SlideShare a Scribd company logo
1 of 47
Download to read offline
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures
XXXIIIrd International ASTIN Colloquium
Tail distribution and dependence measures
Arthur Charpentier, ACIA
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 2
• Clayton’s copulas
C(u,v,θ)=(u-θ+v-θ -1)-1/θ pour θ ≥ 1
A short introduction to copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 3
Sklar’s Theorem (1959)
• Let (X,Y) be a pair of random variables, with joint c.d.f.
FXY(x,y) = P(X≤x,Y≤y) and let FX(x) = P(X≤x) , FY(y) = P(Y≤y).
• There is a copula C such that FXY(x,y) = C(FX(x),FY(y))
• Conversely, C satisfies C(u,v) = FXY(FX
-1(u),FY
-1(v))
where -1 denotes the generalized inverse, g-1(t)=inf{s,g(s)=t}.
A short introduction to copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 4
A short introduction to copulas
Archimedian copulas
• Let φ:[0,1]→[0,+∞] be a convex strictly decreaasing function,
such that φ(1)=0.
C(u,v)= φ-¹(φ(u)+ φ(v)) for any 0≤u,v ≤1
is a copula, and f is called the generator of the copula.
• Ex φ(t)=t-θ-1 Clayton’s copulas
φ(t)=exp(-t1/θ) Gumbel’s copulas
φ(t)=-log[(e -θt-1)/(e -θ-1)] Frank’s copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 5
A short introduction to copulas
Survival copulas
• Let (X,Y) be a random pair with copula C, and U=FX(x), V=FY(y)
• C is the c.d.f. of (U,V), then, the c.d.f. of (1-U,1-V) is C * defined
as C*(u,v)=u+v-1+C(1-u,1-v)
• C * satisfies
• C * is called survival copula, or dual copula
( ) ( ) ( ) ( )( )yF,xFCy,xFyY,xXP YX
*
XY ==>>
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 6
Functional measures of dependence : G.Venter (2001)
Tail concentration functions
• L(z) = Pr(U<z,V<z)/z2 = C(z,z)/z2
• R(z) = Pr(U>z,V>z)/(1 – z)2 = [1 – 2z +C(z,z)]/(1 – z)2
Cumulative tau
1)v,u(dC)v,u(C4
]1,0[x]1,0[
−=τ
∫∫
( ) 1)v,u(dC)v,u(C
)z,z(C
4
zJ
]z,0[x]z,0[
2
−=
∫∫
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 7
The lower tail conditional copula
Lower tail conditional copula
• Let (X,Y) be a pair of random variables with copula C, and let
U=FX(X) et V=FY(Y), such that C(x,y) = P(U ≤ x,V ≤ y)
• The lower tail conditional copula with threshold u,v is the
copula of (U,V) given U≤u and V≤v, and is denoted Φ(C,u,v)
• Given u,v in [0,1], Φ(C,u,v) is the copula of
(X,Y) given X ≤ VaR(X,u) and Y ≤ VaR(Y,v)
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 8
The lower tail conditional copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 9
The lower tail conditional copula
Lower tail conditional copula
• Clayton’s copula Φ(C,u,v) = C for any u,v in ]0,1]
Clayton’s copula is invariant by truncature
• Marshall-Olkin’s copula Cα,β(x,y)=min{x1-αy,xy1-β}
Φ(Cα,β, uβ,uα) = Cα,β
• Gumbel-Barnett’s copulas Cθ(x,y)=xyexp[-θlog(x)log(y)]
Φ(Cθ,u,v) = Cθ(u,v) where θ(u,v)=θ/[1+θlog(u)][1+θlog(v)]
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 10
The lower tail conditional copula
Lower tail conditional copula
• The joint c.d.f. of (U,V) given U≤u and V≤v is
• The marginal c.d.f.’s of (U,V) given U≤u and V≤v are
• The copula of (U,V) given U≤u and V≤v is (Sklar’s Theorem)
( ) ( ) ( )
( )v,uC
y,xC
vV,uUvV,xUPy,x)v,u,C(F =≤≤≤≤=
( ) ( ) ( )
( )v,uC
v,xC
vV,uUxUPx)v,u,C(FU =≤≤≤=
( )( ) ( ) ( )( )
( )v,uC
y)v,u,C(F,x)v,u,C(FC
y,xv,u,C
1
V
1
U
−−
=Φ
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 11
The upper tail conditional copula
Upper tail conditional copula
• Given u,v in [0,1], Φ(C*,1-u,1-v) is the copula of
(X,Y) given X > VaR(X,u) and Y > VaR(Y,v)
where C* is the survival copula of (X,Y)
• Using this duality property, studying upper tail dependence
could be done with the lower tail conditional copula Φ(C,u,v)
• These copulas could be extended to higher dimension
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 12
The lower tail conditional copula
Lower tail conditional copula
• Properties of the conditional copula : Dependence and tail
distribution (IME 2003), especially limiting results, when u,v
converge towards 0
• Archimedian copulas are stable : the conditional copula
obtained from an Archimedian copula, with an other generator
The generator of Φ(C,u,v) is φ(C(u,v)t) - φ(C(u,v))
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 13
The lower tail conditional copula
Application in Credit Risk models
• Let X and Y denote two times of defaults, and let C* denote
the survival copula at time 0
• Assume that no default occurred at time t>0, then, the copula
of the times of default is not C* : it is the copula of (X,Y) given
X>t and Y>t
• Ex : survival time are exponential (means µ and 2µ), and C* is a
Gumbel copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 14
