SlideShare a Scribd company logo
Project Tungsten

Bringing Spark Closer to Bare Metal
Nong Li
nong@databricks.com
Feb, 2016
Hardware Trends
Storage
Network
CPU
Hardware Trends
2010
Storage
50+MB/s
(HDD)
Network 1Gbps
CPU ~3GHz
Hardware Trends
2010 2016
Storage
50+MB/s
(HDD)
500+MB/s
(SSD)
Network 1Gbps 10Gbps
CPU ~3GHz ~3GHz
Hardware Trends
2010 2016
Storage
50+MB/s
(HDD)
500+MB/s
(SSD)
10X
Network 1Gbps 10Gbps 10X
CPU ~3GHz ~3GHz ☹
On the flip side
Spark IO has been optimized
• Reduce IO by pruning input data that is not needed
• New shuffle and network implementations (2014 sort record)
Data formats have improved
• E.g. Parquet is a “dense” columnar format
Cpu increasingly the bottleneck; trend expected to continue
Goals of Project Tungsten
Substantially improve the memory and CPU efficiency of Spark
backend execution and push performance closer to the limits of
modern hardware.
Note the focus on “execution” not “optimizer”: very easy to pick broadcast join that is 1000X faster than
Cartesian join, but hard to optimize broadcast join to be an order of magnitude faster.
Phase 1
Foundation
Memory Management
Code Generation
Cache-aware Algorithms
Phase 2
Order-of-magnitude Faster
Whole-stage Codegen
Vectorization
Phase 1

Laying The Foundation
Summary
Perform manual memory management instead of relying on Java objects
• Reduce memory footprint
• Eliminate garbage collection overheads
• Use java.unsafe and off heap memory
Code generation for expression evaluation
• Reduce virtual function calls and interpretation overhead
Cache conscious sorting
• Reduce bad memory access patterns
Phase 2

Order-of-magnitude Faster
Going back to the fundamentals
Difficult to get order of magnitude performance speed ups with
profiling techniques
• For 10x improvement, would need of find top hotspots that add up to 90% and
make them instantaneous
• For 100x, 99%
Instead, look bottom up, how fast should it run?
Scan
Filter
Project
Aggregate
select count(*) from store_sales

where ss_item_sk = 1000
Volcano Iterator Model
Standard for 30 years: almost all
databases do it
Each operator is an “iterator”
that consumes records from
its input operator
class Filter {
def next(): Boolean = {
var found = false
while (!found && child.next()) {
found = predicate(child.fetch())
}
return found
}
def fetch(): InternalRow = {
child.fetch()
}
…
}
Downside of the Volcano Model
1. Too many virtual function calls
o at least 3 calls for each row in Aggregate
2. Extensive memory access
o “row” is a small segment in memory (or in L1/L2/L3 cache)
3. Can’t take advantage of modern CPU features
o SIMD, pipelining, prefetching, branch prediction, ILP, instruction cache, …
What if we hire a college freshman to implement this query in
Java in 10 mins?
select count(*) from store_sales

where ss_item_sk = 1000
long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;
}
}
Volcano model
30+ years of database research
college freshman
hand-written code in 10 mins
vs
Volcano 13.95 million
rows/sec
college
freshman
125 million
rows/sec
Note: End-to-end, single thread, single column, and data originated in Parquet on disk
High throughput
How does a student beat 30 years of research?
Volcano
1. Many virtual function calls
2. Data in memory (or cache)
3. No loop unrolling, SIMD, pipelining
hand-written code
1. No virtual function calls
2. Data in CPU registers
3. Compiler loop unrolling, SIMD,
pipelining
Take advantage of all the information that is known after query compilation
Whole-stage Codegen
Fusing operators together so the generated code looks like hand
optimized code:
- Identity chains of operators (“stages”)
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance as
if hand built system just to run your query
Whole-stage Codegen: Planner
Scan
Filter
Project
Aggregate
long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;
}
}
Whole-stage Codegen: Spark as a “Compiler”
But there are things we can’t fuse
Complicated I/O
• CSV, Parquet, ORC, …
• Sending across the network
External integrations
• Python, R, scikit-learn, TensorFlow, etc
• Reading cached data
Columnar in memory format
mike
In-memory
Row Format
1 john 4.1
2 3.5
3 sally 6.4
1 2 3
john mike sally
4.1 3.5 6.4
In-memory
Column Format
Why columnar?
1. More efficient: denser storage, regular data access, easier to index
into. Enables vectorized processing.
2. More compatible: Most high-performance external systems are
already columnar (numpy, TensorFlow, Parquet); zero serialization/
copy to work with them
3. Easier to extend: process encoded data, integrate with columnar
cache, delay materialization in parquet, offload to GPU
Parquet 11 million
rows/sec
Parquet
vectorized
90 million
rows/sec
Note: End-to-end, single thread, single column, and data originated in Parquet on disk
High throughput
Putting it all together
• Preliminary results
• Goal of 5 to 10x improvement for 2.0
Spark 1.6 vs 2.0
QueryTime(ms)
0
15000
30000
45000
60000
SF40
Q3 Q34 Q42 Q52 Q53 Q55 Q59 Q63 Q7 ss_max agg join3 Geo Mean
Spark 1.6
Spark 2.0
TPCDS 2-7x improvement, 2.8 geomean
Status
• Actively in development in master
• Whole stage codegen on by default, vectorized Parquet will be on
by default soon
• Back to profiling techniques
• Improve quality of generated code, optimize Parquet reader
further
• Try it out and let us know!
Phase 1
Spark 1.4 - 1.6
Memory Management
Code Generation
Cache-aware Algorithms
Phase 2
Spark 2.0+
Whole-stage Code Generation
Columnar in Memory Support
Questions?
@nongli

