SlideShare a Scribd company logo
1 of 157
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Gestion des risques bancaires et nanciers
risques extrêmes
et risques corrélés
Arthur Charpentier
EdF, formation continue
arthur.charpentier@univ-rennes1.fr
1
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
-3 -1 1 3
X
-1
3
Y
(Xi,Yi)
0.2 0.5 0.8
U (rank of X)
0.4
0.9
V(rankofY)
Density of the copula
Isodensity curves of the density
(Ui,Vi)
2
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
3
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
4
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Some references on large and correlated risks
Rank, J. (2006). Copulas: From Theory to Application in Finance. Risk Book ,
Nelsen, R. (1999,2006). An introduction to copulas. Springer Verlag ,
Cherubini, U., Luciano, E.  Vecchiato, W. (2004). Copula Methods in
Finance. Wiley,
Beirlant, J., Goegebeur, Y., Segers, J.  Teugels, J. (2004). Statistics of
Extremes: Theory and Applications. Wiley,
McNeil, A. Frey, R.,  Embrechts, P. (2005). Quantitative Risk
Management: Concepts, Techniques, and Tools. Princeton University Press,
5
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
6
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas, an introduction (in dimension 2)
Denition 1. A copula C is a joint distribution function on [0, 1]2
, with uniform
margins on [0, 1].
Set C(u, v) = P(U ≤ u, V ≤ v), where (U, V ) is a random pair with uniform
margins.
C is a distribution function on [0, 1]2
, and thus C(0, v) = C(u, 0) = 0, C(1, 1) = 1.
Furthermore C is increasing: since P is a positive measure, for all u1 ≤ u2 and
v1 ≤ v2,
P(u1  U ≤ u2, v1  V ≤ v2) ≥ 0,
thus
C(u2, v2) − C(u1, v2)
−C(u2, v1) + C(u1, v1) ≥ 0. 0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Copula, positive area
7
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
C has uniform margins, and thus
C(u, 1) = P(U ≤ u, V ≤ 1) = P(U ≤ u) = u on [0, 1].
Proposition 2. C is a copula if and only if C(0, v) = C(u, 0) = 0, C(u, 1) = u
and C(1, v) = v for all u, v, with the following 2-increasingness property
C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0,
for any u1 ≤ u2 and v1 ≤ v2.
8
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Borders of the copula function
!0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
!0.20.00.20.40.60.81.01.21.4
!0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Figure 1: Value of the copula on the border of the unit square.
9
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
X
Y
Z
Fonction de répartition à marges uniformes
Figure 2: Graphical representation of a copula.
10
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
If C is twice dierentiable, one can dene its density as
c(u, v) =
∂2
C(u, v)
∂u∂v
.
11
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
x x
z
Densité d’une loi à marges uniformes
Figure 3: Density of a copula.
12
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes
Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes
Figure 4: Distribution functions and densities.
13
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes
Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes
Figure 5: Distribution functions and densities.
14
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Sklar's theorem
Theorem 3. (Sklar) Let C be a copula, and FX and FY two marginal
distributions, then F(x, y) = C(FX(x), FY (y)) is a bivariate distribution
function, with F ∈ F(FX, FY ).
Conversely, if F ∈ F(FX, FY ), there exists C such that
F(x, y) = C(FX(x), FY (y)). Further, if FX and FY are continuous, then C is
unique, and given by
C(u, v) = F(F−1
X (u), F−1
Y (v)) for all (u, v) ∈ [0, 1] × [0, 1]
We will then dene the copula of F, or the copula of (X, Y ).
In that case, the copula of (X, Y ) is the distribution function of (FX(X), FY (Y )).
Proposition 4. If (X, Y ) has copula C, the copula of (g(X), h(Y )) is also C for
any increasing functions g and h.
15
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas, an introduction (in dimension d ≥ 2)
Denition 5. A copula C is a joint distribution function on [0, 1]d
, with
uniform margins on [0, 1].
Let U = (U1, ..., Ud) denote a random pair with uniform margins.
C is a distribution function on [0, 1]d
, and thus C(u) = 0 if ui = 0 for some
i ∈ {1, . . . , d}, and C(1) = 1.
Furthermore C satises some increasing property since P is a positive measure
(for all 0 ≤ u ≤ v ≤ 1, P(u  U ≤ v) ≥ 0), thus
z
sign(z)C(z) ≥ 0,
where the sum is taken over all vertices of [u × v], and where sign(z) is +1 if
zi = ui for an even number of i (and −1 otherwise, see Figure 6). And nally C
has uniform margins, and thus
C(1, . . . , 1, ui, 1, . . . , 1) = ui on [0, 1].
16
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Increasing functions in dimension 3
Figure 6: The notion of 3-increasing functions.
17
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Theorem 6. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal
distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with
F ∈ F(F1, . . . , Fd).
Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that
F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi's are continuous, then C is
unique, and given by
C(u) = F(F−1
1 (u1), . . . , F−1
d (ud)) for all (ui) ∈ [0, 1]
We will then dene the copula of F, or the copula of X.
In that case, the copula of (X = (X1, . . . , Xd) is the distribution function of
U = (F1(X1), . . . , Fd(Yd)).
Again, if C is dierentiable, one can dene its density,
c(u1, . . . , ud) =
∂d
C(u1, . . . , ud)
∂u1 . . . ∂ud
.
18
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas in high dimension, a dicult problem
It is usually dicult to represent dependence in dimension d  2, and it is
usually studied by pairs.
In dimension d = 2, one can dene the following Fréchet class F(FX, FY , FZ)
dened by its marginal distributions. But it can also be interested to study
F(FXY , FXZ, FY Z) dened by it paired distributions.
One of the problem that arises is the compatibility of marginals: one has to
verify that
CXY (x, y) = CX|Z(x|z)CY |Z(y|z)dz,
for instance.
19
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Composante 1
p
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Composante 2
p
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0
Composante 3
p
Figure 7: Scatterplot in dimension 3 including projections.
20
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas and ranks
The copula of X = (X1, . . . , Xd) is the distribution function of
U = (F1(X1), . . . , Fd(Yd)).
In practice, since marginal distributions are unknown, the idea is to substitute
empirical distribution function,
Fi(xi) =
#{observations Xi,j's lower than xi}
#{observations }
=
1
n
n
j=1
1(Xi,j ≤ xi).
Note that
Fi(Xi,j0
) =
#{observations Xi,j's lower than Xi,j0
}
#{observations }
=
1
n
n
j=1
1(Xi,j ≤ Xi,j0
) =
Ri,j0
n
,
where Ri,j0 denotes the rank of Xi,j0 within {Xi,1, ..., Xi,n}.
On a statistical point of view, studying the copula means studying ranks.
21
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
5.56.06.57.07.58.08.59.0
Scatterplot of (X,Y)
X (raw data)
Y(rawdata)
5 10 15 20
5101520
Scatterplot of the ranks of (X,Y)
Ranks of the Xi’s
RanksoftheYi’s
0.2 0.4 0.6 0.8 1.0
0.20.40.60.81.0
Scatterplot of the ranks of (X,Y), divided by n
Ranks of the Xi’s/n
RanksoftheYi’s/n
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot o+ ,-,/0, t1e copula!t3pe tran+orm o+ ,6,70
Ui=Ranks of the Xi’s/n+1
Vi=RanksoftheYi’s/n+1
Figure 8: Copulas, ranks and parametric inference, from (Xi, Yi) to (Ui, Vi).
22
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Some very classical copulas
• The independent copula C(u, v) = uv = C⊥
(u, v).
The copula is standardly denoted Π, P or C⊥
, and an independent version of
(X, Y ) will be denoted (X⊥
, Y ⊥
). It is a random vector such that X⊥ L
= X and
Y ⊥ L
= Y , with copula C⊥
.
In higher dimension, C⊥
(u1, . . . , ud) = u1 × . . . × ud is the independent copula.
• The comonotonic copula C(u, v) = min{u, v} = C+
(u, v).
The copula is standardly denoted M, or C+
, and an comonotone version of
(X, Y ) will be denoted (X+
, Y +
). It is a random vector such that X+ L
= X and
Y + L
= Y , with copula C+
.
(X, Y ) has copula C+
if and only if there exists a strictly increasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (U), F−1
Y (U)) where U is
U([0, 1]).
23
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Note that for any u, v
P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]})
≤ min{P(U ∈ [0, u]), P(V ∈ [0, v])}
thus, C(u, v) ≤ min{u, v} = C+
(u, v). Thus, C+
is an upper bound for the set of
copulas.
In higher dimension, C+
(u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic
copula.
• The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C−
(u, v).
The copula is standardly denoted W, or C−
, and an contercomontone version of
(X, Y ) will be denoted (X−
, Y −
). It is a random vector such that X− L
= X and
Y − L
= Y , with copula C−
.
(X, Y ) has copula C−
if and only if there exists a strictly decreasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (1 − U), F−1
Y (U)) where U is
U([0, 1]).
24
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Note that for any u, v,
P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]})
= P(U ∈ [0, u]) + P(V ∈ [0, v]) − P({U ∈ [0, u]} ∪ {V ∈ [0, v]})
thus, C(u, v) ≥ u + v − 1 since P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) ≤ 1, and since
C(u, v) ≥ 0, C(u, v) ≥ max{u + v − 1, 0} = C−
(u, v). Thus, C−
is a lower bound
for the set of copulas.
In higher dimension, C−
(u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a
copula: if (X, Y ) and (X, Z) are countercomonotonic, (Y, Z) is necessarily
comonotonic - it is not possible to have all component highly negatively
correlated.
Anyway, it is still the best pointwise lower bound.
25
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetlowerbound
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81Independencecopula
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetupperbound
Fréchet Lower Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Independent copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Fréchet Upper Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Lower Fréchet!Hoeffding bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Indepedent copula random generation
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Upper Fréchet!Hoeffding bound
Figure 9: Contercomontonce, independent, and comonotone copulas.
26
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Pitfalls on independence and comonotonicity
The following proposition is false,
Uncorrect Proposition 7. If X and Y are independent, if Y and Z are
independent, then X and Z are independent.
If
(X, Y, Z) = (1, 1, 1) with probability 1/4,
(1, 2, 1) with probability 1/4,
(3, 2, 3) with probability 1/4,
(3, 1, 3) with probability 1/4,
then X and Y are independent, and Y and Z are independent, but X = Z.
27
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 1 2 3 4
01234
X and Y independent
Component X
ComponentY
0 1 2 3 4
01234
Y and Z independent
Component Y
ComponentZ
0 1 2 3 4
01234
X and Z comonotonic
Component X
ComponentZ
Figure 10: Mixing independence and comonotonicity.
28
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Pitfalls on independence and comonotonicity
The following proposition is false,
Uncorrect Proposition 8. If X and Y are comonotonic, if Y and Z are
comonotonic, then X and Z are comonotonic.
If
(X, Y, Z) = (1, 1, 1) with probability 1/4,
(1, 2, 3) with probability 1/4,
(3, 2, 1) with probability 1/4,
(3, 3, 3) with probability 1/4,
then X and Y are comonotonic, and Y and Z are comonotonic, but X and Z are
independent.
29
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 1 2 3 4
01234
X and Y comonotonic
Component X
ComponentY
0 1 2 3 4
01234
Y and Z comonotonic
Component Y
ComponentZ
0 1 2 3 4
01234
X and Z independent
Component X
ComponentZ
Figure 11: Mixing independence and comonotonicity.
30
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Pitfalls on independence and comonotonicity
The following proposition is false,
Uncorrect Proposition 9. If X and Y are comonotonic, if Y and Z are
independent, then X and Z are independent.
If
(X, Y, Z) = (1, 1, 3) with probability 1/4,
(2, 1, 1) with probability 1/4,
(2, 3, 3) with probability 1/4,
(3, 3, 1) with probability 1/4,
then X and Y are comonotonic, and Y and Z are independent, but X and Z are
anticomonotonic.
31
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
If
(X, Y, Z) = (1, 1, 1) with probability 1/4,
(2, 1, 3) with probability 1/4,
(2, 3, 1) with probability 1/4,
(3, 3, 3) with probability 1/4,
