations Solving for ฮ”h ฮ”h 4 ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… Dโ‹… = b) Parallel Plates: A free-body vertical force analysis for the section of water height ฮ”h above the "free surface" between plates arbitrary width w (similar to the figure above), leads to F โˆ‘ 0= 2 wโ‹… ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… ฮ”hโ‹… wโ‹… aโ‹…โˆ’= Solving for ฮ”h ฮ”h 2 ฯƒโ‹… cos ฮธ( )โ‹… ฯ gโ‹… aโ‹… = For water ฯƒ = 72.8 mN/m and ฮธ = 0o (Table A.4), so a) Tube ฮ”h 4 0.0728ร— N m โ‹… 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.005ร— mโ‹… kg mโ‹… N s 2 โ‹… ร—= ฮ”h 5.94 10 3โˆ’ ร— m= ฮ”h 5.94 mmโ‹…= b) Parallel Plates ฮ”h 2 0.0728ร— N m โ‹… 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 0.005ร— mโ‹… kg mโ‹… N s 2 โ‹… ร—= ฮ”h 2.97 10 3โˆ’ ร— m= ฮ”h 2.97 mmโ‹…= Problem 3.34 3.34
  • 44. p SL = 101 kPa R = 286.9 J/kg.K ฯ = 999 kg/m3 The temperature can be computed from the data in the figure. The pressures are then computed from the appropriate equation. From Table A.3 Agreement between calculated and tabulated data is very good (as it should be, considering the table data are also computed!) Atmospheric Pressure vs Elevation 0.00000 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 0 10 20 30 40 50 60 70 80 90 100 Elevation (km) PressureRatiop/pSL Computed Table A.3 Problem 3.35 3.35
  • 45. z (km) T (o C) T (K) p /p SL z (km) p /p SL 0.0 15.0 288.0 m = 1.000 0.0 1.000 2.0 2.0 275.00 0.0065 0.784 0.5 0.942 4.0 -11.0 262.0 (K/m) 0.608 1.0 0.887 6.0 -24.0 249.0 0.465 1.5 0.835 8.0 -37.0 236.0 0.351 2.0 0.785 11.0 -56.5 216.5 0.223 2.5 0.737 12.0 -56.5 216.5 T = const 0.190 3.0 0.692 14.0 -56.5 216.5 0.139 3.5 0.649 16.0 -56.5 216.5 0.101 4.0 0.609 18.0 -56.5 216.5 0.0738 4.5 0.570 20.1 -56.5 216.5 0.0530 5.0 0.533 22.0 -54.6 218.4 m = 0.0393 6.0 0.466 24.0 -52.6 220.4 -0.000991736 0.0288 7.0 0.406 26.0 -50.6 222.4 (K/m) 0.0211 8.0 0.352 28.0 -48.7 224.3 0.0155 9.0 0.304 30.0 -46.7 226.3 0.0115 10.0 0.262 32.2 -44.5 228.5 0.00824 11.0 0.224 34.0 -39.5 233.5 m = 0.00632 12.0 0.192 36.0 -33.9 239.1 -0.002781457 0.00473 13.0 0.164 38.0 -28.4 244.6 (K/m) 0.00356 14.0 0.140 40.0 -22.8 250.2 0.00270 15.0 0.120 42.0 -17.2 255.8 0.00206 16.0 0.102 44.0 -11.7 261.3 0.00158 17.0 0.0873 46.0 -6.1 266.9 0.00122 18.0 0.0747 47.3 -2.5 270.5 0.00104 19.0 0.0638 50.0 -2.5 270.5 T = const 0.000736 20.0 0.0546 52.4 -2.5 270.5 0.000544 22.0 0.0400 54.0 -5.6 267.4 m = 0.000444 24.0 0.0293 56.0 -9.5 263.5 0.001956522 0.000343 26.0 0.0216 58.0 -13.5 259.5 (K/m) 0.000264 28.0 0.0160 60.0 -17.4 255.6 0.000202 30.0 0.0118 61.6 -20.5 252.5 0.000163 40.0 0.00283 64.0 -29.9 243.1 m = 0.000117 50.0 0.000787 66.0 -37.7 235.3 0.003913043 0.0000880 60.0 0.000222 68.0 -45.5 227.5 (K/m) 0.0000655 70.0 0.0000545 70.0 -53.4 219.6 0.0000482 80.0 0.0000102 72.0 -61.2 211.8 0.0000351 90.0 0.00000162 74.0 -69.0 204.0 0.0000253 76.0 -76.8 196.2 0.0000180 78.0 -84.7 188.3 0.0000126 80.0 -92.5 180.5 T = const 0.00000861 82.0 -92.5 180.5 0.00000590 84.0 -92.5 180.5 0.00000404 86.0 -92.5 180.5 0.00000276 88.0 -92.5 180.5 0.00000189 90.0 -92.5 180.5 0.00000130
  • 46. Problem 3.44 [Difficulty: 3] Given: Atmospheric conditions at ground level (z = 0) in Denver, Colorado are p0 = 83.2 kPa, T0 = 25ยฐC. Pike's peak is at elevation z = 2690 m. Find: p/p0 vs z for both cases. Solution: Governing Equations: dp dz ฯโˆ’ gโ‹…= p ฯ Rโ‹… Tโ‹…= Assumptions: (1) Static fluid (2) Ideal gas behavior (a) For an incompressible atmosphere: dp dz ฯโˆ’ gโ‹…= becomes p p0โˆ’ 0 z zฯ gโ‹… โŒ  โŽฎ โŒก dโˆ’= or p p0 ฯ0 gโ‹… zโ‹…โˆ’= p0 1 g zโ‹… R T0โ‹… โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= (1) At z 2690 mโ‹…= p 83.2 kPaโ‹… 1 9.81 m s 2 โ‹… 2690ร— mโ‹… kg Kโ‹… 287 Nโ‹… mโ‹… ร— 1 298 Kโ‹… ร— N s 2 โ‹… kg mโ‹… ร—โˆ’ โŽ› โŽœ โŽœ โŽ โŽž โŽŸ โŽŸ โŽ  ร—= p 57.5 kPaโ‹…= (b) For an adiabatic atmosphere: p ฯ k const= ฯ ฯ0 p p0 โŽ› โŽœ โŽ โŽž โŽŸ โŽ  1 k โ‹…= dp dz ฯโˆ’ gโ‹…= becomes dp ฯ0โˆ’ p p0 โŽ› โŽœ โŽ โŽž โŽŸ โŽ  1 k โ‹… gโ‹… dzโ‹…= or 1 p 1 k dp ฯ0 gโ‹… p0 1 k โˆ’ dzโ‹…= But p0 p p 1 p 1 k โŒ  โŽฎ โŽฎ โŽฎ โŽฎ โŒก d k k 1โˆ’ p p0โˆ’( ) k 1โˆ’ k โ‹…= hence k k 1โˆ’ p k 1โˆ’ k p0 k 1โˆ’ k โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ โ‹… ฯ0 gโ‹… p0 1 k โˆ’ gโ‹… zโ‹…= Solving for the pressure ratio p p0 1 k 1โˆ’ k ฯ0 p0 โ‹… gโ‹… zโ‹…โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  k k 1โˆ’ = or p p0 1 k 1โˆ’ k g zโ‹… R T0โ‹… โ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  k k 1โˆ’ = (2) At z 2690 mโ‹…= p 83.2 kPaโ‹… 1 1.4 1โˆ’ 1.4 9.81ร— m s 2 โ‹… 2690ร— mโ‹… kg Kโ‹… 287 Nโ‹… mโ‹… ร— 1 298 Kโ‹… ร— N s 2 โ‹… kg mโ‹… ร—โˆ’ โŽ› โŽœ โŽœ โŽ โŽž โŽŸ โŽŸ โŽ  1.4 1.4 1โˆ’ ร—= p 60.2 kPaโ‹…= Problem 3.36 3.36
  • 47. Equations 1 and 2 can be plotted: 0.4 0.6 0.8 1 0 1 10 3 ร— 2 10 3 ร— 3 10 3 ร— 4 10 3 ร— 5 10 3 ร— Incompressible Adiabatic Temperature Variation with Elevation Pressure Ratio (-) ElevationaboveDenver(m)
  • 48. Problem 3.37 (Difficulty: 2) 3.37 If atmospheric pressure at the ground is 101.3 ๐‘˜๐‘˜๐‘˜ and temperature is 15 โ„ƒ, calculate the pressure 7.62 ๐‘˜๐‘˜ above the ground, assuming (a) no density variation, (b) isothermal variation of density with pressure, and (c) adiabatic variation of density with pressure. Assumption: Atmospheric air is stationary and behaves as an ideal gas. Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = โˆ’๐œŒ ๐‘” = โˆ’๐›พ (a) For this case with no density variation, we integrate with respect to z from the ground level pressure p0 to the pressure at any height h. The pressure is ๐‘ = ๐‘0 โˆ’ ๐›พโ„Ž From Table A.10, the density of air at sea level is ๐œŒ = 1.23 ๐‘˜๐‘˜ ๐‘š3 Or the specific weight is ๐›พ = ๐œŒ๐œŒ = 1.23 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 = 12.07 ๐‘ ๐‘š3 Thus the pressure at 7.62 km is ๐‘ = 101.3 ๐‘˜๐‘˜๐‘˜ โˆ’ 12.07 ๐‘ ๐‘š3 ร— 7.62 ร— 1000 ๐‘š = 9.63 ๐‘˜๐‘˜๐‘˜ (b) For isothermal condition we have for an ideal gas: ๐‘ ๐œŒ = ๐‘0 ๐œŒ0 = ๐‘…๐‘… = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ Therefore, since ฯ = ฮณ g and g is a constant ๐‘ ๐›พ = ๐‘0 ๐›พ0 = 101.3 ๐‘˜๐‘˜๐‘˜ 12.07 ๐‘ ๐‘š3 = 8420 ๐‘š = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ From the hydrostatic relation we have: ๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ ๐‘‘๐‘‘ ๐‘ = โˆ’ ๐›พ ๐‘ ๐‘‘๐‘‘