More Related Content

What's hot

Apache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in DepthApache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in Depth
Databricks
 
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
Demystifying flink memory allocation and tuning - Roshan Naik, UberDemystifying flink memory allocation and tuning - Roshan Naik, Uber
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
Flink Forward
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Spark performance tuning - Maksud Ibrahimov
Spark performance tuning - Maksud IbrahimovSpark performance tuning - Maksud Ibrahimov
Spark performance tuning - Maksud Ibrahimov
Maksud Ibrahimov
 
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
 Best Practice of Compression/Decompression Codes in Apache Spark with Sophia... Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
Databricks
 
Enabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache SparkEnabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache Spark
Kazuaki Ishizaki
 
Building a SIMD Supported Vectorized Native Engine for Spark SQL
Building a SIMD Supported Vectorized Native Engine for Spark SQLBuilding a SIMD Supported Vectorized Native Engine for Spark SQL
Building a SIMD Supported Vectorized Native Engine for Spark SQL
Databricks
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
Databricks
 
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Databricks
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
Iceberg + Alluxio for Fast Data Analytics
Iceberg + Alluxio for Fast Data AnalyticsIceberg + Alluxio for Fast Data Analytics
Iceberg + Alluxio for Fast Data Analytics
Alluxio, Inc.
 
Top 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applicationsTop 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Catalyst optimizer
Catalyst optimizerCatalyst optimizer
Catalyst optimizer
Ayub Mohammad
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Cloudera, Inc.
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 

What's hot (20)

Apache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in DepthApache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in Depth
 
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
Demystifying flink memory allocation and tuning - Roshan Naik, UberDemystifying flink memory allocation and tuning - Roshan Naik, Uber
Demystifying flink memory allocation and tuning - Roshan Naik, Uber
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
 
Spark performance tuning - Maksud Ibrahimov
Spark performance tuning - Maksud IbrahimovSpark performance tuning - Maksud Ibrahimov
Spark performance tuning - Maksud Ibrahimov
 
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
 Best Practice of Compression/Decompression Codes in Apache Spark with Sophia... Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
 
Enabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache SparkEnabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache Spark
 
Building a SIMD Supported Vectorized Native Engine for Spark SQL
Building a SIMD Supported Vectorized Native Engine for Spark SQLBuilding a SIMD Supported Vectorized Native Engine for Spark SQL
Building a SIMD Supported Vectorized Native Engine for Spark SQL
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
 
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...Performant Streaming in Production: Preventing Common Pitfalls when Productio...
Performant Streaming in Production: Preventing Common Pitfalls when Productio...
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
 
Iceberg + Alluxio for Fast Data Analytics
Iceberg + Alluxio for Fast Data AnalyticsIceberg + Alluxio for Fast Data Analytics
Iceberg + Alluxio for Fast Data Analytics
 
Top 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applicationsTop 5 mistakes when writing Spark applications
Top 5 mistakes when writing Spark applications
 
Catalyst optimizer
Catalyst optimizerCatalyst optimizer
Catalyst optimizer
 
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark ApplicationsTop 5 Mistakes to Avoid When Writing Apache Spark Applications
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
 

Similar to Project Tungsten: Bringing Spark Closer to Bare Metal

Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Databricks
 
Spark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer AgarwalSpark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer Agarwal
Spark Summit
 