then X and Y are comonotonic, and Y and Z are independent, but X and Z are
comonotonic.
32
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 1 2 3 4
01234
X and Y comonotonic
Component X
ComponentY
0 1 2 3 4
01234
Y and Z independent
Component Y
ComponentZ
0 1 2 3 4
01234
X and Z comonotonic
Component X
ComponentZ
Figure 12: Mixing independence and comonotonicity.
33
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Elliptical (Gaussian and t) copulas
The idea is to extend the multivariate probit model, Y = (Y1, . . . , Yd) with
marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ).
• The Gaussian copula, with parameter α ∈ (−1, 1),
C(u, v) =
1
2π
√
1 − α2
Φ−1
(u)
−∞
Φ−1
(v)
−∞
exp
−(x2
− 2αxy + y2
)
2(1 − α2)
dxdy.
Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf,
and where (X, Y ) has a joint t-distribution.
• The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2,
C(u, v) =
1
2π
√
1 − α2
t−1
ν (u)
−∞
t−1
ν (v)
−∞
1 +
x2
− 2αxy + y2
2(1 − α2)
−((ν+2)/2)
dxdy.
34
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Archimedean copulas
Denition of Archimedean copulas
• Archimedian copulas C(u, v) = φ−1
(φ(u) + φ(v)), where φ is decreasing
convex (0, 1), with φ(0) = ∞ and φ(1) = 0.
Example 10. If φ(t) = [− log t]α
, then C is Gumbel's copula, and if
φ(t) = t−α
− 1, C is Clayton's. Note that C⊥
is obtained when φ(t) = − log t.
How Archimedean copulas were introduced ?
1. The frailty approach (Oakes (1989)).
Assume that X and Y are conditionally independent, given the value of an
heterogeneous component Θ. Assume further that
P(X ≤ x|Θ = θ) = (GX(x))θ
and P(Y ≤ y|Θ = θ) = (GY (y))θ
for some baseline distribution functions GX and GY .
Then
F(x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ))
35
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
thus, since X and Y are conditionally independent,
F(x, y) = E(P(X ≤ x|Θ = θ) × P(Y ≤ y|Θ = θ))
and therefore
F(x, y) = E (GX(x))Θ
× (GY (y))Θ
= ψ(− log GX(x) − log GY (y))
where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ
). Since
FX(x) = ψ(− log GX(x)) and FY (y) = ψ(− log GY (y))
and thus, the joint distribution of (X, Y ) satises
F(x, y) = ψ(ψ−1
(FX(x)) + ψ−1
(FY (y))).
Example 11. If Θ is Gamma distributed, the associated copula is Clayton's. If
Θ has a stable distribution, the associated copula is Gumbel's.
36
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Consider two risks, X and Y , such that
X|Θ = θG ∼ E(θG) and Y |Θ = θG ∼ E(θG) are independent,
X|Θ = θB ∼ E(θB) and Y |Θ = θB ∼ E(θB) are independent,
(unobservable good (G) and bad (B) risks).
The following gures start from 2 classes of risks, then 3, and then a continuous
risk factor θ ∈ (0, ∞).
37
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 5 10 15
05101520
Conditional independence, two classes
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, two classes
Figure 13: Two classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
38
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 5 10 15 20 25 30
010203040
Conditional independence, three classes
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, three classes
Figure 14: Three classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
39
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, continuous risk factor
Figure 15: Continuous classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
40
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
2. The survival approach: assume that there is a convex survival function S,
with S(0) = 1, such that
P(X  x, Y  y) = S(x + y),
then the joint survival copula of (X, Y ) is
S(S−1
(u) + S−1
(v)).
Example 12. If S is the Pareto survival distribution, the associated copula is
Clayton's. If S is the Weibull survival distribution, the associated copula is
Gumbel's.
41
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
3. The use of Kendall's distribution function K(t) = P(C(U, V ) ≤ t) where
(U, V ) is a random pair with distribution function C.
Then, for Archimedean copulas,
K(t) = t −
φ (t)
φ(t)
= t − λ(t),
which can be inverted easily in
φ(t) = φ(t0) exp
1
t0
1
λ(t)
dt ,
for some 0  t0  1 and 0 ≤ u ≤ 1.
42
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Some more examples of Archimedean copulas
ψ(t) range θ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978)
(2) (1 − t)θ [1, ∞)
(3) log
1−θ(1−t)
t
[−1, 1) Ali-Mikhail-Haq
(4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986)
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987)
(6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993)
(7) − log{θt + (1 − θ)} (0, 1]
(8)
1−t
1+(θ−1)t
[1, ∞)
(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)
(10) log(2t−θ − 1) (0, 1]
(11) log(2 − tθ) (0, 1/2]
(12) ( 1
t
− 1)θ [1, ∞)
(13) (1 − log t)θ − 1 (0, ∞)
(14) (t−1/θ − 1)θ [1, ∞)
(15) (1 − t1/θ)θ [1, ∞) Genest  Ghoudi (1994)
(16) ( θ
t
+ 1)(1 − t) [0, ∞)
43
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Some characterizations of Archimedean copula
• Frank copula is the only Archimedean such that (U, V )
L
= (1 − U, 1 − V )
(stability by symmetry),
• Clayton copula is the only Archimedean such that (U, V ) has the same
copula as (U, V ) given (U ≤ u, V ≤ v) (stability by truncature),
• Gumbel copula is the only Archimedean such that (U, V ) has the same
copula as (max{U1, ..., Un}, max{V1, ..., Vn}) for all n ≥ 1 (max-stability),
44
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Extreme value copulas
• Extreme value copulas
C(u, v) = exp (log u + log v) A
log u
log u + log v
,
where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et
max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] .
An alternative denition is the following: C is an extreme value copula if for all
z  0,
C(u1, . . . , ud) = C(u
1/z
1 , . . . , u
1/z
d )z
.
Those copula are then called max-stable: dene the maximum componentwise of
a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}.
45
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
The joint distribution of M is
P(M ≤ x) = C(F1(x1, . . . , Fd(xd))n
,
where C is the copula of the Xi's. Since P(Mi ≤ xi) = Fi(xi)n
, it can be written
P(M ≤ x) = C(P(M1 ≤ x1)1/n
, . . . , P(Md ≤ xd)1/n
)n
.
Thus, C(u
1/n
1 , . . . , u
1/n
d )n
is the copula of the n maximum componentwise from a
sample with copula C.
Example 13. : If A is constant (1 on [0, 1]), then X and Y are independent,
and if A(ω) = max {ω, 1 − ω}, X and Y are comonotonic. Gumbel's copula is
obtained if
A(ω) = ((1 − ω)α
+ ωα
+ 1)
(
1/α),
for all 0 ≤ ω ≤ 1 and α ≥ 1.
46
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.50.60.70.80.91.0
Pickands dependence function A
Figure 16: Shape of Gumbel's dependence function A(ω).
47
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
How to construct much more copulas ?
Using geometric transformations
From a given copula C, cdf of random pair (U, V ), dene
• the copula of (U, 1 − V ),
C(U,1−V )(u, v) = u − C(u, 1 − v)
• the copula of (1 − U, V ),
C(1−U,V )(u, v) = v − C(1 − u, v)
• the copula of (1 − U, 1 − V ), the rotated or survival copula,
C(1−U,1−V )(u, v) = C∗
(u, v) = u + v − 1 + C(1 − u, 1 − v)
Note that if P(X ≤ x, Y ≤ y) = C(P(X ≤ x), P(Y ≤ y)), then
P(X  x, Y  y) = C∗
(P(X  x), P(Y  y)).
48
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Figure 17: Using geometric transformation to generate new copulas.
49
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Figure 18: Using geometric transformation to generate new copulas.
50
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Figure 19: Using geometric transformation to generate new copulas.
51
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Figure 20: Using geometric transformation to generate new copulas.
52
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Using mixture of copulas
Lemma 14. The set of copulas is convex, i.e. if {Cθ, θ ∈ Ω} is a collection of
copulas,
C(u, v) =
R
Cθ(u, v)dΠ(θ)
is a copula, where Π is a distribution on Ω
Thus C = αC1 + (1 − α)C2 denes a copula for all α ∈ [0, 1].
Example 15. Fréchet (1951) suggested a mixture of the lower and the upper
bound,
C(u, v) = αC−
(u, v) + (1 − α)C+
(u, v), for some α ∈ [0, 1].
Example 16. Mardia (1970) suggested a mixture of the lower, the upper
bound, and the independent copula
C(u, v) =
α2
2
C−
(u, v) + (1 − α2
)C⊥
(u, v) +
α2
2
C+
(u, v), α ∈ [0, 1].
53
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Using distortion functions
Denition 17. A distortion function is a function h : [0, 1] → [0, 1] strictly
increasing such that h(0) = 0 and h(1) = 1.
The set of distortion function will be denoted H.
Note that h ∈ H if and only if h−1
∈ H. Given a copula C, dene
Ch(u, v) = h−1
(C(h(u), h(v))).
If h is convex, then Ch is a copula, called distorted copula.
Example 18. if h(x) = x1/n
, the distorted copula is
Ch(u, v) = Cn
(u1/n
, v1/n
), for all n ∈ N, (u, v) ∈ [0, 1]2
.
if the survival copula of the (Xi, Yi)'s is C, then the survival copula of
(Xn:n, Yn:n) = (max{X1, ..., Xn}, max{Y1, ..., Yn}) is Ch.
54
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Example 19. if C(u, v) = uv = C⊥
(u, v) (the independent copula), and
φ(·) = log h(·), then
Ch(u, v) = h−1
(h(u)h(v)) = φ−1
(φ(u) + φ(v)).
Example 20. if h(x) = [1 − e−αx
]/[1 − e−α
] (an exponential distortion), and if
C = C⊥
, then
Ch(u, v) = −
1
α
log 1 +
(e−αu
− 1)(e−αv
− 1)
e−α − 1
,
which is Frank copula.
55
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Distorted Frank copula, h(x) = x Distorted Frank copula, h(x) = x(1 2)
Distorted Frank copula, h(x) = x(1 3)
Distorted Frank copula, h(x) = x(1 4)
Figure 21: Distorted copula, from Frank copula.
56
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Monte Carlo and copulas
Generation of independent variables can be done using a Random function.
Denition 21. Function Random should satisfy the following properties (i) for
all 0 ≤ a ≤ b ≤ 1,
P (Random ∈ ]a, b]) = b − a.
(ii) successive calls of function Random should generate independent draws, i.e.
0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1
P (Random1 ∈ ]a, b] , Random2 ∈ ]c, d]) = (b − a) (d − c) ,
or more generally, dene k-uniformity for all 0 ≤ ai ≤ bi ≤ 1, i = 1, ..., k,
P (Random1 ∈ ]a1, b1] , ..., Randomk ∈ ]ak, bk]) =
k
i=1
(bi − ai) .
Thus, one can generate easily random vectors U = (U1, ..., Ud) with independent
component.
57
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
The idea to generate correlated vectors U = (U1, ..., Ud), the idea is to use rst
P(U1 ≤ u1, . . . , Ud ≤ ud) = P(Ud ≤ ud|U1 ≤ u1, . . . , Ud−1 ≤ ud−1)
×P(Ud−1 ≤ ud−1|U1 ≤ u1, . . . , Ud−2 ≤ ud−2)
× . . .
×P(U3 ≤ u3|U1 ≤ u1, U2 ≤ u2)
×P(U2 ≤ u2|U1 ≤ u1) × P(U1 ≤ u1).
58
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Starting from the end, P(U1 ≤ u1) = u1 since U1 is uniform, while
P(U2 ≤ u2|U1 = u1)
= P(U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1|U1 = u1)
= lim
h→0
P(U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1|U1 ∈ [u1, u1 + h])
= lim
h→0
P(u1 ≤ U1 ≤ u1 + h, U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1)
P(U1 ∈ [u1, u1 + h])
= lim
h→0
P(U1 ≤ u1 + h, U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1) − P(U1 ≤ u1, U2 ≤ u2, U3 ≤ 1, . . .
P(U1 ∈ [u1, u1 + h])
= lim
h→0
C(u1 + h, u2, 1, . . . , 1) − C(u1, u2, 1, . . . , 1)
h
=
∂C
∂u1
C(u1, u2, 1, . . . , 1).
and more generally,
P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1) =
∂k−1
∂u1 . . . ∂uk−1
C(u1, . . . , uk, 1, . . . , 1).
59
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Thus, U = (U1, .., Un) with copula C could be simulated using the following
algorithm,
• simulate U1 uniformly on [0, 1],
u1 ← Random1,
• simulate U2 from the conditional distribution ∂1C(·|u1),
u2 ← [∂1C(·|u1)]−1
(Random2),
• simulate Uk from the conditional distribution ∂1,...,k−1C(·|u1, ..., uk−1),
uk ← [∂1,...,k−1C(·|u1, ..., uk−1)]−1
(Randomk),
...etc, where the Randomi's are independent calls of a Random function.
This is the underlying idea when using Cholesky decomposition.
60
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Example: for Clayton's copula, C(u, v) = (u−α
+ v−α
− 1)−1/α
, (U, V ) has joint
distribution C if and only if U is uniform on on [0, 1] and V |U = u has
conditional distribution
P(V ≤ v|U = u) = ∂2C(v|u) = (1 + uα
[v−α
− 1])−1−1/α
.
The algorithm to generate Clayton's copula is the
• simulate U1 uniformly on [0, 1],
u1 ← Random1,
• simulate U2 from the conditional distribution ∂2C(·|u),
u2 ← [∂1C(·|u1)]−1
(Random2),
i.e.
u2 ← [(Random2)−α/(1+α
− 1]u−α
1 + 1−1/α
.
61
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Distribution of v given u=0.3
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Distribution of v given u=0.5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Generation of Clayton’s copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.5
