BACHELOR OF ENGINEERINGBACHELOR OF ENGINEERING
MANUFACTURING TECHNOLOGIESMANUFACTURING TECHNOLOGIES
MACHINING FUNDAMENTALSMACHINING FUNDAMENTALS
by Endika Gandarias
2by Endika Gandarias
Dr. ENDIKA GANDARIAS MINTEGI
Mechanical and Manufacturing department
Mondragon Unibertsitatea - www.mondragon.edu
(Basque Country)
www.linkedin.com/in/endika-gandarias-mintegi-91174653
Further presentations: www.symbaloo.com/mix/manufacturingtechnology
3
CONTENTS
BIBLIOGRAPHY
CHIP FORMATION
CUTTING TEMPERATURES
CUTTING FORCES AND POWER
GLOSSARY
by Endika Gandarias
4
BIBLIOGRAPHY
BIBLIOGRAPHY
by Endika Gandarias
5
The author would like to thank all the bibliographic references and videos that
have contributed to the elaboration of these presentations.
For bibliographic references, please refer to:
• http://www.slideshare.net/endika55/bibliography-71763364 (PDF file)
• http://www.slideshare.net/endika55/bibliography-71763366 (PPT file)
For videos, please refer to:
• www.symbaloo.com/mix/manufacturingtechnology
BIBLIOGRAPHY
by Endika Gandarias
6
CHIP FORMATION
CHIP FORMATION
by Endika Gandarias
7
Oblique cuttingOrthogonal cutting
by Endika Gandarias
CHIP FORMATION
VIDEO
Faxial
Fradial
Faxial
λ
λ = 0º
λ ≠ 0º
Introduction
8by Endika Gandarias
CHIP FORMATION
More realistic view of chip formation,
showing shear zone rather than shear
plane.
t0 : depth of cut (mm)
tc : chip thickness (mm)
Orthogonal cutting model
VIDEOVIDEO
9
CHIP FORMATION
by Endika Gandarias
λ
λ
λ = 0º
λ = 15º
λ = 30º
Oblique cutting model
10
VIDEO
by Endika Gandarias
CHIP FORMATION
Discontinuous chip Continuous chip Continuous chip
with Built-Up Edge
Serrated or
segmented chip
VIDEO VIDEO VIDEO VIDEO
It depends on:
 Workpiece material
 Tool geometry
 Cutting conditions
Chip formation types
11by Endika Gandarias
CHIP FORMATION
Chip formation types
Chip formation and cutting temperatures in different workpiece materials:
12
CUTTING TEMPERATURES
CUTTING TEMPERATURES
by Endika Gandarias
13by Endika Gandarias
CUTTING TEMPERATURES
 The maximum heat generated during cutting is close to the cutting edge, in the chip breaker.
This is where the maximum pressure from the material is, and, with the friction between chip and
carbide, causes these high temperatures.
 Severe temperature gradients within the tool and the chip occurs, and the workpiece remains relatively
cool. Heat distribution is:
 80% through the chip.
 10% through the workpiece.
 10% through the tool.
VIDEO
14
CUTTING FORCES & POWER
CUTTING FORCES & POWER
by Endika Gandarias
15
Pc =
Fc × Vc
60 × 103
× ηm
N
CUTTING FORCES & POWER
Fc = kc × ap × fn
[kW][N]
TURNING
Q = Vc × ap × fn [cm3
/min]
by Endika Gandarias
Mc =
Fc × Davg
2
[N*m]
 Davg = average diameter (mm)  Davg = (D0-Df)/2
 Vc = cutting speed (m/min)
 fn = feed per revolution (mm/rev)
 ap = radial cutting depth (mm)
 Kc = specific cutting force (N/mm2
)
 ηm = machine efficiency (0.7-0.8)
 Fc = cutting force (N)
 Mc = torque (N*m)
 Pc = net cutting power (kW)
 Q = metal removal rate MRR (cm3
/min)
16
CUTTING FORCES & POWER
TURNING
by Endika Gandarias
 Fc = cutting force (N)
 Ft = thrust or feed force (N)
 Fr = radial force (N)
 F = feed rate (mm/min)
 ηm = machine efficiency (0.7-0.8)
 Pa = feed power (kW)
 Pr = radial power (kW)
Ft ≈ 0,4 × Fc [N]
Fr ≈ 0,2 × Fc [N]
Pa =
Ft × F
60 × 106
× ηm
[kW]
Pr = 0 [kW] (due to no motion)
Pa << Pc
17
CUTTING FORCES & POWER
TURNING
EXERCISE:
An external turning operation is accomplished for a 60mm rod steel CMC02.1 material using Vc=400 m/min.
