An Identification Method of IR Signals to Collect Control Logs of Home Appliances

An Identification Method of IR Signals
to Collect Control Logs of Home Appliances
〇Yuta Takahashi1,Teruhiro Mizumoto1
1. Nara Institute of Science and Technology
2017 ACIS Conference Series BCD
July 11, 2017
Background & Motivation
❖Control logs of home appliance
2
❖More intelligent smart home
Log
18:00
Cold
24℃
- ON/OFF
- Channel
- Volume
- Temperature …
Home which can understand user’s preference
- Automation
- Energy efficient
- Recommendation Smart home
Goal
Method for collecting control logs
❖Information appliance
3
❖Estimation by electric consumption
〇 Accurate logs
〇 Remote control
Products are not diverse
〇 Compatible with various products
Need for attachments (smart mater)
Difficult to estimate detail usage
IR signal & Problems
❖Collecting IR signals
4
❖Problems of identification
▪ Many protocols (NEC, AEHA…)
▪ Repeater functions
▪ Environmental noise
- Various appliances are controlled by IR
- Installing IR receiver to each room
Difficult to identifying
Proposed method
❖Process of IR signal
5
IR remote
controller
Preprocess
Comparison
IR Database
Identification of
appliance type
Identification of
command type
Unknown
signal
No
match
Command
type
Appliance
type
IR receiver
Identifying by
statistical model
Preprosess
❖Raw IR signal
▪ Consist of high/low pulses (PWM, Pulse Width Modulation)
▪ High memory-capacity for devices
▪ High computation for identifying
6
Raw IR
Pulse width
sequence
❖Pulse width sequence
▪ Consist of length of
high/low pulses
▪ Range is 0 to 255
▪ Easy to handle
▪ Low memory-capacity
Comparison method of two signals
7
Two signals
𝑆1
0
𝑆1
1
𝑆1
2
𝑆1
3
𝑆1
4
𝑆1
5
𝑆1
6
𝑆1
7
𝑆1
0
𝑆1
1
𝑆1
2
𝑆1
1
𝑆1
2
𝑆1
3
𝑆1
2
𝑆1
3
𝑆1
4
𝑆1
𝑆𝑠𝑢𝑏
𝑆2 𝑆2
0
𝑆2
1
𝑆2
2
𝑆2
0
𝑆2
1
𝑆2
2
𝑆2
0
𝑆2
1
𝑆2
2
𝑀𝐴𝐸0, 𝑆𝐴𝐸0 𝑀𝐴𝐸1, 𝑆𝐴𝐸1 𝑀𝐴𝐸2, 𝑆𝐴𝐸2
𝑝 = arg min(𝑀𝐴𝐸 𝑛) 𝑴𝑨𝑬 𝒑, 𝑺𝑨𝑬 𝒑
A captured signal
A referenced signal
𝑀𝑒𝑎𝑛 𝐴𝑏𝑢𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1
𝑁
෍
𝑖=0
𝑁
|𝑆𝑠𝑢𝑏
𝑖
− 𝑆2
𝑖
|
Sum 𝐴𝑏𝑢𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = σ𝑖=0
𝑁
|𝑆𝑠𝑢𝑏
𝑖
− 𝑆2
𝑖
|
(long)
(short)
Dataset
8
14 appliances
↓
140 commands
10 signals
↓
1,400 signals
irMagician
1400
2
= 979,300 combinations
Error frequency of same appliance and other appliance
9
Same appliance (any command) :
Other appliance (any command) :
A appliance
A1 command
A appliance
A2 command
A appliance
A1 command
B appliance
B1 command
Small
overlapped
Difficult to
fit a model
(over fitting)
Constructing a model of “same appliance” of MAE
Model for identifying appliance type
❖Fitting
▪ Inverse gaussian, Gamma, Inverse gamma,
Weibull, Chi and F distributions
▪ Maximum likelihood estimation
▪ AIC (Akaike's Information Criterion)
▪ Inverse gamma (k=3) and F (k=4) are best
fitting
10
❖Decision
▪ 95% confidence interval
▪ 𝑒 ≤ 𝑒𝑡ℎ : same appliance
▪ 𝑒 > 𝑒𝑡ℎ : other appliance
Bad fitting (Weibull) Inverse gamma
95% 5%
3.72
𝑒𝑡ℎ
Error frequency of same command and other command
11
Same command (same appliance) :
Other command (same appliance) :
A appliance
A1 command
A appliance
A1 command
A appliance
A1 command
A appliance
A2 command
Good shape
of histogram
Constructing a model of “same & other command” of SAE
Model for identifying command type
❖Fitting
▪ Inverse gaussian, Inverse
gamma and F are better
than other
▪ We chose Inverse gamma
as well as model of
appliance type
12
❖Decision
▪ Bayes’ decision
𝑙𝑜𝑔
𝑝 𝑦 = "same"|𝑥
𝑝 𝑦 = "other" 𝑥
▪ Positive : same command
▪ Negative : other command
Evaluations
1. Accuracy of identifying appliance type
▪ Verifying by 10-fold cross validation
2. Accuracy of identifying command type
▪ Verifying by 10-fold cross validation
3. Simple simulation
▪ Identification depends on signals in database
▪ Constructing database randomly
▪ Check how many signals are needed in database
13
Identification accuracy
14
❖Accuracy of appliance type (total support : 199,778)
❖Accuracy of command type (total support : 12,636)
Result of simple simulation
▪ Simulating 1,400 signals in each number of appliances
▪ Correct match rate is stable if 6 signals, or more, are
included in the database
15
Stable
Conclusions
❖Proposed method for identifying IR signal by statistical model
❖Identifying appliance accuracy is 95.5%
❖Identifying command accuracy is 92.0%
❖Identification stability is achieved when 6 signals, or more, of
each appliance are included in database
❖We plan to collect and identify the IR signals in real environment
16
Simple simulation
Process
1. Construct database from signals of each appliance
2. Identifying the test signals
3. Increment the number of signals in database
17
❖Matching method
▪ One appliance type most identified is selected
▪ No match : Several types are estimated or no types of identification
Signal:TV
Signal:TV
Signal:TV
Signal:Fan
→ TV
→ TV
→ Fan
Signals identified as same appliance
TV
Test
Compared signals
Labeled appliance &
command to signals
Database
Result
1 of 17