Distribution of v given u=0.8
Figure 22: Simulation of Clayton's copula.
62
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
!i#tribution +e -
q/
0.0 0.2 0.4 0.6 0.8 1.0
0100300500
!i#tribution +e 9
q/
0.0 0.2 0.4 0.6 0.8 1.0
0200400
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
-ni:orm mar=in#
!4 !2 0 2 4
!4!2024 Stan+ar+ ?au##ian mar=in#
Figure 23: Simulation of the independent copula.
63
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
!is$riu$i(n +e -
./
010 012 014 014 015 610
0200400
!is$riu$i(n +e 7
./
010 012 014 014 015 610
0200400
010 012 014 014 015 610
010014015
-ni8(r9 9argins
!2 0 2 4
!2024 $an+ar+ =aussian 9argins
Figure 24: Simulation of the comontone copula.
64
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Distribution de -
q/
0.0 0.2 0.4 0.6 0.8 1.0
0200400
Distribution de V
q/
0.0 0.2 0.4 0.6 0.8 1.0
0200400
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
-niform margins
!2 0 2 4
!4!202 tandard =aussian margins
Figure 25: Simulation of the contercomonotone copula.
65
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
!istri'tion de -
./
010 012 014 014 015 110
0200400
!istri'tion de 7
./
010 012 014 014 015 110
0100300900
010 012 014 014 015 110
010014015
-ni:orm mr=ins
!4 !2 0 2 4
!4!2024 Stndrd ?'ssin mr=ins
Figure 26: Simulation of the Gaussian copula.
66
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
D#$%u$on +e U
.y
010 012 014 014 015 110
0200400
D#$%u$on +e V
.y
010 012 014 014 015 110
0200400
010 012 014 014 015 110
010014015
Unfo%m ma%;n#
!2 0 2 4
!2024 S$an+a%+ =au##an ma%;n#
Figure 27: Simulation of Clayton's copula.
67
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Distribution de U
qy
0.0 0.2 0.4 0.6 0.8 1.0
0200400
Distribution de V
qy
0.0 0.2 0.4 0.6 0.8 1.0
0200400
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Uniform margins
!4 !2 0 2 4
!4!2024 Standard Gaussian margins
Figure 28: Simulation of Clayton's survival copula.
68
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Distribution de U
qy
0.0 0.2 0.4 0.6 0.8 1.0
0200400
Distribution de V
qy
0.0 0.2 0.4 0.6 0.8 1.0
0200400
0.0 0.2 0.4 0.6 0.8 1.0
0.00.40.8
Uniform margins
!4 !2 0 2
!4!2024 Standard Gaussian margins
Figure 29: Simulation of a copula mixture.
69
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas in nance: options on multiple assets
Remark 22. Recall that Breeden  Litzenberger (1978) proved that the risk
neutral probability can be obtrained from option prices: consider the price of a call
C(T, K) = e−rT
EQ((ST − K)+). Since (ST − K)+ =
∞
K
1(ST  x)dx, one gets
C(T, K) = e−rT
∞
K
Q(ST  x)dx,
hence
Q(ST ≤ x) = −e−rT ∂C
∂K
(T, x), or Q(ST ≤ x) = −erT ∂P
∂K
(T, x)
where P denotes the price of a put option.
Consider an option on 2 assets, with payo h(S1
T , S2
T ). The price at time 0 is
e−rT
EQ(h(S1
T , S2
T )).
70
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas in nance: call on maximum
Here the payo is h(S1
T , S2
T ) = (max{S1
T , S2
T } − K)+. The price is then
C(T, K) = e−rT
EQ((max{S1
T , S2
T } − K)+)
= e−rT
EQ
∞
K
1 − 1(max{S1
T , S2
T } ≤ x)dx
= e−rT
∞
K
1 − Q(max{S1
T , S2
T } ≤ x)
Q(S1
T ≤x,S2
T ≤x)
dx,
hence, if (S1
T , S2
T ) has copula C (under Q), then
C(T, K) = e−rT
∞
K
1 − C erT ∂P1
∂K
(T, x), erT ∂P2
∂K
(T, x) dx.
71
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas in nance: call on spreads
Here the payo is h(S1
T , S2
T ) = ([S1
T − S2
T ] − K)+. The price is then
C(T, K) = e−rT
EQ((S1
T − S2
T − K)+) = e−rT
EQ
∞
−∞
1(S2
T + K ≤ x ≤ S1
T )dx
= e−rT
∞
−∞
Q(K + S2
T ≤ x) − Q(S2
T + K ≤ x, S1
T ≤ x} ≤ x)
Q(S1
T ≤x,S2
T ≤x+K)
dx,
hence, if (S1
T , S2
T ) has copula C (under Q), then
C(T, K) = e−rT
∞
−∞
erT ∂P2
∂K
(T, x−K)−C erT ∂P1
∂K
(T, x), erT ∂P2
∂K
(T, x − K) dx.
72
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Copulas in nance: bonds on option prices
Using Tchen's inequality, it is possible to derive bounds for options when the
payo is supermodular.
73
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
74
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Natural properties for dependence measures
Denition 23. κ is measure of concordance if and only if κ satises
1. κ is dened for every pair (X, Y ) of continuous random variables,
2. −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1,
3. κ (X, Y ) = κ (Y, X),
4. if X and Y are independent, then κ (X, Y ) = 0,
5. κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ),
6. if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2),
7. if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that
converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞.
75
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
As pointed out in Scarsini (1984), most of the axioms are self-evident.
If κ is measure of concordance, then, if f and g are both strictly increasing, then
κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost
surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f
almost surely strictly decreasing (see Scarsini (1984)).
76
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Association measures: Kendall's τ and Spearman's ρ
Rank correlations can be considered, i.e. Spearman's ρ dened as
ρ(X, Y ) = corr(FX(X), FY (Y )) = 12
1
0
1
0
C(u, v)dudv − 3
and Kendall's τ dened as
τ(X, Y ) = 4
1
0
1
0
C(u, v)dC(u, v) − 1.
Historical version of those coecients
Spearman's rho was introduced in Spearman (1904) as
ρ(X, Y ) = 3[P((X1 − X2)(Y1 − Y3)  0) − P((X1 − X2)(Y1 − Y3)  0)],
where (X1, Y1), (X2, Y2) and (X3, Y3) denote three independent versions of
(X, Y ) (see Nelsen (1999)).
77
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Similarly Kendall's tau was not dened using copulae, but as the probability of
concordance, minus the probability of discordance, i.e.
τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2)  0) − P((X1 − X2)(Y1 − Y2)  0)],
where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see
Nelsen (1999)).
Equivalently, τ(X, Y ) = 1 −
4Q
n(n2 − 1)
where Q is the number of inversions
between the rankings of X and Y (number of discordance).
78
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5 Concordant pairs
X
Y
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5
Discordant pairs
X
Y
Figure 30: Concordance versus discordance.
79
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
The case of the Gaussian random vector
If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958))
ρ(X, Y ) =
6
π
arcsin
r
2
and τ(X, Y ) =
2
π
arcsin (r) .
80
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Link between Kendall's tau and Spearman's rho
Note that Kendall's tau and Spearman's are linked: it is impossible to have at
the same time τ ≥ 0.4 and ρ = 0.
Hence ρ and τ satisfy
3τ − 1
2
≤ ρ ≤
1 + 2τ − τ2
2
if τ ≥ 0
τ2
+ 2τ − 1
2
≤ ρ ≤
1 + 3τ
2
if τ ≤ 0.
which yield the area given below.
81
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
-1.0 -0.5 0.0 0.5 1.0
Tau de Kendall
-1.0
-0.5
0.0
0.5
1.0
RhodeSpearman
Figure 31: Admissible region of ρ and τ.
82
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
From Kendall'tau to copula parameters
Kendall's τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞
Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞
Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞
Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞
Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞
Morgenstein θ 0.00 0.45 0.90 - - - - - - - -
83
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
From Spearman's rho to copula parameters
Spearman's ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00
Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞
A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞
Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞
Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞
Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞
Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞
Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - -
84
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Alternative expressions of those coecients
Note that those coecients can also be expressed as follows
ρ(X, Y ) =
[0,1]×[0,1]
C(u, v) − C⊥
(u, v)dudv
[0,1]×[0,1]
C+(u, v) − C⊥(u, v)dudv
(1)
(the normalized average distance between C and C⊥
), for instance.
A dependence measure in higher dimension ?
From equations 1 and ??, it is possible to obtain a natural mutlidimensional
extention (see Wolf (1980), Joe (1990) or Nelsen (1996)),
ρ(X) =
[0,1]d C(u) − C⊥
(u)du
[0,1]×[0,1]
C+(u) − C⊥(u)du
=
d + 1
2d − (d + 1)
2d
[0,1]d
C(u)du − 1
(2)
and similarly
τ(X) ==
1
2d−1 − 1)
2d
[0,1]d
C(u)dCu − 1 (3)
85
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Note that a lower bound for τ is then −1/(2d−1
− 1), while it is
(2d
− (d + 1)!)/(d!(2d
− (d + 1))).
In dimension 3, Kendall's τ is the average of the three 2-dimensional Kendall's τ,
τ(X, Y, Z) =
1
3
(τ(X, Y ) + τ(X, Z) + τ(Y, Z)).
86
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Tail concentration functions
Venter (2002) suggest to use several Tail Concentration Functions
Denition 24. For lower tails, dene
L(z) = P(U  z, V  z)/z = C(z, z)/z = Pr(U  z|V  z) = Pr(V  z|U  z),
and for upper tails,
R(z) = P(U  z, V  z)/(1 − z) = Pr(U  z|V  z).
Joe (1990) uses the term upper tail dependence parameter for
R = R(1) = limz→1 R(z), and lower tail dependence parameter for
L = L(0) = limz→0 L(z).
87
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Functional correlation measures
Consider also Kendall's tau, dened as −1 + 4
1
0
1
0
C(u, v)dC(u, v).
Denition 25. The cumulative tau can be dened as
J(z) = −1 + 4
z
0
z
0
C(u, v)dC(u, v)/C(z, z)2
.
88
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GAUSSIAN
q
q
Figure 32: L and R cumulative curves.
89
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GUMBEL
q
q
Figure 33: L and R cumulative curves.
90
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
CLAYTON
q
q
Figure 34: L and R cumulative curves.
91
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=5)
q
q
Figure 35: L and R cumulative curves.
92
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=3)
q
q
Figure 36: L and R cumulative curves.
93
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Dependence in independence
Coles, Heffernan  Tawn (1999) propose another function,
χ(z) =
2 log(1 − z)
log C(z, z)
− 1
Then set η = (1 + limz→1 χ(z))/2
94
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GAUSSIAN
q
q
Figure 37: χ functions.
95
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GUMBEL
q
q
Figure 38: χ functions.
96
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
CLAYTON
q
q
Figure 39: χ functions.
97
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
STUDENT (df=3)
q
q
Figure 40: χ functions.
98
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
(Strong) tail dependence measure
Joe (1993) dened, in the bivariate case a tail dependence measure.
Denition 26. Let (X, Y ) denote a random pair, the upper and lower tail
dependence parameters are dened, if the limit exist, as
λL = lim
u→0
P X ≤ F−1
X (u) |Y ≤ F−1
Y (u) ,
and
λU = lim
u→1
P X  F−1
X (u) |Y  F−1
Y (u) .
As mentioned in Fougères (2004), this coecient can be obtained dierently:
set
θ(x) =
log P(max{X, Y } ≤ x)
log P(X ≤ x)
.
Then
λU = 2 − lim
x→∞
θ(x),
99
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
since when x → ∞
2 −
log P(max{X, Y } ≤ x)
log P(X ≤ x)
∼
P(X  x, Y  x)
1 − P(X  x)
= P(Y  x|X  x).
Note that these coecient can be expressed only through the copula,
Proposition 27. Let (X, Y ) denote a random pair with copula C, the upper and
lower tail dependence parameters are dened, if the limit exist, as
λL = lim
u→0
C(u, u)
u
and λU = lim
u→1
C∗
(u, u)
1 − u
.
Does λ = 0 implies that extremal events are independent ?
Example 28. If (X, Y ) has a Gaussian copula with parameter θ  1, then λ = 0.
Hence, visually, dependence is weaker than any Gumbel's copula (even with θ is
rather small), but are extremal events independent ?
100
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuledeGumbel
!2 0 2 4
!2024
Marges gaussiennes
Figure 41: Simulations of Gumbel's copula θ = 1.2.
101
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuleGaussienne
!2 0 2 4
!2024
Marges gaussiennes
Figure 42: Simulations of the Gaussian copula (θ = 0.95).
102
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Example 29. Consider the case of Archimedean copulas, then
λU = 2 − lim
x→0
1 − φ−1
(2x)
1 − φ−1(x)
and λL = lim
x→0
φ−1
(2φ(x))
x
= lim
x→∞
φ−1
(2x)
φ−1(x)
.
Further, properties can be derived for distorted generators, φα,β(·) = φ(·α
)β
,
upper and lower tails coecients are respectively
λU and λ
1/α
L for φα,1(·) = φ(·α
)
and
2 − (2 − λU )1/β
and λ
1/β
L for φ1,β(·) = φ(·)β
(Weak) tail dependence measure
