SlideShare a Scribd company logo
Sawtooth Windows
Zipline - Feature Engineering Framework
Nikhil Simha
nikhil.simha@airbnb.com
• Machine Learning
• Supervised
• Structured data – database records, event streams
• Not unstructured data – images, video, audio, text
• Not labels
Features in context
Exploration
Problem
Feature
Creation
Model
Training
Model
Serving
Feature
Serving
Application
Labeling
• Complex models > Simple models
• Can learn complicated relationships within data
Rules of thumb
• Good data >> Bad data
• Labels: True, Balanced
• Features:
• Consistent
• Real-time
• Stable
Rules of thumb
• Simple models + good data >> Complex models + Bad data
• Effort to better data >> Effort to better model
• Realtime features are hard
• Windowed Aggregations are unsupported/inefficient
• Training/Serving consistency
Rules of thumb
• Inadequate data sources
• Event sources: Don’t go back in history
• Database sources: Range scans are very expensive
• Skill gap
• ML vs system engineering
• Missing Backfills - Slow iteration
Hardness of Realtime features
• Features should be real-time
• Features are aggregations
• Most aggregations should be windowed
• Sawtooth windows
Goal
Example
● Restaurant recommendation
● Ratings of restaurant last year
● Check-ins of user by cuisine in the last month
● Latest cuisine check-in by user
Checkins
Ratings
1 1 1
3
Time
1
2 4
Label L
Prediction P1 P2
3
3
4
2.5
L L
Training
data set
Contract
● Serving
● User, Restaurant -> avg_restaurant_rating_1yr, cuisine_visits_30d
● Training
● Labeled Data: (User, Restaurant, timestamp, label)
● Enrich with features
Data sources
● Events
● Timestamped – user_txn stream
● Entities
● As served by microservices etc
● Based on DB
● User_balance table
● Or non-real-time : dim/fct tables
Service
Fleet
Production
Database
DB
Snapshot
Event log
Change
Capture
Stream
Event
Stream
Change
capture log
M
essage
Bus
D
a
t
a
L
a
k
e
Live
Derived
Data
Media
Feature Set Example
Feature Set Example
Feature Set Example
API – Philosophy
• SQL is two languages
• Keep Expression Language
• CAST(get_json_object(response, “$.age”) AS BIGINT)
• Control Structural language
• GROUPBY, JOIN, HAVING, SELECT, WHERE, FROM
API – Philosophy
Windows are first class
Source equivalence: topic ~ table ~ mutations
Data Models are first class
Entity (dim)
Events (fact, timestamped)
API – Internals
• Python -> Thrift-Json -> Spark + Scala
• Versioned
• Driven by airflow
Aggregation Math
Aggregations – SUM
• Commutative: a + b = b + a
• Order independent
• Associative: (a + b) + c = a + (b + c)
• Parallelizable
Aggregations – AVG
• One not-so-clever trick
• Operate on “Intermediate Representation” / IR
• Factors into (sum, count)
• Finalized by a division: (sum/count)
Aggregations
• Constant memory / Bounded IR
• Two classes of aggregations
• Sum, Avg, Count
• Min/Max, Approx Unique, percentiles, topK
• Mutations – updates, deletes etc.
Windows – Hopping
Windows – Hopping
• Staleness
• As stale as the hop size
• Memory Efficient
• One partial per hop
Windows – Sliding
• Freshness
• Memory intensive
Windows – Sawtooth
• Freshness
• Writes are taken into account immediately
• Memory
• Partial aggregates per hop
Windows – Sawtooth
Windows – Sawtooth
• Catch
• sum/count vs others
• Consistency
Model Server
Serving Architecture
Feature
Declaration
Streaming
aggregates
Batch
aggregates
Feature
Store
Model
Feature
Client
Application
Server
Windows – Lambda
• Points of change
Windows – Lambda
Choosing hops
• Automatically chosen
• Hop size < x% of window size
• Daily, hourly, 5minute
• X ~ 8.34%
• Caching – variety of window sizes can re-use the hop
• 90d, 30d
• Across windows & across queries
Questions

More Related Content

What's hot

Flink vs. Spark
Flink vs. SparkFlink vs. Spark
Flink vs. Spark
Slim Baltagi
 
Introduction to DataFusion An Embeddable Query Engine Written in Rust
Introduction to DataFusion  An Embeddable Query Engine Written in RustIntroduction to DataFusion  An Embeddable Query Engine Written in Rust
Introduction to DataFusion An Embeddable Query Engine Written in Rust
Andrew Lamb
 
