SlideShare a Scribd company logo
1 of 9
Download to read offline
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 100 | P a g e 
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions Shyam Lal and Susheel Kumar Department of Mathematics, Faculty of Science, Banaras Hindu University, Varansi-221005, India Abstract In this paper, two new theorems on generalized Carleson Operator for a Walsh type wavelet packet system and for periodic Walsh type wavelet packet expansion of a function ν‘“νœ–νΏν‘ 0,1 , 1<푝<∞, have been established. Mathematics Subject Classification: 40A30, 42C15 Keywords and Phrases Walsh function, Walsh- type wavelet Packets, periodic Walsh- type wavelet packets, Cesν‘Ž ro's means of order 1 for single infinite series and for double infinite series, generalized Carleson operator for Walsh type and for periodic Walsh type wavelet packets. 
I. Introduction 
A new class of orthogonal expansion in 퐿2(ℝ) with good time frequency and regularity approximation properties are obtained in wavelet analysis. These expansions are useful in Signal analysis, Quantum mechanics, Numerical analysis, Engineering and Technology. Wavelet analysis generalizes an orthogonal wavelet expansion with suitable time frequency properties. In transient as well as stationary phenomena, this approach have applications over wavelet and short- time Fourier analysis. The properties of orthonormal bases have been studied in 퐿2(ν‘…) for wavelet expansion. The basic wavelet packet expansions of 퐿푝-functions, 1<푝<∞, defined on the real line and the unit interval have significant importance in wavelet analysis. Walsh system is an example of a system of basic stationary wavelet packets (Billard [1] and Sjolin [9]). Paley [7], Billard [1] Sjolin [9] and Nielsen [6] have investigated point wise convergent properties of Walsh expansion of given 퐿푝[0,1) functions. At first, in 1966, Lennart Carleson [3] introduced an operator which is presently known as Carleson operator. In this paper, generalized Carleson operators for Walsh type wavelet packet expansion and for periodic Walsh type wavelet packet expansion for any ν‘“βˆˆνΏν‘[0,1) are introduced. Two new theorems have been established (1) The generalized Carleson operator for any Walsh-type wavelet packet system is of strong type 푝,푝 , 1< 푝<∞. (2) The generalized Carleson operator for periodic Walsh-type wavelet packet expansion for a function ν‘“βˆˆνΏν‘ ℝ , 1<푝<∞, converges a.e.. 
II. Definitions and Preliminaries 
The structure in which non-stationary wavelet packets live is that of a multiresolution analysis 푉푗 ν‘—βˆˆβ„€ for 퐿2 ℝ .To every multiresolution analysis we have an associated scaling function νœ™ and a wavelet νœ“ with the properties that 푉푗=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2νœ™ 2ν‘—.βˆ’ν‘˜ ;ν‘˜νœ–β„€ and νœ“ν‘—,ν‘˜β‰‘2 ν‘— 2νœ“ 2ν‘—.βˆ’ν‘˜ ;ν‘—,ν‘˜νœ–β„€ are an orthonormal basis for 퐿2 ℝ . Write ν‘Šν‘—=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2νœ“ 2ν‘—.βˆ’ν‘˜ ;ν‘˜νœ–β„€ . Let β„• be the set of natural number and 퐹0 푝 ,퐹1 푝 ,푝 νœ–β„•, be a family of bounded operators on ν‘™2 β„€ of the form νΉνœ– 푝 ν‘Ž ν‘˜ = ν‘Žν‘› ν‘›βˆˆβ„€ν‘•νœ– 푝 ν‘›βˆ’2ν‘˜ , νœ–=0,1 with ν‘•1 푝 ν‘› =(βˆ’1)ν‘› ν‘•0 푝 (1βˆ’ν‘›) a sequence in ν‘™1(β„€) such that 퐹0 푝 βˆ—νΉ0 푝 +퐹1 푝 βˆ—νΉ1 푝 =1 퐹0 푝 퐹1 푝 βˆ—=0. We define the family of functions ν‘€ν‘› 0∞ recursively by letting ν‘€0=νœ™ ,ν‘€1=νœ“ and then for ν‘›νœ–β„• ν‘€2ν‘› ν‘₯ =2 ν‘•0 푝 (ν‘ž)ν‘€ν‘› 2ν‘₯βˆ’ν‘ž ν‘žβˆˆν•« (2.1) ν‘€2ν‘›+1 ν‘₯ =2 ν‘•1 푝 (ν‘ž)ν‘€ν‘› 2ν‘₯βˆ’ν‘ž ν‘žβˆˆν•« (2.2) 
RESEARCH ARTICLE OPEN ACCESS
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 101 | P a g e 
where 2푝≀푛<2푝+1. The family ν‘€ν‘› 0∞ is our basic non –stationary wavelet packet. It is known that ν‘€ν‘› .βˆ’ν‘˜ ;ν‘›β‰₯0,ν‘˜βˆˆν•« is an orthonormal basis for 퐿2 ℝ .Moreover, ν‘€ν‘› .βˆ’ν‘˜ ;2푗≀푛<2ν‘—+1,ν‘˜βˆˆν•« is an orthonormal basis for ν‘Šν‘—=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2ν‘€1 2ν‘—.βˆ’ν‘˜ ;ν‘˜βˆˆν•« . Each pair 퐹0 푝 ,퐹1 푝 can be chosen as a pair of quardrature mirror filters associated with a multiresolution analysis, but this is not necessary. The trigonometric polynomial given by ν‘š0 푝 νœ‰ = 1 2 ν‘•0 푝 (ν‘˜)ν‘’βˆ’ν‘–ν‘˜νœ‰ ν‘˜βˆˆν•« and ν‘š1 푝 νœ‰ = 1 2 ν‘•1 푝 (ν‘˜)ν‘’βˆ’ν‘–ν‘˜νœ‰ ν‘˜βˆˆν•« are called the symbols of filters. The Haar low- pass quadrature mirror filter ν‘•0(ν‘˜) ν‘˜ is given by ν‘•0 0 =ν‘•0 1 = 1 2,ν‘•0 ν‘˜ =0 otherwise, and the associate high-pass filter ν‘•1(ν‘˜) ν‘˜ is given by ν‘•1 ν‘˜ =(βˆ’1)ν‘˜ ν‘•0 1βˆ’ν‘˜ . 2.1 Walsh function and their properties The Walsh system ν‘Šν‘› ν‘›=0∞ is defined recursively on 0,1 on considering ν‘Š0 ν‘₯ = 1,0≀ν‘₯<10, ν‘œν‘‘ν‘•ν‘’ν‘Ÿν‘€ν‘–ν‘ ν‘’ and ν‘Š2ν‘› ν‘₯ =ν‘Šν‘› 2ν‘₯ +ν‘Šν‘› 2ν‘₯βˆ’1 , ν‘Š2ν‘›+1 ν‘₯ =ν‘Šν‘› 2ν‘₯ βˆ’ν‘Šν‘› 2ν‘₯βˆ’1 . Observe that the Walsh system is the family of wavelet packets obtained by considering νœ‘=ν‘Š0 νœ“ ν‘₯ = 1, 0≀ν‘₯< 12; βˆ’1, 12≀ν‘₯<1; 0,ν‘œν‘‘ν‘•ν‘’ν‘Ÿν‘€ν‘–ν‘ ν‘’. and using the Haar filters in the definition of the non- stationary wavelet packets. The Walsh system is closed under point wise multiplication. Define the binary operator βŠ•:β„•0Γ—β„•0β†’β„•0 by mβŠ•ν‘›= ν‘šν‘–βˆ’ν‘›ν‘– 2ν‘–βˆžν‘– =0, where ν‘š= ν‘šν‘–2ν‘–βˆžν‘– =0, ν‘›= ν‘›ν‘–2ν‘–βˆžν‘– =0 and β„•0=β„•βˆͺ 0 . Then ν‘Šν‘š ν‘₯ ν‘Šν‘› ν‘₯ =ν‘Šν‘šβŠ•ν‘› ν‘₯ , (2.3) (Schipp et al.[8]). We can carry over the operator βŠ• to the interval [0,1] by identifying those x∈[0,1] with a unique expansion x= ν‘₯ν‘—2βˆ’ν‘—βˆ’1βˆžν‘— =0 (almost all x∈[0,1] has such a unique expansion) by there associated binary sequence ν‘₯ν‘– . For two such point ν‘₯,ν‘¦βˆˆ 0,1 , define xβŠ•ν‘¦= ν‘₯ν‘–βˆ’ν‘¦ν‘– 2βˆ’ν‘—βˆ’1βˆžν‘— =0. The operation βŠ• is defined for almost all ν‘₯,ν‘¦βˆˆ 0,1 .Using this definition we have ν‘Šν‘› ν‘₯βŠ•ν‘¦ =ν‘Šν‘› ν‘₯ ν‘Šν‘› 푦 ( 2.4) for every pair x,y for which ν‘₯βŠ•ν‘¦ is defined (Golubov et al.[4]). 2.2 Walsh type wavelet packets Let ν‘€ν‘› ν‘›β‰₯0,ν‘˜βˆˆβ„€ be a family of non-stationary wavelet packets constructed by using of family ν‘•0 푝 (ν‘›) 푝=0∞ of finite filters for which there is a constantνΎβˆˆβ„• such that ν‘•0 푝 (ν‘›) is the Haar filter for every 푝β‰₯퐾. If ν‘€1∈퐢1(ℝ) and it has compact support then we call ν‘€ν‘› ν‘›>0 a family of Walsh type wavelet packets. 2.3 Periodic Walsh type wavelet packet As Meyer[6-a], an orthonormal basis for 퐿2[0,1) is obtained periodizing any orthonormal wavelet basis associated with a multiresolution analysis. The periodization works equally well with non stationary wavelet packets. Let ν‘€ν‘› ν‘›=0∞ be a family of non-stationary basic wavelet packets satisfying ν‘€ν‘›(ν‘₯) ≀퐢푛(1+ ν‘₯ )βˆ’1βˆ’βˆˆν‘› for some βˆˆν‘›>0, nβˆˆβ„•0. For nβˆˆβ„•0 we define the corresponding periodic wavelet packets ν‘€ ν‘› by ν‘€ ν‘› ν‘₯ = ν‘€ν‘› ν‘₯βˆ’ν‘˜ ν‘˜βˆˆβ„€ . It is important to note that the hypothesis about the point- wise decay of the wavelet packets ν‘€ν‘› ensures that the periodic wavelet packets are well defined in 퐿푃[0,1) for 1β‰€ν‘β‰€βˆž . Wickerhauser and Hess[11] have proved that, the family ν‘€ ν‘› ν‘›=0∞ is an orthonormal basis for 퐿푃 0,1 .
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 102 | P a g e 