Ledford  Tawn (1996) propose the following model to study tail dependence.
Consider a random vector with identically distributed marginals, X
L
= Y .
• under independence, P(X  t, Y  t) = P(X  t) × P(Y  t) = P(X  t)2
,
• under comonotonicity, P(X  t, Y  t) = P(X  t) = P(X  t)1
,
103
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Assume that P(X  t, Y  t) ∼ P(X  t)1/η
as t → ∞, where η ∈ (0, 1] will be
called coecient of tail dependence
More precisely,
• η = 1, perfect positive dependence (tail comontonicity),
• 1/2  η  1, more dependent than independence, but asymptotically
independent,
• η = 1/2, tail independence
• 0  η  1/2 less dependent than independence.
104
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
One can then dene upper tail coecient ηU and lower tail coecient ηL.
Example 30. : If (X, Y ) has Gumbel copula,
P(X ≤ x, Y ≤ y) = exp(−(x−α
+ y−α
)1/α
), α ≥ 0
then ηU = 1. Further, ηL = 1/2α
.
Example 31. : If (X, Y ) has a Clayton copula, then ηU = 1/2 while ηL = 1.
Example 32. : If (X, Y ) has a Gaussian copula, then ηU = ηL = (1 + r)/2.
105
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
106
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Estimation of copulas
Since C(u, v) = F(F−1
X (u), F−1
Y (v)), copula has be estimated only after
estimating marginal distribution.
Margins Copula
Parametric Fα and Fβ C
θ
Nonparametric FX and FY C
(Fully) parametric estimation of copulas
Step 1: t the 2 univariate marginal cdf's FX and FY with the help of the
observations {x1, x2, . . . , xn} and {y1, y2, . . . , yn} respectively; let α and β be the
corresponding MLE's of α and β.
Step 2: estimate θ with the parameters α = α and β = β xed at the estimated
values from Step 1; i.e. on pseudo-observations (Ui, Vi)'s, where
Ui = Fα(Xi) and Vi = Fβ(Yi),
107
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
let the result be θ.
Step 3: using α, β and θ as starting values, determine the global MLE's α, β and
θ of the parameters α, β and θ.
Parametric estimation of copulas
An alternative is to use nonparametric estimation of margins, FX and FY .
Step 1: estimate θ based on pseudo-observations (Ui, Vi)'s, where
Ui = FX(Xi) and Vi = FY (Yi),
let the result be θ.
Nonparametric estimation of copulas
Given an estimation of marginal distributions (parametric or nonparametric), the
108
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
idea is to consider the empirical copula C, dened as
C(u, v) =
#{i such that Ui ≤ u and Vi ≤ v}
#{i}
=
1
n
n
i=1
1(FX(Xi) ≤ u) × 1(FY (Yi) ≤ v).
109
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Example Loss-ALAE: consider the following dataset, were the Xi's are loss
amount (paid to the insured) and the Yi's are allocated expenses. Denote by Ri
and Si the respective ranks of Xi and Yi. Set Ui = Ri/n = ˆFX(Xi) and
Vi = Si/n = ˆFY (Yi).
Figure 43 shows the log-log scatterplot (log Xi, log Yi), and the associate copula
based scatterplot (Ui, Vi).
Figure 44 is simply an histogram of the (Ui, Vi), which is a nonparametric
estimation of the copula density.
Note that the histogram suggests strong dependence in upper tails (the
interesting part in an insurance/reinsurance context).
110
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
1 2 3 4 5 6
12345 Log!log scatterplot, Loss!ALAE
log(LOSS)
log(ALAE)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Copula type scatterplot, Loss!ALAE
Probability level LOSS
ProbabilitylevelALAE
Figure 43: Loss-ALAE, scatterplots (log-log and copula type).
111
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Figure 44: Loss-ALAE, histogram of copula type transformation.
112
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
The basic idea to get an estimator of the density at some point x is to count how
many observation are in the neighborhood of x (e.g. in [x − h, x + h) for some
h  0).
Therefore, consider the moving histogram or naive estimator as suggested by
Rosenblatt (1956),
f(x) =
1
2nh
n
i=1
I(Xi ∈ [x − h, x + h)).
Note that this can be easily extended using other denitions of the neighborhood
of x,
f(x) =
1
nh
n
i=1
K
x − Xi
h
,
where K is a kernel function (e.g. K(ω) = I(|ω| ≤ 1)/2).
113
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 45: Theoretical density of Frank copula.
114
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 46: Estimated density of Frank copula, using standard Gaussian (indepen-
dent) kernels, h = h∗
.
115
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Problem of nonparametric estimation with kernel: bias on the borders.
Let K denote a symmetric kernel with support [−1, 1]. Note that
E(f(0, h) =
1
2
f(0) + O(h)
116
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1]
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Kernel based estimation of the uniform density on [0,1]
Density
Figure 47: Density estimation of an uniform density on [0, 1].
117
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Several techniques have been introduce to get a better estimation on the border,
• boundary kernel (Müller (1991))
• mirror image modication (Deheuvels  Hominal (1989), Schuster
(1985))
• transformed kernel (Devroye  Györfi (1981), Wand, Marron 
Ruppert (1991))
• Beta kernel (Brown  Chen (1999), Chen (1999, 2000)),
see Charpentier, Fermanian  Scaillet (2006) for a survey with
application on copulas.
118
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Consider the kernel estimator of the density of the
(Xi, Yi) = (G−1
(Ui), G−1
(Vi))'s, where G is a strictly increasing distribution
function R → [0, 1], with a dierentiable density.
119
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Since density f of (X, Y ) is continuous, twice dierentiable, and bounded above,
for all (x, y) ∈ R2
, consider
f(x, y) =
1
nh2
n
i=1
K
x − Xi
h
K
y − Yi
h
.
Since
f(x, y) = g(x)g(y)c[G(x), G(y)]. (4)
can be inverted in
c(u, v) =
f(G−1
(u), G−1
(v))
g(G−1(u))g(G−1(v))
, (u, v) ∈ [0, 1] × [0, 1], (5)
one gets, substituting f in (5)
c(u, v) =
1
nh · g(G−1(u)) · g(G−1(v))
n
i=1
K
G−1
(u) − G−1
(Ui)
h
,
G−1
(v) − G−1
(Vi)
h
,
(6)
120
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.20.40.60.8
Figure 48: Estimated density of Frank copula, using a Gaussian kernel, after a
Gaussian normalization.
121
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
The Beta-kernel based estimator of the copula density at point (u, v), is obtained
using product beta kernels, which yields
c(u, v) =
1
n
n
i=1
K Xi,
u
b
+ 1,
1 − u
b
+ 1 · K Yi,
v
b
+ 1,
1 − v
b
+ 1 ,
where K(·, α, β) denotes the density of the Beta distribution with parameters α
and β.
122
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0
Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2
Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5
Figure 49: Shape of bivariate Beta kernels K(·, x/b + 1, (1 − x)/b + 1) × K(·, y/b +
1, (1 − y)/b + 1) for b = 0.2.
123
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 50: Estimated density of Frank copula, Beta kernels, b = 0.1
124
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05)
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Figure 51: Estimated density of Frank copula, Beta kernels, b = 0.05
125
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 52: Density estimation on the diagonal, standard kernel.
126
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 53: Density estimation on the diagonal, transformed kernel.
127
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.05, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.02, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.005, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Figure 54: Density estimation on the diagonal, Beta kernel.
128
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Tail dependence and statistical inference
Consider an i.i.d. sample (X1, Y1) , ...., (Xn, Yn).
Consider unit Pareto transformation of margins: set
T =
1
1 − FX (X)
∧
1
1 − FY (Y )
.
Observe that the survival distribution function of T, FT , is regularly varying
with parameter η. But because FX and FY are unknown, dene the pseudo
observations Ti's as
Ti =
1
1 − FX,n (Xi)
∧
1
1 − FY,n (Yi)
=
n + 1
n + 1 − Ri
∧
n + 1
n + 1 − Si
,
where Ri and Si denote the ranks of the Xi's and Yi's. Hill estimator can then
be used, based on the k + 1 largest values of the Ti's,
ηHill =
1
k
k
i=1
log
Tn−i+1:n
Tn−k:n
.
129
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Estimation of η (Hill's estimator)
Proposition 33. Assume that (X, Y ) has upper tail dependence, with tail index
η, with additional regularity conditions, then
√
k (ηHill − η) is asymptotically
normally distributed, with mean 0 and variance
σ2
= η2
(1 − l) 1 − 2
∂c (1, 1)
∂x
∂c (1, 1)
∂y
.
Remark 34. From this Proposition, a test for asymptotic dependence (i.e.
η = 1) can de dened: asymptotic dependence is accepted if
1 − ηHill
σ (η = 1)
≤ Φ−1
(95%)
130
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Estimation of η (Peng's estimator)
Set
Sn (k) =
n
i=1
I (Xi  Xn−k:n, Yi  Yn−k:n)
and
ηPeng =
1
log 2
log
Sn (k)
Sn ( k/2 )
−1
.
Proposition 35. Assume that (X, Y ) has upper tail dependence, with tail index
η, and the same technical assumption as before, then
√
k (ηPeng − η) is
asymptotically normally distributed, with mean 0.
131
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Estimation of λ (Huang's estimator)
It is also possible to estimate λU : Huang-estimator of is based on the denition
of the upper tail index.
λHuang =
n
k
P (Ui, Vi) ∈ 1 −
k
n
× 1 −
k
n
=
1
k
n
i=1
I (Ri  n − k, Si  n − k)
=
1
k
n
i=1
I (Xi  Xn−k:n, Yi  Yn−k:n) .
132
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Gaussian copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Gaussian copula, tau=0.3
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Gaussian copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Clayton copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Clayton copula, tau=0.3
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Clayton copula, tau=0.3
Figure 55: Estimation of η and λ for Gaussian and Clayton copulas, with Kendall's
tau equal to 0.3
133
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), survival Clayton copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), survival Clayton copula, tau=0.3
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), survival Clayton copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Gumbel copula, tau=0.3
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Gumbel copula, tau=0.3
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Gumbel copula, tau=0.3
Figure 56: Estimation of η and λ for survival Clayton and Gumbel copulas, with
Kendall's tau equal to 0.3
134
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Gaussian copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Gaussian copula, tau=0.7
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Gaussian copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Clayton copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Clayton copula, tau=0.7
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Clayton copula, tau=0.7
Figure 57: Estimation of η and λ for Gaussian and Clayton copulas, with Kendall's
tau equal to 0.7
135
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), survival Clayton copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), survival Clayton copula, tau=0.7
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), survival Clayton copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Hill estimate), Gumbel copula, tau=0.7
0 100 200 300 400
0.5
0.7
0.9
1.1
Eta (Peng estimate), Gumbel copula, tau=0.7
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
Lambda (Huang estimate), Gumbel copula, tau=0.7
Figure 58: Estimation of η and λ for survival Clayton and Gumbel copulas, with
Kendall's tau equal to 0.7
136
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Agenda
• General introduction
Modelling correlated risks
• A short introduction to copulas
• Quantifying dependence
• Statistical inference
• Agregation properties
137
Arthur CHARPENTIER - Gestion des risques bancaires et financiers.
Risk measures and diversication
Any copula C is bounded by Fréchet-Hoeding bounds,
max
d
i=1
ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},
and thus, any distribution F on F(F1, . . . , Fd) is bounded
max
d
i=1
Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}.
Does this means the comonotonicity is always the worst-case scenario ?
Given a random pair (X, Y ), let (X−
, Y −
) and (X+
, Y +
) denote
contercomonotonic and comonotonic versions of (X, Y ), do we have
R(φ(X−
, Y −
))
?
≤ R(φ(X,
Y )
)
?
≤ R(φ(X+
, Y +
)).
138
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2
Slides edf-2