  • 49. ๏ฟฝ ๐‘‘๐‘‘ ๐‘ ๐‘ ๐‘0 = โˆ’ 1 8420๐‘š ๏ฟฝ ๐‘‘๐‘‘ ๐‘ง 0 ln ๏ฟฝ ๐‘ ๐‘0 ๏ฟฝ = โˆ’ 1 8420๐‘š ๐‘ง Thus the pressure at 7.62 km is ๐‘ ๐‘0 = ๐‘’โˆ’ โˆ’ 7620 ๐‘š 8420๐‘š = ๐‘’โˆ’ 0.905 = 0.4045 ๐‘ = 101.3๐‘˜๐‘˜๐‘˜ ร— 0.4045 = 41.0 ๐‘˜๐‘˜๐‘˜ (c) For a reversible and adiabatic variation of density we have: ๐‘๐‘ฃ ๐‘˜ = ๐‘ ๐œŒ ๐‘˜ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ Where k is the specific heat ratio ๐‘˜ = 1.4 Or, since gravity g is constant, we can write in terms of the specific weight ๐‘ ๐›พ ๐‘˜ = ๐‘0 ๐›พ0 ๐‘˜ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ Or the specific weight is ๐›พ = ๐›พ0 ๏ฟฝ ๐‘ ๐‘0 ๏ฟฝ 1 ๐‘˜๏ฟฝ The hydrostatic expression becomes ๐‘‘๐‘‘ = โˆ’๐›พ0 ๏ฟฝ ๐‘ ๐‘0 ๏ฟฝ 1 ๐‘˜๏ฟฝ ๐‘‘๐‘‘ Separating variables ๐‘0 1/๐‘˜ ๐›พ0 ๏ฟฝ ๐‘‘๐‘‘ (๐‘)1/๐‘˜ ๐‘ ๐‘0 = โˆ’ ๏ฟฝ ๐‘‘๐‘‘ ๐‘ง 0 Integrating between the limits p=p0 at z=0 and p = p at z = z ๏ฟฝ ๐‘˜ ๐‘˜ โˆ’ 1 ๏ฟฝ ๐‘0 1/๐‘˜ ๐›พ0 ๏ฟฝ๐‘ ๐‘˜โˆ’1 ๐‘˜ โˆ’ ๐‘0 ๐‘˜โˆ’1 ๐‘˜ ๏ฟฝ = โˆ’ ๐‘ง Or ๏ฟฝ ๐‘ ๐‘0 ๏ฟฝ ๐‘˜โˆ’1 ๐‘˜ = 1 โˆ’ ๏ฟฝ ๐‘˜ โˆ’ 1 ๐‘˜ ๏ฟฝ ๐›พ0 ๐‘ง ๐‘0 The pressure is then ๐‘ = ๐‘0 ๏ฟฝ1 โˆ’ ๏ฟฝ ๐‘˜ โˆ’ 1 ๐‘˜ ๏ฟฝ ๐›พ0 ๐‘ง ๐‘0 ๏ฟฝ ๐‘˜ ๐‘˜โˆ’1๏ฟฝ = 101.3๐‘˜๐‘˜๐‘˜ ๏ฟฝ1 โˆ’ ๏ฟฝ 1.4 โˆ’ 1 1.4 ๏ฟฝ ร— 12.07 ๐‘ ๐‘š3 ร— 7620๐‘š 101.3 ร— 1000 ๐‘ƒ๐‘ƒ ๏ฟฝ 1.4 1.4โˆ’1๏ฟฝ ๐‘ = 35.4 ๐‘˜๐‘˜๐‘˜ The calculation of pressure depends heavily on the assumption we make about how density changes.
  • 50. Problem 3.38 (Difficulty: 2) 3.38 If the temperature in the atmosphere is assumed to vary linearly with altitude so T = T0 - ฮฑz where T0 is the sea level temperature and ฮฑ = - dT / dz is the temperature lapse rate, find p(z) when air is taken to be a perfect gas. Give the answer in terms of p0, a, g, R, and z only. Assumption: Atmospheric air is stationary and behaves as an ideal gas. Solution: Use the hydrostatic relation to find the pressures in the fluid Governing equation: Hydrostatic pressure in a liquid, with z measured upward: ๐‘‘๐‘‘ = โˆ’๐›พ๐›พ๐›พ The ideal gas relation is ๐‘ ๐œŒ = ๐‘…๐‘… Or in terms of the specific weight, the pressure is ๐‘ = ๐œŒ๐œŒ๐œŒ = ๐›พ ๐‘” ๐‘…๐‘… Relating the temperature to the adiabatic lapse rate ๐‘ = ๐›พ ๐‘” ๐‘…(๐‘‡0 โˆ’ ๐›ผ๐›ผ) Inserting the expression for specific weight into the hydrostatic equation ๐‘‘๐‘‘ = โˆ’ ๐‘”๐‘” ๐‘…(๐‘‡0 โˆ’ ๐›ผ๐›ผ) ๐‘‘๐‘‘ Separating variables ๐‘‘๐‘‘ ๐‘ = โˆ’ ๐‘” ๐‘… ๐‘‘๐‘‘ (๐‘‡0 โˆ’ ๐›ผ๐›ผ) Integrating between the surface and any height z ๏ฟฝ ๐‘‘๐‘‘ ๐‘ ๐‘ ๐‘0 = โˆ’ ๐‘” ๐‘… ๏ฟฝ ๐‘‘๐‘‘ (๐‘‡0 โˆ’ ๐›ผ๐›ผ) ๐‘ง 0 Or ๐‘™๐‘™ ๏ฟฝ ๐‘ ๐‘0 ๏ฟฝ = โˆ’ ๐‘” ๐‘… ๐‘™๐‘™ ๏ฟฝ ๐‘‡0 โˆ’ ๐›ผ๐›ผ ๐‘‡0 ๏ฟฝ
  • 51. In terms of p ๐‘ ๐‘0 = ๏ฟฝ1 โˆ’ ๐›ผ๐›ผ ๐‘‡0 ๏ฟฝ ๐‘” ๐›ผ๐›ผ๏ฟฝ
  • 52. Problem 3.46 [Difficulty: 3] Given: Door located in plane vertical wall of water tank as shown c ps a yโ€™ y b a 1.5 mโ‹…= b 1 mโ‹…= c 1 mโ‹…= Atmospheric pressure acts on outer surface of door. Find: Resultant force and line of action: (a) for (b) for ps patm= psg 0.3 atmโ‹…= Plot F/Fo and y'/yc over range of ps/patm (Fo is force determined in (a), yc is y-ccordinate of door centroid). Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dy ฯ gโ‹…= (Hydrostatic Pressure - y is positive downwards) FR Ap โŒ  โŽฎ โŽฎ โŒก d= (Hydrostatic Force on door) y' FRโ‹… Ay pโ‹… โŒ  โŽฎ โŽฎ โŒก d= (First moment of force) Assumptions: (1) Static fluid (2) Incompressible fluid We will obtain a general expression for the force and line of action, and then simplify for parts (a) and (b). Since dp ฯ gโ‹… dhโ‹…= it follows that p ps ฯ gโ‹… yโ‹…+= Now because patm acts on the outside of the door, psg is the surface gage pressure: p psg ฯ gโ‹… yโ‹…+= FR Ap โŒ โŽฎ โŽฎ โŒก d= c c a+ yp bโ‹… โŒ  โŽฎ โŒก d= c c a+ ypsg ฯ gโ‹… yโ‹…+( ) bโ‹… โŒ  โŽฎ โŒก d= b psg aโ‹… ฯ gโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹…+โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= 1( ) y' FRโ‹… Ay pโ‹… โŒ โŽฎ โŽฎ โŒก d= Therefore: y' 1 FR Ay pโ‹… โŒ โŽฎ โŽฎ โŒก d= 1 FR c c a+ yy psg ฯ gโ‹… yโ‹…+( )โ‹… bโ‹… โŒ  โŽฎ โŒก dโ‹…= Evaluating the integral: y' b FR psg 2 c a+( ) 2 c 2 โˆ’โŽกโŽฃ โŽคโŽฆ ฯ gโ‹… 3 c a+( ) 3 c 3 โˆ’โŽกโŽฃ โŽคโŽฆโ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ = Problem 3.39 3.39
  • 53. Simplifying: y' b FR psg 2 a 2 2 aโ‹… cโ‹…+( ) ฯ gโ‹… 3 a 3 3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= 2( ) For part (a) we know psg 0= so substituting into (1) we get: Fo ฯ gโ‹… bโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹…= Fo 1 2 999ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 1ร— mโ‹… 1.5 mโ‹…( ) 2 2 1.5ร— mโ‹… 1ร— mโ‹…+โŽกโŽฃ โŽคโŽฆร— N s 2 โ‹… kg mโ‹… ร—= Fo 25.7 kNโ‹…= Substituting into (2) for the line of action we get: y' ฯ gโ‹… bโ‹… 3 Foโ‹… a 3 3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…= y' 1 3 999ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 1ร— mโ‹… 1 25.7 10 3 ร— โ‹… 1 N โ‹… 1.5 mโ‹…( ) 3 3 1.5ร— mโ‹… 1ร— mโ‹… 1.5 mโ‹… 1 mโ‹…+( )ร—+โŽกโŽฃ โŽคโŽฆร— N s 2 โ‹… kg mโ‹… ร—= y' 1.9m= For part (b) we know psg 0.3 atmโ‹…= . Substituting into (1) we get: FR 1 mโ‹… 0.3 atmโ‹… 1.013 10 5 ร— Nโ‹… m 2 atmโ‹… ร— 1.5ร— mโ‹… 1 2 999ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 1.5 mโ‹…( ) 2 2 1.5ร— mโ‹… 1ร— mโ‹…+โŽกโŽฃ โŽคโŽฆร— N s 2 โ‹… kg mโ‹… ร—+ โŽก โŽข โŽข โŽฃ โŽค โŽฅ โŽฅ โŽฆ ร—= FR 71.3 kNโ‹…= Substituting into (2) for the line of action we get: y' 1 mโ‹… 0.3 atmโ‹… 2 1.013 10 5 ร— Nโ‹… m 2 atmโ‹… ร— 1.5( ) 2 2 1.5โ‹… 1โ‹…+โŽกโŽฃ โŽคโŽฆร— m 2 โ‹… 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 3 1.5( ) 3 3 1.5โ‹… 1โ‹… 1.5 1+( )โ‹…+โŽกโŽฃ โŽคโŽฆร— m 3 โ‹… N s 2 โ‹… kg mโ‹… ร—+ โŽก โŽข โŽข โŽข โŽฃ โŽค โŽฅ โŽฅ โŽฅ โŽฆ ร— 71.3 10 3 ร— Nโ‹… = y' 1.789m= The value of F/Fo is obtained from Eq. (1) and our result from part (a): F Fo b psg aโ‹… ฯ gโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… ฯ gโ‹… bโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹… = 1 2 psgโ‹… ฯ gโ‹… a 2 cโ‹…+( )โ‹… += For the gate yc c a 2 += Therefore, the value of y'/yc is obtained from Eqs. (1) and (2): y' yc 2 bโ‹… FR 2 cโ‹… a+( )โ‹… psg 2 a 2 2 aโ‹… cโ‹…+( ) ฯ gโ‹… 3 a 3 3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= 2 bโ‹… 2 cโ‹… a+( ) psg 2 a 2 2 aโ‹… cโ‹…+( ) ฯ gโ‹… 3 a 3 3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ b psg aโ‹… ฯ gโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹…+โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…=