Credit Fraud Prevention with Spark and Graph Analysis
Credit Fraud Prevention with Spark and Graph AnalysisCredit Fraud Prevention with Spark and Graph Analysis
Credit Fraud Prevention with Spark and Graph Analysis
Jen Aman
 
An introduction to Elasticsearch's advanced relevance ranking toolbox
An introduction to Elasticsearch's advanced relevance ranking toolboxAn introduction to Elasticsearch's advanced relevance ranking toolbox
An introduction to Elasticsearch's advanced relevance ranking toolbox
Elasticsearch
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Dremio Corporation
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
Databricks
 
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
DataWorks Summit
 
Airflow at lyft
Airflow at lyftAirflow at lyft
Airflow at lyft
Tao Feng
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a ServiceZeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Databricks
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Oracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer IntroductionOracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer Introduction
Jeffrey T. Pollock
 
On-boarding with JanusGraph Performance
On-boarding with JanusGraph PerformanceOn-boarding with JanusGraph Performance
On-boarding with JanusGraph Performance
Chin Huang
 
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim LauSpark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit
 
Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013
Julien Le Dem
 
What’s New with Databricks Machine Learning
What’s New with Databricks Machine LearningWhat’s New with Databricks Machine Learning
What’s New with Databricks Machine Learning
Databricks
 
Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0
Databricks
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and Containers
SATOSHI TAGOMORI
 

What's hot (20)

Flink vs. Spark
Flink vs. SparkFlink vs. Spark
Flink vs. Spark
 
Introduction to DataFusion An Embeddable Query Engine Written in Rust
Introduction to DataFusion  An Embeddable Query Engine Written in RustIntroduction to DataFusion  An Embeddable Query Engine Written in Rust
Introduction to DataFusion An Embeddable Query Engine Written in Rust
 
Credit Fraud Prevention with Spark and Graph Analysis
Credit Fraud Prevention with Spark and Graph AnalysisCredit Fraud Prevention with Spark and Graph Analysis
Credit Fraud Prevention with Spark and Graph Analysis
 
An introduction to Elasticsearch's advanced relevance ranking toolbox
An introduction to Elasticsearch's advanced relevance ranking toolboxAn introduction to Elasticsearch's advanced relevance ranking toolbox
An introduction to Elasticsearch's advanced relevance ranking toolbox
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
 
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
Unify Stream and Batch Processing using Dataflow, a Portable Programmable Mod...
 
Airflow at lyft
Airflow at lyftAirflow at lyft
Airflow at lyft
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
 
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a ServiceZeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
 
Oracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer IntroductionOracle Stream Analytics - Developer Introduction
Oracle Stream Analytics - Developer Introduction
 
On-boarding with JanusGraph Performance
On-boarding with JanusGraph PerformanceOn-boarding with JanusGraph Performance
On-boarding with JanusGraph Performance
 
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim LauSpark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
 
Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013
 
What’s New with Databricks Machine Learning
What’s New with Databricks Machine LearningWhat’s New with Databricks Machine Learning
What’s New with Databricks Machine Learning
 
Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0Achieving Lakehouse Models with Spark 3.0
Achieving Lakehouse Models with Spark 3.0
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and Containers
 

Similar to Sawtooth Windows for Feature Aggregations

Making Session Stores More Intelligent
Making Session Stores More IntelligentMaking Session Stores More Intelligent
Making Session Stores More Intelligent
Kyle Davis
 
A Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big DataA Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big Data
Databricks
 
Algorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
Atner Yegorov
 
Algorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
Hiye Biniam
 
Zipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering FrameworkZipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering Framework
Databricks
 
Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
guest0f8e278
 
Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
Bradford Stephens
 
Casual mass parallel computing
Casual mass parallel computingCasual mass parallel computing
Casual mass parallel computing
aragozin
 
Data Science meets Software Development
Data Science meets Software DevelopmentData Science meets Software Development
Data Science meets Software Development
Alexis Seigneurin
 
Enabling real interactive BI on Hadoop
Enabling real interactive BI on HadoopEnabling real interactive BI on Hadoop
Enabling real interactive BI on Hadoop
DataWorks Summit
 
Prepare your data for machine learning
Prepare your data for machine learningPrepare your data for machine learning
Prepare your data for machine learning
Ivo Andreev
 
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOTAWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
Amazon Web Services
 
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
Clancy Childs
 
Hard Coding as a design approach
Hard Coding as a design approachHard Coding as a design approach
Hard Coding as a design approach
Oren Eini
 
Internals of Presto Service
Internals of Presto ServiceInternals of Presto Service
Internals of Presto Service
Treasure Data, Inc.
 