More Related Content

What's hot (20)

Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides astin
Slides astinSlides astin
Slides astin
 
Inequalities #3
Inequalities #3Inequalities #3
Inequalities #3
 
Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Inequalities #2
Inequalities #2Inequalities #2
Inequalities #2
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides erm
Slides ermSlides erm
Slides erm
 
Classification
ClassificationClassification
Classification
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Side 2019 #3
Side 2019 #3Side 2019 #3
Side 2019 #3
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides ensae 11bis
Slides ensae 11bisSlides ensae 11bis
Slides ensae 11bis
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 

Viewers also liked (20)

Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Slides sales-forecasting-session1-web
Slides sales-forecasting-session1-webSlides sales-forecasting-session1-web
Slides sales-forecasting-session1-web
 
Slides axa
Slides axaSlides axa
Slides axa
 
Berlin
BerlinBerlin
Berlin
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Lg ph d_slides_vfinal
Lg ph d_slides_vfinalLg ph d_slides_vfinal
Lg ph d_slides_vfinal
 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
HdR
HdRHdR
HdR
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 

Similar to Slides edf-2

sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiesFujimoto Keisuke
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheetSuvrat Mishra
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxcroysierkathey
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxjeremylockett77
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Introduction to Evidential Neural Networks
Introduction to Evidential Neural NetworksIntroduction to Evidential Neural Networks
Introduction to Evidential Neural NetworksFederico Cerutti
 
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016Soledad Zignago
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)CrackDSE
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheetJoachim Gwoke
 
slides_online_optimization_david_mateos
slides_online_optimization_david_mateosslides_online_optimization_david_mateos
slides_online_optimization_david_mateosDavid Mateos
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)CrackDSE
 

Similar to Slides edf-2 (20)

Slides essec
Slides essecSlides essec
Slides essec
 
Slides ima
Slides imaSlides ima
Slides ima
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energies
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
cswiercz-general-presentation
cswiercz-general-presentationcswiercz-general-presentation
cswiercz-general-presentation
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
 
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docxLecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
Lecture13p.pdf.pdfThedeepness of freedom are threevalues.docx
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Probability Cheatsheet.pdf
Probability Cheatsheet.pdfProbability Cheatsheet.pdf
Probability Cheatsheet.pdf
 
Introduction to Evidential Neural Networks
Introduction to Evidential Neural NetworksIntroduction to Evidential Neural Networks
Introduction to Evidential Neural Networks
 
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016
Banque de France's Workshop on Granularity: Xavier Gabaix slides, June 2016
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Side 2019, part 2
Side 2019, part 2Side 2019, part 2
Side 2019, part 2
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
 
slides_online_optimization_david_mateos
slides_online_optimization_david_mateosslides_online_optimization_david_mateos
slides_online_optimization_david_mateos
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)
 

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Recently uploaded

UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPathCommunity
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1DianaGray10
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAshyamraj55
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Websitedgelyza
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsSeth Reyes
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarPrecisely
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdfPedro Manuel
 
VoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXVoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXTarek Kalaji
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesDavid Newbury
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfDianaGray10
 

Recently uploaded (20)

UiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation DevelopersUiPath Community: AI for UiPath Automation Developers
UiPath Community: AI for UiPath Automation Developers
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
 
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPAAnypoint Code Builder , Google Pub sub connector and MuleSoft RPA
Anypoint Code Builder , Google Pub sub connector and MuleSoft RPA
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Website
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Computer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and HazardsComputer 10: Lesson 10 - Online Crimes and Hazards
Computer 10: Lesson 10 - Online Crimes and Hazards
 
201610817 - edge part1
201610817 - edge part1201610817 - edge part1
201610817 - edge part1
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity Webinar
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdf
 
VoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBXVoIP Service and Marketing using Odoo and Asterisk PBX
VoIP Service and Marketing using Odoo and Asterisk PBX
 
20230104 - machine vision
20230104 - machine vision20230104 - machine vision
20230104 - machine vision
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond Ontologies
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
 