  • 54. Simplifying this expression we get: y' yc 2 2 cโ‹… a+( ) psg 2 a 2 2 aโ‹… cโ‹…+( ) ฯ gโ‹… 3 a 3 3 aโ‹… cโ‹… a c+( )โ‹…+โŽกโŽฃ โŽคโŽฆโ‹…+ psg aโ‹… ฯ gโ‹… 2 a 2 2 aโ‹… cโ‹…+( )โ‹…+ โ‹…= Based on these expressions we see that the force on the gate varies linearly with the increase in surface pressure, and that the line of action of the resultant is always below the centroid of the gate. As the pressure increases, however, the line of action moves closer to the centroid. Plots of both ratios are shown below: 0 1 2 3 4 5 0 10 20 30 40 Force Ratio vs. Surface Pressure Surface Pressure (atm) ForceRatioF/Fo 0 1 2 3 4 5 1 1.01 1.02 1.03 1.04 1.05 Line of Action Ratio vs. Surface Pressure Surface Pressure (atm) LineofActionRatioy'/yc
  • 55. Problem 3.48 [Difficulty: 5] Discussion: The design requirements are specified except that a typical floor height is about 12 ft, making the total required lift about 36 ft. A spreadsheet was used to calculate the system properties for various pressures. Results are presented on the next page, followed by a sample calculation. Total cost dropped quickly as system pressure was increased. A shallow minimum was reached in the 100-110 psig range. The lowest-cost solution was obtained at a system pressure of about 100 psig. At this pressure, the reservoir of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in wall thickness. The welding cost was $155 and the material cost $433, for a total cost of $588. Accumulator wall thickness was constrained at 0.250 in for pressures below 100 psi; it increased for higher pressures (this caused the discontinuity in slope of the curve at 100 psig). The mass of steel became constant above 110 psig. No allowance was made for the extra volume needed to pressurize the accumulator. Fail-safe design is essential for an elevator to be used by the public. The control circuitry should be redundant. Failures must be easy to spot. For this reason, hydraulic actuation is good: leaks will be readily apparent. The final design must be reviewed, approved, and stamped by a professional engineer since the design involves public safety. The terminology used in the solution is defined in the following table: Symbol Definition Units p System pressure psig Ap Area of lift piston in2 Voil Volume of oil gal Ds Diameter of spherical accumulator ft t Wall thickness of accumulator in Aw Area of weld in2 Cw Cost of weld $ Ms Mass of steel accumulator lbm Cs Cost of steel $ Ct Total Cost $ A sample calculation and the results of the system simulation in Excel are presented below. Problem 3.40 3.40
  • 57. Results of system simulation:
  • 58. Problem 3.50 [Difficulty: 3] FA H = 25 ft yR = 10 ft h A B z x y Given: Geometry of gate Find: Force FA for equilibrium Solution: Basic equation FR Ap โŒ  โŽฎ โŽฎ โŒก d= dp dh ฯ gโ‹…= ฮฃMz 0= or, use computing equations FR pc Aโ‹…= y' yc Ixx A ycโ‹… += where y would be measured from the free surface Assumptions: static fluid; ฯ = constant; patm on other side; door is in equilibrium Instead of using either of these approaches, we note the following, using y as in the sketch ฮฃMz 0= FA Rโ‹… Ay pโ‹… โŒ โŽฎ โŽฎ โŒก d= with p ฯ gโ‹… hโ‹…= (Gage pressure, since p = patm on other side) FA 1 R Ay ฯโ‹… gโ‹… hโ‹… โŒ โŽฎ โŽฎ โŒก dโ‹…= with dA r drโ‹… dฮธโ‹…= and y r sin ฮธ( )โ‹…= h H yโˆ’= Hence FA 1 R 0 ฯ€ ฮธ 0 R rฯ gโ‹… rโ‹… sin ฮธ( )โ‹… H r sin ฮธ( )โ‹…โˆ’( )โ‹… rโ‹… โŒ  โŽฎ โŒก d โŒ  โŽฎ โŒก dโ‹…= ฯ gโ‹… R 0 ฯ€ ฮธ H R 3 โ‹… 3 sin ฮธ( )โ‹… R 4 4 sin ฮธ( ) 2 โ‹…โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โŒ  โŽฎ โŽฎ โŒก dโ‹…= FR ฯ gโ‹… R 2 Hโ‹… R 3 โ‹… 3 ฯ€ R 4 โ‹… 8 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= ฯ gโ‹… 2 Hโ‹… R 2 โ‹… 3 ฯ€ R 3 โ‹… 8 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= Using given data FR 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 2 3 25ร— ftโ‹… 10 ftโ‹…( ) 2 ร— ฯ€ 8 10 ftโ‹…( ) 3 ร—โˆ’โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ ร— lbf s 2 โ‹… slug ftโ‹… ร—= FR 7.96 10 4 ร— lbfโ‹…= Problem 3.41 3.41
  • 59. Problem 3.42 (Difficulty: 2) 3.42 A circular gate 3 ๐‘š in diameter has its center 2.5 ๐‘š below a water surface and lies in a plane sloping at 60ยฐ. Calculate magnitude, direction and location of total force on the gate. Find: The direction, magnitude of the total force ๐น. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the surface of the liquid: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ ๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘ ๐‘ฆโ€ฒ ๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘ For the magnitude of the force we have: ๐น = ๏ฟฝ ๐‘๐‘๐‘ ๐ด A free body diagram of the gate is The pressure on the gate is the pressure at the centroid, which is yc = 2.5 m. So the force can be calculated as: ๐น = ๐œŒ๐œŒโ„Ž ๐‘ ๐ด = 999 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 2.5 ๐‘š ร— ๐œ‹ 4 ร— (3 ๐‘š)2 = 173200 ๐‘ = 173.2 ๐‘˜๐‘˜ The direction is perpendicular to the gate.
  • 60. For the location of the force we have: ๐‘ฆโ€ฒ = ๐‘ฆ๐‘ + ๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ ๐ด๐‘ฆ๐‘ The y axis is along the plate so the distance to the centroid is: ๐‘ฆ๐‘ = 2.5 ๐‘š sin 60ยฐ = 2.89 ๐‘š The area moment of inertia is ๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ = ๐œ‹๐ท4 64 = ๐œ‹ 64 ร— (3 ๐‘š)4 = 3.976 ๐‘š4 The area is ๐ด = ๐œ‹ 4 ๐ท2 = ๐œ‹ 4 ร— (3 ๐‘š)2 = 7.07 ๐‘š2 So ๐‘ฆโ€ฒ = 2.89 ๐‘š + 3.976 ๐‘š4 7.07 ๐‘š2 ร— 2.89 ๐‘š = 2.89 ๐‘š + 0.1946 ๐‘š = 3.08 ๐‘š The vertical location on the plate is โ„Žโ€ฒ = ๐‘ฆโ€ฒ sin 60ยฐ = 3.08 ๐‘š ร— โˆš3 2 = 2.67 ๐‘š The force acts on the point which has the depth of 2.67 ๐‘š.