ShaREing Is Caring
ShaREing Is CaringShaREing Is Caring
ShaREing Is Caring
sporst
 
Apache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenchesApache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenches
Vinay Shukla
 
C++ programming Assignment Help
C++ programming Assignment HelpC++ programming Assignment Help
C++ programming Assignment Help
smithjonny9876
 
Automate Machine Learning Pipeline Using MLBox
Automate Machine Learning Pipeline Using MLBoxAutomate Machine Learning Pipeline Using MLBox
Automate Machine Learning Pipeline Using MLBox
Axel de Romblay
 
Proud to be polyglot
Proud to be polyglotProud to be polyglot
Proud to be polyglot
Tugdual Grall
 

Similar to Sawtooth Windows for Feature Aggregations (20)

Making Session Stores More Intelligent
Making Session Stores More IntelligentMaking Session Stores More Intelligent
Making Session Stores More Intelligent
 
A Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big DataA Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big Data
 
Algorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
 
Algorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
 
Zipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering FrameworkZipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering Framework
 
Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
 
Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
 
Casual mass parallel computing
Casual mass parallel computingCasual mass parallel computing
Casual mass parallel computing
 
Data Science meets Software Development
Data Science meets Software DevelopmentData Science meets Software Development
Data Science meets Software Development
 
Enabling real interactive BI on Hadoop
Enabling real interactive BI on HadoopEnabling real interactive BI on Hadoop
Enabling real interactive BI on Hadoop
 
Prepare your data for machine learning
Prepare your data for machine learningPrepare your data for machine learning
Prepare your data for machine learning
 
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOTAWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
 
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
 
Hard Coding as a design approach
Hard Coding as a design approachHard Coding as a design approach
Hard Coding as a design approach
 
Internals of Presto Service
Internals of Presto ServiceInternals of Presto Service
Internals of Presto Service
 
ShaREing Is Caring
ShaREing Is CaringShaREing Is Caring
ShaREing Is Caring
 
Apache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenchesApache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenches
 
C++ programming Assignment Help
C++ programming Assignment HelpC++ programming Assignment Help
C++ programming Assignment Help
 
Automate Machine Learning Pipeline Using MLBox
Automate Machine Learning Pipeline Using MLBoxAutomate Machine Learning Pipeline Using MLBox
Automate Machine Learning Pipeline Using MLBox
 
Proud to be polyglot
Proud to be polyglotProud to be polyglot
Proud to be polyglot
 

More from Databricks

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks
 

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
 
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
 

Recently uploaded

Senior Engineering Sample EM DOE - Sheet1.pdf
Senior Engineering Sample EM DOE  - Sheet1.pdfSenior Engineering Sample EM DOE  - Sheet1.pdf
Senior Engineering Sample EM DOE - Sheet1.pdf
Vineet
 
06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus
Timothy Spann
 
Salesforce AI + Data Community Tour Slides - Canarias
Salesforce AI + Data Community Tour Slides - CanariasSalesforce AI + Data Community Tour Slides - Canarias
Salesforce AI + Data Community Tour Slides - Canarias
davidpietrzykowski1
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
eoxhsaa
 
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
hyfjgavov
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
keesa2
 
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
hqfek
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
Vietnam Cotton & Spinning Association
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
bmucuha
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Marlon Dumas
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
Vineet
 
一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理
ugydym
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
actyx
 
一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理
zsafxbf
 
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
Rebecca Bilbro
 
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
22ad0301
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
blueshagoo1
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
uevausa
 
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service LucknowCall Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
hiju9823
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
Vineet
 

Recently uploaded (20)

Senior Engineering Sample EM DOE - Sheet1.pdf
Senior Engineering Sample EM DOE  - Sheet1.pdfSenior Engineering Sample EM DOE  - Sheet1.pdf
Senior Engineering Sample EM DOE - Sheet1.pdf
 
06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus
 
Salesforce AI + Data Community Tour Slides - Canarias
Salesforce AI + Data Community Tour Slides - CanariasSalesforce AI + Data Community Tour Slides - Canarias
Salesforce AI + Data Community Tour Slides - Canarias
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
 
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
 
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
 
一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
 
一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理
 
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
PyData London 2024: Mistakes were made (Dr. Rebecca Bilbro)
 
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
 
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service LucknowCall Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
 

Sawtooth Windows for Feature Aggregations