Calculate for the following 2 cases:
by Endika Gandarias
Fc? [N] & Pc ? [kW] / Ft ? [N] & Pa ? [kW] / Fr ? [N] & Pr ? [kW]
Q ? [cm3
/min] Mc ? [N*m]
18
 ap = axial cutting depth (mm)
 ae = radial cutting depth (mm)
 kc = specific cutting force (N/mm2
)
 F = feed rate (mm/min)
 N = spindle speed (rpm)
 Fc = cutting force (N)
 Mc = torque (N*m)
 Pc = net power (kW)
 Q = metal removal rate MRR (cm3
/min)
CUTTING FORCES & POWER
MILLING
Pc =
Fc × F
60 × 106Fc = kc × ap × ae
[kW]
[N]
Q =
ap × ae × F
1000
[cm3
/min]
by Endika Gandarias
Mc =
Pc × 30 × 103
π × N
[N*m]
19
 Dc = 125 mm 
 ap = 5 mm 
 ae =   100 mm 
 F = 600 mm/min
EXERCISE:
   A face milling operation is accomplished for a CMC 02.1 material.
   It is known:
CUTTING FORCES & POWER
MILLING
Fc? [N] Q ? [cm3
/min]
Pc? [kW] Mc? [Nm]
by Endika Gandarias
20
 kc  = specific cutting force (N/mm2
)
 Dc = drill diameter (mm)
 fn  = feed per revolution (mm/rev)
 κr = positioning angle (º)
 N   =    spindle speed (rpm)
 Vc = cutting speed (m/min)
 Ff  = feed force (N)
 Mc  =    torque (N*m)
 Pc  =  net power (kW)
 Q   =     Metal removal rate MRR (cm3
/min)
CUTTING FORCES & POWER
DRILLING
Ff ≈ [kW][N]
Q =
Dc × fn × Vc
4
[cm3
/min]
Pc =
kc × Dc × fn × Vc
240 × 103
kc × Dc × fn× sen κr
4
by Endika Gandarias
Mc =
Pc × 30 × 103
π × N
[N*m]
21
CUTTING FORCES & POWER
DRILLING
 Dc = 12 mm 
 fn = 0,21 mm/rev 
 κr =   59º 
 Vc = 105 m/min
EXERCISE:
   A drilling operation is accomplished for a CMC 06.1 material.
   It is known:
Ff ? [N]
Pc? [kW]
Q? [cm3
/min]
by Endika Gandarias
22
GLOSSARY
GLOSSARY
by Endika Gandarias
23
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Alloy Aleación Aleazio
Axial cutting depth Profundidad de pasada axial Sakontze sakonera
Built-up edge Filo de aportación Ekarpen sorbatz
Chip Viruta Txirbil
Chip breaker Rompe virutas Txirbil hauslea
Continuous chip Viruta continua Txirbil jarraia
Continuous chip with built-up edge Viruta continua con filo de aportación Txirbil jarraiko ekarpen sorbatz
Cool Fresco Hozkirri / Fresko
Cutting speed Velocidad de corte Ebaketa abiadura
Discontinuous chip Viruta discontinua Txirbil ez jarraia
Drilling Taladrado Zulaketa
Engagement Empañe Lausotua
Feed per revolution Avance por vuelta Aitzinamendua birako
Feed per tooth Avance por diente Aitzinamendua hortzeko
Feed rate Avance por minuto Aitzinamendua minutuko
Flank Flanco / Lateral Albo
Hardness Dureza Gogortasuna
Milling Fresado Fresaketa
Net power Potencia neta Potentzi garbia
Oblique cutting Corte oblicuo Ebaketa zeihar
Orthogonal cutting Corte ortogonal Ebaketa ortogonala
Positioning angle Ángulo de posicionamiento Posizionamendu angelu
Power Potencia Potentzia
Radial cutting depth Profundidad de pasada radial / ancho de pasada Iraganaldi zabalera
Rake Desprendimiento Jaulkitze
Removal rate Tasa de eliminación Eliminazio tasa
Rod Barra Barra
Serrated or segmented chip Viruta escalonada o segmentada Txirbil mailakatu edo segmentatua
24
GLOSSARY
by Endika Gandarias
ENGLISH SPANISH BASQUE
Shear strain zone Zona de deformación por cizalladura Ebakidura bidezko deformazio gunea
Shearing Cizallamiento Ebakidura / Zizailadura
Specific cutting force Fuerza de corte específico Ebaketa indar espezifikoa
Spindle Cabezal Buru
Spindle speed Velocidad de giro Biraketa abiadura
Steel Acero Altzairu
Thickness Espesor Lodiera
Thrust Empuje Bultzada
Tool Herramienta Erraminta
Turning Torneado Torneaketa
Wear Desgaste Higadura
Workpiece Pieza Pieza

Machining fundamentals

  • 1.