  • 61. Problem 3.43 (Difficulty: 2) 3.43 For the situation shown, find the air pressure in the tank in psi. Calculate the force exerted on the gate at the support B if the gate is 10 ๐‘“๐‘“ wide. Show a free body diagram of the gate with all the forces drawn in and their points of application located. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure and force, and the static relation for moments: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ The specfic weight for water is: ๐›พ = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 The pressure of the air equals that at the surface of the water in the tank. As shown by the manometer, the pressure at the surface is less than atmospheric due to the three foot head of water. The gage pressure of the air is then: ๐‘ ๐‘Ž๐‘Ž๐‘Ž = โˆ’๐›พโ„Ž = โˆ’62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 3๐‘“๐‘“ = โˆ’187.2 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 A free body diagram for the gate is
  • 62. For the force in the horizontal direction, we have: ๐น1 = ๐›พโ„Ž ๐‘ ๐ด = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 3 ๐‘“๐‘“ ร— (6 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 11230 ๐‘™๐‘™๐‘™ ๐น2 = ๐‘ ๐‘Ž๐‘Ž๐‘Ž ๐ด = โˆ’187.2 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 ร— (8 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 14980 ๐‘™๐‘™๐‘™ With the momentume balance about hinge we have: ๏ฟฝ ๐‘€ = ๐น1โ„Ž ๐‘ โˆ’ ๐‘ƒโ„Ž โˆ’ ๐น2 โ„Ž 2 = 11230 ๐‘™๐‘™๐‘™ ร— 6๐‘“๐‘“ โˆ’ ๐‘ƒ ร— 8๐‘“๐‘“ โˆ’ 14980 ๐‘™๐‘™๐‘™ ร— 4๐‘“๐‘“ = 0 So the force exerted on B is: ๐‘ƒ = 933 ๐‘™๐‘™๐‘™
  • 63. Problem 3.44 (Difficulty: 3) 3.44 What is the pressure at A? Draw a free body diagram of the 10 ft wide gate showing all forces and locations of their lines of action. Calculate the minimum force ๐‘ƒ necessary to keep the gate closed. Given: All the parameters are shown in the figure. Find: The pressure ๐‘ ๐ด. The minimum force ๐‘ƒ necessary to keep the gate closed. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the surface of the liquid: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ ๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘ ๐‘ฆโ€ฒ ๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘ The specfic weight of the water is: ๐›พ ๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 The gage pressure at A is given by integrating the hydrostatic relation: ๐‘ ๐ด = ๐›พ ๐‘œ๐‘œ๐‘œโ„Ž ๐ด = ๐‘†๐‘†๐›พ ๐‘œ๐‘–๐‘–โ„Ž ๐ด = 0.9 ร— 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 6 ๐‘“๐‘“ = 337 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2
  • 64. A free body diagram of the gate is The horizontal force F1 as shown in the figure is given by the pressure at the centroid of the submerged area (3 ft): ๐น1 = ๐›พ ๐‘œ๐‘œ๐‘œโ„Ž ๐‘ ๐ด = 0.9 ร— 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 3 ๐‘“๐‘“ ร— (6 ๐‘“๐‘“ ร— 10 ๐‘“๐‘“) = 10110 ๐‘™๐‘™๐‘™ The vertical force F2 is given by the pressure at the depth of the surface (4 ft) ๐น2 = ๐‘ ๐ด ๐ด = 337 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 ร— (4๐‘“๐‘“ ร— 10๐‘“๐‘“) = 13480 ๐‘™๐‘™๐‘™ The force F1 acts two-thirds of the distance down from the water surface and the force F2 acts at the centroid.. Taking the moments about the hinge: โˆ’๐น1 ร— 6 ๐‘“๐‘“โˆ’๐น2 ร— 2 ๐‘“๐‘“ + ๐‘ƒ ร— 4 ๐‘“๐‘“ = 0 So we have for the force at the support: ๐‘ƒ = 10110 ๐‘™๐‘™๐‘™ ร— 6๐‘“๐‘“ + 13480 ๐‘™๐‘™๐‘™ ร— 2๐‘“๐‘“ 4 ๐‘“๐‘“ = 21900 ๐‘™๐‘™๐‘™
  • 65. Problem 3.52 [Difficulty: 3] Given: Geometry of plane gate W h L = 3 m dF y L/2 w = 2 m Find: Minimum weight to keep it closed Solution: Basic equation FR Ap โŒ  โŽฎ โŽฎ โŒก d= dp dh ฯ gโ‹…= ฮฃMO 0= or, use computing equations FR pc Aโ‹…= y' yc Ixx A ycโ‹… += Assumptions: static fluid; ฯ = constant; patm on other side; door is in equilibrium Instead of using either of these approaches, we note the following, using y as in the sketch ฮฃMO 0= W L 2 โ‹… cos ฮธ( )โ‹… Fy โŒ โŽฎ โŽฎ โŒก d= We also have dF p dAโ‹…= with p ฯ gโ‹… hโ‹…= ฯ gโ‹… yโ‹… sin ฮธ( )โ‹…= (Gage pressure, since p = patm on other side) Hence W 2 L cos ฮธ( )โ‹… Ay pโ‹… โŒ โŽฎ โŽฎ โŒก dโ‹…= 2 L cos ฮธ( )โ‹… yy ฯโ‹… gโ‹… yโ‹… sin ฮธ( )โ‹… wโ‹… โŒ โŽฎ โŽฎ โŒก dโ‹…= W 2 L cos ฮธ( )โ‹… Ay pโ‹… โŒ โŽฎ โŽฎ โŒก dโ‹…= 2 ฯโ‹… gโ‹… wโ‹… tan ฮธ( )โ‹… L 0 L yy 2โŒ  โŽฎ โŒก dโ‹…= 2 3 ฯโ‹… gโ‹… wโ‹… L 2 โ‹… tan ฮธ( )โ‹…= Using given data W 2 3 1000โ‹… kg m 3 โ‹… 9.81ร— m s 2 โ‹… 2ร— mโ‹… 3 mโ‹…( ) 2 ร— tan 30 degโ‹…( )ร— N s 2 โ‹… kg mโ‹… ร—= W 68 kNโ‹…= Problem 3.45 3.45
  • 66. Problem 3.54 [Difficulty: 3] Given: Gate geometry Find: Depth H at which gate tips Solution: This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H) y' yc Ixx A ycโ‹… += and Ixx w L 3 โ‹… 12 = with yc H L 2 โˆ’= where L = 1 m is the plate height and w is the plate width Hence y' H L 2 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  w L 3 โ‹… 12 wโ‹… Lโ‹… H L 2 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… += H L 2 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  L 2 12 H L 2 โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… += But for equilibrium, the center of force must always be at or below the level of the hinge so that the stop can hold the gate in place. Hence we must have y' H 0.45 mโ‹…โˆ’> Combining the two equations H L 2 โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  L 2 12 H L 2 โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… + H 0.45 mโ‹…โˆ’โ‰ฅ Solving for H H L 2 L 2 12 L 2 0.45 mโ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… +โ‰ค H 1 mโ‹… 2 1 mโ‹…( ) 2 12 1 mโ‹… 2 0.45 mโ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร— +โ‰ค H 2.17 mโ‹…โ‰ค Problem 3.46 3.46
  • 67. Problem 3.56 [Difficulty: 3] Ry Rx FR Fn Given: Geometry of lock system Find: Force on gate; reactions at hinge Solution: Basic equation FR Ap โŒ  โŽฎ โŽฎ โŒก d= dp dh ฯ gโ‹…= or, use computing equation FR pc Aโ‹…= Assumptions: static fluid; ฯ = constant; patm on other side The force on each gate is the same as that on a rectangle of size h D= 10 mโ‹…= and w W 2 cos 15 degโ‹…( )โ‹… = FR Ap โŒ  โŽฎ โŽฎ โŒก d= Aฯ gโ‹… yโ‹… โŒ  โŽฎ โŽฎ โŒก d= but dA w dyโ‹…= Hence FR 0 h yฯ gโ‹… yโ‹… wโ‹… โŒ  โŽฎ โŒก d= ฯ gโ‹… wโ‹… h 2 โ‹… 2 = Alternatively FR pc Aโ‹…= and FR pc Aโ‹…= ฯ gโ‹… ycโ‹… Aโ‹…= ฯ gโ‹… h 2 โ‹… hโ‹… wโ‹…= ฯ gโ‹… wโ‹… h 2 โ‹… 2 = Using given data FR 1 2 1000โ‹… kg m 3 โ‹… 9.81ร— m s 2 โ‹… 34 mโ‹… 2 cos 15 degโ‹…( )โ‹… ร— 10 mโ‹…( ) 2 ร— N s 2 โ‹… kg mโ‹… ร—= FR 8.63 MNโ‹…= For the force components Rx and Ry we do the following ฮฃMhinge 0= FR w 2 โ‹… Fn wโ‹… sin 15 degโ‹…( )โ‹…โˆ’= Fn FR 2 sin 15 degโ‹…( )โ‹… = Fn 16.7 MNโ‹…= ฮฃFx 0= FR cos 15 degโ‹…( )โ‹… Rxโˆ’= 0= Rx FR cos 15 degโ‹…( )โ‹…= Rx 8.34 MNโ‹…= ฮฃFy 0= Ryโˆ’ FR sin 15 degโ‹…( )โ‹…โˆ’ Fn+= 0= Ry Fn FR sin 15 degโ‹…( )โ‹…โˆ’= Ry 14.4 MNโ‹…= R 8.34 MNโ‹… 14.4 MNโ‹…,( )= R 16.7 MNโ‹…= Problem 3.47 3.47
  • 68. Problem 3.48 (Difficulty: 2) 3.48 Calculate the minimum force ๐‘ƒ necessary to hold a uniform 12 ๐‘“๐‘“ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  gate weighing 500 ๐‘™๐‘™๐‘™closed on a tank of water under a pressure of 10 ๐‘๐‘๐‘. Draw a free body of the gate as part of your solution. Given: All the parameters are shown in the figure. Find: The minimum force ๐‘ƒ to hold the system. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the surface of the liquid: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ ๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘ ๐‘ฆโ€ฒ ๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘ A free body diagram of the gate is
  • 69. The gage pressure of the air in the tank is: ๐‘ ๐‘Ž๐‘Ž๐‘Ž = 10 ๐‘๐‘๐‘ = 1440 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 This produces a uniform force on the gate of ๐น1 = ๐‘ ๐‘Ž๐‘Ž๐‘Ž ๐ด = 1440 ๐‘™๐‘™๐‘™ ๐‘“๐‘“2 ร— (12 ๐‘“๐‘“ ร— 12 ๐‘“๐‘“) = 207360 ๐‘™๐‘™๐‘™ This pressure acts at the centroid of the area, which is the center of the gate. In addition, there is a force on the gate applied by water. This force is due to the pressure at the centroid of the area. The depth of the centroid is: ๐‘ฆ๐‘ = 12 ๐‘“๐‘“ 2 ร— sin 45ยฐ The force is them ๐น2 = ๐›พโ„Ž ๐‘ ๐ด = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— 12 ๐‘“๐‘“ 2 ร— sin 45ยฐ ร— 12 ๐‘“๐‘“ ร— 12 ๐‘“๐‘“ = 38123 ๐‘™๐‘™๐‘™ The force F2 acts two-thirds of the way down from the hinge, or ๐‘ฆโ€ฒ = 8 ๐‘“๐‘“. Take the moments about the hinge: โˆ’๐น๐ต ๐ฟ 2 sin 45ยฐ + ๐น1 ๐ฟ 2 + ๐น2 ร— 8 ๐‘“๐‘“ โˆ’ ๐‘ƒ ร— 12 ๐‘“๐‘“ = 0 Thus ๐‘ƒ = โˆ’500 ๐‘™๐‘™๐‘™ ร— 6 ๐‘“๐‘“ ร— sin 45ยฐ + 207360 ๐‘™๐‘™๐‘™ ร— 6 ๐‘“๐‘“ + 38123 ๐‘™๐‘™๐‘™ ร— 8 ๐‘“๐‘“ 12 ๐‘“๐‘“ = 128900 ๐‘™๐‘™๐‘™
  • 70. Problem 3.49 (Difficulty: 2) 3.49 Calculate magnitude and location of the resultant force of water on this annular gate. Given: All the parameters are shown in the figure. Find: Resultant force of water on this annular gate. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the surface of the liquid: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ ๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘ ๐‘ฆโ€ฒ ๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘ For the magnitude of the force we have: ๐น = ๏ฟฝ ๐‘๐‘๐‘ ๐ด = ๐œŒ๐œŒโ„Ž ๐‘ ๐ด The pressure is determined at the location of the centroid of the area โ„Ž ๐‘ = 1 ๐‘š + 1.5 ๐‘š = 2.5 ๐‘š ๐ด = ๐œ‹ 4 (๐ท2 2 โˆ’ ๐ท1 2) = ๐œ‹ 4 ((3 ๐‘š)2 โˆ’ (1.5 ๐‘š)2) = 5.3014 ๐‘š2 ๐น = 999 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 2.5 ๐‘š ร— 5.3014 ๐‘š2 = 129900 ๐‘ = 129.9 ๐‘˜๐‘˜ The y axis is in the vertical direction. For the location of the force, we have:
  • 71. ๐‘ฆโ€ฒ = ๐‘ฆ๐‘ + ๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ ๐ด๐‘ฆ๐‘ Where: ๐‘ฆ๐‘ = 2.5 ๐‘š ๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ = ๐œ‹(๐ท2 4 โˆ’ ๐ท1 4) 64 = ๐œ‹ 64 ร— ((3 ๐‘š)4 โˆ’ (1.5 ๐‘š)4) = 3.7276 ๐‘š4 ๐‘ฆโ€ฒ = ๐‘ฆ๐‘ + ๐ผ ๐‘ฅ๏ฟฝ๐‘ฅ๏ฟฝ ๐ด๐‘ฆ๐‘ = 2.5 ๐‘š + 3.7276 ๐‘š4 2.5 ๐‘š ร— 5.3014 ๐‘š2 = 2.78 ๐‘š So the force acts on the depth of ๐‘ฆโ€ฒ = 2.78 ๐‘š.