Slides edf-2

  • 1. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Gestion des risques bancaires et nanciers risques extrêmes et risques corrélés Arthur Charpentier EdF, formation continue arthur.charpentier@univ-rennes1.fr 1
  • 2. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. -3 -1 1 3 X -1 3 Y (Xi,Yi) 0.2 0.5 0.8 U (rank of X) 0.4 0.9 V(rankofY) Density of the copula Isodensity curves of the density (Ui,Vi) 2
  • 3. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 3
  • 4. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 4
  • 5. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Some references on large and correlated risks Rank, J. (2006). Copulas: From Theory to Application in Finance. Risk Book , Nelsen, R. (1999,2006). An introduction to copulas. Springer Verlag , Cherubini, U., Luciano, E. Vecchiato, W. (2004). Copula Methods in Finance. Wiley, Beirlant, J., Goegebeur, Y., Segers, J. Teugels, J. (2004). Statistics of Extremes: Theory and Applications. Wiley, McNeil, A. Frey, R., Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 5
  • 6. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 6
  • 7. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas, an introduction (in dimension 2) Denition 1. A copula C is a joint distribution function on [0, 1]2 , with uniform margins on [0, 1]. Set C(u, v) = P(U ≤ u, V ≤ v), where (U, V ) is a random pair with uniform margins. C is a distribution function on [0, 1]2 , and thus C(0, v) = C(u, 0) = 0, C(1, 1) = 1. Furthermore C is increasing: since P is a positive measure, for all u1 ≤ u2 and v1 ≤ v2, P(u1 U ≤ u2, v1 V ≤ v2) ≥ 0, thus C(u2, v2) − C(u1, v2) −C(u2, v1) + C(u1, v1) ≥ 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Copula, positive area 7
  • 8. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. C has uniform margins, and thus C(u, 1) = P(U ≤ u, V ≤ 1) = P(U ≤ u) = u on [0, 1]. Proposition 2. C is a copula if and only if C(0, v) = C(u, 0) = 0, C(u, 1) = u and C(1, v) = v for all u, v, with the following 2-increasingness property C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0, for any u1 ≤ u2 and v1 ≤ v2. 8
  • 9. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Borders of the copula function !0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 !0.20.00.20.40.60.81.01.21.4 !0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Figure 1: Value of the copula on the border of the unit square. 9
  • 10. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. X Y Z Fonction de répartition à marges uniformes Figure 2: Graphical representation of a copula. 10
  • 11. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. If C is twice dierentiable, one can dene its density as c(u, v) = ∂2 C(u, v) ∂u∂v . 11
  • 12. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. x x z Densité d’une loi à marges uniformes Figure 3: Density of a copula. 12
  • 13. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Figure 4: Distribution functions and densities. 13
  • 14. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Figure 5: Distribution functions and densities. 14
  • 15. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Sklar's theorem Theorem 3. (Sklar) Let C be a copula, and FX and FY two marginal distributions, then F(x, y) = C(FX(x), FY (y)) is a bivariate distribution function, with F ∈ F(FX, FY ). Conversely, if F ∈ F(FX, FY ), there exists C such that F(x, y) = C(FX(x), FY (y)). Further, if FX and FY are continuous, then C is unique, and given by C(u, v) = F(F−1 X (u), F−1 Y (v)) for all (u, v) ∈ [0, 1] × [0, 1] We will then dene the copula of F, or the copula of (X, Y ). In that case, the copula of (X, Y ) is the distribution function of (FX(X), FY (Y )). Proposition 4. If (X, Y ) has copula C, the copula of (g(X), h(Y )) is also C for any increasing functions g and h. 15
  • 16. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas, an introduction (in dimension d ≥ 2) Denition 5. A copula C is a joint distribution function on [0, 1]d , with uniform margins on [0, 1]. Let U = (U1, ..., Ud) denote a random pair with uniform margins. C is a distribution function on [0, 1]d , and thus C(u) = 0 if ui = 0 for some i ∈ {1, . . . , d}, and C(1) = 1. Furthermore C satises some increasing property since P is a positive measure (for all 0 ≤ u ≤ v ≤ 1, P(u U ≤ v) ≥ 0), thus z sign(z)C(z) ≥ 0, where the sum is taken over all vertices of [u × v], and where sign(z) is +1 if zi = ui for an even number of i (and −1 otherwise, see Figure 6). And nally C has uniform margins, and thus C(1, . . . , 1, ui, 1, . . . , 1) = ui on [0, 1]. 16
  • 17. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Increasing functions in dimension 3 Figure 6: The notion of 3-increasing functions. 17
  • 18. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Theorem 6. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with F ∈ F(F1, . . . , Fd). Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi's are continuous, then C is unique, and given by C(u) = F(F−1 1 (u1), . . . , F−1 d (ud)) for all (ui) ∈ [0, 1] We will then dene the copula of F, or the copula of X. In that case, the copula of (X = (X1, . . . , Xd) is the distribution function of U = (F1(X1), . . . , Fd(Yd)). Again, if C is dierentiable, one can dene its density, c(u1, . . . , ud) = ∂d C(u1, . . . , ud) ∂u1 . . . ∂ud . 18
  • 19. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas in high dimension, a dicult problem It is usually dicult to represent dependence in dimension d 2, and it is usually studied by pairs. In dimension d = 2, one can dene the following Fréchet class F(FX, FY , FZ) dened by its marginal distributions. But it can also be interested to study F(FXY , FXZ, FY Z) dened by it paired distributions. One of the problem that arises is the compatibility of marginals: one has to verify that CXY (x, y) = CX|Z(x|z)CY |Z(y|z)dz, for instance. 19
  • 20. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Composante 1 p 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Composante 2 p 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0 Composante 3 p Figure 7: Scatterplot in dimension 3 including projections. 20
  • 21. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas and ranks The copula of X = (X1, . . . , Xd) is the distribution function of U = (F1(X1), . . . , Fd(Yd)). In practice, since marginal distributions are unknown, the idea is to substitute empirical distribution function, Fi(xi) = #{observations Xi,j's lower than xi} #{observations } = 1 n n j=1 1(Xi,j ≤ xi). Note that Fi(Xi,j0 ) = #{observations Xi,j's lower than Xi,j0 } #{observations } = 1 n n j=1 1(Xi,j ≤ Xi,j0 ) = Ri,j0 n , where Ri,j0 denotes the rank of Xi,j0 within {Xi,1, ..., Xi,n}. On a statistical point of view, studying the copula means studying ranks. 21
  • 22. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 5.56.06.57.07.58.08.59.0 Scatterplot of (X,Y) X (raw data) Y(rawdata) 5 10 15 20 5101520 Scatterplot of the ranks of (X,Y) Ranks of the Xi’s RanksoftheYi’s 0.2 0.4 0.6 0.8 1.0 0.20.40.60.81.0 Scatterplot of the ranks of (X,Y), divided by n Ranks of the Xi’s/n RanksoftheYi’s/n 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot o+ ,-,/0, t1e copula!t3pe tran+orm o+ ,6,70 Ui=Ranks of the Xi’s/n+1 Vi=RanksoftheYi’s/n+1 Figure 8: Copulas, ranks and parametric inference, from (Xi, Yi) to (Ui, Vi). 22
  • 23. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Some very classical copulas • The independent copula C(u, v) = uv = C⊥ (u, v). The copula is standardly denoted Π, P or C⊥ , and an independent version of (X, Y ) will be denoted (X⊥ , Y ⊥ ). It is a random vector such that X⊥ L = X and Y ⊥ L = Y , with copula C⊥ . In higher dimension, C⊥ (u1, . . . , ud) = u1 × . . . × ud is the independent copula. • The comonotonic copula C(u, v) = min{u, v} = C+ (u, v). The copula is standardly denoted M, or C+ , and an comonotone version of (X, Y ) will be denoted (X+ , Y + ). It is a random vector such that X+ L = X and Y + L = Y , with copula C+ . (X, Y ) has copula C+ if and only if there exists a strictly increasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (U), F−1 Y (U)) where U is U([0, 1]). 23
  • 24. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Note that for any u, v P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]}) ≤ min{P(U ∈ [0, u]), P(V ∈ [0, v])} thus, C(u, v) ≤ min{u, v} = C+ (u, v). Thus, C+ is an upper bound for the set of copulas. In higher dimension, C+ (u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic copula. • The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C− (u, v). The copula is standardly denoted W, or C− , and an contercomontone version of (X, Y ) will be denoted (X− , Y − ). It is a random vector such that X− L = X and Y − L = Y , with copula C− . (X, Y ) has copula C− if and only if there exists a strictly decreasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (1 − U), F−1 Y (U)) where U is U([0, 1]). 24
  • 25. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Note that for any u, v, P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]}) = P(U ∈ [0, u]) + P(V ∈ [0, v]) − P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) thus, C(u, v) ≥ u + v − 1 since P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) ≤ 1, and since C(u, v) ≥ 0, C(u, v) ≥ max{u + v − 1, 0} = C− (u, v). Thus, C− is a lower bound for the set of copulas. In higher dimension, C− (u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a copula: if (X, Y ) and (X, Z) are countercomonotonic, (Y, Z) is necessarily comonotonic - it is not possible to have all component highly negatively correlated. Anyway, it is still the best pointwise lower bound. 25
  • 26. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetlowerbound 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81Independencecopula 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetupperbound Fréchet Lower Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Independent copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Fréchet Upper Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Lower Fréchet!Hoeffding bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Indepedent copula random generation 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Upper Fréchet!Hoeffding bound Figure 9: Contercomontonce, independent, and comonotone copulas. 26
  • 27. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 7. If X and Y are independent, if Y and Z are independent, then X and Z are independent. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (1, 2, 1) with probability 1/4, (3, 2, 3) with probability 1/4, (3, 1, 3) with probability 1/4, then X and Y are independent, and Y and Z are independent, but X = Z. 27
  • 28. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 1 2 3 4 01234 X and Y independent Component X ComponentY 0 1 2 3 4 01234 Y and Z independent Component Y ComponentZ 0 1 2 3 4 01234 X and Z comonotonic Component X ComponentZ Figure 10: Mixing independence and comonotonicity. 28
  • 29. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 8. If X and Y are comonotonic, if Y and Z are comonotonic, then X and Z are comonotonic. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (1, 2, 3) with probability 1/4, (3, 2, 1) with probability 1/4, (3, 3, 3) with probability 1/4, then X and Y are comonotonic, and Y and Z are comonotonic, but X and Z are independent. 29
  • 30. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 1 2 3 4 01234 X and Y comonotonic Component X ComponentY 0 1 2 3 4 01234 Y and Z comonotonic Component Y ComponentZ 0 1 2 3 4 01234 X and Z independent Component X ComponentZ Figure 11: Mixing independence and comonotonicity. 30
  • 31. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 9. If X and Y are comonotonic, if Y and Z are independent, then X and Z are independent. If (X, Y, Z) = (1, 1, 3) with probability 1/4, (2, 1, 1) with probability 1/4, (2, 3, 3) with probability 1/4, (3, 3, 1) with probability 1/4, then X and Y are comonotonic, and Y and Z are independent, but X and Z are anticomonotonic. 31
  • 32. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (2, 1, 3) with probability 1/4, (2, 3, 1) with probability 1/4, (3, 3, 3) with probability 1/4, then X and Y are comonotonic, and Y and Z are independent, but X and Z are comonotonic. 32
  • 33. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 1 2 3 4 01234 X and Y comonotonic Component X ComponentY 0 1 2 3 4 01234 Y and Z independent Component Y ComponentZ 0 1 2 3 4 01234 X and Z comonotonic Component X ComponentZ Figure 12: Mixing independence and comonotonicity. 33
  • 34. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Elliptical (Gaussian and t) copulas The idea is to extend the multivariate probit model, Y = (Y1, . . . , Yd) with marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ). • The Gaussian copula, with parameter α ∈ (−1, 1), C(u, v) = 1 2π √ 1 − α2 Φ−1 (u) −∞ Φ−1 (v) −∞ exp −(x2 − 2αxy + y2 ) 2(1 − α2) dxdy. Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf, and where (X, Y ) has a joint t-distribution. • The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2, C(u, v) = 1 2π √ 1 − α2 t−1 ν (u) −∞ t−1 ν (v) −∞ 1 + x2 − 2αxy + y2 2(1 − α2) −((ν+2)/2) dxdy. 34
  • 35. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Archimedean copulas Denition of Archimedean copulas • Archimedian copulas C(u, v) = φ−1 (φ(u) + φ(v)), where φ is decreasing convex (0, 1), with φ(0) = ∞ and φ(1) = 0. Example 10. If φ(t) = [− log t]α , then C is Gumbel's copula, and if φ(t) = t−α − 1, C is Clayton's. Note that C⊥ is obtained when φ(t) = − log t. How Archimedean copulas were introduced ? 1. The frailty approach (Oakes (1989)). Assume that X and Y are conditionally independent, given the value of an heterogeneous component Θ. Assume further that P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ for some baseline distribution functions GX and GY . Then F(x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ)) 35
  • 36. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. thus, since X and Y are conditionally independent, F(x, y) = E(P(X ≤ x|Θ = θ) × P(Y ≤ y|Θ = θ)) and therefore F(x, y) = E (GX(x))Θ × (GY (y))Θ = ψ(− log GX(x) − log GY (y)) where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ ). Since FX(x) = ψ(− log GX(x)) and FY (y) = ψ(− log GY (y)) and thus, the joint distribution of (X, Y ) satises F(x, y) = ψ(ψ−1 (FX(x)) + ψ−1 (FY (y))). Example 11. If Θ is Gamma distributed, the associated copula is Clayton's. If Θ has a stable distribution, the associated copula is Gumbel's. 36
  • 37. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Consider two risks, X and Y , such that X|Θ = θG ∼ E(θG) and Y |Θ = θG ∼ E(θG) are independent, X|Θ = θB ∼ E(θB) and Y |Θ = θB ∼ E(θB) are independent, (unobservable good (G) and bad (B) risks). The following gures start from 2 classes of risks, then 3, and then a continuous risk factor θ ∈ (0, ∞). 37
  • 38. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 5 10 15 05101520 Conditional independence, two classes !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, two classes Figure 13: Two classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 38
  • 39. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 5 10 15 20 25 30 010203040 Conditional independence, three classes !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, three classes Figure 14: Three classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 39
  • 40. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, continuous risk factor Figure 15: Continuous classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 40
  • 41. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 2. The survival approach: assume that there is a convex survival function S, with S(0) = 1, such that P(X x, Y y) = S(x + y), then the joint survival copula of (X, Y ) is S(S−1 (u) + S−1 (v)). Example 12. If S is the Pareto survival distribution, the associated copula is Clayton's. If S is the Weibull survival distribution, the associated copula is Gumbel's. 41
  • 42. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 3. The use of Kendall's distribution function K(t) = P(C(U, V ) ≤ t) where (U, V ) is a random pair with distribution function C. Then, for Archimedean copulas, K(t) = t − φ (t) φ(t) = t − λ(t), which can be inverted easily in φ(t) = φ(t0) exp 1 t0 1 λ(t) dt , for some 0 t0 1 and 0 ≤ u ≤ 1. 42
  • 43. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Some more examples of Archimedean copulas ψ(t) range θ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) (3) log 1−θ(1−t) t [−1, 1) Ali-Mikhail-Haq (4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986) (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987) (6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t 1+(θ−1)t [1, ∞) (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ) (0, 1/2] (12) ( 1 t − 1)θ [1, ∞) (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ)θ [1, ∞) Genest Ghoudi (1994) (16) ( θ t + 1)(1 − t) [0, ∞) 43