The lower tail conditional copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 15
The lower tail conditional copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 16
Functional measures and conditional copulas
Dependence measures based on copula functions
• Kendall’s tau
• Spearman’s rho – rank correlation
could be extended to any other dependence measure
• Gini’s gamma or Blomqvist’s beta
• Lp distance of Schweizer and Wolf
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 17
Functional measures and conditional copulas
Lower / upper tail rank correlation
• Lower tail rank correlation defined as Sperman’s rho of (X,Y)
given X ≤ VaR(X,u) and Y ≤ VaR(Y,u), 0 ≤ u ≤ 1.
• Upper tail rank correlation defined as Sperman’s rho of (X,Y)
given X > VaR(X,u) and Y > VaR(Y,u), 0 ≤ u ≤1
( ) ( )( ) 3dxdyy,xu,u,C12u
]1,0[x]1,0[
−Φ=ρ
∫∫
( ) ( )( ) 3dxdyy,xu1,u1,C12u
]1,0[x]1,0[
*
−−−Φ=ρ
∫∫
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 18
Functional measures and conditional copulas
Other functional measures of dependence
• Upper tail Kendall’s tau defined as Kendall’s tau of (X,Y) given
X > VaR(X,u) and Y > VaR(Y,u), 0 ≤ u ≤1
( ) ( ) ( ) 1)y,x(u1,u1,Cd)y,x(u1,u1,C4u
]1,0[x]1,0[
**
−−−Φ−−Φ=τ
∫∫
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 19
Functional measures and conditional copulas
Other functional measures of dependence
• The rank correlation of (X,Y) given X ≤ VaR(X,u) is
• Or, more generally, (X,Y) given X < h and Y < h,
( ) ( )( ) 3dxdyy,x1,u,C12u
]1,0[x]1,0[
−Φ=ρ
∫∫
( ) ( ) ( )( )( ) 3dxdyy,xhF,hF,C12u
]1,0[x]1,0[
YX −Φ=ρ
∫∫
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 20
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 21
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 22
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 23
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 24
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 25
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 26
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 27
Functional measures and conditional copulas
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 28
Functional measures and conditional copulas
• Clayton’s copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 29
Functional measures and conditional copulas
• Survival Clayton’s copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 30
Functional measures and conditional copulas
• Gaussian copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 31
Functional measures and conditional copulas
• Gumbel copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 32
Functional measures and conditional copulas
• Student copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 33
Functional measures and conditional copulas
0.010.600.000.100.510.17
0.030.600.000.120.510.20
0.110.600.000.170.510.25
0.270.600.120.260.510.33
0.600.600.600.600.600.60ρ(X,Y)
Frank
Survival
Clayton
Clayton
Survival
Gumbel
GumbelGaussian
( )%50ρ
( )%75ρ
( )%90ρ
( )%95ρ
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 34
Application : Loss-ALAE
• Dataset used in Frees and Valdez (1997)
• (Loss,ALAE) given LOSS>VaR(Loss,u), ALAE>VaR(ALAE,u)
• (Loss,ALAE) given LOSS>VaR(Loss,u)
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 35
Application : Loss-ALAE
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 36
Application : Loss-ALAE
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 37
Application : Loss-ALAE
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 38
Application : Loss-ALAE
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 39
Application : Loss-ALAE
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 40
Application : Motor-Household
• Dataset from Belguise,Levi (2003)
• « the best candidate is the HRT copula » which is the
survival/dual Clayton copula
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 41
Application : Motor-Household
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 42
Application : Motor-Household
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 43
Application : Motor-Household
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 44
• Dataset from the Society of Actuaries
• CEBRIAN, A., DENUIT, M. and P. LAMBERT, Analysis of
bivariate tail dependence using extreme value copulas: an
application to the SOA medical large claims database (2003)
Application : Group Medical Large Claims
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 45
Application : Group Medical Large Claims
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 46
Application : Group Medical Large Claims
ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 47
Application : Group Medical Large Claims