  • 72. Problem 3.50 (Difficulty: 2) 3.50 A vertical rectangular gate 2.4 ๐‘š wide and 2.7 ๐‘š high is subjected to water pressure on one side, the water surface being at the top of the gate. The gate is hinged at the bottom and is held by a horizontal chain at the top. What is the tension in the chain? Given: The gate wide: ๐‘ค = 2.4 ๐‘š. Height of the gate: โ„Ž = 2.7 ๐‘š. Find: The tension ๐น๐‘ in the chain. Assumptions: Fluid is static and incompressible Solution: Apply the hydrostatic relations for pressure, force, and moments, with y measured from the surface of the liquid: ๐‘‘๐‘‘ ๐‘‘๐‘‘ = ๐œŒ ๐‘” = ๐›พ ๐น๐‘… = ๏ฟฝ ๐‘ ๐‘‘๐‘‘ ๐‘ฆโ€ฒ ๐น๐‘… = ๏ฟฝ ๐‘ฆ ๐‘ ๐‘‘๐‘‘ For the magnitude of the force we have: ๐น = ๏ฟฝ ๐‘๐‘๐‘ ๐ด = ๐œŒ๐œŒโ„Ž ๐‘ ๐ด Where hc is the depth at the centroid โ„Ž ๐‘ = 2.7 ๐‘š 2 = 1.35 ๐‘š ๐ด = ๐‘คโ„Ž = 2.4 ๐‘š ร— 2.7 ๐‘š = 6.48 ๐‘š2
  • 73. ๐น = 999 ๐‘˜๐‘˜ ๐‘š3 ร— 9.81 ๐‘š ๐‘ 2 ร— 1.35 ๐‘š ร— 6.48 ๐‘š2 = 85.7 ๐‘˜๐‘˜ The y axis is in the vertical direction. For the location of the force, we have: โ„Ž ๐‘ = 2 3 ร— 2.7 ๐‘š = 1.8 ๐‘š Taking the momentum about the hinge: ๐น๏ฟฝโ„Ž โˆ’ โ„Ž ๐‘๏ฟฝ โˆ’ ๐น๐‘โ„Ž = 0 ๐น๐‘ = ๐น ๏ฟฝโ„Ž โˆ’ โ„Ž ๐‘๏ฟฝ โ„Ž = 85.7 ๐‘˜๐‘˜ ร— 0.9 ๐‘š 2.7 ๐‘š = 28.6 ๐‘˜๐‘˜
  • 74. Problem 3.58 [Difficulty: 4] Given: Window, in shape of isosceles triangle and hinged at the top is located in the vertical wall of a form that contains concrete. a 0.4 mโ‹…= b 0.3 mโ‹…= c 0.25 mโ‹…= SGc 2.5= (From Table A.1, App. A) Find: The minimum force applied at D needed to keep the window closed. Plot the results over the range of concrete depth between 0 and a. Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) FR Ap โŒ  โŽฎ โŽฎ โŒก d= (Hydrostatic Force on door) y' FRโ‹… Ay pโ‹… โŒ  โŽฎ โŽฎ โŒก d= (First moment of force) ฮฃM 0= (Rotational equilibrium) d dA h aw b D Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts at free surface and on the outside of the window. Integrating the pressure equation yields: p ฯ gโ‹… h dโˆ’( )โ‹…= for h > d p 0= for h < d where d a cโˆ’= d 0.15 mโ‹…= Summing moments around the hinge: FDโˆ’ aโ‹… Ah pโ‹… โŒ โŽฎ โŽฎ โŒก d+ 0= FD dF = pdA h a FD 1 a Ah pโ‹… โŒ โŽฎ โŽฎ โŒก dโ‹…= 1 a d a hh ฯโ‹… gโ‹… h dโˆ’( )โ‹… wโ‹… โŒ  โŽฎ โŒก dโ‹…= ฯ gโ‹… a d a hh h dโˆ’( )โ‹… wโ‹… โŒ  โŽฎ โŒก dโ‹…= From the law of similar triangles: w b a hโˆ’ a = Therefore: w b a a hโˆ’( )= Problem 3.51 3.51
  • 75. Into the expression for the force at D: FD ฯ gโ‹… a d a h b a hโ‹… h dโˆ’( )โ‹… a hโˆ’( )โ‹… โŒ  โŽฎ โŽฎ โŒก dโ‹…= ฯ gโ‹… bโ‹… a 2 d a hh 3 โˆ’ a d+( ) h 2 โ‹…+ a dโ‹… hโ‹…โˆ’โŽกโŽฃ โŽคโŽฆ โŒ  โŽฎ โŒก dโ‹…= Evaluating this integral we get: FD ฯ gโ‹… bโ‹… a 2 a 4 d 4 โˆ’( ) 4 โˆ’ a d+( ) a 3 d 3 โˆ’( )โ‹… 3 + a dโ‹… a 2 d 2 โˆ’( )โ‹… 2 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= and after collecting terms: FD ฯ gโ‹… bโ‹… a 2 โ‹… 1 4 โˆ’ 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  4 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… 1 3 1 d a + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  3 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…+ 1 2 d a โ‹… 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= 1( ) The density of the concrete is: ฯ 2.5 1000ร— kg m 3 โ‹…= ฯ 2.5 10 3 ร— kg m 3 = d a 0.15 0.4 = 0.375= Substituting in values for the force at D: FD 2.5 10 3 ร— kg m 3 โ‹… 9.81โ‹… m s 2 โ‹… 0.3โ‹… mโ‹… 0.4 mโ‹…( ) 2 โ‹… 1 4 โˆ’ 1 0.375( ) 4 โˆ’โŽกโŽฃ โŽคโŽฆโ‹… 1 3 1 0.375+( )โ‹… 1 0.375( ) 3 โˆ’โŽกโŽฃ โŽคโŽฆโ‹…+ 0.375 2 1 0.375( ) 2 โˆ’โŽกโŽฃ โŽคโŽฆโ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… N s 2 โ‹… kg mโ‹… ร—= To plot the results for different values of c/a, we use Eq. (1) and remember that d a cโˆ’= FD 32.9N= Therefore, it follows that d a 1 c a โˆ’= In addition, we can maximize the force by the maximum force (when c = a or d = 0): Fmax ฯ gโ‹… bโ‹… a 2 โ‹… 1 4 โˆ’ 1 3 + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= ฯ gโ‹… bโ‹… a 2 โ‹… 12 = and so FD Fmax 12 1 4 โˆ’ 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  4 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹… 1 3 1 d a + โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  3 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…+ 1 2 d a โ‹… 1 d a โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Concrete Depth Ratio (c/a) ForceRatio(FD/Fmax)
  • 76. Problem 3.60 [Difficulty: 2] Given: Plug is used to seal a conduit. ฮณ 62.4 lbf ft 3 โ‹…= Find: Magnitude, direction and location of the force of water on the plug. Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฮณ= (Hydrostatic Pressure - y is positive downwards) FR pc Aโ‹…= (Hydrostatic Force) y' yc Ixx A ycโ‹… += (Location of line of action) Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts on the outside of the plug. Integrating the hydrostatic pressure equation: p ฮณ hโ‹…= FR pc Aโ‹…= ฮณ hcโ‹… ฯ€ 4 โ‹… D 2 โ‹…= FR 62.4 lbf ft 3 โ‹… 12ร— ftโ‹… ฯ€ 4 ร— 6 ftโ‹…( ) 2 ร—= FR 2.12 10 4 ร— lbfโ‹…= For a circular area: Ixx ฯ€ 64 D 4 โ‹…= Therefore: y' yc ฯ€ 64 D 4 โ‹… ฯ€ 4 D 2 โ‹… ycโ‹… += yc D 2 16 ycโ‹… += y' 12 ftโ‹… 6 ftโ‹…( ) 2 16 12ร— ftโ‹… += y' 12.19 ftโ‹…= The force of water is to the right and perpendicular to the plug. Problem 3.52 3.52
  • 77. Problem 3.62 [Difficulty: 2] Given: Circular access port of known diameter in side of water standpipe of known diameter. Port is held in place by eight bolts evenly spaced around the circumference of the port. Center of the port is located at a know distance below the free surface of the water. d 0.6 mโ‹…= D 7 mโ‹…= L 12 mโ‹…= Find: (a) Total force on the port (b) Appropriate bolt diameter Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - y is positive downwards) d L D h FR pc Aโ‹…= (Hydrostatic Force) ฯƒ F A = (Normal Stress in bolt) Assumptions: (1) Static fluid (2) Incompressible fluid (3) Force is distributed evenly over all bolts (4) Appropriate working stress in bolts is 100 MPa (5) Atmospheric pressure acts at free surface of water and on outside of port. Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…= The resultant force on the port is: FR pc Aโ‹…= ฯ gโ‹… Lโ‹… ฯ€ 4 โ‹… d 2 โ‹…= FR 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 12ร— mโ‹… ฯ€ 4 ร— 0.6 mโ‹…( ) 2 ร— N s 2 โ‹… kg mโ‹… ร—= FR 33.3 kNโ‹…= To find the bolt diameter we consider: ฯƒ FR A = where A is the area of all of the bolts: A 8 ฯ€ 4 ร— db 2 โ‹…= 2 ฯ€โ‹… db 2 โ‹…= Therefore: 2 ฯ€โ‹… db 2 โ‹… FR ฯƒ = Solving for the bolt diameter we get: db FR 2 ฯ€โ‹… ฯƒโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  1 2 = db 1 2 ฯ€ร— 33.3ร— 10 3 ร— Nโ‹… 1 100 10 6 ร— ร— m 2 N โ‹… โŽ› โŽœ โŽœ โŽ โŽž โŽŸ โŽŸ โŽ  1 2 10 3 mmโ‹… m ร—= db 7.28 mmโ‹…= Problem 3.53 3.53