  • 44. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Some characterizations of Archimedean copula • Frank copula is the only Archimedean such that (U, V ) L = (1 − U, 1 − V ) (stability by symmetry), • Clayton copula is the only Archimedean such that (U, V ) has the same copula as (U, V ) given (U ≤ u, V ≤ v) (stability by truncature), • Gumbel copula is the only Archimedean such that (U, V ) has the same copula as (max{U1, ..., Un}, max{V1, ..., Vn}) for all n ≥ 1 (max-stability), 44
  • 45. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Extreme value copulas • Extreme value copulas C(u, v) = exp (log u + log v) A log u log u + log v , where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] . An alternative denition is the following: C is an extreme value copula if for all z 0, C(u1, . . . , ud) = C(u 1/z 1 , . . . , u 1/z d )z . Those copula are then called max-stable: dene the maximum componentwise of a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}. 45
  • 46. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. The joint distribution of M is P(M ≤ x) = C(F1(x1, . . . , Fd(xd))n , where C is the copula of the Xi's. Since P(Mi ≤ xi) = Fi(xi)n , it can be written P(M ≤ x) = C(P(M1 ≤ x1)1/n , . . . , P(Md ≤ xd)1/n )n . Thus, C(u 1/n 1 , . . . , u 1/n d )n is the copula of the n maximum componentwise from a sample with copula C. Example 13. : If A is constant (1 on [0, 1]), then X and Y are independent, and if A(ω) = max {ω, 1 − ω}, X and Y are comonotonic. Gumbel's copula is obtained if A(ω) = ((1 − ω)α + ωα + 1) ( 1/α), for all 0 ≤ ω ≤ 1 and α ≥ 1. 46
  • 47. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.50.60.70.80.91.0 Pickands dependence function A Figure 16: Shape of Gumbel's dependence function A(ω). 47
  • 48. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. How to construct much more copulas ? Using geometric transformations From a given copula C, cdf of random pair (U, V ), dene • the copula of (U, 1 − V ), C(U,1−V )(u, v) = u − C(u, 1 − v) • the copula of (1 − U, V ), C(1−U,V )(u, v) = v − C(1 − u, v) • the copula of (1 − U, 1 − V ), the rotated or survival copula, C(1−U,1−V )(u, v) = C∗ (u, v) = u + v − 1 + C(1 − u, 1 − v) Note that if P(X ≤ x, Y ≤ y) = C(P(X ≤ x), P(Y ≤ y)), then P(X x, Y y) = C∗ (P(X x), P(Y y)). 48
  • 49. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Figure 17: Using geometric transformation to generate new copulas. 49
  • 50. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Figure 18: Using geometric transformation to generate new copulas. 50
  • 51. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Figure 19: Using geometric transformation to generate new copulas. 51
  • 52. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Figure 20: Using geometric transformation to generate new copulas. 52
  • 53. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Using mixture of copulas Lemma 14. The set of copulas is convex, i.e. if {Cθ, θ ∈ Ω} is a collection of copulas, C(u, v) = R Cθ(u, v)dΠ(θ) is a copula, where Π is a distribution on Ω Thus C = αC1 + (1 − α)C2 denes a copula for all α ∈ [0, 1]. Example 15. Fréchet (1951) suggested a mixture of the lower and the upper bound, C(u, v) = αC− (u, v) + (1 − α)C+ (u, v), for some α ∈ [0, 1]. Example 16. Mardia (1970) suggested a mixture of the lower, the upper bound, and the independent copula C(u, v) = α2 2 C− (u, v) + (1 − α2 )C⊥ (u, v) + α2 2 C+ (u, v), α ∈ [0, 1]. 53
  • 54. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Using distortion functions Denition 17. A distortion function is a function h : [0, 1] → [0, 1] strictly increasing such that h(0) = 0 and h(1) = 1. The set of distortion function will be denoted H. Note that h ∈ H if and only if h−1 ∈ H. Given a copula C, dene Ch(u, v) = h−1 (C(h(u), h(v))). If h is convex, then Ch is a copula, called distorted copula. Example 18. if h(x) = x1/n , the distorted copula is Ch(u, v) = Cn (u1/n , v1/n ), for all n ∈ N, (u, v) ∈ [0, 1]2 . if the survival copula of the (Xi, Yi)'s is C, then the survival copula of (Xn:n, Yn:n) = (max{X1, ..., Xn}, max{Y1, ..., Yn}) is Ch. 54
  • 55. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Example 19. if C(u, v) = uv = C⊥ (u, v) (the independent copula), and φ(·) = log h(·), then Ch(u, v) = h−1 (h(u)h(v)) = φ−1 (φ(u) + φ(v)). Example 20. if h(x) = [1 − e−αx ]/[1 − e−α ] (an exponential distortion), and if C = C⊥ , then Ch(u, v) = − 1 α log 1 + (e−αu − 1)(e−αv − 1) e−α − 1 , which is Frank copula. 55
  • 56. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Distorted Frank copula, h(x) = x Distorted Frank copula, h(x) = x(1 2) Distorted Frank copula, h(x) = x(1 3) Distorted Frank copula, h(x) = x(1 4) Figure 21: Distorted copula, from Frank copula. 56
  • 57. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Monte Carlo and copulas Generation of independent variables can be done using a Random function. Denition 21. Function Random should satisfy the following properties (i) for all 0 ≤ a ≤ b ≤ 1, P (Random ∈ ]a, b]) = b − a. (ii) successive calls of function Random should generate independent draws, i.e. 0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1 P (Random1 ∈ ]a, b] , Random2 ∈ ]c, d]) = (b − a) (d − c) , or more generally, dene k-uniformity for all 0 ≤ ai ≤ bi ≤ 1, i = 1, ..., k, P (Random1 ∈ ]a1, b1] , ..., Randomk ∈ ]ak, bk]) = k i=1 (bi − ai) . Thus, one can generate easily random vectors U = (U1, ..., Ud) with independent component. 57
  • 58. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. The idea to generate correlated vectors U = (U1, ..., Ud), the idea is to use rst P(U1 ≤ u1, . . . , Ud ≤ ud) = P(Ud ≤ ud|U1 ≤ u1, . . . , Ud−1 ≤ ud−1) ×P(Ud−1 ≤ ud−1|U1 ≤ u1, . . . , Ud−2 ≤ ud−2) × . . . ×P(U3 ≤ u3|U1 ≤ u1, U2 ≤ u2) ×P(U2 ≤ u2|U1 ≤ u1) × P(U1 ≤ u1). 58
  • 59. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Starting from the end, P(U1 ≤ u1) = u1 since U1 is uniform, while P(U2 ≤ u2|U1 = u1) = P(U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1|U1 = u1) = lim h→0 P(U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1|U1 ∈ [u1, u1 + h]) = lim h→0 P(u1 ≤ U1 ≤ u1 + h, U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1) P(U1 ∈ [u1, u1 + h]) = lim h→0 P(U1 ≤ u1 + h, U2 ≤ u2, U3 ≤ 1, . . . Ud ≤ 1) − P(U1 ≤ u1, U2 ≤ u2, U3 ≤ 1, . . . P(U1 ∈ [u1, u1 + h]) = lim h→0 C(u1 + h, u2, 1, . . . , 1) − C(u1, u2, 1, . . . , 1) h = ∂C ∂u1 C(u1, u2, 1, . . . , 1). and more generally, P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1) = ∂k−1 ∂u1 . . . ∂uk−1 C(u1, . . . , uk, 1, . . . , 1). 59
  • 60. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Thus, U = (U1, .., Un) with copula C could be simulated using the following algorithm, • simulate U1 uniformly on [0, 1], u1 ← Random1, • simulate U2 from the conditional distribution ∂1C(·|u1), u2 ← [∂1C(·|u1)]−1 (Random2), • simulate Uk from the conditional distribution ∂1,...,k−1C(·|u1, ..., uk−1), uk ← [∂1,...,k−1C(·|u1, ..., uk−1)]−1 (Randomk), ...etc, where the Randomi's are independent calls of a Random function. This is the underlying idea when using Cholesky decomposition. 60
  • 61. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Example: for Clayton's copula, C(u, v) = (u−α + v−α − 1)−1/α , (U, V ) has joint distribution C if and only if U is uniform on on [0, 1] and V |U = u has conditional distribution P(V ≤ v|U = u) = ∂2C(v|u) = (1 + uα [v−α − 1])−1−1/α . The algorithm to generate Clayton's copula is the • simulate U1 uniformly on [0, 1], u1 ← Random1, • simulate U2 from the conditional distribution ∂2C(·|u), u2 ← [∂1C(·|u1)]−1 (Random2), i.e. u2 ← [(Random2)−α/(1+α − 1]u−α 1 + 1−1/α . 61
  • 62. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Distribution of v given u=0.3 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Distribution of v given u=0.5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Generation of Clayton’s copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.5 Distribution of v given u=0.8 Figure 22: Simulation of Clayton's copula. 62
  • 63. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. !i#tribution +e - q/ 0.0 0.2 0.4 0.6 0.8 1.0 0100300500 !i#tribution +e 9 q/ 0.0 0.2 0.4 0.6 0.8 1.0 0200400 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 -ni:orm mar=in# !4 !2 0 2 4 !4!2024 Stan+ar+ ?au##ian mar=in# Figure 23: Simulation of the independent copula. 63
  • 64. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. !is$riu$i(n +e - ./ 010 012 014 014 015 610 0200400 !is$riu$i(n +e 7 ./ 010 012 014 014 015 610 0200400 010 012 014 014 015 610 010014015 -ni8(r9 9argins !2 0 2 4 !2024 $an+ar+ =aussian 9argins Figure 24: Simulation of the comontone copula. 64
  • 65. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Distribution de - q/ 0.0 0.2 0.4 0.6 0.8 1.0 0200400 Distribution de V q/ 0.0 0.2 0.4 0.6 0.8 1.0 0200400 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 -niform margins !2 0 2 4 !4!202 tandard =aussian margins Figure 25: Simulation of the contercomonotone copula. 65
  • 66. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. !istri'tion de - ./ 010 012 014 014 015 110 0200400 !istri'tion de 7 ./ 010 012 014 014 015 110 0100300900 010 012 014 014 015 110 010014015 -ni:orm mr=ins !4 !2 0 2 4 !4!2024 Stndrd ?'ssin mr=ins Figure 26: Simulation of the Gaussian copula. 66
  • 67. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. D#$%u$on +e U .y 010 012 014 014 015 110 0200400 D#$%u$on +e V .y 010 012 014 014 015 110 0200400 010 012 014 014 015 110 010014015 Unfo%m ma%;n# !2 0 2 4 !2024 S$an+a%+ =au##an ma%;n# Figure 27: Simulation of Clayton's copula. 67
  • 68. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Distribution de U qy 0.0 0.2 0.4 0.6 0.8 1.0 0200400 Distribution de V qy 0.0 0.2 0.4 0.6 0.8 1.0 0200400 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Uniform margins !4 !2 0 2 4 !4!2024 Standard Gaussian margins Figure 28: Simulation of Clayton's survival copula. 68
  • 69. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Distribution de U qy 0.0 0.2 0.4 0.6 0.8 1.0 0200400 Distribution de V qy 0.0 0.2 0.4 0.6 0.8 1.0 0200400 0.0 0.2 0.4 0.6 0.8 1.0 0.00.40.8 Uniform margins !4 !2 0 2 !4!2024 Standard Gaussian margins Figure 29: Simulation of a copula mixture. 69
  • 70. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas in nance: options on multiple assets Remark 22. Recall that Breeden Litzenberger (1978) proved that the risk neutral probability can be obtrained from option prices: consider the price of a call C(T, K) = e−rT EQ((ST − K)+). Since (ST − K)+ = ∞ K 1(ST x)dx, one gets C(T, K) = e−rT ∞ K Q(ST x)dx, hence Q(ST ≤ x) = −e−rT ∂C ∂K (T, x), or Q(ST ≤ x) = −erT ∂P ∂K (T, x) where P denotes the price of a put option. Consider an option on 2 assets, with payo h(S1 T , S2 T ). The price at time 0 is e−rT EQ(h(S1 T , S2 T )). 70
  • 71. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas in nance: call on maximum Here the payo is h(S1 T , S2 T ) = (max{S1 T , S2 T } − K)+. The price is then C(T, K) = e−rT EQ((max{S1 T , S2 T } − K)+) = e−rT EQ ∞ K 1 − 1(max{S1 T , S2 T } ≤ x)dx = e−rT ∞ K 1 − Q(max{S1 T , S2 T } ≤ x) Q(S1 T ≤x,S2 T ≤x) dx, hence, if (S1 T , S2 T ) has copula C (under Q), then C(T, K) = e−rT ∞ K 1 − C erT ∂P1 ∂K (T, x), erT ∂P2 ∂K (T, x) dx. 71
  • 72. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas in nance: call on spreads Here the payo is h(S1 T , S2 T ) = ([S1 T − S2 T ] − K)+. The price is then C(T, K) = e−rT EQ((S1 T − S2 T − K)+) = e−rT EQ ∞ −∞ 1(S2 T + K ≤ x ≤ S1 T )dx = e−rT ∞ −∞ Q(K + S2 T ≤ x) − Q(S2 T + K ≤ x, S1 T ≤ x} ≤ x) Q(S1 T ≤x,S2 T ≤x+K) dx, hence, if (S1 T , S2 T ) has copula C (under Q), then C(T, K) = e−rT ∞ −∞ erT ∂P2 ∂K (T, x−K)−C erT ∂P1 ∂K (T, x), erT ∂P2 ∂K (T, x − K) dx. 72
  • 73. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Copulas in nance: bonds on option prices Using Tchen's inequality, it is possible to derive bounds for options when the payo is supermodular. 73
  • 74. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 74
  • 75. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Natural properties for dependence measures Denition 23. κ is measure of concordance if and only if κ satises 1. κ is dened for every pair (X, Y ) of continuous random variables, 2. −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1, 3. κ (X, Y ) = κ (Y, X), 4. if X and Y are independent, then κ (X, Y ) = 0, 5. κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ), 6. if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2), 7. if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞. 75
  • 76. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. As pointed out in Scarsini (1984), most of the axioms are self-evident. If κ is measure of concordance, then, if f and g are both strictly increasing, then κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f almost surely strictly decreasing (see Scarsini (1984)). 76
  • 77. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Association measures: Kendall's τ and Spearman's ρ Rank correlations can be considered, i.e. Spearman's ρ dened as ρ(X, Y ) = corr(FX(X), FY (Y )) = 12 1 0 1 0 C(u, v)dudv − 3 and Kendall's τ dened as τ(X, Y ) = 4 1 0 1 0 C(u, v)dC(u, v) − 1. Historical version of those coecients Spearman's rho was introduced in Spearman (1904) as ρ(X, Y ) = 3[P((X1 − X2)(Y1 − Y3) 0) − P((X1 − X2)(Y1 − Y3) 0)], where (X1, Y1), (X2, Y2) and (X3, Y3) denote three independent versions of (X, Y ) (see Nelsen (1999)). 77
  • 78. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Similarly Kendall's tau was not dened using copulae, but as the probability of concordance, minus the probability of discordance, i.e. τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) 0) − P((X1 − X2)(Y1 − Y2) 0)], where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see Nelsen (1999)). Equivalently, τ(X, Y ) = 1 − 4Q n(n2 − 1) where Q is the number of inversions between the rankings of X and Y (number of discordance). 78
  • 79. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Concordant pairs X Y !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Discordant pairs X Y Figure 30: Concordance versus discordance. 79
  • 80. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. The case of the Gaussian random vector If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958)) ρ(X, Y ) = 6 π arcsin r 2 and τ(X, Y ) = 2 π arcsin (r) . 80
  • 81. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Link between Kendall's tau and Spearman's rho Note that Kendall's tau and Spearman's are linked: it is impossible to have at the same time τ ≥ 0.4 and ρ = 0. Hence ρ and τ satisfy 3τ − 1 2 ≤ ρ ≤ 1 + 2τ − τ2 2 if τ ≥ 0 τ2 + 2τ − 1 2 ≤ ρ ≤ 1 + 3τ 2 if τ ≤ 0. which yield the area given below. 81
  • 82. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. -1.0 -0.5 0.0 0.5 1.0 Tau de Kendall -1.0 -0.5 0.0 0.5 1.0 RhodeSpearman Figure 31: Admissible region of ρ and τ. 82
  • 83. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. From Kendall'tau to copula parameters Kendall's τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00 Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞ Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞ Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞ Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞ Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞ Morgenstein θ 0.00 0.45 0.90 - - - - - - - - 83
  • 84. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. From Spearman's rho to copula parameters Spearman's ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00 Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞ A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞ Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞ Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞ Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞ Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞ Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - - 84
  • 85. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Alternative expressions of those coecients Note that those coecients can also be expressed as follows ρ(X, Y ) = [0,1]×[0,1] C(u, v) − C⊥ (u, v)dudv [0,1]×[0,1] C+(u, v) − C⊥(u, v)dudv (1) (the normalized average distance between C and C⊥ ), for instance. A dependence measure in higher dimension ? From equations 1 and ??, it is possible to obtain a natural mutlidimensional extention (see Wolf (1980), Joe (1990) or Nelsen (1996)), ρ(X) = [0,1]d C(u) − C⊥ (u)du [0,1]×[0,1] C+(u) − C⊥(u)du = d + 1 2d − (d + 1) 2d [0,1]d C(u)du − 1 (2) and similarly τ(X) == 1 2d−1 − 1) 2d [0,1]d C(u)dCu − 1 (3) 85