2.4 (C,1) and (C,1,1) method The series ν‘Žν‘›=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―βˆžν‘› =0, is said to be convergent to the sum S. If the partial sum 푆푛=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―+ν‘Žν‘› tends to finite limit S when nβ†’βˆž; and a series which is not convergent is said to be divergent. If 푆푛=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―+ν‘Žν‘›, and lim ν‘›β†’βˆž 푆0+푆1+푆2+β‹―+푆푛 ν‘›+1=푆, Then we call S the (C,1) sum of ν‘Žν‘› and the (C,1) limits of 푆푛. (Hardy[5],p.7) The series1+0-1+1+0-1+1+0...,is not convergent but it is summable (C,1) to the sum23 , (Titchmarsh [10], p.4111). Let ν‘Žν‘š,ν‘› βˆžν‘› =ν‘œ ∞ ν‘š=0= ν‘Ž0,0+ν‘Ž0,1+ν‘Ž0,2+β‹― +ν‘Ž1,0+ν‘Ž1,1+ν‘Ž1,2+β‹― +ν‘Ž2,0+ν‘Ž2,1+ν‘Ž2,2+β‹― be a double infinite series (Bromwich[2],p.92). The partial sum of double infinite series denoted byν‘†ν‘š,ν‘›, and defined by ν‘†ν‘š,ν‘›= ν‘Žν‘–,ν‘— . ν‘› ν‘—=0 ν‘š ν‘–=0 Write νœŽν‘š,ν‘›= 1 ν‘š+1 (ν‘›+1) 푆푖,ν‘— ν‘› ν‘—=1 ν‘š ν‘–=1 = 1βˆ’ ν‘– ν‘š+1 1βˆ’ ν‘— ν‘›+1 ν‘Žν‘–,ν‘— . (2.5)ν‘›ν‘— =1 ν‘šν‘– =1 If νœŽν‘š,푛→푆 as mβ†’βˆž,ν‘›β†’βˆž then we say that ν‘Žν‘š,ν‘› βˆžν‘› =0∞ ν‘š=0 is summable to S by (C,1,1) method. Consider the double infinite series (βˆ’1)ν‘š+ν‘›βˆžν‘› =0∞ ν‘š=0 in this case, ν‘†ν‘š,ν‘›= (βˆ’1)ν‘–+ν‘— ν‘› ν‘—=0 ν‘š ν‘–=0 = βˆ’1 (ν‘–)ν‘šν‘– =0 βˆ’1 (ν‘—)ν‘›ν‘— =0 = 1βˆ’1+1βˆ’β‹―+(βˆ’1)ν‘š 1βˆ’1+1βˆ’β‹―+(βˆ’1)ν‘› = 1βˆ’(βˆ’1)ν‘š+11+1 1βˆ’(βˆ’1)ν‘›+11+1 = 14 1+(βˆ’1)ν‘š 1+(βˆ’1)ν‘› = 1,ν‘–ν‘“,ν‘š=2ν‘›1,ν‘›=2ν‘›20,ν‘–ν‘“,ν‘š=2ν‘›1,ν‘›=2ν‘›2+10,ν‘–ν‘“,ν‘š=2ν‘›1+1,ν‘›=2ν‘›20,ν‘–ν‘“,ν‘š=2ν‘›1+1,ν‘›=2ν‘›2+1 ν‘€ν‘•ν‘’ν‘Ÿν‘’ ν‘›1,ν‘›2νœ–β„•0. Then limν‘š,ν‘›β†’βˆž,βˆžν‘†ν‘š,ν‘› does not exist. The double infinite series βˆ’1 (ν‘š+ν‘›)βˆžν‘› =0∞ ν‘š=0 is not convergent. Let us consider νœŽν‘š,ν‘›. νœŽν‘š,ν‘›.= 1βˆ’ ν‘– ν‘š+1 1βˆ’ ν‘— ν‘›+1 βˆ’1 ν‘–+ν‘— ν‘› ν‘—=0 ν‘š ν‘–=0 = 3+(βˆ’1)ν‘š+2ν‘š 3+(βˆ’1)ν‘›+2ν‘› 16 ν‘š+1 (ν‘›+1) then νœŽν‘š,ν‘›.β†’ 14 as mβ†’βˆž,ν‘›β†’βˆž. Therefore the series βˆ’1 (ν‘š+ν‘›)βˆžν‘› =0∞ ν‘š=0, is summable to 14 by(C,1,1) method. 2.5 Generalized Carleson operator Write 푆푁,푁푓 ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ ,ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞,
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 103 | P a g e 
νœŽν‘,푁푓 ν‘₯ = 1 푁+1 2 푆푖,ν‘—ν‘“ ν‘₯ 푁푗 =0 푁푖 =0 = 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ The Carleson operator for the Walsh type wavelet packet system, denoted by L, is defined by 퐿푓 ν‘₯ = 푠푒푝 푁β‰₯1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ .ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞, = 푠푒푝 푁β‰₯1 푆푁,푁푓 ν‘₯ . The generalized carleson operator for the Walsh type wavelet packet system denoted by 퐿푐 is defined by (퐿푐f) ν‘₯ = 푠푒푝 푁β‰₯1 1 ν‘›+1 2 푆푖,ν‘—ν‘“ ν‘₯ 푁푗 =0 푁푖 =0 = 푠푒푝 푁β‰₯1 푆푁,푁푓 ν‘₯ . = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ (2.6). Let us define the generalized Carleson Operator for the periodic Walsh type wavelet packet system ν‘€ ν‘› . Write 푠푁푓 ν‘₯ = ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ ,ν‘“βˆˆν‘ν‘› =0퐿푝(ℝ) , 1<푝<∞, νœŽν‘ν‘“ ν‘₯ = 1 푁+1 푠푁푓 ν‘₯ 푁 ν‘›=0 = 1 푁+1 ν‘“,ν‘€ ν‘› (ν‘€ ν‘–(ν‘₯) ν‘› ν‘–=0 푁 ν‘›=0) = (1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ . 푁 ν‘›=0 The Carleson operator for the periodic Walsh type wavelet packet system, denoted by ν”Ύ, is defined by ν”Ύν‘“ ν‘₯ = 푠푒푝 푁β‰₯1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ 푁푛 =0 ,ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞, = 푠푒푝 푁β‰₯1 푠푁푓 ν‘₯ . The generalized Carleson operator for the periodic Walsh type wavelet type packet system, denoted by , is defined by 픾푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 ν‘ 0ν‘“ ν‘₯ + ν‘ 1ν‘“ ν‘₯ + ν‘ 2ν‘“ ν‘₯ +β‹―+ 푠푁푓 ν‘₯ 푁+1 = 푠푒푝 푁β‰₯1 1 푁+1 ν‘ ν‘›ν‘“ ν‘₯ 푁푛 =0 = 푠푒푝 푁β‰₯1 νœŽν‘ν‘“ ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ 푁푛 =0 . (2.7) 2.6 Strong type (p,p) Operator An operator T defined on 퐿푝 ℝ is of strong type(p,p) if it is sub-linear and there is a constant C such that 푇푓 푝≀ 퐢 ν‘“ 푝 for all ν‘“βˆˆ 퐿푝 ℝ . 
III. Main Results 
In this paper, two new Theorem have been established in the following form: Theorem 3.1 Let ν‘€ν‘› be a family of Walsh-type wavelet packet system. Then the generalized Carleson operator 퐿푐 defined by (2,6) for any Walsh-type wavelet packet system is of strong type(p,p),1<푝<∞. Theorem 3.2 Let ν‘€ ν‘› be a periodic Walsh-type wavelet packets. Then the generalized Carleson Operator 픾푐 defined by (2.7) for periodic Walsh type wavelet packet expansion of any ν‘“βˆˆνΏν‘ ℝ ,1<푝<∞, converges a.e... 3.1 Lemmas For the proof of the theorems following lemmas are required: Lemma 3.1 (Zygmund[12],p.197),Ifν‘£1,ν‘£2,ν‘£3,…푣푛 are non negative and non increasing,then ν‘’1ν‘£1+ν‘’2ν‘£2+ν‘’3ν‘£3+β‹―+ν‘’ν‘›ν‘£ν‘› ≀푣1ν‘šν‘Žν‘₯ ν‘ˆν‘˜ Where ν‘ˆν‘˜=ν‘’1+ν‘’2+ν‘’3+β‹―+ν‘’ν‘˜ for k=1,2,3,...,n. Lemma 3.2 Let ν‘“1∈ 퐿2(ℝ), and define ν‘“ν‘› ν‘›β‰₯2 recursively by
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 104 | P a g e 
ν‘“ν‘› ν‘₯ = ν‘“ν‘š 2ν‘₯ +ν‘“ν‘š 2ν‘₯βˆ’1 ,ν‘›=2ν‘š ν‘“ν‘š 2ν‘₯ βˆ’ν‘“ν‘š 2ν‘₯βˆ’1 ,ν‘›=2ν‘š+1 Then ν‘“ν‘š ν‘₯ = ν‘Š ν‘šβˆ’2푗푝2βˆ’ν‘— 2ν‘—βˆ’1 푝=0ν‘“1(2ν‘—x-p) for m , j βˆˆβ„•,2ν‘—β‰€ν‘š<2ν‘—+1. Lemma 3.3 Let ν‘€ν‘› ν‘›β‰₯0 be a family of Walsh type wavelet packets. If ν‘€1∈퐢1(ℝ) then there exists an isomorphism νœ“βˆΆ 퐿푝 ℝ →퐿푝 ℝ ,1<푝<∞,푠푒푐푕 ν‘‘ν‘•ν‘Žν‘‘ νœ“ν‘€ν‘› .βˆ’ν‘˜ = ν‘€ν‘› .βˆ’ν‘˜ ,ν‘›β‰₯0,ν‘˜βˆˆβ„€. Lemma (3.2) and (3.3) can be easily proved. Lemma 3.4 (Billard [1] and Sjν‘œ lin [9]. Let ν‘“βˆˆνΏ1[0,1) and define 푆푛 ν‘₯,ν‘“ = ν‘“ ν‘‘ ν‘Šν‘˜ ν‘‘ ν‘‘ν‘‘ν‘Šν‘˜ ν‘₯ .10 ν‘› ν‘˜=0 Then the Carleson operator G defined by 퐺푓 ν‘₯ = 푠푒푝 ν‘› 푆푛(ν‘₯,ν‘“) is of strong type (p,p) for 1<푝<∞. 3.2 Proof of Theorem 3.1 For, ν‘“,ν‘”,퐿푝(ℝ) 퐿푐 ν‘“+ν‘” ν‘₯ = 푠푒푝 푁β‰₯1 νœŽν‘,푁 ν‘“+ν‘” (ν‘₯) = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“+ν‘”,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“,ν‘€ν‘› .βˆ’ν‘˜ + ν‘”,ν‘€ν‘› .βˆ’ν‘˜ ν‘€ν‘› ν‘₯βˆ’ν‘˜ 푁푛 =0 푠푒푝 ≀푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 + 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘”,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 = 푠푒푝 푁β‰₯1 (νœŽν‘,푁푓)(ν‘₯) + 푠푒푝 푁β‰₯1 (νœŽν‘,푁푔)(ν‘₯) = 퐿푐푓 ν‘₯ + 퐿푐푔 ν‘₯ . Also for ν›Όβˆˆβ„ 퐿푐훼푓 ν‘₯ = 푠푒푝 푁β‰₯1 (νœŽν‘,푁(ν›Όν‘“))(ν‘₯) = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν›Όν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 = ν›Ό 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 = ν›Ό 퐿푐푓 ν‘₯ . Choose M βˆˆβ„• such that Supp(ν‘€ν‘›)βŠ‚[βˆ’ν‘€,ν‘€] for ν‘›β‰₯0. Fix ν‘βˆˆ(1,∞) and take any ν‘“ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘› ν‘₯βˆ’ν‘˜ βˆˆνΏν‘ ℝ .ν‘›β‰₯0,ν‘˜βˆˆβ„€ Define ν‘“ν‘˜ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘› ν‘₯βˆ’ν‘˜ ,ν‘”ν‘˜ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘Šν‘› ν‘₯βˆ’ν‘˜ . ν‘›β‰₯0,ν‘˜βˆˆβ„€ν‘›β‰₯0,ν‘˜βˆˆβ„€ We have ν‘“ν‘˜ ν‘β‰ˆ ν‘”ν‘˜ 푝,ν‘€ν‘–ν‘‘ν‘• bounds independent of k (Lemma 3.3) .Note that for {ν‘₯∈ ν‘™,ν‘™+1 : 퐿푐푓(ν‘₯) >ν›Ό} ≀ 퐢 훼푝 νΏν‘ν‘“ν‘˜(ν‘₯) ν‘™+1+ν‘› ν‘˜=ν‘™βˆ’ν‘› 푝 ν‘‘ν‘₯. Using the Marcinkiewiez interpolation theorem, it suffices to prove that νΏν‘ν‘“ν‘˜ 푝≀퐢 ν‘“ν‘˜ 푝, where C is a constant independent of k.
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 105 | P a g e 