  • 78. Problem 3.64 [Difficulty: 3] Given: Gate AOC, hinged along O, has known width; Weight of gate may be neglected. Gate is sealed at C. b 6 ftโ‹…= Find: Force in bar AB Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) FR pc Aโ‹…= (Hydrostatic Force) y' yc Ixx A ycโ‹… += (Location of line of action) ฮฃMz 0= (Rotational equilibrium) F1 h1โ€™ F2 L1 L2 x2โ€™ FAB L1 Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts at free surface of water and on outside of gate (4) No resisting moment in hinge at O (5) No vertical resisting force at C Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…= The free body diagram of the gate is shown here: F1is the resultant of the distributed force on AO F2is the resultant of the distributed force on OC FAB is the force of the bar Cx is the sealing force at C First find the force on AO: F1 pc A1โ‹…= ฯ gโ‹… hc1โ‹… bโ‹… L1โ‹…= F1 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 6ร— ftโ‹… 6ร— ftโ‹… 12ร— ftโ‹… lbf s 2 โ‹… slugftโ‹… ร—= F1 27.0 kipโ‹…= Problem 3.54 3.54
  • 79. h'1 hc1 Ixx A hc1โ‹… += hc1 b L1 3 โ‹… 12 bโ‹… L1โ‹… hc1โ‹… += hc1 L1 2 12 hc1โ‹… += h'1 6 ftโ‹… 12 ftโ‹…( ) 2 12 6ร— ftโ‹… += h'1 8 ftโ‹…= Next find the force on OC: F2 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 12ร— ftโ‹… 6ร— ftโ‹… 6ร— ftโ‹… lbf s 2 โ‹… slug ftโ‹… ร—= F2 27.0 kipโ‹…= F1 h1โ€™ F2 L1 L2 x2โ€™ FAB L1 Since the pressure is uniform over OC, the force acts at the centroid of OC, i.e., x'2 3 ftโ‹…= Summing moments about the hinge gives: FAB L1 L3+( )โ‹… F1 L1 h'1โˆ’( )โ‹…โˆ’ F2 x'2โ‹…+ 0= Solving for the force in the bar: FAB F1 L1 h'1โˆ’( )โ‹… F2 x'2โ‹…โˆ’ L1 L3+ = Substituting in values: FAB 1 12 ftโ‹… 3 ftโ‹…+ 27.0 10 3 ร— lbfโ‹… 12 ftโ‹… 8 ftโ‹…โˆ’( )ร— 27.0 10 3 ร— lbfโ‹… 3ร— ftโ‹…โˆ’โŽกโŽฃ โŽคโŽฆโ‹…= FAB 1800 lbfโ‹…= Thus bar AB is in compression
  • 80. Problem 3.66 [Difficulty: 3] Given: Geometry of gate h D FR y FA yโ€™ Find: Force at A to hold gate closed Solution: Basic equation dp dh ฯ gโ‹…= ฮฃMz 0= Computing equations FR pc Aโ‹…= y' yc Ixx A ycโ‹… += Ixx w L 3 โ‹… 12 = Assumptions: Static fluid; ฯ = constant; patm on other side; no friction in hinge For incompressible fluid p ฯ gโ‹… hโ‹…= where p is gage pressure and h is measured downwards The hydrostatic force on the gate is that on a rectangle of size L and width w. Hence FR pc Aโ‹…= ฯ gโ‹… hcโ‹… Aโ‹…= ฯ gโ‹… D L 2 sin 30 degโ‹…( )โ‹…+ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… Lโ‹… wโ‹…= FR 1000 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 1.5 3 2 sin 30 degโ‹…( )+ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร— mโ‹… 3ร— mโ‹… 3ร— mโ‹… N s 2 โ‹… kg mโ‹… ร—= FR 199 kNโ‹…= The location of this force is given by y' yc Ixx A ycโ‹… += where y' and y c are measured along the plane of the gate to the free surface yc D sin 30 degโ‹…( ) L 2 += yc 1.5 mโ‹… sin 30 degโ‹…( ) 3 mโ‹… 2 += yc 4.5m= y' yc Ixx A ycโ‹… += yc w L 3 โ‹… 12 1 w Lโ‹… โ‹… 1 yc โ‹…+= yc L 2 12 ycโ‹… += 4.5 mโ‹… 3 mโ‹…( ) 2 12 4.5โ‹… mโ‹… += y' 4.67m= Taking moments about the hinge ฮฃMH 0= FR y' D sin 30 degโ‹…( ) โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… FA Lโ‹…โˆ’= FA FR y' D sin 30 degโ‹…( ) โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  L โ‹…= FA 199 kNโ‹… 4.67 1.5 sin 30 degโ‹…( ) โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  3 โ‹…= FA 111 kNโ‹…= Problem 3.55 3.55
  • 81. Problem 3.68 [Difficulty: 4] Given: Various dam cross-sections Find: Which requires the least concrete; plot cross-section area A as a function of ฮฑ Solution: For each case, the dam width b has to be large enough so that the weight of the dam exerts enough moment to balance the moment due to fluid hydrostatic force(s). By doing a moment balance this value of b can be found a) Rectangular dam Straightforward application of the computing equations of Section 3-5 yields b D FH y mg O FH pc Aโ‹…= ฯ gโ‹… D 2 โ‹… wโ‹… Dโ‹…= 1 2 ฯโ‹… gโ‹… D 2 โ‹… wโ‹…= y' yc Ixx A ycโ‹… += D 2 w D 3 โ‹… 12 wโ‹… Dโ‹… D 2 โ‹… += 2 3 Dโ‹…= so y D y'โˆ’= D 3 = Also m ฯcement gโ‹… bโ‹… Dโ‹… wโ‹…= SG ฯโ‹… gโ‹… bโ‹… Dโ‹… wโ‹…= Taking moments about O M0.โˆ‘ 0= FHโˆ’ yโ‹… b 2 mโ‹… gโ‹…+= so 1 2 ฯโ‹… gโ‹… D 2 โ‹… wโ‹…โŽ› โŽœ โŽ โŽž โŽ  D 3 โ‹… b 2 SG ฯโ‹… gโ‹… bโ‹… Dโ‹… wโ‹…( )โ‹…= Solving for b b D 3 SGโ‹… = The minimum rectangular cross-section area is A b Dโ‹…= D 2 3 SGโ‹… = For concrete, from Table A.1, SG = 2.4, so A D 2 3 SGโ‹… = D 2 3 2.4ร— = A 0.373 D 2 โ‹…= Problem 3.56 3.56
  • 82. FH b ฮฑb D FV y x m1g m2g O b) Triangular dams Instead of analysing right-triangles, a general analysis is made, at the end of which right triangles are analysed as special cases by setting ฮฑ = 0 or 1. Straightforward application of the computing equations of Section 3-5 yields FH pc Aโ‹…= ฯ gโ‹… D 2 โ‹… wโ‹… Dโ‹…= 1 2 ฯโ‹… gโ‹… D 2 โ‹… wโ‹…= y' yc Ixx A ycโ‹… += D 2 w D 3 โ‹… 12 wโ‹… Dโ‹… D 2 โ‹… += 2 3 Dโ‹…= so y D y'โˆ’= D 3 = Also FV ฯ Vโ‹… gโ‹…= ฯ gโ‹… ฮฑ bโ‹… Dโ‹… 2 โ‹… wโ‹…= 1 2 ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…= x b ฮฑ bโ‹…โˆ’( ) 2 3 ฮฑโ‹… bโ‹…+= b 1 ฮฑ 3 โˆ’โŽ› โŽœ โŽ โŽž โŽ  โ‹…= For the two triangular masses m1 1 2 SGโ‹… ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…= x1 b ฮฑ bโ‹…โˆ’( ) 1 3 ฮฑโ‹… bโ‹…+= b 1 2 ฮฑโ‹… 3 โˆ’โŽ› โŽœ โŽ โŽž โŽ  โ‹…= m2 1 2 SGโ‹… ฯโ‹… gโ‹… 1 ฮฑโˆ’( )โ‹… bโ‹… Dโ‹… wโ‹…= x2 2 3 b 1 ฮฑโˆ’( )โ‹…= Taking moments about O M0.โˆ‘ 0= FHโˆ’ yโ‹… FV xโ‹…+ m1 gโ‹… x1โ‹…+ m2 gโ‹… x2โ‹…+= so 1 2 ฯโ‹… gโ‹… D 2 โ‹… wโ‹…โŽ› โŽœ โŽ โŽž โŽ  โˆ’ D 3 โ‹… 1 2 ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…โŽ› โŽœ โŽ โŽž โŽ  bโ‹… 1 ฮฑ 3 โˆ’โŽ› โŽœ โŽ โŽž โŽ  โ‹…+ 1 2 SGโ‹… ฯโ‹… gโ‹… ฮฑโ‹… bโ‹… Dโ‹… wโ‹…โŽ› โŽœ โŽ โŽž โŽ  bโ‹… 1 2 ฮฑโ‹… 3 โˆ’โŽ› โŽœ โŽ โŽž โŽ  โ‹… 1 2 SGโ‹… ฯโ‹… gโ‹… 1 ฮฑโˆ’( )โ‹… bโ‹… Dโ‹… wโ‹…โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ 2 3 โ‹… b 1 ฮฑโˆ’( )โ‹…++ ... 0= Solving for b b D 3 ฮฑโ‹… ฮฑ 2 โˆ’( ) SG 2 ฮฑโˆ’( )โ‹…+ = For a right triangle with the hypotenuse in contact with the water, ฮฑ = 1, and b D 3 1โˆ’ SG+ = D 3 1โˆ’ 2.4+ = b 0.477 Dโ‹…= The cross-section area is A b Dโ‹… 2 = 0.238 D 2 โ‹…= A 0.238 D 2 โ‹…= For a right triangle with the vertical in contact with the water, ฮฑ = 0, and
  • 83. b D 2 SGโ‹… = D 2 2.4โ‹… = b 0.456 Dโ‹…= The cross-section area is A b Dโ‹… 2 = 0.228 D 2 โ‹…= A 0.228 D 2 โ‹…= For a general triangle A b Dโ‹… 2 = D 2 2 3 ฮฑโ‹… ฮฑ 2 โˆ’( ) SG 2 ฮฑโˆ’( )โ‹…+โ‹… = A D 2 2 3 ฮฑโ‹… ฮฑ 2 โˆ’( ) 2.4 2 ฮฑโˆ’( )โ‹…+โ‹… = The final result is A D 2 2 4.8 0.6 ฮฑโ‹…+ ฮฑ 2 โˆ’โ‹… = The dimensionless area, A /D 2 , is plotted Alpha A /D 2 0.0 0.2282 0.1 0.2270 0.2 0.2263 0.3 0.2261 0.4 0.2263 0.5 0.2270 0.6 0.2282 0.7 0.2299 0.8 0.2321 0.9 0.2349 1.0 0.2384 Solver can be used to find the minimum area Alpha A /D 2 0.300 0.2261 Dam Cross Section vs Coefficient 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.240 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Coefficient DimensionlessAreaA/D2 From the Excel workbook, the minimum area occurs at ฮฑ = 0.3 Amin D 2 2 4.8 0.6 0.3ร—+ 0.3 2 โˆ’โ‹… = A 0.226 D 2 โ‹…= The final results are that a triangular cross-section with ฮฑ = 0.3 uses the least concrete; the next best is a right triangle with the vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and the cross-section requiring the most concrete is the rectangular cross-section.