Advertising Fraud Detection at Scale at T-Mobile
Advertising Fraud Detection at Scale at T-MobileAdvertising Fraud Detection at Scale at T-Mobile
Advertising Fraud Detection at Scale at T-Mobile
Databricks
 
Apache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and SmarterApache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and Smarter
Databricks
 
Boosting spark performance: An Overview of Techniques
Boosting spark performance: An Overview of TechniquesBoosting spark performance: An Overview of Techniques
Boosting spark performance: An Overview of Techniques
Ahsan Javed Awan
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
C4Media
 
Explore big data at speed of thought with Spark 2.0 and Snappydata
Explore big data at speed of thought with Spark 2.0 and SnappydataExplore big data at speed of thought with Spark 2.0 and Snappydata
Explore big data at speed of thought with Spark 2.0 and Snappydata
Data Con LA
 
Performance and predictability (1)
Performance and predictability (1)Performance and predictability (1)
Performance and predictability (1)
RichardWarburton
 
Performance and Predictability - Richard Warburton
Performance and Predictability - Richard WarburtonPerformance and Predictability - Richard Warburton
Performance and Predictability - Richard Warburton
JAXLondon2014
 
Spark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production usersSpark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production users
Databricks
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Databricks
 
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14thSnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
Databricks
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
RichardWarburton
 
Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
Roger Rafanell Mas
 
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
Chester Chen
 
High Performance With Java
High Performance With JavaHigh Performance With Java
High Performance With Java
malduarte
 
Exascale Capabl
Exascale CapablExascale Capabl
Exascale Capabl
Sagar Dolas
 
Alto Desempenho com Java
Alto Desempenho com JavaAlto Desempenho com Java
Alto Desempenho com Javacodebits
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 

Similar to Project Tungsten: Bringing Spark Closer to Bare Metal (20)

Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
 
Spark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer AgarwalSpark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer Agarwal
 
Advertising Fraud Detection at Scale at T-Mobile
Advertising Fraud Detection at Scale at T-MobileAdvertising Fraud Detection at Scale at T-Mobile
Advertising Fraud Detection at Scale at T-Mobile
 
Apache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and SmarterApache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and Smarter
 
Boosting spark performance: An Overview of Techniques
Boosting spark performance: An Overview of TechniquesBoosting spark performance: An Overview of Techniques
Boosting spark performance: An Overview of Techniques
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
 
Explore big data at speed of thought with Spark 2.0 and Snappydata
Explore big data at speed of thought with Spark 2.0 and SnappydataExplore big data at speed of thought with Spark 2.0 and Snappydata
Explore big data at speed of thought with Spark 2.0 and Snappydata
 
Performance and predictability (1)
Performance and predictability (1)Performance and predictability (1)
Performance and predictability (1)
 
Performance and Predictability - Richard Warburton
Performance and Predictability - Richard WarburtonPerformance and Predictability - Richard Warburton
Performance and Predictability - Richard Warburton
 
Spark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production usersSpark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production users
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
 
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14thSnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
 
New Developments in Spark
New Developments in SparkNew Developments in Spark
New Developments in Spark
 
Performance and predictability
Performance and predictabilityPerformance and predictability
Performance and predictability
 
Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
 
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
 
High Performance With Java
High Performance With JavaHigh Performance With Java
High Performance With Java
 
Exascale Capabl
Exascale CapablExascale Capabl
Exascale Capabl
 
Alto Desempenho com Java
Alto Desempenho com JavaAlto Desempenho com Java
Alto Desempenho com Java
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
 

More from Databricks

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
 

Recently uploaded

The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
Nettur Technical Training Foundation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
AkolbilaEmmanuel1
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 

Recently uploaded (20)