Since ν‘“ν‘˜ 푝 푝≀2(ν‘›+1) ν‘“ν‘˜ 푝 푝≀2퐢(ν‘›+1) ν‘”ν‘˜ 푝 푝≀퐢1 ν‘“ 푝 푝 ν‘˜βˆˆβ„€ν‘˜βˆˆβ„€ ν‘™+1+ν‘› ν‘˜=ν‘™βˆ’ν‘›ν‘™βˆˆβ„€ where 퐢1 is constant. Without loss of generality, we assume that k=0. Let K ∈ β„• be the scale from which only the Haar filter is used to generate the wavelet packets ν‘€ν‘› ν‘›β‰₯2ν‘˜+1. Let N βˆˆβ„• and suppose 2푗≀푁≀2퐽+1 for some J>퐾+1.νΆν‘™ν‘’ν‘Žν‘Ÿν‘™ν‘¦,ν‘“ν‘œν‘Ÿ each ν‘₯βˆˆβ„. 퐿푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 =푠푒푝푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.) ν‘€ν‘›(ν‘₯)푁푛 =0 , ν‘˜=0, ≀푠푒푝1≀푁<2ν‘˜+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯)푁푛 =0 +푠푒푝퐽>퐾+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) 2ν½βˆ’1 ν‘›=2퐾+1 ν‘€ν‘› (ν‘₯) +푠푒푝퐽>퐾+1 푠푒푝2퐽≀푁<2퐽+1 1βˆ’ ν‘› ν‘βˆ’2퐽+1 ν‘“,ν‘€ν‘›(.) ν‘€ν‘› (ν‘₯)푁 ν‘›=2퐽 =퐽1+퐽2+퐽3 say. (3.2) Using Lemma 3.1, we have 퐽1=푠푒푝1≀푁<2ν‘˜+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯) 2ν‘˜+1βˆ’1 ν‘›=0 ≀푠푒푝1≀푁<2ν‘˜+1 ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯)0=푛≀2퐾+1βˆ’1 ≀ ν‘“,ν‘€ν‘›(.) 2퐾+1βˆ’1 ν‘›=0 ν‘€ν‘› (ν‘₯) ≀ ν‘“,ν‘€ν‘›(.) ν‘€ν‘›(ν‘₯) ∞ νœ’[βˆ’ν‘,푁] (ν‘₯) ≀ ν‘“0 푝 ν‘€ν‘› ν‘ž 2퐾+1βˆ’1 ν‘›=0 ν‘€ν‘› (ν‘₯) ∞ νœ’[βˆ’ν‘,푁] ν‘₯ . (3.3) Next, 퐽2= 푠푒푝퐽>퐾+1 1βˆ’ ν‘› 푁+1 2ν½βˆ’1 ν‘›=2퐾+1 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) ≀ 푠푒푝 퐽>ν‘˜+1max ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯)2ν‘˜+1=푛≀2ν½βˆ’1 . Also 푠푒푝 퐽>ν‘˜+1 (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯)2ν½βˆ’1 ν‘›=2ν‘˜+1 푃 ≀ supν‘šν‘Žν‘₯ 퐽>ν‘˜+1 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝2ν‘˜+1=푛≀2ν½βˆ’1 ≀퐢 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝 ∞ ν‘›=0 =퐢 ν‘“0 푝. (3.4) Consider 퐽3, 퐽3= 푠푒푝 2퐽≀푁<2퐽+1 (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽 ≀ 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 2νΎβˆ’1 ν‘—=0, so it suffices to prove that 푠푒푝 ν‘—>ν‘˜+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 푝 ≀퐢 ν‘“0 푝 for ν‘—=0,1,2,…,2ν‘˜βˆ’1. Fix 퐽>퐾+1 ,0≀푗≀22ν‘˜βˆ’1 and 2퐽+ν‘—2퐽퐾≀푁<2퐽+ ν‘—+1 2ν½βˆ’νΎ. Write,
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 106 | P a g e 
ν‘—,3= (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ . Using lemma 3.2, we have ν‘—,3 = (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘Š ν‘›βˆ’2ν½βˆ’ν‘—2ν½βˆ’νΎ(ν‘ 2βˆ’ ν½βˆ’νΎ ) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ ν‘€2ν‘˜+ν‘—(2ν½βˆ’νΎν‘₯βˆ’ν‘ ) 2ν½βˆ’νΎβˆ’1 ν‘ =0 . Define 퐹푁 ν‘‘ = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘Šν‘›βˆ’2ν½βˆ’ν‘—2ν½βˆ’νΎ, ν‘‘ , 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ and 퐹 ν‘‘ = 푠푒푝 푁<2퐽+(ν‘—+1)2ν½βˆ’νΎ 퐹푁 ν‘‘ . We have ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ , β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 , ≀ 퐹(ν‘ 2βˆ’(ν½βˆ’νΎ) ν‘€2ν‘˜+ν‘—((2ν½βˆ’νΎ)ν‘₯βˆ’ν‘ ) 2ν½βˆ’νΎβˆ’1 푆=0, and using the compact support of the wavelet packets, ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ , β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀ ν‘€2ν‘˜+ν‘— ∞ 퐹(([2ν½βˆ’νΎν‘€+1 ν‘™=βˆ’ν‘€ν‘₯]+ν‘™)2βˆ’(ν½βˆ’νΎ)). Note that F is constant on dyadic interval of type [ν‘™2βˆ’(ν‘—βˆ’ν‘˜),(ν‘™+1)2βˆ’(ν‘—βˆ’ν‘˜)) and taking Ξ”ν‘™=(( 2ν½βˆ’νΎν‘₯+ν‘™ 2βˆ’ ν½βˆ’νΎ , 2ν½βˆ’νΎν‘₯+(ν‘™+1) 2βˆ’ ν½βˆ’νΎ ), we have ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀ ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐹 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ . We need an estimate of F that does not depend on J . Note that for k, 0β‰€ν‘˜<2ν½βˆ’νΎ , using (2.3) ν‘Š2퐽+ν‘—2ν½βˆ’νΎ ν‘‘ ν‘Šν‘˜ ν‘‘ =ν‘Š2퐽+ν‘—2ν½βˆ’νΎ+ν‘˜ ν‘‘ , since the binary expansions of 2퐽+ν‘—2ν½βˆ’νΎ and of k have no 1’s in common. Hence, 퐹푁 ν‘‘ = ν‘Š2퐽+ν‘—2ν½βˆ’νΎ ν‘‘ 퐹푁 ν‘‘ = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘Šν‘› ν‘‘ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 107 | P a g e 
β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘Šν‘› ν‘‘ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 . Using lemma (3.4) , we have F(t)≀2 νΊν‘”ν‘œ ν‘‘ . Thus, 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀2 ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐺푔0 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ . Let Ξ”ν‘™ βˆ— be the smallest dyadic interval containing Ξ”ν‘™ and ν‘₯ , and note that Ξ”ν‘™ βˆ— ≀(ν‘€+1) Ξ”ν‘™ since ν‘₯∈ Ξ”0βˆ’ν· . We have 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀2 ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐺푔0 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ ≀4 ν‘€2ν‘˜+ν‘— ∞(ν‘€+1)2 ν‘€βˆ— 퐺푔0 ν‘₯ (3.5) Where ν‘€βˆ— is the maximal operator of Hardy and Little wood . The right hand side of (3.5) neither depend on N nor J so we may conclude that 퐽3≀ 푠푒푝 퐽>퐾+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 2νΎβˆ’1 ν‘—=0 ≀ 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 2ν‘˜βˆ’1 ν‘—=0 ≀4 ν‘€2ν‘˜+ν‘— ∞(ν‘€+1)2 ν‘€βˆ— 퐺푔0 ν‘₯ ,ν‘Ž.ν‘’.. (3.6) Using (Sjν‘œ lin [9]), ν‘€βˆ— and G both of strong type (p,p), hence both are bounded. 푠푒푝 퐽>퐾+1퐽3 푃 ≀ 푠푒푝 퐽>퐾+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1 푁 ν‘›=2퐽+ν‘—2ν½βˆ’ν‘˜ 2νΎβˆ’1 ν‘—=0βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝 ≀퐢 ν‘”0 푝 ≀퐢1 ν‘“0 푝, ν‘—=0,1,2,3,…,2퐾-1. Thus the Theorem 3.1 is completely established. 3.3 proof of the Theorem 3.2 Let ν‘“βˆˆνΏν‘ 0,1 , and choose Mβˆˆβ„• such that supp(ν‘€ν‘›)βŠ‚[βˆ’ν‘€,ν‘€] for nβ‰₯0. Then 픾푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘›(ν‘₯) 푁 ν‘›=0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“, ν‘€ν‘›(.βˆ’ν‘˜1)ν‘€+1 ν‘˜1=βˆ’ν‘€ ν‘€ν‘›(ν‘₯βˆ’ν‘˜2)ν‘€+1 ν‘˜2=βˆ’ν‘€ 푁푛 =0
Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com 
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 
www.ijera.com 108 | P a g e 
= 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜1) ν‘€+1 ν‘˜1=βˆ’ν‘€ ν‘€ν‘›(ν‘₯βˆ’ν‘˜2)ν‘€+1 ν‘˜2=βˆ’ν‘€ 푁푛 =0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜1) 푁푛 =0ν‘€ν‘›(ν‘₯βˆ’ν‘˜2) ν‘€+1 ν‘˜2=βˆ’ν‘€ ν‘€+1 ν‘˜1=βˆ’ν‘€ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“ 푦 ν‘€ν‘› ν‘¦βˆ’ν‘˜1 푑푦푀푛(ν‘₯βˆ’ν‘˜2) 10 푁푛 =0 ν‘€+1 ν‘˜2=βˆ’ν‘€ ν‘€+1 ν‘˜1=βˆ’ν‘€ Following the proof of theorem 3.1, it can be proved that the generalized Carleson operator 픾푐 for the periodic Walsh type wavelet packet expansions converges a.e.. 
IV. Acknowledgments 
Shyam Lal, one of the author, is thankful to DST - CIMS for encouragement to this work. Susheel Kumar, one of the authors, is grateful to C.S.I.R. (India) in the form of Junior Research Fellowship vide Ref. No. 19-06/2011 (i)EU-IV Dated:03-10-2011 for this research work. Authors are grateful to the referee for his valuable suggestions and comments for the improvement of this paper. References [1] Billard, P., Sur la convergence Presque partout des series de Fourier-Walshdes fontions de l’espace 퐿2(0,1), Studia Math, 28:363-388, 1967. [2] Bromwich, T. J .I ’A., An introduction to the theory of infinite Series, The University press, Macmillan and Co; Limited, London, 1908. [3] Carleson, L. , β€œOn convergence and growth of partial sums of Fourier series” , Acta Mathematica 116(1): 135157, (1966). [4] Golubov , B., Efimov, A. And Skvortson, V., Walsh Series and Transforms, Dordrcct: Kluwer Academic Publishers Group ,Theory and application, Translated Form the 1987 Russian Original by W.R.. Wade, 1991. [5] Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. [6-a] Meyer .Y. Wavelets and Operators. Cambridge University Press, 1992. [6] Morten. N. Walsh Type Wavelet Packet Expansions. [7] Paley R. E. A. C., A remarkable system of orthogonal functions. Proc. Lond. Math. Soc., 34:241279, 1932. [8] Schipp, F., Wade, W. R. and Simon, P., Walsh Series, Bristol: AdamHilger Ltd. An Introduction to Dyadic Harmonic Analysis, with the Collaboration of J. P_al, 1990. [9] Sjν‘œ lin P., An inequality of paley and convergence a.e. of Walsh-FourierSeries, Arkiv fν‘œ r Matematik, 7:551-570, 1969. [10] Titchmarsh, E.C., The Theory of functions, Second Edition, OxfordUniversity Press, (1939). [11] Wickerhauser, M. V. and Hess,N. Wavelets and Time-Frequency Analysis, Proceedings of the IEEE, 84:4(1996), 523-540. [12] Zygmund A., Trigonometric Series Volume I, Cambridge UniversityPress, 1959.