  • 84. Problem 3.70 [Difficulty: 2] Given: Geometry of dam Find: Vertical force on dam Assumptions: (1) water is static and incompressible (2) since we are asked for the force of the water, all pressures will be written as gage Solution: Basic equation: dp dh ฯ gโ‹…= For incompressible fluid p ฯ gโ‹… hโ‹…= where p is gage pressure and h is measured downwards from the free surface The force on each horizontal section (depth d and width w) is F p Aโ‹…= ฯ gโ‹… hโ‹… dโ‹… wโ‹…= (Note that d and w will change in terms of x and y for each section of the dam!) Hence the total force is (allowing for the fact that some faces experience an upwards (negative) force) FT p Aโ‹…= ฮฃฯ gโ‹… hโ‹… dโ‹… wโ‹…= ฯ gโ‹… dโ‹… ฮฃโ‹… h wโ‹…= Starting with the top and working downwards FT 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 3ร— ftโ‹… 3 ftโ‹… 12ร— ftโ‹…( ) 3 ftโ‹… 6ร— ftโ‹…( )+ 9 ftโ‹… 6ร— ftโ‹…( )โˆ’ 12 ftโ‹… 12ร— ftโ‹…( )โˆ’[ ]ร— lbf s 2 โ‹… slug ftโ‹… ร—= FT 2.70โˆ’ 10 4 ร— lbfโ‹…= The negative sign indicates a net upwards force (it's actually a buoyancy effect on the three middle sections) Problem 3.57 3.57
  • 85. Problem 3.72 [Difficulty: 3] Given: Parabolic gate, hinged at O has a constant width. b 2 mโ‹…= c 0.25 m 1โˆ’ โ‹…= D 2 mโ‹…= H 3 mโ‹…= Find: (a) Magnitude and line of action of the vertical force on the gate due to water (b) Horizontal force applied at A required to maintain equilibrium (c) Vertical force applied at A required to maintain equilibrium Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards) ฮฃMz 0= (Rotational equilibrium) Fv Ayp โŒ  โŽฎ โŽฎ โŒก d= (Vertical Hydrostatic Force) x' Fvโ‹… Fvx โŒ  โŽฎ โŽฎ โŒก d= (Location of line of action) FH pc Aโ‹…= (Horizontal Hydrostatic Force) h' hc Ixx A hcโ‹… += (Location of line of action) Oy hโ€™ B xโ€™ x FV Ox FH y Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts at free surface of water and on outside of gate Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…= (a) The magnitude and line of action of the vertical component of hydrostatic force: Fv Ayp โŒ โŽฎ โŽฎ โŒก d= 0 D c xฯ gโ‹… hโ‹… bโ‹… โŒ  โŽฎ โŽฎ โŒก d= 0 D c xฯ gโ‹… D yโˆ’( )โ‹… b โŒ  โŽฎ โŽฎ โŒก d= 0 D c xฯ gโ‹… D c x 2 โ‹…โˆ’( )โ‹… b โŒ  โŽฎ โŽฎ โŒก d= ฯ gโ‹… bโ‹… 0 D c xD c x 2 โ‹…โˆ’( ) โŒ  โŽฎ โŽฎ โŒก dโ‹…= Evaluating the integral: Fv ฯ gโ‹… bโ‹… D 3 2 c 1 2 1 3 D 3 2 c 1 2 โ‹…โˆ’ โŽ› โŽœ โŽœ โŽœ โŽœ โŽ โŽž โŽŸ โŽŸ โŽŸ โŽŸ โŽ  โ‹…= 2 ฯโ‹… gโ‹… bโ‹… 3 D 3 2 c 1 2 โ‹…= 1( ) Problem 3.58 3.58
  • 86. Substituting values: Fv 2 3 999ร— kg m 3 โ‹… 9.81ร— m s 2 โ‹… 2ร— mโ‹… 2 mโ‹…( ) 3 2 ร— 1 0.25 mโ‹… โŽ› โŽœ โŽ โŽž โŽŸ โŽ  1 2 ร— N s 2 โ‹… kg mโ‹… ร—= Fv 73.9 kNโ‹…= To find the line of action of this force: x' Fvโ‹… Fvx โŒ  โŽฎ โŽฎ โŒก d= Therefore, x' 1 Fv Fvx โŒ  โŽฎ โŽฎ โŒก dโ‹…= 1 Fv Ayx pโ‹… โŒ  โŽฎ โŽฎ โŒก dโ‹…= Using the derivation for the force: x' 1 Fv 0 D c xx ฯโ‹… gโ‹… D c x 2 โ‹…โˆ’( )โ‹… bโ‹… โŒ  โŽฎ โŽฎ โŒก dโ‹…= ฯ gโ‹… bโ‹… Fv 0 D c xD xโ‹… c x 3 โ‹…โˆ’( ) โŒ  โŽฎ โŽฎ โŒก dโ‹…= Evaluating the integral: x' ฯ gโ‹… bโ‹… Fv D 2 D c โ‹… c 4 D c โŽ› โŽœ โŽ โŽž โŽŸ โŽ  2 โ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= ฯ gโ‹… bโ‹… Fv D 2 4 cโ‹… โ‹…= Now substituting values into this equation: x' 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 2ร— mโ‹… 1 73.9 10 3 ร— ร— 1 N โ‹… 1 4 ร— 2 mโ‹…( ) 2 ร— 1 0.25 ร— mโ‹… N s 2 โ‹… kg mโ‹… ร—= x' 1.061m= To find the required force at A for equilibrium, we need to find the horizontal force of the water on the gate and its line of action as well. Once this force is known we take moments about the hinge (point O). FH pc Aโ‹…= ฯ gโ‹… hcโ‹… bโ‹… Dโ‹…= ฯ gโ‹… D 2 โ‹… bโ‹… Dโ‹…= ฯ gโ‹… bโ‹… D 2 2 โ‹…= since hc D 2 = Therefore the horizontal force is: FH 999 kg m 3 โ‹… 9.81ร— m s 2 โ‹… 2ร— mโ‹… 2 mโ‹…( ) 2 2 ร— N s 2 โ‹… kg mโ‹… ร—= FH 39.2 kNโ‹…= To calculate the line of action of this force: h' hc Ixx A hcโ‹… += D 2 b D 3 โ‹… 12 1 b Dโ‹… โ‹… 2 D โ‹…+= D 2 D 6 += 2 3 Dโ‹…= h' 2 3 2โ‹… mโ‹…= h' 1.333m= Oy hโ€™ H xโ€™ x FV Ox FH FA y D Now we have information to solve parts (b) and (c): (b) Horizontal force applied at A for equilibrium: take moments about O: FA Hโ‹… Fv x'โ‹…โˆ’ FH D h'โˆ’( )โ‹…โˆ’ 0= Solving for FA FA Fv x'โ‹… FH D h'โˆ’( )โ‹…+ H = FA 1 3 1 m โ‹… 73.9 kNโ‹… 1.061ร— mโ‹… 39.2 kNโ‹… 2 mโ‹… 1.333 mโ‹…โˆ’( )ร—+[ ]ร—= FA 34.9 kNโ‹…= Oy hโ€™ L xโ€™ x FV Ox FH FA y D (c) Vertical force applied at A for equilibrium: take moments about O: FA Lโ‹… Fv x'โ‹…โˆ’ FH D h'โˆ’( )โ‹…โˆ’ 0= Solving for FA FA Fv x'โ‹… FH D h'โˆ’( )โ‹…+ L = L is the value of x at y = H. Therefore: L H c = L 3 mโ‹… 1 0.25 ร— mโ‹…= L 3.464m= FA 1 3.464 1 m โ‹… 73.9 kNโ‹… 1.061ร— mโ‹… 39.2 kNโ‹… 2 mโ‹… 1.333 mโ‹…โˆ’( )ร—+[ ]ร—= FA 30.2 kNโ‹…=
  • 87. Problem 3.74 [Difficulty: 2] Given: Open tank as shown. Width of curved surface b 10 ftโ‹…= Find: (a) Magnitude of the vertical force component on the curved surface (b) Line of action of the vertical component of the force Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฮณ= (Hydrostatic Pressure - h is positive downwards) L xโ€™ x FRy y Fv Ayp โŒ  โŽฎ โŽฎ โŒก dโˆ’= (Vertical Hydrostatic Force) x' Fvโ‹… Fvx โŒ  โŽฎ โŽฎ โŒก d= (Moment of vertical force) Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts at free surface of water and on outside of wall Integrating the hydrostatic pressure equation: p ฮณ hโ‹…= We can define along the surface h L R 2 x 2 โˆ’( ) 1 2 โˆ’= We also define the incremental area on the curved surface as: dAy b dxโ‹…= Substituting these into the force equation we get: Fv Ayp โŒ โŽฎ โŽฎ โŒก dโˆ’= 0 R xฮณ L R 2 x 2 โˆ’( ) 1 2 โˆ’ โŽกโŽข โŽข โŽฃ โŽคโŽฅ โŽฅ โŽฆโ‹… bโ‹… โŒ  โŽฎ โŽฎ โŽฎ โŒก dโˆ’= ฮณโˆ’ bโ‹… 0 R xL R 2 x 2 โˆ’โˆ’( )โŒ  โŽฎ โŒก dโ‹…= ฮณโˆ’ bโ‹… Rโ‹… L R ฯ€ 4 โ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= Fv 62.4 lbf ft 3 โ‹… 