  • 86. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Note that a lower bound for τ is then −1/(2d−1 − 1), while it is (2d − (d + 1)!)/(d!(2d − (d + 1))). In dimension 3, Kendall's τ is the average of the three 2-dimensional Kendall's τ, τ(X, Y, Z) = 1 3 (τ(X, Y ) + τ(X, Z) + τ(Y, Z)). 86
  • 87. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Tail concentration functions Venter (2002) suggest to use several Tail Concentration Functions Denition 24. For lower tails, dene L(z) = P(U z, V z)/z = C(z, z)/z = Pr(U z|V z) = Pr(V z|U z), and for upper tails, R(z) = P(U z, V z)/(1 − z) = Pr(U z|V z). Joe (1990) uses the term upper tail dependence parameter for R = R(1) = limz→1 R(z), and lower tail dependence parameter for L = L(0) = limz→0 L(z). 87
  • 88. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Functional correlation measures Consider also Kendall's tau, dened as −1 + 4 1 0 1 0 C(u, v)dC(u, v). Denition 25. The cumulative tau can be dened as J(z) = −1 + 4 z 0 z 0 C(u, v)dC(u, v)/C(z, z)2 . 88
  • 89. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GAUSSIAN q q Figure 32: L and R cumulative curves. 89
  • 90. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GUMBEL q q Figure 33: L and R cumulative curves. 90
  • 91. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) CLAYTON q q Figure 34: L and R cumulative curves. 91
  • 92. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=5) q q Figure 35: L and R cumulative curves. 92
  • 93. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=3) q q Figure 36: L and R cumulative curves. 93
  • 94. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Dependence in independence Coles, Heffernan Tawn (1999) propose another function, χ(z) = 2 log(1 − z) log C(z, z) − 1 Then set η = (1 + limz→1 χ(z))/2 94
  • 95. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GAUSSIAN q q Figure 37: χ functions. 95
  • 96. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GUMBEL q q Figure 38: χ functions. 96
  • 97. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails CLAYTON q q Figure 39: χ functions. 97
  • 98. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails STUDENT (df=3) q q Figure 40: χ functions. 98
  • 99. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. (Strong) tail dependence measure Joe (1993) dened, in the bivariate case a tail dependence measure. Denition 26. Let (X, Y ) denote a random pair, the upper and lower tail dependence parameters are dened, if the limit exist, as λL = lim u→0 P X ≤ F−1 X (u) |Y ≤ F−1 Y (u) , and λU = lim u→1 P X F−1 X (u) |Y F−1 Y (u) . As mentioned in Fougères (2004), this coecient can be obtained dierently: set θ(x) = log P(max{X, Y } ≤ x) log P(X ≤ x) . Then λU = 2 − lim x→∞ θ(x), 99
  • 100. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. since when x → ∞ 2 − log P(max{X, Y } ≤ x) log P(X ≤ x) ∼ P(X x, Y x) 1 − P(X x) = P(Y x|X x). Note that these coecient can be expressed only through the copula, Proposition 27. Let (X, Y ) denote a random pair with copula C, the upper and lower tail dependence parameters are dened, if the limit exist, as λL = lim u→0 C(u, u) u and λU = lim u→1 C∗ (u, u) 1 − u . Does λ = 0 implies that extremal events are independent ? Example 28. If (X, Y ) has a Gaussian copula with parameter θ 1, then λ = 0. Hence, visually, dependence is weaker than any Gumbel's copula (even with θ is rather small), but are extremal events independent ? 100
  • 101. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuledeGumbel !2 0 2 4 !2024 Marges gaussiennes Figure 41: Simulations of Gumbel's copula θ = 1.2. 101
  • 102. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuleGaussienne !2 0 2 4 !2024 Marges gaussiennes Figure 42: Simulations of the Gaussian copula (θ = 0.95). 102
  • 103. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Example 29. Consider the case of Archimedean copulas, then λU = 2 − lim x→0 1 − φ−1 (2x) 1 − φ−1(x) and λL = lim x→0 φ−1 (2φ(x)) x = lim x→∞ φ−1 (2x) φ−1(x) . Further, properties can be derived for distorted generators, φα,β(·) = φ(·α )β , upper and lower tails coecients are respectively λU and λ 1/α L for φα,1(·) = φ(·α ) and 2 − (2 − λU )1/β and λ 1/β L for φ1,β(·) = φ(·)β (Weak) tail dependence measure Ledford Tawn (1996) propose the following model to study tail dependence. Consider a random vector with identically distributed marginals, X L = Y . • under independence, P(X t, Y t) = P(X t) × P(Y t) = P(X t)2 , • under comonotonicity, P(X t, Y t) = P(X t) = P(X t)1 , 103
  • 104. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Assume that P(X t, Y t) ∼ P(X t)1/η as t → ∞, where η ∈ (0, 1] will be called coecient of tail dependence More precisely, • η = 1, perfect positive dependence (tail comontonicity), • 1/2 η 1, more dependent than independence, but asymptotically independent, • η = 1/2, tail independence • 0 η 1/2 less dependent than independence. 104
  • 105. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. One can then dene upper tail coecient ηU and lower tail coecient ηL. Example 30. : If (X, Y ) has Gumbel copula, P(X ≤ x, Y ≤ y) = exp(−(x−α + y−α )1/α ), α ≥ 0 then ηU = 1. Further, ηL = 1/2α . Example 31. : If (X, Y ) has a Clayton copula, then ηU = 1/2 while ηL = 1. Example 32. : If (X, Y ) has a Gaussian copula, then ηU = ηL = (1 + r)/2. 105
  • 106. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 106
  • 107. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Estimation of copulas Since C(u, v) = F(F−1 X (u), F−1 Y (v)), copula has be estimated only after estimating marginal distribution. Margins Copula Parametric Fα and Fβ C θ Nonparametric FX and FY C (Fully) parametric estimation of copulas Step 1: t the 2 univariate marginal cdf's FX and FY with the help of the observations {x1, x2, . . . , xn} and {y1, y2, . . . , yn} respectively; let α and β be the corresponding MLE's of α and β. Step 2: estimate θ with the parameters α = α and β = β xed at the estimated values from Step 1; i.e. on pseudo-observations (Ui, Vi)'s, where Ui = Fα(Xi) and Vi = Fβ(Yi), 107
  • 108. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. let the result be θ. Step 3: using α, β and θ as starting values, determine the global MLE's α, β and θ of the parameters α, β and θ. Parametric estimation of copulas An alternative is to use nonparametric estimation of margins, FX and FY . Step 1: estimate θ based on pseudo-observations (Ui, Vi)'s, where Ui = FX(Xi) and Vi = FY (Yi), let the result be θ. Nonparametric estimation of copulas Given an estimation of marginal distributions (parametric or nonparametric), the 108
  • 109. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. idea is to consider the empirical copula C, dened as C(u, v) = #{i such that Ui ≤ u and Vi ≤ v} #{i} = 1 n n i=1 1(FX(Xi) ≤ u) × 1(FY (Yi) ≤ v). 109
  • 110. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Example Loss-ALAE: consider the following dataset, were the Xi's are loss amount (paid to the insured) and the Yi's are allocated expenses. Denote by Ri and Si the respective ranks of Xi and Yi. Set Ui = Ri/n = ˆFX(Xi) and Vi = Si/n = ˆFY (Yi). Figure 43 shows the log-log scatterplot (log Xi, log Yi), and the associate copula based scatterplot (Ui, Vi). Figure 44 is simply an histogram of the (Ui, Vi), which is a nonparametric estimation of the copula density. Note that the histogram suggests strong dependence in upper tails (the interesting part in an insurance/reinsurance context). 110
  • 111. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 1 2 3 4 5 6 12345 Log!log scatterplot, Loss!ALAE log(LOSS) log(ALAE) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Copula type scatterplot, Loss!ALAE Probability level LOSS ProbabilitylevelALAE Figure 43: Loss-ALAE, scatterplots (log-log and copula type). 111
  • 112. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Figure 44: Loss-ALAE, histogram of copula type transformation. 112
  • 113. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. The basic idea to get an estimator of the density at some point x is to count how many observation are in the neighborhood of x (e.g. in [x − h, x + h) for some h 0). Therefore, consider the moving histogram or naive estimator as suggested by Rosenblatt (1956), f(x) = 1 2nh n i=1 I(Xi ∈ [x − h, x + h)). Note that this can be easily extended using other denitions of the neighborhood of x, f(x) = 1 nh n i=1 K x − Xi h , where K is a kernel function (e.g. K(ω) = I(|ω| ≤ 1)/2). 113
  • 114. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 45: Theoretical density of Frank copula. 114
  • 115. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 46: Estimated density of Frank copula, using standard Gaussian (indepen- dent) kernels, h = h∗ . 115
  • 116. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Problem of nonparametric estimation with kernel: bias on the borders. Let K denote a symmetric kernel with support [−1, 1]. Note that E(f(0, h) = 1 2 f(0) + O(h) 116
  • 117. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density Figure 47: Density estimation of an uniform density on [0, 1]. 117
  • 118. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Several techniques have been introduce to get a better estimation on the border, • boundary kernel (Müller (1991)) • mirror image modication (Deheuvels Hominal (1989), Schuster (1985)) • transformed kernel (Devroye Györfi (1981), Wand, Marron Ruppert (1991)) • Beta kernel (Brown Chen (1999), Chen (1999, 2000)), see Charpentier, Fermanian Scaillet (2006) for a survey with application on copulas. 118
  • 119. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Consider the kernel estimator of the density of the (Xi, Yi) = (G−1 (Ui), G−1 (Vi))'s, where G is a strictly increasing distribution function R → [0, 1], with a dierentiable density. 119
  • 120. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Since density f of (X, Y ) is continuous, twice dierentiable, and bounded above, for all (x, y) ∈ R2 , consider f(x, y) = 1 nh2 n i=1 K x − Xi h K y − Yi h . Since f(x, y) = g(x)g(y)c[G(x), G(y)]. (4) can be inverted in c(u, v) = f(G−1 (u), G−1 (v)) g(G−1(u))g(G−1(v)) , (u, v) ∈ [0, 1] × [0, 1], (5) one gets, substituting f in (5) c(u, v) = 1 nh · g(G−1(u)) · g(G−1(v)) n i=1 K G−1 (u) − G−1 (Ui) h , G−1 (v) − G−1 (Vi) h , (6) 120
  • 121. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.20.40.60.8 Figure 48: Estimated density of Frank copula, using a Gaussian kernel, after a Gaussian normalization. 121
  • 122. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. The Beta-kernel based estimator of the copula density at point (u, v), is obtained using product beta kernels, which yields c(u, v) = 1 n n i=1 K Xi, u b + 1, 1 − u b + 1 · K Yi, v b + 1, 1 − v b + 1 , where K(·, α, β) denotes the density of the Beta distribution with parameters α and β. 122
  • 123. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0 Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2 Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5 Figure 49: Shape of bivariate Beta kernels K(·, x/b + 1, (1 − x)/b + 1) × K(·, y/b + 1, (1 − y)/b + 1) for b = 0.2. 123
  • 124. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 50: Estimated density of Frank copula, Beta kernels, b = 0.1 124
  • 125. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05) 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Figure 51: Estimated density of Frank copula, Beta kernels, b = 0.05 125
  • 126. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 52: Density estimation on the diagonal, standard kernel. 126
  • 127. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 53: Density estimation on the diagonal, transformed kernel. 127
  • 128. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.05, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.02, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.005, n=10000 Estimation of the density on the diagonal Densityoftheestimator Figure 54: Density estimation on the diagonal, Beta kernel. 128
  • 129. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Tail dependence and statistical inference Consider an i.i.d. sample (X1, Y1) , ...., (Xn, Yn). Consider unit Pareto transformation of margins: set T = 1 1 − FX (X) ∧ 1 1 − FY (Y ) . Observe that the survival distribution function of T, FT , is regularly varying with parameter η. But because FX and FY are unknown, dene the pseudo observations Ti's as Ti = 1 1 − FX,n (Xi) ∧ 1 1 − FY,n (Yi) = n + 1 n + 1 − Ri ∧ n + 1 n + 1 − Si , where Ri and Si denote the ranks of the Xi's and Yi's. Hill estimator can then be used, based on the k + 1 largest values of the Ti's, ηHill = 1 k k i=1 log Tn−i+1:n Tn−k:n . 129
  • 130. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Estimation of η (Hill's estimator) Proposition 33. Assume that (X, Y ) has upper tail dependence, with tail index η, with additional regularity conditions, then √ k (ηHill − η) is asymptotically normally distributed, with mean 0 and variance σ2 = η2 (1 − l) 1 − 2 ∂c (1, 1) ∂x ∂c (1, 1) ∂y . Remark 34. From this Proposition, a test for asymptotic dependence (i.e. η = 1) can de dened: asymptotic dependence is accepted if 1 − ηHill σ (η = 1) ≤ Φ−1 (95%) 130
  • 131. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Estimation of η (Peng's estimator) Set Sn (k) = n i=1 I (Xi Xn−k:n, Yi Yn−k:n) and ηPeng = 1 log 2 log Sn (k) Sn ( k/2 ) −1 . Proposition 35. Assume that (X, Y ) has upper tail dependence, with tail index η, and the same technical assumption as before, then √ k (ηPeng − η) is asymptotically normally distributed, with mean 0. 131
  • 132. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Estimation of λ (Huang's estimator) It is also possible to estimate λU : Huang-estimator of is based on the denition of the upper tail index. λHuang = n k P (Ui, Vi) ∈ 1 − k n × 1 − k n = 1 k n i=1 I (Ri n − k, Si n − k) = 1 k n i=1 I (Xi Xn−k:n, Yi Yn−k:n) . 132
  • 133. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Gaussian copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Gaussian copula, tau=0.3 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Gaussian copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Clayton copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Clayton copula, tau=0.3 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Clayton copula, tau=0.3 Figure 55: Estimation of η and λ for Gaussian and Clayton copulas, with Kendall's tau equal to 0.3 133
  • 134. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), survival Clayton copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), survival Clayton copula, tau=0.3 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), survival Clayton copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Gumbel copula, tau=0.3 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Gumbel copula, tau=0.3 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Gumbel copula, tau=0.3 Figure 56: Estimation of η and λ for survival Clayton and Gumbel copulas, with Kendall's tau equal to 0.3 134
  • 135. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Gaussian copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Gaussian copula, tau=0.7 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Gaussian copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Clayton copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Clayton copula, tau=0.7 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Clayton copula, tau=0.7 Figure 57: Estimation of η and λ for Gaussian and Clayton copulas, with Kendall's tau equal to 0.7 135
  • 136. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), survival Clayton copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), survival Clayton copula, tau=0.7 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), survival Clayton copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Hill estimate), Gumbel copula, tau=0.7 0 100 200 300 400 0.5 0.7 0.9 1.1 Eta (Peng estimate), Gumbel copula, tau=0.7 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 Lambda (Huang estimate), Gumbel copula, tau=0.7 Figure 58: Estimation of η and λ for survival Clayton and Gumbel copulas, with Kendall's tau equal to 0.7 136
  • 137. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 137
  • 138. Arthur CHARPENTIER - Gestion des risques bancaires et financiers. Risk measures and diversication Any copula C is bounded by Fréchet-Hoeding bounds, max d i=1 ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud}, and thus, any distribution F on F(F1, . . . , Fd) is bounded max d i=1 Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}. Does this means the comonotonicity is always the worst-case scenario ? Given a random pair (X, Y ), let (X− , Y − ) and (X+ , Y + ) denote contercomonotonic and comonotonic versions of (X, Y ), do we have R(φ(X− , Y − )) ? ≤ R(φ(X, Y ) ) ? ≤ R(φ(X+ , Y + )). 138