The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 

Project Tungsten: Bringing Spark Closer to Bare Metal

  • 1. Project Tungsten
 Bringing Spark Closer to Bare Metal Nong Li nong@databricks.com Feb, 2016
  • 6. On the flip side Spark IO has been optimized • Reduce IO by pruning input data that is not needed • New shuffle and network implementations (2014 sort record) Data formats have improved • E.g. Parquet is a “dense” columnar format Cpu increasingly the bottleneck; trend expected to continue
  • 7. Goals of Project Tungsten Substantially improve the memory and CPU efficiency of Spark backend execution and push performance closer to the limits of modern hardware. Note the focus on “execution” not “optimizer”: very easy to pick broadcast join that is 1000X faster than Cartesian join, but hard to optimize broadcast join to be an order of magnitude faster.
  • 8. Phase 1 Foundation Memory Management Code Generation Cache-aware Algorithms Phase 2 Order-of-magnitude Faster Whole-stage Codegen Vectorization
  • 10. Summary Perform manual memory management instead of relying on Java objects • Reduce memory footprint • Eliminate garbage collection overheads • Use java.unsafe and off heap memory Code generation for expression evaluation • Reduce virtual function calls and interpretation overhead Cache conscious sorting • Reduce bad memory access patterns
  • 12. Going back to the fundamentals Difficult to get order of magnitude performance speed ups with profiling techniques • For 10x improvement, would need of find top hotspots that add up to 90% and make them instantaneous • For 100x, 99% Instead, look bottom up, how fast should it run?
  • 13. Scan Filter Project Aggregate select count(*) from store_sales
 where ss_item_sk = 1000
  • 14. Volcano Iterator Model Standard for 30 years: almost all databases do it Each operator is an “iterator” that consumes records from its input operator class Filter { def next(): Boolean = { var found = false while (!found && child.next()) { found = predicate(child.fetch()) } return found } def fetch(): InternalRow = { child.fetch() } … }
  • 15. Downside of the Volcano Model 1. Too many virtual function calls o at least 3 calls for each row in Aggregate 2. Extensive memory access o “row” is a small segment in memory (or in L1/L2/L3 cache) 3. Can’t take advantage of modern CPU features o SIMD, pipelining, prefetching, branch prediction, ILP, instruction cache, …
  • 16. What if we hire a college freshman to implement this query in Java in 10 mins? select count(*) from store_sales
 where ss_item_sk = 1000 long count = 0; for (ss_item_sk in store_sales) { if (ss_item_sk == 1000) { count += 1; } }
  • 17. Volcano model 30+ years of database research college freshman hand-written code in 10 mins vs
  • 18. Volcano 13.95 million rows/sec college freshman 125 million rows/sec Note: End-to-end, single thread, single column, and data originated in Parquet on disk High throughput
  • 19. How does a student beat 30 years of research? Volcano 1. Many virtual function calls 2. Data in memory (or cache) 3. No loop unrolling, SIMD, pipelining hand-written code 1. No virtual function calls 2. Data in CPU registers 3. Compiler loop unrolling, SIMD, pipelining Take advantage of all the information that is known after query compilation
  • 20. Whole-stage Codegen Fusing operators together so the generated code looks like hand optimized code: - Identity chains of operators (“stages”) - Compile each stage into a single function - Functionality of a general purpose execution engine; performance as if hand built system just to run your query
  • 22. Scan Filter Project Aggregate long count = 0; for (ss_item_sk in store_sales) { if (ss_item_sk == 1000) { count += 1; } } Whole-stage Codegen: Spark as a “Compiler”
  • 23. But there are things we can’t fuse Complicated I/O • CSV, Parquet, ORC, … • Sending across the network External integrations • Python, R, scikit-learn, TensorFlow, etc • Reading cached data
  • 24. Columnar in memory format mike In-memory Row Format 1 john 4.1 2 3.5 3 sally 6.4 1 2 3 john mike sally 4.1 3.5 6.4 In-memory Column Format
  • 25. Why columnar? 1. More efficient: denser storage, regular data access, easier to index into. Enables vectorized processing. 2. More compatible: Most high-performance external systems are already columnar (numpy, TensorFlow, Parquet); zero serialization/ copy to work with them 3. Easier to extend: process encoded data, integrate with columnar cache, delay materialization in parquet, offload to GPU
  • 26. Parquet 11 million rows/sec Parquet vectorized 90 million rows/sec Note: End-to-end, single thread, single column, and data originated in Parquet on disk High throughput
  • 27. Putting it all together • Preliminary results • Goal of 5 to 10x improvement for 2.0
  • 28. Spark 1.6 vs 2.0 QueryTime(ms) 0 15000 30000 45000 60000 SF40 Q3 Q34 Q42 Q52 Q53 Q55 Q59 Q63 Q7 ss_max agg join3 Geo Mean Spark 1.6 Spark 2.0 TPCDS 2-7x improvement, 2.8 geomean
  • 29. Status • Actively in development in master • Whole stage codegen on by default, vectorized Parquet will be on by default soon • Back to profiling techniques • Improve quality of generated code, optimize Parquet reader further • Try it out and let us know!
  • 30. Phase 1 Spark 1.4 - 1.6 Memory Management Code Generation Cache-aware Algorithms Phase 2 Spark 2.0+ Whole-stage Code Generation Columnar in Memory Support