More Related Content

What's hot

Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsMarie E. Rognes
Β 
Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Eqah Ihah
Β 
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Leo Asselborn
Β 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups mathsjournal
Β 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
Β 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24Alexander Decker
Β 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...Alexander Decker
Β 
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Prashant Goad
Β 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleLiang Kai Hu
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULESNumanUsama
Β 
Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014Krissia Zawadzki
Β 
Bounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphsBounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphseSAT Journals
Β 
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–Akira Tanimoto
Β 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.comIJERD Editor
Β 

What's hot (17)

Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
Β 
H0743842
H0743842H0743842
H0743842
Β 
Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)Assignment grouping 2(bungee jumping) (edit)
Assignment grouping 2(bungee jumping) (edit)
Β 
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Β 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
Β 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Β 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24
Β 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
Β 
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...Runge  kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Β 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
Β 
Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014Unveiling the physics of hair shapes - journal club 2014
Unveiling the physics of hair shapes - journal club 2014
Β 
Bounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphsBounds on inverse domination in squares of graphs
Bounds on inverse domination in squares of graphs
Β 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
Β 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
Β 
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–
MLPθΌͺθͺ­γ‚Ήγƒγ‚šγƒΌγ‚Ή8η«  γƒˆγƒ¬γƒΌγ‚ΉγƒŽγƒ«γƒ ζ­£ε‰‡εŒ–
Β 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
Β 

Viewers also liked

Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...IJERA Editor
Β 
Getting Started with Office 365
Getting Started with Office 365Getting Started with Office 365
Getting Started with Office 365Scott Hoag
Β 
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...IJERA Editor
Β 
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...IJERA Editor
Β 
Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...IJERA Editor
Β 
Design the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by UsingDesign the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by UsingIJERA Editor
Β 
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...IJERA Editor
Β 
Cx4301574577
Cx4301574577Cx4301574577
Cx4301574577IJERA Editor
Β 
Acoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in NigeriaAcoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in NigeriaIJERA Editor
Β 
Symbolic Computation via GrΓΆbner Basis
Symbolic Computation via GrΓΆbner BasisSymbolic Computation via GrΓΆbner Basis
Symbolic Computation via GrΓΆbner BasisIJERA Editor
Β 
Secure by design building id based security
Secure by design building id based securitySecure by design building id based security
Secure by design building id based securityArun Gopinath
Β 
Ei4301816822
Ei4301816822Ei4301816822
Ei4301816822IJERA Editor
Β 
An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...IJERA Editor
Β 
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro CapabilityHRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro CapabilityScott Hoag
Β 
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...IJERA Editor
Β 
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePointSPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePointScott Hoag
Β 
Parallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationParallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationIJERA Editor
Β 
Womens Aid - New Donor Campaign
Womens Aid - New Donor CampaignWomens Aid - New Donor Campaign
Womens Aid - New Donor CampaignPost Media
Β 

Viewers also liked (20)

Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...
Electroelastic Response of a Piezoelectric Semi-infinite Body with D∞ Symmetr...
Β 
P450294101
P450294101P450294101
P450294101
Β 
Getting Started with Office 365
Getting Started with Office 365Getting Started with Office 365
Getting Started with Office 365
Β 
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
High Speed Memory Efficient Multiplier-less 1-D 9/7 Wavelet Filters Based NED...
Β 
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
MMSE and ZF Analysis of Macrodiversity MIMO Systems and Wimax Networks over F...
Β 
Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Soft Computing Technique Based Enhancement of Transmission System Lodability ...
Β 
E045032833
E045032833E045032833
E045032833
Β 
Design the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by UsingDesign the High Speed Kogge-Stone Adder by Using
Design the High Speed Kogge-Stone Adder by Using
Β 
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Enhanced Seamless Handoff Using Multiple Access Points in Wireless Local Area...
Β 
Cx4301574577
Cx4301574577Cx4301574577
Cx4301574577
Β 
Acoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in NigeriaAcoustic Analysis of Commercially Available Timber Species in Nigeria
Acoustic Analysis of Commercially Available Timber Species in Nigeria
Β 
Symbolic Computation via GrΓΆbner Basis
Symbolic Computation via GrΓΆbner BasisSymbolic Computation via GrΓΆbner Basis
Symbolic Computation via GrΓΆbner Basis
Β 
Secure by design building id based security
Secure by design building id based securitySecure by design building id based security
Secure by design building id based security
Β 
Ei4301816822
Ei4301816822Ei4301816822
Ei4301816822
Β 
An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...An Automated Input Data Management Approach for Discrete Event Simulation App...
An Automated Input Data Management Approach for Discrete Event Simulation App...
Β 
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro CapabilityHRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
HRSSUG - SharePoint 2013 - A brief overview of IT Pro Capability
Β 
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Influence Of Gamma Irradiation On The Dielectric Properties Of PVA- PS Polyme...
Β 
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePointSPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
SPSDC - To the Cloud! Using IaaS as a Hosting Provider for SharePoint
Β 
Parallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix MultiplicationParallel Processing Technique for Time Efficient Matrix Multiplication
Parallel Processing Technique for Time Efficient Matrix Multiplication
Β 
Womens Aid - New Donor Campaign
Womens Aid - New Donor CampaignWomens Aid - New Donor Campaign
Womens Aid - New Donor Campaign
Β 