    BACHELOR OF ENGINEERINGBACHELOROF ENGINEERING MANUFACTURING TECHNOLOGIESMANUFACTURING TECHNOLOGIES MACHINING FUNDAMENTALSMACHINING FUNDAMENTALS by Endika Gandarias
  • 2.
    2by Endika Gandarias Dr.ENDIKA GANDARIAS MINTEGI Mechanical and Manufacturing department Mondragon Unibertsitatea - www.mondragon.edu (Basque Country) www.linkedin.com/in/endika-gandarias-mintegi-91174653 Further presentations: www.symbaloo.com/mix/manufacturingtechnology
  • 3.
  • 4.
  • 5.
    5 The author wouldlike to thank all the bibliographic references and videos that have contributed to the elaboration of these presentations. For bibliographic references, please refer to: • http://www.slideshare.net/endika55/bibliography-71763364 (PDF file) • http://www.slideshare.net/endika55/bibliography-71763366 (PPT file) For videos, please refer to: • www.symbaloo.com/mix/manufacturingtechnology BIBLIOGRAPHY by Endika Gandarias
  • 6.
  • 7.
    7 Oblique cuttingOrthogonal cutting byEndika Gandarias CHIP FORMATION VIDEO Faxial Fradial Faxial λ λ = 0º λ ≠ 0º Introduction
  • 8.
    8by Endika Gandarias CHIPFORMATION More realistic view of chip formation, showing shear zone rather than shear plane. t0 : depth of cut (mm) tc : chip thickness (mm) Orthogonal cutting model VIDEOVIDEO
  • 9.
    9 CHIP FORMATION by EndikaGandarias λ λ λ = 0º λ = 15º λ = 30º Oblique cutting model
  • 10.
    10 VIDEO by Endika Gandarias CHIPFORMATION Discontinuous chip Continuous chip Continuous chip with Built-Up Edge Serrated or segmented chip VIDEO VIDEO VIDEO VIDEO It depends on:  Workpiece material  Tool geometry  Cutting conditions Chip formation types
  • 11.
    11by Endika Gandarias CHIPFORMATION Chip formation types Chip formation and cutting temperatures in different workpiece materials:
  • 12.
  • 13.
    13by Endika Gandarias CUTTINGTEMPERATURES  The maximum heat generated during cutting is close to the cutting edge, in the chip breaker. This is where the maximum pressure from the material is, and, with the friction between chip and carbide, causes these high temperatures.  Severe temperature gradients within the tool and the chip occurs, and the workpiece remains relatively cool. Heat distribution is:  80% through the chip.  10% through the workpiece.  10% through the tool. VIDEO
  • 14.
    14 CUTTING FORCES &POWER CUTTING FORCES & POWER by Endika Gandarias
  • 15.
    15 Pc = Fc ×Vc 60 × 103 × ηm N CUTTING FORCES & POWER Fc = kc × ap × fn [kW][N] TURNING Q = Vc × ap × fn [cm3 /min] by Endika Gandarias Mc = Fc × Davg 2 [N*m]  Davg = average diameter (mm)  Davg = (D0-Df)/2  Vc = cutting speed (m/min)  fn = feed per revolution (mm/rev)  ap = radial cutting depth (mm)  Kc = specific cutting force (N/mm2 )  ηm = machine efficiency (0.7-0.8)  Fc = cutting force (N)  Mc = torque (N*m)  Pc = net cutting power (kW)  Q = metal removal rate MRR (cm3 /min)
  • 16.
    16 CUTTING FORCES &POWER TURNING by Endika Gandarias  Fc = cutting force (N)  Ft = thrust or feed force (N)  Fr = radial force (N)  F = feed rate (mm/min)  ηm = machine efficiency (0.7-0.8)  Pa = feed power (kW)  Pr = radial power (kW) Ft ≈ 0,4 × Fc [N] Fr ≈ 0,2 × Fc [N] Pa = Ft × F 60 × 106 × ηm [kW] Pr = 0 [kW] (due to no motion) Pa << Pc
  • 17.