More Related Content

What's hot

What's hot (20)

Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Berlin
BerlinBerlin
Berlin
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides ineq-2
Slides ineq-2Slides ineq-2
Slides ineq-2
 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 

Viewers also liked

15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman
Arthur Charpentier
 

Viewers also liked (20)

Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
IA-advanced-R
IA-advanced-RIA-advanced-R
IA-advanced-R
 
Slides 2040-4
Slides 2040-4Slides 2040-4
Slides 2040-4
 
Slides 2040-5
Slides 2040-5Slides 2040-5
Slides 2040-5
 
Slides 2040-6-a2013
Slides 2040-6-a2013Slides 2040-6-a2013
Slides 2040-6-a2013
 
Slides 2040-8-2013
Slides 2040-8-2013Slides 2040-8-2013
Slides 2040-8-2013
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 
15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman15 03 16_data sciences pour l'actuariat_f. soulie fogelman
15 03 16_data sciences pour l'actuariat_f. soulie fogelman
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Slides 2040-7-a2013
Slides 2040-7-a2013Slides 2040-7-a2013
Slides 2040-7-a2013
 
Exercices act2121-session8
Exercices act2121-session8Exercices act2121-session8
Exercices act2121-session8
 
Slides act6420-e2014-partie-1
Slides act6420-e2014-partie-1Slides act6420-e2014-partie-1
Slides act6420-e2014-partie-1
 
Intro vrais loc-print
Intro vrais loc-printIntro vrais loc-print
Intro vrais loc-print
 
Freakonometrics
FreakonometricsFreakonometrics
Freakonometrics
 
Slides ensae 5
Slides ensae 5Slides ensae 5
Slides ensae 5
 
Slides ensae 4
Slides ensae 4Slides ensae 4
Slides ensae 4
 
Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1Slides act6420-e2014-ts-1
Slides act6420-e2014-ts-1
 
Pricing Game, 100% Data Sciences
Pricing Game, 100% Data SciencesPricing Game, 100% Data Sciences
Pricing Game, 100% Data Sciences
 

Similar to Slides astin

Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
Arthur Charpentier
 
Problem_Session_Notes
Problem_Session_NotesProblem_Session_Notes
Problem_Session_Notes
Lu Mao
 

Similar to Slides astin (20)

Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides ima
Slides imaSlides ima
Slides ima
 
Slides essec
Slides essecSlides essec
Slides essec
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Slides delta-2
Slides delta-2Slides delta-2
Slides delta-2
 
Slides rmetrics-1
Slides rmetrics-1Slides rmetrics-1
Slides rmetrics-1
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Problem_Session_Notes
Problem_Session_NotesProblem_Session_Notes
Problem_Session_Notes
 
Inequalities #3
Inequalities #3Inequalities #3
Inequalities #3
 
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform space
 

More from Arthur Charpentier

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Recently uploaded (20)

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governance
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cf
 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
TEST BANK For Principles of Anatomy and Physiology, 16th Edition by Gerard J....
TEST BANK For Principles of Anatomy and Physiology, 16th Edition by Gerard J....TEST BANK For Principles of Anatomy and Physiology, 16th Edition by Gerard J....
TEST BANK For Principles of Anatomy and Physiology, 16th Edition by Gerard J....
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 