Similar to Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions

Fuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsFuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsinventionjournals
Β 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy NumbersIOSR Journals
Β 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model irjes
Β 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform spacetheijes
Β 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44Bilal Ahmed
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
Β 
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏ActionSequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏ActionIJRES Journal
Β 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyfoxtrot jp R
Β 
Lecture 6 radial basis-function_network
Lecture 6 radial basis-function_networkLecture 6 radial basis-function_network
Lecture 6 radial basis-function_networkParveenMalik18
Β 
paper publication
paper publicationpaper publication
paper publicationrikaseorika
Β 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...irjes
Β 
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONPROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONJournal For Research
Β 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLambitDontPosts
Β 

Similar to Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions (20)

Fuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important resultsFuzzy random variables and Kolomogrov’s important results
Fuzzy random variables and Kolomogrov’s important results
Β 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy Numbers
Β 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
Β 
Calculas
CalculasCalculas
Calculas
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
Β 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform space
Β 
MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44MTH101 - Calculus and Analytical Geometry- Lecture 44
MTH101 - Calculus and Analytical Geometry- Lecture 44
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
Β 
Proje kt
Proje ktProje kt
Proje kt
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
Β 
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏ActionSequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Β 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Β 
Lecture 6 radial basis-function_network
Lecture 6 radial basis-function_networkLecture 6 radial basis-function_network
Lecture 6 radial basis-function_network
Β 
paper publication
paper publicationpaper publication
paper publication
Β 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
Β 
9057263
90572639057263
9057263
Β 
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTIONPROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
Β 
Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependency
Β 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 

Recently uploaded (20)

Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
Β 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 

Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions

  • 1. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 100 | P a g e Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Expansions Shyam Lal and Susheel Kumar Department of Mathematics, Faculty of Science, Banaras Hindu University, Varansi-221005, India Abstract In this paper, two new theorems on generalized Carleson Operator for a Walsh type wavelet packet system and for periodic Walsh type wavelet packet expansion of a function ν‘“νœ–νΏν‘ 0,1 , 1<푝<∞, have been established. Mathematics Subject Classification: 40A30, 42C15 Keywords and Phrases Walsh function, Walsh- type wavelet Packets, periodic Walsh- type wavelet packets, Cesν‘Ž ro's means of order 1 for single infinite series and for double infinite series, generalized Carleson operator for Walsh type and for periodic Walsh type wavelet packets. I. Introduction A new class of orthogonal expansion in 퐿2(ℝ) with good time frequency and regularity approximation properties are obtained in wavelet analysis. These expansions are useful in Signal analysis, Quantum mechanics, Numerical analysis, Engineering and Technology. Wavelet analysis generalizes an orthogonal wavelet expansion with suitable time frequency properties. In transient as well as stationary phenomena, this approach have applications over wavelet and short- time Fourier analysis. The properties of orthonormal bases have been studied in 퐿2(ν‘…) for wavelet expansion. The basic wavelet packet expansions of 퐿푝-functions, 1<푝<∞, defined on the real line and the unit interval have significant importance in wavelet analysis. Walsh system is an example of a system of basic stationary wavelet packets (Billard [1] and Sjolin [9]). Paley [7], Billard [1] Sjolin [9] and Nielsen [6] have investigated point wise convergent properties of Walsh expansion of given 퐿푝[0,1) functions. At first, in 1966, Lennart Carleson [3] introduced an operator which is presently known as Carleson operator. In this paper, generalized Carleson operators for Walsh type wavelet packet expansion and for periodic Walsh type wavelet packet expansion for any ν‘“βˆˆνΏν‘[0,1) are introduced. Two new theorems have been established (1) The generalized Carleson operator for any Walsh-type wavelet packet system is of strong type 푝,푝 , 1< 푝<∞. (2) The generalized Carleson operator for periodic Walsh-type wavelet packet expansion for a function ν‘“βˆˆνΏν‘ ℝ , 1<푝<∞, converges a.e.. II. Definitions and Preliminaries The structure in which non-stationary wavelet packets live is that of a multiresolution analysis 푉푗 ν‘—βˆˆβ„€ for 퐿2 ℝ .To every multiresolution analysis we have an associated scaling function νœ™ and a wavelet νœ“ with the properties that 푉푗=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2νœ™ 2ν‘—.βˆ’ν‘˜ ;ν‘˜νœ–β„€ and νœ“ν‘—,ν‘˜β‰‘2 ν‘— 2νœ“ 2ν‘—.βˆ’ν‘˜ ;ν‘—,ν‘˜νœ–β„€ are an orthonormal basis for 퐿2 ℝ . Write ν‘Šν‘—=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2νœ“ 2ν‘—.βˆ’ν‘˜ ;ν‘˜νœ–β„€ . Let β„• be the set of natural number and 퐹0 푝 ,퐹1 푝 ,푝 νœ–β„•, be a family of bounded operators on ν‘™2 β„€ of the form νΉνœ– 푝 ν‘Ž ν‘˜ = ν‘Žν‘› ν‘›βˆˆβ„€ν‘•νœ– 푝 ν‘›βˆ’2ν‘˜ , νœ–=0,1 with ν‘•1 푝 ν‘› =(βˆ’1)ν‘› ν‘•0 푝 (1βˆ’ν‘›) a sequence in ν‘™1(β„€) such that 퐹0 푝 βˆ—νΉ0 푝 +퐹1 푝 βˆ—νΉ1 푝 =1 퐹0 푝 퐹1 푝 βˆ—=0. We define the family of functions ν‘€ν‘› 0∞ recursively by letting ν‘€0=νœ™ ,ν‘€1=νœ“ and then for ν‘›νœ–β„• ν‘€2ν‘› ν‘₯ =2 ν‘•0 푝 (ν‘ž)ν‘€ν‘› 2ν‘₯βˆ’ν‘ž ν‘žβˆˆν•« (2.1) ν‘€2ν‘›+1 ν‘₯ =2 ν‘•1 푝 (ν‘ž)ν‘€ν‘› 2ν‘₯βˆ’ν‘ž ν‘žβˆˆν•« (2.2) RESEARCH ARTICLE OPEN ACCESS
  • 2. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 101 | P a g e where 2푝≀푛<2푝+1. The family ν‘€ν‘› 0∞ is our basic non –stationary wavelet packet. It is known that ν‘€ν‘› .βˆ’ν‘˜ ;ν‘›β‰₯0,ν‘˜βˆˆν•« is an orthonormal basis for 퐿2 ℝ .Moreover, ν‘€ν‘› .βˆ’ν‘˜ ;2푗≀푛<2ν‘—+1,ν‘˜βˆˆν•« is an orthonormal basis for ν‘Šν‘—=ν‘ ν‘ν‘Žν‘› 2 ν‘— 2ν‘€1 2ν‘—.βˆ’ν‘˜ ;ν‘˜βˆˆν•« . Each pair 퐹0 푝 ,퐹1 푝 can be chosen as a pair of quardrature mirror filters associated with a multiresolution analysis, but this is not necessary. The trigonometric polynomial given by ν‘š0 푝 νœ‰ = 1 2 ν‘•0 푝 (ν‘˜)ν‘’βˆ’ν‘–ν‘˜νœ‰ ν‘˜βˆˆν•« and ν‘š1 푝 νœ‰ = 1 2 ν‘•1 푝 (ν‘˜)ν‘’βˆ’ν‘–ν‘˜νœ‰ ν‘˜βˆˆν•« are called the symbols of filters. The Haar low- pass quadrature mirror filter ν‘•0(ν‘˜) ν‘˜ is given by ν‘•0 0 =ν‘•0 1 = 1 2,ν‘•0 ν‘˜ =0 otherwise, and the associate high-pass filter ν‘•1(ν‘˜) ν‘˜ is given by ν‘•1 ν‘˜ =(βˆ’1)ν‘˜ ν‘•0 1βˆ’ν‘˜ . 2.1 Walsh function and their properties The Walsh system ν‘Šν‘› ν‘›=0∞ is defined recursively on 0,1 on considering ν‘Š0 ν‘₯ = 1,0≀ν‘₯<10, ν‘œν‘‘ν‘•ν‘’ν‘Ÿν‘€ν‘–ν‘ ν‘’ and ν‘Š2ν‘› ν‘₯ =ν‘Šν‘› 2ν‘₯ +ν‘Šν‘› 2ν‘₯βˆ’1 , ν‘Š2ν‘›+1 ν‘₯ =ν‘Šν‘› 2ν‘₯ βˆ’ν‘Šν‘› 2ν‘₯βˆ’1 . Observe that the Walsh system is the family of wavelet packets obtained by considering νœ‘=ν‘Š0 νœ“ ν‘₯ = 1, 0≀ν‘₯< 12; βˆ’1, 12≀ν‘₯<1; 0,ν‘œν‘‘ν‘•ν‘’ν‘Ÿν‘€ν‘–ν‘ ν‘’. and using the Haar filters in the definition of the non- stationary wavelet packets. The Walsh system is closed under point wise multiplication. Define the binary operator βŠ•:β„•0Γ—β„•0β†’β„•0 by mβŠ•ν‘›= ν‘šν‘–βˆ’ν‘›ν‘– 2ν‘–βˆžν‘– =0, where ν‘š= ν‘šν‘–2ν‘–βˆžν‘– =0, ν‘›= ν‘›ν‘–2ν‘–βˆžν‘– =0 and β„•0=β„•βˆͺ 0 . Then ν‘Šν‘š ν‘₯ ν‘Šν‘› ν‘₯ =ν‘Šν‘šβŠ•ν‘› ν‘₯ , (2.3) (Schipp et al.[8]). We can carry over the operator βŠ• to the interval [0,1] by identifying those x∈[0,1] with a unique expansion x= ν‘₯ν‘—2βˆ’ν‘—βˆ’1βˆžν‘— =0 (almost all x∈[0,1] has such a unique expansion) by there associated binary sequence ν‘₯ν‘– . For two such point ν‘₯,ν‘¦βˆˆ 0,1 , define xβŠ•ν‘¦= ν‘₯ν‘–βˆ’ν‘¦ν‘– 2βˆ’ν‘—βˆ’1βˆžν‘— =0. The operation βŠ• is defined for almost all ν‘₯,ν‘¦βˆˆ 0,1 .Using this definition we have ν‘Šν‘› ν‘₯βŠ•ν‘¦ =ν‘Šν‘› ν‘₯ ν‘Šν‘› 푦 ( 2.4) for every pair x,y for which ν‘₯βŠ•ν‘¦ is defined (Golubov et al.[4]). 2.2 Walsh type wavelet packets Let ν‘€ν‘› ν‘›β‰₯0,ν‘˜βˆˆβ„€ be a family of non-stationary wavelet packets constructed by using of family ν‘•0 푝 (ν‘›) 푝=0∞ of finite filters for which there is a constantνΎβˆˆβ„• such that ν‘•0 푝 (ν‘›) is the Haar filter for every 푝β‰₯퐾. If ν‘€1∈퐢1(ℝ) and it has compact support then we call ν‘€ν‘› ν‘›>0 a family of Walsh type wavelet packets. 2.3 Periodic Walsh type wavelet packet As Meyer[6-a], an orthonormal basis for 퐿2[0,1) is obtained periodizing any orthonormal wavelet basis associated with a multiresolution analysis. The periodization works equally well with non stationary wavelet packets. Let ν‘€ν‘› ν‘›=0∞ be a family of non-stationary basic wavelet packets satisfying ν‘€ν‘›(ν‘₯) ≀퐢푛(1+ ν‘₯ )βˆ’1βˆ’βˆˆν‘› for some βˆˆν‘›>0, nβˆˆβ„•0. For nβˆˆβ„•0 we define the corresponding periodic wavelet packets ν‘€ ν‘› by ν‘€ ν‘› ν‘₯ = ν‘€ν‘› ν‘₯βˆ’ν‘˜ ν‘˜βˆˆβ„€ . It is important to note that the hypothesis about the point- wise decay of the wavelet packets ν‘€ν‘› ensures that the periodic wavelet packets are well defined in 퐿푃[0,1) for 1β‰€ν‘β‰€βˆž . Wickerhauser and Hess[11] have proved that, the family ν‘€ ν‘› ν‘›=0∞ is an orthonormal basis for 퐿푃 0,1 .