    17 CUTTING FORCES &POWER TURNING EXERCISE: An external turning operation is accomplished for a 60mm rod steel CMC02.1 material using Vc=400 m/min. Calculate for the following 2 cases: by Endika Gandarias Fc? [N] & Pc ? [kW] / Ft ? [N] & Pa ? [kW] / Fr ? [N] & Pr ? [kW] Q ? [cm3 /min] Mc ? [N*m]
  • 18.
    18  ap =axial cutting depth (mm)  ae = radial cutting depth (mm)  kc = specific cutting force (N/mm2 )  F = feed rate (mm/min)  N = spindle speed (rpm)  Fc = cutting force (N)  Mc = torque (N*m)  Pc = net power (kW)  Q = metal removal rate MRR (cm3 /min) CUTTING FORCES & POWER MILLING Pc = Fc × F 60 × 106Fc = kc × ap × ae [kW] [N] Q = ap × ae × F 1000 [cm3 /min] by Endika Gandarias Mc = Pc × 30 × 103 π × N [N*m]
  • 19.
    19  Dc =125 mm   ap = 5 mm   ae =   100 mm   F = 600 mm/min EXERCISE:    A face milling operation is accomplished for a CMC 02.1 material.    It is known: CUTTING FORCES & POWER MILLING Fc? [N] Q ? [cm3 /min] Pc? [kW] Mc? [Nm] by Endika Gandarias
  • 20.
    20  kc  =specific cutting force (N/mm2 )  Dc = drill diameter (mm)  fn  = feed per revolution (mm/rev)  κr = positioning angle (º)  N   =    spindle speed (rpm)  Vc = cutting speed (m/min)  Ff  = feed force (N)  Mc  =    torque (N*m)  Pc  =  net power (kW)  Q   =     Metal removal rate MRR (cm3 /min) CUTTING FORCES & POWER DRILLING Ff ≈ [kW][N] Q = Dc × fn × Vc 4 [cm3 /min] Pc = kc × Dc × fn × Vc 240 × 103 kc × Dc × fn× sen κr 4 by Endika Gandarias Mc = Pc × 30 × 103 π × N [N*m]
  • 21.
    21 CUTTING FORCES &POWER DRILLING  Dc = 12 mm   fn = 0,21 mm/rev   κr =   59º   Vc = 105 m/min EXERCISE:    A drilling operation is accomplished for a CMC 06.1 material.    It is known: Ff ? [N] Pc? [kW] Q? [cm3 /min] by Endika Gandarias
  • 22.
  • 23.
    23 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE AlloyAleación Aleazio Axial cutting depth Profundidad de pasada axial Sakontze sakonera Built-up edge Filo de aportación Ekarpen sorbatz Chip Viruta Txirbil Chip breaker Rompe virutas Txirbil hauslea Continuous chip Viruta continua Txirbil jarraia Continuous chip with built-up edge Viruta continua con filo de aportación Txirbil jarraiko ekarpen sorbatz Cool Fresco Hozkirri / Fresko Cutting speed Velocidad de corte Ebaketa abiadura Discontinuous chip Viruta discontinua Txirbil ez jarraia Drilling Taladrado Zulaketa Engagement Empañe Lausotua Feed per revolution Avance por vuelta Aitzinamendua birako Feed per tooth Avance por diente Aitzinamendua hortzeko Feed rate Avance por minuto Aitzinamendua minutuko Flank Flanco / Lateral Albo Hardness Dureza Gogortasuna Milling Fresado Fresaketa Net power Potencia neta Potentzi garbia Oblique cutting Corte oblicuo Ebaketa zeihar Orthogonal cutting Corte ortogonal Ebaketa ortogonala Positioning angle Ángulo de posicionamiento Posizionamendu angelu Power Potencia Potentzia Radial cutting depth Profundidad de pasada radial / ancho de pasada Iraganaldi zabalera Rake Desprendimiento Jaulkitze Removal rate Tasa de eliminación Eliminazio tasa Rod Barra Barra Serrated or segmented chip Viruta escalonada o segmentada Txirbil mailakatu edo segmentatua
  • 24.
    24 GLOSSARY by Endika Gandarias ENGLISH SPANISH BASQUE Shearstrain zone Zona de deformación por cizalladura Ebakidura bidezko deformazio gunea Shearing Cizallamiento Ebakidura / Zizailadura Specific cutting force Fuerza de corte específico Ebaketa indar espezifikoa Spindle Cabezal Buru Spindle speed Velocidad de giro Biraketa abiadura Steel Acero Altzairu Thickness Espesor Lodiera Thrust Empuje Bultzada Tool Herramienta Erraminta Turning Torneado Torneaketa Wear Desgaste Higadura Workpiece Pieza Pieza