10ร— ftโ‹… 4ร— ftโ‹… 10 ftโ‹… 4 ftโ‹… ฯ€ 4 ร—โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร—โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โˆ’= Fv 17.12โˆ’ 10 3 ร— lbfโ‹…= (negative indicates downward) To find the line of action of the force: x' Fvโ‹… Fvx โŒ โŽฎ โŽฎ โŒก d= where dFv ฮณโˆ’ bโ‹… L R 2 x 2 โˆ’โˆ’( )โ‹… dxโ‹…= Therefore: x' x' Fvโ‹… Fv = 1 ฮณ bโ‹… Rโ‹… L R ฯ€ 4 โ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… 0 R xx ฮณโ‹… bโ‹… L R 2 x 2 โˆ’โˆ’( )โ‹… โŒ  โŽฎ โŒก dโ‹…= 1 R L R ฯ€ 4 โ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… 0 R xL xโ‹… x R 2 x 2 โˆ’โ‹…โˆ’( )โŒ  โŽฎ โŒก dโ‹…= Evaluating the integral: x' 4 R 4 Lโ‹… ฯ€ Rโ‹…โˆ’( )โ‹… 1 2 Lโ‹… R 2 โ‹… 1 3 R 3 โ‹…โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= 4 R 2 โ‹… R 4 Lโ‹… ฯ€ Rโ‹…โˆ’( )โ‹… L 2 R 3 โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= 4 Rโ‹… 4 Lโ‹… ฯ€ Rโ‹…โˆ’ L 2 R 3 โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= Substituting known values: x' 4 4โ‹… ftโ‹… 4 10โ‹… ftโ‹… ฯ€ 4โ‹… ftโ‹…โˆ’ 10 ftโ‹… 2 4 ftโ‹… 3 โˆ’โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…= x' 2.14 ftโ‹…= Problem 3.59 3.59
  • 88. Problem 3.76 [Difficulty: 3] Given: Dam with cross-section shown. Width of dam b 160 ftโ‹…= Find: (a) Magnitude and line of action of the vertical force component on the dam (b) If it is possible for the water to overturn dam Solution: We will apply the hydrostatics equations to this system. Governing Equations: dp dh ฯ gโ‹…= (Hydrostatic Pressure - h is positive downwards from free surface) Fv Ayp โŒ  โŽฎ โŽฎ โŒก d= (Vertical Hydrostatic Force) FH pc Aโ‹…= (Horizontal Hydrostatic Force) x' Fvโ‹… Fvx โŒ  โŽฎ โŽฎ โŒก d= (Moment of vertical force) A xโ€™ x FH y yโ€™ hโ€™FV B h' hc Ixx hc Aโ‹… += (Line of action of vertical force) ฮฃMz 0= (Rotational Equilibrium) Assumptions: (1) Static fluid (2) Incompressible fluid (3) Atmospheric pressure acts at free surface of water and on outside of dam Integrating the hydrostatic pressure equation: p ฯ gโ‹… hโ‹…= Into the vertical force equation: Fv Ayp โŒ โŽฎ โŽฎ โŒก d= xA xB xฯ gโ‹… hโ‹… bโ‹… โŒ  โŽฎ โŒก d= ฯ gโ‹… bโ‹… xA xB xH yโˆ’( ) โŒ  โŽฎ โŒก dโ‹…= From the definition of the dam contour: x yโ‹… A yโ‹…โˆ’ B= Therefore: y B x Aโˆ’ = and xA 10 ft 2 โ‹… 9 ftโ‹… 1 ftโ‹…+= xA 2.11 ftโ‹…= Problem 3.60 3.60
  • 89. Into the force equation: Fv ฯ gโ‹… bโ‹… xA xB xH B x Aโˆ’ โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โŒ  โŽฎ โŽฎ โŒก dโ‹…= ฯ gโ‹… bโ‹… H xB xAโˆ’( )โ‹… B ln xB Aโˆ’ xA Aโˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ โ‹…= Substituting known values: Fv 1.94 slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 160ร— ftโ‹… 9 ftโ‹… 7.0 ftโ‹… 2.11 ftโ‹…โˆ’( )ร— 10 ft 2 โ‹… ln 7.0 1โˆ’ 2.11 1โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร—โˆ’ โŽก โŽข โŽฃ โŽค โŽฅ โŽฆ ร— lbf s 2 โ‹… slug ftโ‹… โ‹…= Fv 2.71 10 5 ร— lbfโ‹…= To find the line of action of the force: x' Fvโ‹… Fvx โŒ  โŽฎ โŽฎ โŒก d= where dFv ฯ gโ‹… bโ‹… H B x Aโˆ’ โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… dxโ‹…= Therefore: x' x' Fvโ‹… Fv = 1 Fv xA xB xx ฯโ‹… gโ‹… bโ‹… H B x Aโˆ’ โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹… โŒ  โŽฎ โŽฎ โŒก dโ‹…= 1 H xB xAโˆ’( )โ‹… B ln xB Aโˆ’ xA Aโˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…โˆ’ xA xB xH xโ‹… B xโ‹… x Aโˆ’ โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โŒ  โŽฎ โŽฎ โŒก dโ‹…= Evaluating the integral: x' H 2 xB 2 xA 2 โˆ’โŽ› โŽ โŽž โŽ โ‹… B xB xAโˆ’( )โ‹…โˆ’ B Aโ‹… ln xB Aโˆ’ xA Aโˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…โˆ’ H xB xAโˆ’( )โ‹… B ln xB Aโˆ’ xA Aโˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  โ‹…โˆ’ = Substituting known values we get: x' 9 ftโ‹… 2 7 2 2.11 2 โˆ’( )ร— ft 2 โ‹… 10 ft 2 โ‹… 7 2.11โˆ’( )ร— ftโ‹…โˆ’ 10 ft 2 โ‹… 1ร— ftโ‹… ln 7 1โˆ’ 2.11 1โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร—โˆ’ 9 ftโ‹… 7 2.11โˆ’( )ร— ftโ‹… 10 ft 2 โ‹… ln 7 1โˆ’ 2.11 1โˆ’ โŽ› โŽœ โŽ โŽž โŽŸ โŽ  ร—โˆ’ = x' 4.96 ftโ‹…= To determine whether or not the water can overturn the dam, we need the horizontal force and its line of action: FH pc Aโ‹…= ฯ gโ‹… H 2 โ‹… Hโ‹… bโ‹…= ฯ gโ‹… bโ‹… H 2 โ‹… 2 = Substituting values: FH 1 2 1.94ร— slug ft 3 โ‹… 32.2ร— ft s 2 โ‹… 160ร— ftโ‹… 9 ftโ‹…( ) 2 ร— lbf s 2 โ‹… slug ftโ‹… ร—= FH 4.05 10 5 ร— lbfโ‹…= For the line of action: h' hc Ixx hc Aโ‹… += where hc H 2 = A H bโ‹…= Ixx b H 3 โ‹… 12 = Therefore: h' H 2 b H 3 โ‹… 12 2 H โ‹… 1 b Hโ‹… โ‹…+= H 2 H 6 += 2 3 Hโ‹…= h' 2 3 9โ‹… ftโ‹…= h' 6.00 ftโ‹…= Taking moments of the hydrostatic forces about the origin: Mw FH H h'โˆ’( )โ‹… Fv x'โ‹…โˆ’= Mw 4.05 10 5 ร— lbfโ‹… 9 6โˆ’( )ร— ftโ‹… 2.71 10 5 ร— lbfโ‹… 4.96ร— ftโ‹…โˆ’= Mw 1.292โˆ’ 10 5 ร— lbf ftโ‹…โ‹…= The negative sign indicates that this is a clockwise moment about the origin. Since the weight of the dam will also contribute a clockwise moment about the origin, these two moments should not cause the dam to tip to the left. Therefore, the water can not overturn the dam.
  • 90. Problem 3.61 (Difficulty: 2) 3.61 The quarter cylinder ๐ด๐ด is 10 ๐‘“๐‘“ long. Calculate magnitude, direction, and location of the resultant force of the water on ๐ด๐ด. Given: All the parameters are shown in the figure. Assumptions: Fluid is incompressible and static Find: The resultant force. Solution: Apply the hydrostatic relations for pressure as a function of depth and for the location of forces on submerged objects. โˆ†๐‘ = ๐œŒ๐œŒโ„Ž A freebody diagram for the cylinder is: The force balance in the horizontal direction yields thathorizontal force is due to the water pressure: ๐น ๐ป = ๐‘ƒ ๐ป Where the depth is the distance to the centroid of the horizontal area (8 + 5/2 ft): ๐น ๐ป = ๐›พโ„Ž ๐‘ ๐ด = 62.4 ๐‘™๐‘™๐‘™ ๐‘“๐‘“3 ร— ๏ฟฝ8 ๐‘“๐‘“ + 5 ๐‘“๐‘“ 2 ๏ฟฝ ร— (5 ๐‘“๐‘“ ร— 10 ๐‘“๐‘ก) = 32800 ๐‘™๐‘™๐‘™