  • 3. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 102 | P a g e 2.4 (C,1) and (C,1,1) method The series ν‘Žν‘›=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―βˆžν‘› =0, is said to be convergent to the sum S. If the partial sum 푆푛=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―+ν‘Žν‘› tends to finite limit S when nβ†’βˆž; and a series which is not convergent is said to be divergent. If 푆푛=ν‘Ž0+ν‘Ž1+ν‘Ž2+β‹―+ν‘Žν‘›, and lim ν‘›β†’βˆž 푆0+푆1+푆2+β‹―+푆푛 ν‘›+1=푆, Then we call S the (C,1) sum of ν‘Žν‘› and the (C,1) limits of 푆푛. (Hardy[5],p.7) The series1+0-1+1+0-1+1+0...,is not convergent but it is summable (C,1) to the sum23 , (Titchmarsh [10], p.4111). Let ν‘Žν‘š,ν‘› βˆžν‘› =ν‘œ ∞ ν‘š=0= ν‘Ž0,0+ν‘Ž0,1+ν‘Ž0,2+β‹― +ν‘Ž1,0+ν‘Ž1,1+ν‘Ž1,2+β‹― +ν‘Ž2,0+ν‘Ž2,1+ν‘Ž2,2+β‹― be a double infinite series (Bromwich[2],p.92). The partial sum of double infinite series denoted byν‘†ν‘š,ν‘›, and defined by ν‘†ν‘š,ν‘›= ν‘Žν‘–,ν‘— . ν‘› ν‘—=0 ν‘š ν‘–=0 Write νœŽν‘š,ν‘›= 1 ν‘š+1 (ν‘›+1) 푆푖,ν‘— ν‘› ν‘—=1 ν‘š ν‘–=1 = 1βˆ’ ν‘– ν‘š+1 1βˆ’ ν‘— ν‘›+1 ν‘Žν‘–,ν‘— . (2.5)ν‘›ν‘— =1 ν‘šν‘– =1 If νœŽν‘š,푛→푆 as mβ†’βˆž,ν‘›β†’βˆž then we say that ν‘Žν‘š,ν‘› βˆžν‘› =0∞ ν‘š=0 is summable to S by (C,1,1) method. Consider the double infinite series (βˆ’1)ν‘š+ν‘›βˆžν‘› =0∞ ν‘š=0 in this case, ν‘†ν‘š,ν‘›= (βˆ’1)ν‘–+ν‘— ν‘› ν‘—=0 ν‘š ν‘–=0 = βˆ’1 (ν‘–)ν‘šν‘– =0 βˆ’1 (ν‘—)ν‘›ν‘— =0 = 1βˆ’1+1βˆ’β‹―+(βˆ’1)ν‘š 1βˆ’1+1βˆ’β‹―+(βˆ’1)ν‘› = 1βˆ’(βˆ’1)ν‘š+11+1 1βˆ’(βˆ’1)ν‘›+11+1 = 14 1+(βˆ’1)ν‘š 1+(βˆ’1)ν‘› = 1,ν‘–ν‘“,ν‘š=2ν‘›1,ν‘›=2ν‘›20,ν‘–ν‘“,ν‘š=2ν‘›1,ν‘›=2ν‘›2+10,ν‘–ν‘“,ν‘š=2ν‘›1+1,ν‘›=2ν‘›20,ν‘–ν‘“,ν‘š=2ν‘›1+1,ν‘›=2ν‘›2+1 ν‘€ν‘•ν‘’ν‘Ÿν‘’ ν‘›1,ν‘›2νœ–β„•0. Then limν‘š,ν‘›β†’βˆž,βˆžν‘†ν‘š,ν‘› does not exist. The double infinite series βˆ’1 (ν‘š+ν‘›)βˆžν‘› =0∞ ν‘š=0 is not convergent. Let us consider νœŽν‘š,ν‘›. νœŽν‘š,ν‘›.= 1βˆ’ ν‘– ν‘š+1 1βˆ’ ν‘— ν‘›+1 βˆ’1 ν‘–+ν‘— ν‘› ν‘—=0 ν‘š ν‘–=0 = 3+(βˆ’1)ν‘š+2ν‘š 3+(βˆ’1)ν‘›+2ν‘› 16 ν‘š+1 (ν‘›+1) then νœŽν‘š,ν‘›.β†’ 14 as mβ†’βˆž,ν‘›β†’βˆž. Therefore the series βˆ’1 (ν‘š+ν‘›)βˆžν‘› =0∞ ν‘š=0, is summable to 14 by(C,1,1) method. 2.5 Generalized Carleson operator Write 푆푁,푁푓 ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ ,ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞,
  • 4. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 103 | P a g e νœŽν‘,푁푓 ν‘₯ = 1 푁+1 2 푆푖,ν‘—ν‘“ ν‘₯ 푁푗 =0 푁푖 =0 = 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ The Carleson operator for the Walsh type wavelet packet system, denoted by L, is defined by 퐿푓 ν‘₯ = 푠푒푝 푁β‰₯1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ .ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞, = 푠푒푝 푁β‰₯1 푆푁,푁푓 ν‘₯ . The generalized carleson operator for the Walsh type wavelet packet system denoted by 퐿푐 is defined by (퐿푐f) ν‘₯ = 푠푒푝 푁β‰₯1 1 ν‘›+1 2 푆푖,ν‘—ν‘“ ν‘₯ 푁푗 =0 푁푖 =0 = 푠푒푝 푁β‰₯1 푆푁,푁푓 ν‘₯ . = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘ν‘˜ =βˆ’ν‘ 푁푛 =0ν‘€ν‘› ν‘₯βˆ’ν‘˜ (2.6). Let us define the generalized Carleson Operator for the periodic Walsh type wavelet packet system ν‘€ ν‘› . Write 푠푁푓 ν‘₯ = ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ ,ν‘“βˆˆν‘ν‘› =0퐿푝(ℝ) , 1<푝<∞, νœŽν‘ν‘“ ν‘₯ = 1 푁+1 푠푁푓 ν‘₯ 푁 ν‘›=0 = 1 푁+1 ν‘“,ν‘€ ν‘› (ν‘€ ν‘–(ν‘₯) ν‘› ν‘–=0 푁 ν‘›=0) = (1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ . 푁 ν‘›=0 The Carleson operator for the periodic Walsh type wavelet packet system, denoted by ν”Ύ, is defined by ν”Ύν‘“ ν‘₯ = 푠푒푝 푁β‰₯1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ 푁푛 =0 ,ν‘“βˆˆνΏν‘(ℝ) , 1<푝<∞, = 푠푒푝 푁β‰₯1 푠푁푓 ν‘₯ . The generalized Carleson operator for the periodic Walsh type wavelet type packet system, denoted by , is defined by 픾푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 ν‘ 0ν‘“ ν‘₯ + ν‘ 1ν‘“ ν‘₯ + ν‘ 2ν‘“ ν‘₯ +β‹―+ 푠푁푓 ν‘₯ 푁+1 = 푠푒푝 푁β‰₯1 1 푁+1 ν‘ ν‘›ν‘“ ν‘₯ 푁푛 =0 = 푠푒푝 푁β‰₯1 νœŽν‘ν‘“ ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘› ν‘₯ 푁푛 =0 . (2.7) 2.6 Strong type (p,p) Operator An operator T defined on 퐿푝 ℝ is of strong type(p,p) if it is sub-linear and there is a constant C such that 푇푓 푝≀ 퐢 ν‘“ 푝 for all ν‘“βˆˆ 퐿푝 ℝ . III. Main Results In this paper, two new Theorem have been established in the following form: Theorem 3.1 Let ν‘€ν‘› be a family of Walsh-type wavelet packet system. Then the generalized Carleson operator 퐿푐 defined by (2,6) for any Walsh-type wavelet packet system is of strong type(p,p),1<푝<∞. Theorem 3.2 Let ν‘€ ν‘› be a periodic Walsh-type wavelet packets. Then the generalized Carleson Operator 픾푐 defined by (2.7) for periodic Walsh type wavelet packet expansion of any ν‘“βˆˆνΏν‘ ℝ ,1<푝<∞, converges a.e... 3.1 Lemmas For the proof of the theorems following lemmas are required: Lemma 3.1 (Zygmund[12],p.197),Ifν‘£1,ν‘£2,ν‘£3,…푣푛 are non negative and non increasing,then ν‘’1ν‘£1+ν‘’2ν‘£2+ν‘’3ν‘£3+β‹―+ν‘’ν‘›ν‘£ν‘› ≀푣1ν‘šν‘Žν‘₯ ν‘ˆν‘˜ Where ν‘ˆν‘˜=ν‘’1+ν‘’2+ν‘’3+β‹―+ν‘’ν‘˜ for k=1,2,3,...,n. Lemma 3.2 Let ν‘“1∈ 퐿2(ℝ), and define ν‘“ν‘› ν‘›β‰₯2 recursively by
  • 5. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 104 | P a g e ν‘“ν‘› ν‘₯ = ν‘“ν‘š 2ν‘₯ +ν‘“ν‘š 2ν‘₯βˆ’1 ,ν‘›=2ν‘š ν‘“ν‘š 2ν‘₯ βˆ’ν‘“ν‘š 2ν‘₯βˆ’1 ,ν‘›=2ν‘š+1 Then ν‘“ν‘š ν‘₯ = ν‘Š ν‘šβˆ’2푗푝2βˆ’ν‘— 2ν‘—βˆ’1 푝=0ν‘“1(2ν‘—x-p) for m , j βˆˆβ„•,2ν‘—β‰€ν‘š<2ν‘—+1. Lemma 3.3 Let ν‘€ν‘› ν‘›β‰₯0 be a family of Walsh type wavelet packets. If ν‘€1∈퐢1(ℝ) then there exists an isomorphism νœ“βˆΆ 퐿푝 ℝ →퐿푝 ℝ ,1<푝<∞,푠푒푐푕 ν‘‘ν‘•ν‘Žν‘‘ νœ“ν‘€ν‘› .βˆ’ν‘˜ = ν‘€ν‘› .βˆ’ν‘˜ ,ν‘›β‰₯0,ν‘˜βˆˆβ„€. Lemma (3.2) and (3.3) can be easily proved. Lemma 3.4 (Billard [1] and Sjν‘œ lin [9]. Let ν‘“βˆˆνΏ1[0,1) and define 푆푛 ν‘₯,ν‘“ = ν‘“ ν‘‘ ν‘Šν‘˜ ν‘‘ ν‘‘ν‘‘ν‘Šν‘˜ ν‘₯ .10 ν‘› ν‘˜=0 Then the Carleson operator G defined by 퐺푓 ν‘₯ = 푠푒푝 ν‘› 푆푛(ν‘₯,ν‘“) is of strong type (p,p) for 1<푝<∞. 3.2 Proof of Theorem 3.1 For, ν‘“,ν‘”,퐿푝(ℝ) 퐿푐 ν‘“+ν‘” ν‘₯ = 푠푒푝 푁β‰₯1 νœŽν‘,푁 ν‘“+ν‘” (ν‘₯) = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“+ν‘”,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“,ν‘€ν‘› .βˆ’ν‘˜ + ν‘”,ν‘€ν‘› .βˆ’ν‘˜ ν‘€ν‘› ν‘₯βˆ’ν‘˜ 푁푛 =0 푠푒푝 ≀푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 + 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘”,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 = 푠푒푝 푁β‰₯1 (νœŽν‘,푁푓)(ν‘₯) + 푠푒푝 푁β‰₯1 (νœŽν‘,푁푔)(ν‘₯) = 퐿푐푓 ν‘₯ + 퐿푐푔 ν‘₯ . Also for ν›Όβˆˆβ„ 퐿푐훼푓 ν‘₯ = 푠푒푝 푁β‰₯1 (νœŽν‘,푁(ν›Όν‘“))(ν‘₯) = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν›Όν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 = ν›Ό 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 푁 ν‘˜=βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜) 푁 ν‘›=0 = ν›Ό 퐿푐푓 ν‘₯ . Choose M βˆˆβ„• such that Supp(ν‘€ν‘›)βŠ‚[βˆ’ν‘€,ν‘€] for ν‘›β‰₯0. Fix ν‘βˆˆ(1,∞) and take any ν‘“ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘› ν‘₯βˆ’ν‘˜ βˆˆνΏν‘ ℝ .ν‘›β‰₯0,ν‘˜βˆˆβ„€ Define ν‘“ν‘˜ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘› ν‘₯βˆ’ν‘˜ ,ν‘”ν‘˜ ν‘₯ = ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘Šν‘› ν‘₯βˆ’ν‘˜ . ν‘›β‰₯0,ν‘˜βˆˆβ„€ν‘›β‰₯0,ν‘˜βˆˆβ„€ We have ν‘“ν‘˜ ν‘β‰ˆ ν‘”ν‘˜ 푝,ν‘€ν‘–ν‘‘ν‘• bounds independent of k (Lemma 3.3) .Note that for {ν‘₯∈ ν‘™,ν‘™+1 : 퐿푐푓(ν‘₯) >ν›Ό} ≀ 퐢 훼푝 νΏν‘ν‘“ν‘˜(ν‘₯) ν‘™+1+ν‘› ν‘˜=ν‘™βˆ’ν‘› 푝 ν‘‘ν‘₯. Using the Marcinkiewiez interpolation theorem, it suffices to prove that νΏν‘ν‘“ν‘˜ 푝≀퐢 ν‘“ν‘˜ 푝, where C is a constant independent of k.