Slides astin

  • 1. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures XXXIIIrd International ASTIN Colloquium Tail distribution and dependence measures Arthur Charpentier, ACIA
  • 2. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 2 • Clayton’s copulas C(u,v,θ)=(u-θ+v-θ -1)-1/θ pour θ ≥ 1 A short introduction to copulas
  • 3. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 3 Sklar’s Theorem (1959) • Let (X,Y) be a pair of random variables, with joint c.d.f. FXY(x,y) = P(X≤x,Y≤y) and let FX(x) = P(X≤x) , FY(y) = P(Y≤y). • There is a copula C such that FXY(x,y) = C(FX(x),FY(y)) • Conversely, C satisfies C(u,v) = FXY(FX -1(u),FY -1(v)) where -1 denotes the generalized inverse, g-1(t)=inf{s,g(s)=t}. A short introduction to copulas
  • 4. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 4 A short introduction to copulas Archimedian copulas • Let φ:[0,1]→[0,+∞] be a convex strictly decreaasing function, such that φ(1)=0. C(u,v)= φ-¹(φ(u)+ φ(v)) for any 0≤u,v ≤1 is a copula, and f is called the generator of the copula. • Ex φ(t)=t-θ-1 Clayton’s copulas φ(t)=exp(-t1/θ) Gumbel’s copulas φ(t)=-log[(e -θt-1)/(e -θ-1)] Frank’s copulas
  • 5. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 5 A short introduction to copulas Survival copulas • Let (X,Y) be a random pair with copula C, and U=FX(x), V=FY(y) • C is the c.d.f. of (U,V), then, the c.d.f. of (1-U,1-V) is C * defined as C*(u,v)=u+v-1+C(1-u,1-v) • C * satisfies • C * is called survival copula, or dual copula ( ) ( ) ( ) ( )( )yF,xFCy,xFyY,xXP YX * XY ==>>
  • 6. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 6 Functional measures of dependence : G.Venter (2001) Tail concentration functions • L(z) = Pr(U<z,V<z)/z2 = C(z,z)/z2 • R(z) = Pr(U>z,V>z)/(1 – z)2 = [1 – 2z +C(z,z)]/(1 – z)2 Cumulative tau 1)v,u(dC)v,u(C4 ]1,0[x]1,0[ −=τ ∫∫ ( ) 1)v,u(dC)v,u(C )z,z(C 4 zJ ]z,0[x]z,0[ 2 −= ∫∫
  • 7. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 7 The lower tail conditional copula Lower tail conditional copula • Let (X,Y) be a pair of random variables with copula C, and let U=FX(X) et V=FY(Y), such that C(x,y) = P(U ≤ x,V ≤ y) • The lower tail conditional copula with threshold u,v is the copula of (U,V) given U≤u and V≤v, and is denoted Φ(C,u,v) • Given u,v in [0,1], Φ(C,u,v) is the copula of (X,Y) given X ≤ VaR(X,u) and Y ≤ VaR(Y,v)
  • 8. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 8 The lower tail conditional copula
  • 9. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 9 The lower tail conditional copula Lower tail conditional copula • Clayton’s copula Φ(C,u,v) = C for any u,v in ]0,1] Clayton’s copula is invariant by truncature • Marshall-Olkin’s copula Cα,β(x,y)=min{x1-αy,xy1-β} Φ(Cα,β, uβ,uα) = Cα,β • Gumbel-Barnett’s copulas Cθ(x,y)=xyexp[-θlog(x)log(y)] Φ(Cθ,u,v) = Cθ(u,v) where θ(u,v)=θ/[1+θlog(u)][1+θlog(v)]
  • 10. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 10 The lower tail conditional copula Lower tail conditional copula • The joint c.d.f. of (U,V) given U≤u and V≤v is • The marginal c.d.f.’s of (U,V) given U≤u and V≤v are • The copula of (U,V) given U≤u and V≤v is (Sklar’s Theorem) ( ) ( ) ( ) ( )v,uC y,xC vV,uUvV,xUPy,x)v,u,C(F =≤≤≤≤= ( ) ( ) ( ) ( )v,uC v,xC vV,uUxUPx)v,u,C(FU =≤≤≤= ( )( ) ( ) ( )( ) ( )v,uC y)v,u,C(F,x)v,u,C(FC y,xv,u,C 1 V 1 U −− =Φ
  • 11. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 11 The upper tail conditional copula Upper tail conditional copula • Given u,v in [0,1], Φ(C*,1-u,1-v) is the copula of (X,Y) given X > VaR(X,u) and Y > VaR(Y,v) where C* is the survival copula of (X,Y) • Using this duality property, studying upper tail dependence could be done with the lower tail conditional copula Φ(C,u,v) • These copulas could be extended to higher dimension
  • 12. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 12 The lower tail conditional copula Lower tail conditional copula • Properties of the conditional copula : Dependence and tail distribution (IME 2003), especially limiting results, when u,v converge towards 0 • Archimedian copulas are stable : the conditional copula obtained from an Archimedian copula, with an other generator The generator of Φ(C,u,v) is φ(C(u,v)t) - φ(C(u,v))
  • 13. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 13 The lower tail conditional copula Application in Credit Risk models • Let X and Y denote two times of defaults, and let C* denote the survival copula at time 0 • Assume that no default occurred at time t>0, then, the copula of the times of default is not C* : it is the copula of (X,Y) given X>t and Y>t • Ex : survival time are exponential (means µ and 2µ), and C* is a Gumbel copula
  • 14. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 14 The lower tail conditional copula
  • 15. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 15 The lower tail conditional copula