  • 6. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 105 | P a g e Since ν‘“ν‘˜ 푝 푝≀2(ν‘›+1) ν‘“ν‘˜ 푝 푝≀2퐢(ν‘›+1) ν‘”ν‘˜ 푝 푝≀퐢1 ν‘“ 푝 푝 ν‘˜βˆˆβ„€ν‘˜βˆˆβ„€ ν‘™+1+ν‘› ν‘˜=ν‘™βˆ’ν‘›ν‘™βˆˆβ„€ where 퐢1 is constant. Without loss of generality, we assume that k=0. Let K ∈ β„• be the scale from which only the Haar filter is used to generate the wavelet packets ν‘€ν‘› ν‘›β‰₯2ν‘˜+1. Let N βˆˆβ„• and suppose 2푗≀푁≀2퐽+1 for some J>퐾+1.νΆν‘™ν‘’ν‘Žν‘Ÿν‘™ν‘¦,ν‘“ν‘œν‘Ÿ each ν‘₯βˆˆβ„. 퐿푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 1βˆ’ ν‘˜ 푁+1 ν‘ν‘˜ =βˆ’ν‘ ν‘“,ν‘€ν‘›(.βˆ’ν‘˜) ν‘€ν‘›(ν‘₯βˆ’ν‘˜)푁푛 =0 =푠푒푝푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.) ν‘€ν‘›(ν‘₯)푁푛 =0 , ν‘˜=0, ≀푠푒푝1≀푁<2ν‘˜+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯)푁푛 =0 +푠푒푝퐽>퐾+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) 2ν½βˆ’1 ν‘›=2퐾+1 ν‘€ν‘› (ν‘₯) +푠푒푝퐽>퐾+1 푠푒푝2퐽≀푁<2퐽+1 1βˆ’ ν‘› ν‘βˆ’2퐽+1 ν‘“,ν‘€ν‘›(.) ν‘€ν‘› (ν‘₯)푁 ν‘›=2퐽 =퐽1+퐽2+퐽3 say. (3.2) Using Lemma 3.1, we have 퐽1=푠푒푝1≀푁<2ν‘˜+1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯) 2ν‘˜+1βˆ’1 ν‘›=0 ≀푠푒푝1≀푁<2ν‘˜+1 ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› (.) ν‘€ν‘›(ν‘₯)0=푛≀2퐾+1βˆ’1 ≀ ν‘“,ν‘€ν‘›(.) 2퐾+1βˆ’1 ν‘›=0 ν‘€ν‘› (ν‘₯) ≀ ν‘“,ν‘€ν‘›(.) ν‘€ν‘›(ν‘₯) ∞ νœ’[βˆ’ν‘,푁] (ν‘₯) ≀ ν‘“0 푝 ν‘€ν‘› ν‘ž 2퐾+1βˆ’1 ν‘›=0 ν‘€ν‘› (ν‘₯) ∞ νœ’[βˆ’ν‘,푁] ν‘₯ . (3.3) Next, 퐽2= 푠푒푝퐽>퐾+1 1βˆ’ ν‘› 푁+1 2ν½βˆ’1 ν‘›=2퐾+1 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) ≀ 푠푒푝 퐽>ν‘˜+1max ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯)2ν‘˜+1=푛≀2ν½βˆ’1 . Also 푠푒푝 퐽>ν‘˜+1 (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯)2ν½βˆ’1 ν‘›=2ν‘˜+1 푃 ≀ supν‘šν‘Žν‘₯ 퐽>ν‘˜+1 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝2ν‘˜+1=푛≀2ν½βˆ’1 ≀퐢 ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝 ∞ ν‘›=0 =퐢 ν‘“0 푝. (3.4) Consider 퐽3, 퐽3= 푠푒푝 2퐽≀푁<2퐽+1 (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽 ≀ 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 2νΎβˆ’1 ν‘—=0, so it suffices to prove that 푠푒푝 ν‘—>ν‘˜+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 푝 ≀퐢 ν‘“0 푝 for ν‘—=0,1,2,…,2ν‘˜βˆ’1. Fix 퐽>퐾+1 ,0≀푗≀22ν‘˜βˆ’1 and 2퐽+ν‘—2퐽퐾≀푁<2퐽+ ν‘—+1 2ν½βˆ’νΎ. Write,
  • 7. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 106 | P a g e ν‘—,3= (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ . Using lemma 3.2, we have ν‘—,3 = (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘Š ν‘›βˆ’2ν½βˆ’ν‘—2ν½βˆ’νΎ(ν‘ 2βˆ’ ν½βˆ’νΎ ) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ ν‘€2ν‘˜+ν‘—(2ν½βˆ’νΎν‘₯βˆ’ν‘ ) 2ν½βˆ’νΎβˆ’1 ν‘ =0 . Define 퐹푁 ν‘‘ = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘Šν‘›βˆ’2ν½βˆ’ν‘—2ν½βˆ’νΎ, ν‘‘ , 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ and 퐹 ν‘‘ = 푠푒푝 푁<2퐽+(ν‘—+1)2ν½βˆ’νΎ 퐹푁 ν‘‘ . We have ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ , β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 , ≀ 퐹(ν‘ 2βˆ’(ν½βˆ’νΎ) ν‘€2ν‘˜+ν‘—((2ν½βˆ’νΎ)ν‘₯βˆ’ν‘ ) 2ν½βˆ’νΎβˆ’1 푆=0, and using the compact support of the wavelet packets, ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ , β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀ ν‘€2ν‘˜+ν‘— ∞ 퐹(([2ν½βˆ’νΎν‘€+1 ν‘™=βˆ’ν‘€ν‘₯]+ν‘™)2βˆ’(ν½βˆ’νΎ)). Note that F is constant on dyadic interval of type [ν‘™2βˆ’(ν‘—βˆ’ν‘˜),(ν‘™+1)2βˆ’(ν‘—βˆ’ν‘˜)) and taking Ξ”ν‘™=(( 2ν½βˆ’νΎν‘₯+ν‘™ 2βˆ’ ν½βˆ’νΎ , 2ν½βˆ’νΎν‘₯+(ν‘™+1) 2βˆ’ ν½βˆ’νΎ ), we have ν‘—β€² 3 = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀ ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐹 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ . We need an estimate of F that does not depend on J . Note that for k, 0β‰€ν‘˜<2ν½βˆ’νΎ , using (2.3) ν‘Š2퐽+ν‘—2ν½βˆ’νΎ ν‘‘ ν‘Šν‘˜ ν‘‘ =ν‘Š2퐽+ν‘—2ν½βˆ’νΎ+ν‘˜ ν‘‘ , since the binary expansions of 2퐽+ν‘—2ν½βˆ’νΎ and of k have no 1’s in common. Hence, 퐹푁 ν‘‘ = ν‘Š2퐽+ν‘—2ν½βˆ’νΎ ν‘‘ 퐹푁 ν‘‘ = 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘Šν‘› ν‘‘ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ
  • 8. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 107 | P a g e β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘Šν‘› ν‘‘ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 . Using lemma (3.4) , we have F(t)≀2 νΊν‘”ν‘œ ν‘‘ . Thus, 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀2 ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐺푔0 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ . Let Ξ”ν‘™ βˆ— be the smallest dyadic interval containing Ξ”ν‘™ and ν‘₯ , and note that Ξ”ν‘™ βˆ— ≀(ν‘€+1) Ξ”ν‘™ since ν‘₯∈ Ξ”0βˆ’ν· . We have 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ β‰€ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 ≀2 ν‘€2ν‘˜+ν‘— ∞ Ξ”ν‘™ βˆ’1 퐺푔0 ν‘‘ ν‘‘ν‘‘ Ξ”ν‘™ ν‘€+1 ν‘™=βˆ’ν‘€ ≀4 ν‘€2ν‘˜+ν‘— ∞(ν‘€+1)2 ν‘€βˆ— 퐺푔0 ν‘₯ (3.5) Where ν‘€βˆ— is the maximal operator of Hardy and Little wood . The right hand side of (3.5) neither depend on N nor J so we may conclude that 퐽3≀ 푠푒푝 퐽>퐾+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푁 ν‘›=2퐽+ν‘—2ν½βˆ’νΎ 2νΎβˆ’1 ν‘—=0 ≀ 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ ν‘šν‘Žν‘₯ ν‘“,ν‘€ν‘› . ν‘€ν‘› ν‘₯ 2퐽+ν‘—2ν½βˆ’νΎ=ν‘›<푁 2ν‘˜βˆ’1 ν‘—=0 ≀4 ν‘€2ν‘˜+ν‘— ∞(ν‘€+1)2 ν‘€βˆ— 퐺푔0 ν‘₯ ,ν‘Ž.ν‘’.. (3.6) Using (Sjν‘œ lin [9]), ν‘€βˆ— and G both of strong type (p,p), hence both are bounded. 푠푒푝 퐽>퐾+1퐽3 푃 ≀ 푠푒푝 퐽>퐾+1 푠푒푝 2퐽+ν‘—2ν½βˆ’νΎβ‰€ν‘<2퐽+(ν‘—+1)2ν½βˆ’νΎ (1 푁 ν‘›=2퐽+ν‘—2ν½βˆ’ν‘˜ 2νΎβˆ’1 ν‘—=0βˆ’ ν‘› 푁+1) ν‘“,ν‘€ν‘› . ν‘€ν‘›(ν‘₯) 푝 ≀퐢 ν‘”0 푝 ≀퐢1 ν‘“0 푝, ν‘—=0,1,2,3,…,2퐾-1. Thus the Theorem 3.1 is completely established. 3.3 proof of the Theorem 3.2 Let ν‘“βˆˆνΏν‘ 0,1 , and choose Mβˆˆβ„• such that supp(ν‘€ν‘›)βŠ‚[βˆ’ν‘€,ν‘€] for nβ‰₯0. Then 픾푐푓 ν‘₯ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ ν‘› ν‘€ ν‘›(ν‘₯) 푁 ν‘›=0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“, ν‘€ν‘›(.βˆ’ν‘˜1)ν‘€+1 ν‘˜1=βˆ’ν‘€ ν‘€ν‘›(ν‘₯βˆ’ν‘˜2)ν‘€+1 ν‘˜2=βˆ’ν‘€ 푁푛 =0
  • 9. Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108 www.ijera.com 108 | P a g e = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜1) ν‘€+1 ν‘˜1=βˆ’ν‘€ ν‘€ν‘›(ν‘₯βˆ’ν‘˜2)ν‘€+1 ν‘˜2=βˆ’ν‘€ 푁푛 =0 = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“,ν‘€ν‘›(.βˆ’ν‘˜1) 푁푛 =0ν‘€ν‘›(ν‘₯βˆ’ν‘˜2) ν‘€+1 ν‘˜2=βˆ’ν‘€ ν‘€+1 ν‘˜1=βˆ’ν‘€ = 푠푒푝 푁β‰₯1 1βˆ’ ν‘› 푁+1 ν‘“ 푦 ν‘€ν‘› ν‘¦βˆ’ν‘˜1 푑푦푀푛(ν‘₯βˆ’ν‘˜2) 10 푁푛 =0 ν‘€+1 ν‘˜2=βˆ’ν‘€ ν‘€+1 ν‘˜1=βˆ’ν‘€ Following the proof of theorem 3.1, it can be proved that the generalized Carleson operator 픾푐 for the periodic Walsh type wavelet packet expansions converges a.e.. IV. Acknowledgments Shyam Lal, one of the author, is thankful to DST - CIMS for encouragement to this work. Susheel Kumar, one of the authors, is grateful to C.S.I.R. (India) in the form of Junior Research Fellowship vide Ref. No. 19-06/2011 (i)EU-IV Dated:03-10-2011 for this research work. Authors are grateful to the referee for his valuable suggestions and comments for the improvement of this paper. References [1] Billard, P., Sur la convergence Presque partout des series de Fourier-Walshdes fontions de l’espace 퐿2(0,1), Studia Math, 28:363-388, 1967. [2] Bromwich, T. J .I ’A., An introduction to the theory of infinite Series, The University press, Macmillan and Co; Limited, London, 1908. [3] Carleson, L. , β€œOn convergence and growth of partial sums of Fourier series” , Acta Mathematica 116(1): 135157, (1966). [4] Golubov , B., Efimov, A. And Skvortson, V., Walsh Series and Transforms, Dordrcct: Kluwer Academic Publishers Group ,Theory and application, Translated Form the 1987 Russian Original by W.R.. Wade, 1991. [5] Hardy, G. H., Divergent Series, Oxford at the Clarendon Press, 1949. [6-a] Meyer .Y. Wavelets and Operators. Cambridge University Press, 1992. [6] Morten. N. Walsh Type Wavelet Packet Expansions. [7] Paley R. E. A. C., A remarkable system of orthogonal functions. Proc. Lond. Math. Soc., 34:241279, 1932. [8] Schipp, F., Wade, W. R. and Simon, P., Walsh Series, Bristol: AdamHilger Ltd. An Introduction to Dyadic Harmonic Analysis, with the Collaboration of J. P_al, 1990. [9] Sjν‘œ lin P., An inequality of paley and convergence a.e. of Walsh-FourierSeries, Arkiv fν‘œ r Matematik, 7:551-570, 1969. [10] Titchmarsh, E.C., The Theory of functions, Second Edition, OxfordUniversity Press, (1939). [11] Wickerhauser, M. V. and Hess,N. Wavelets and Time-Frequency Analysis, Proceedings of the IEEE, 84:4(1996), 523-540. [12] Zygmund A., Trigonometric Series Volume I, Cambridge UniversityPress, 1959.