  • 16. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 16 Functional measures and conditional copulas Dependence measures based on copula functions • Kendall’s tau • Spearman’s rho – rank correlation could be extended to any other dependence measure • Gini’s gamma or Blomqvist’s beta • Lp distance of Schweizer and Wolf
  • 17. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 17 Functional measures and conditional copulas Lower / upper tail rank correlation • Lower tail rank correlation defined as Sperman’s rho of (X,Y) given X ≤ VaR(X,u) and Y ≤ VaR(Y,u), 0 ≤ u ≤ 1. • Upper tail rank correlation defined as Sperman’s rho of (X,Y) given X > VaR(X,u) and Y > VaR(Y,u), 0 ≤ u ≤1 ( ) ( )( ) 3dxdyy,xu,u,C12u ]1,0[x]1,0[ −Φ=ρ ∫∫ ( ) ( )( ) 3dxdyy,xu1,u1,C12u ]1,0[x]1,0[ * −−−Φ=ρ ∫∫
  • 18. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 18 Functional measures and conditional copulas Other functional measures of dependence • Upper tail Kendall’s tau defined as Kendall’s tau of (X,Y) given X > VaR(X,u) and Y > VaR(Y,u), 0 ≤ u ≤1 ( ) ( ) ( ) 1)y,x(u1,u1,Cd)y,x(u1,u1,C4u ]1,0[x]1,0[ ** −−−Φ−−Φ=τ ∫∫
  • 19. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 19 Functional measures and conditional copulas Other functional measures of dependence • The rank correlation of (X,Y) given X ≤ VaR(X,u) is • Or, more generally, (X,Y) given X < h and Y < h, ( ) ( )( ) 3dxdyy,x1,u,C12u ]1,0[x]1,0[ −Φ=ρ ∫∫ ( ) ( ) ( )( )( ) 3dxdyy,xhF,hF,C12u ]1,0[x]1,0[ YX −Φ=ρ ∫∫
  • 20. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 20 Functional measures and conditional copulas
  • 21. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 21 Functional measures and conditional copulas
  • 22. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 22 Functional measures and conditional copulas
  • 23. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 23 Functional measures and conditional copulas
  • 24. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 24 Functional measures and conditional copulas
  • 25. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 25 Functional measures and conditional copulas
  • 26. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 26 Functional measures and conditional copulas
  • 27. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 27 Functional measures and conditional copulas
  • 28. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 28 Functional measures and conditional copulas • Clayton’s copula
  • 29. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 29 Functional measures and conditional copulas • Survival Clayton’s copula
  • 30. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 30 Functional measures and conditional copulas • Gaussian copula
  • 31. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 31 Functional measures and conditional copulas • Gumbel copula
  • 32. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 32 Functional measures and conditional copulas • Student copula
  • 33. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 33 Functional measures and conditional copulas 0.010.600.000.100.510.17 0.030.600.000.120.510.20 0.110.600.000.170.510.25 0.270.600.120.260.510.33 0.600.600.600.600.600.60ρ(X,Y) Frank Survival Clayton Clayton Survival Gumbel GumbelGaussian ( )%50ρ ( )%75ρ ( )%90ρ ( )%95ρ
  • 34. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 34 Application : Loss-ALAE • Dataset used in Frees and Valdez (1997) • (Loss,ALAE) given LOSS>VaR(Loss,u), ALAE>VaR(ALAE,u) • (Loss,ALAE) given LOSS>VaR(Loss,u)
  • 35. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 35 Application : Loss-ALAE
  • 36. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 36 Application : Loss-ALAE
  • 37. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 37 Application : Loss-ALAE
  • 38. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 38 Application : Loss-ALAE
  • 39. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 39 Application : Loss-ALAE
  • 40. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 40 Application : Motor-Household • Dataset from Belguise,Levi (2003) • « the best candidate is the HRT copula » which is the survival/dual Clayton copula
  • 41. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 41 Application : Motor-Household
  • 42. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 42 Application : Motor-Household
  • 43. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 43 Application : Motor-Household
  • 44. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 44 • Dataset from the Society of Actuaries • CEBRIAN, A., DENUIT, M. and P. LAMBERT, Analysis of bivariate tail dependence using extreme value copulas: an application to the SOA medical large claims database (2003) Application : Group Medical Large Claims
  • 45. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 45 Application : Group Medical Large Claims
  • 46. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 46 Application : Group Medical Large Claims
  • 47. ARTHUR CHARPENTIER (ensae -CREST) Tail distribution and dependence measures 47 Application : Group Medical Large Claims