Recommended

DeepRemote: A Smart Remote Controller for Intuitive Control through Home Appl... by
DeepRemote: A Smart Remote Controller for Intuitive Control through Home Appl...DeepRemote: A Smart Remote Controller for Intuitive Control through Home Appl...
DeepRemote: A Smart Remote Controller for Intuitive Control through Home Appl...Yuta Takahashi
14.7K views27 slides
The MURAVES Tech - Tokyo 2014 by
The MURAVES Tech - Tokyo 2014The MURAVES Tech - Tokyo 2014
The MURAVES Tech - Tokyo 2014Luigi Cimmino
334 views18 slides
SenseTek Fireray 3000 installers handbook by
SenseTek Fireray 3000 installers handbookSenseTek Fireray 3000 installers handbook
SenseTek Fireray 3000 installers handbookHans Bronkhorst
830 views25 slides
SBE Filter Tuning 101 by Jeremy Ruck November 2015 by
SBE Filter Tuning 101 by Jeremy Ruck November 2015SBE Filter Tuning 101 by Jeremy Ruck November 2015
SBE Filter Tuning 101 by Jeremy Ruck November 2015kmsavage
329 views29 slides
Identifying and Overcoming Noise in Data Acquisition by
Identifying and Overcoming Noise in Data AcquisitionIdentifying and Overcoming Noise in Data Acquisition
Identifying and Overcoming Noise in Data AcquisitionYokogawa1
1K views56 slides
Getting Started with TDS1000B / 2000B Digital Phosphor Oscilloscope Series by
Getting Started with TDS1000B / 2000B  Digital Phosphor Oscilloscope SeriesGetting Started with TDS1000B / 2000B  Digital Phosphor Oscilloscope Series
Getting Started with TDS1000B / 2000B Digital Phosphor Oscilloscope SeriesPremier Farnell
383 views15 slides

More Related Content

What's hot

Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy... by
Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...
Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...grantlerc
1K views26 slides
Fire alarm basics 1-6 by
Fire alarm basics 1-6Fire alarm basics 1-6
Fire alarm basics 1-6grantlerc
1.5K views26 slides
Electronic units and systems for armored vehicles by
Electronic units and systems for armored vehiclesElectronic units and systems for armored vehicles
Electronic units and systems for armored vehiclesAndrew Diakoniuk
196 views28 slides
datalogger by
dataloggerdatalogger
dataloggerDivya Verma
5.4K views29 slides
Vibration Measurements In Wind Power Turbines by
Vibration Measurements In Wind Power TurbinesVibration Measurements In Wind Power Turbines
Vibration Measurements In Wind Power Turbinesalexzio
1.3K views21 slides
Norsonic nor131- 132-brochure by
Norsonic nor131- 132-brochureNorsonic nor131- 132-brochure
Norsonic nor131- 132-brochurePhongNguyen515
52 views12 slides

What's hot(19)

Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy... by grantlerc
Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...
Fire alarm 3-f-single_and_multiple-station_alarms_and_household_fire_alarm_sy...
grantlerc1K views
Fire alarm basics 1-6 by grantlerc
Fire alarm basics 1-6Fire alarm basics 1-6
Fire alarm basics 1-6
grantlerc1.5K views
Electronic units and systems for armored vehicles by Andrew Diakoniuk
Electronic units and systems for armored vehiclesElectronic units and systems for armored vehicles
Electronic units and systems for armored vehicles
Andrew Diakoniuk196 views
Vibration Measurements In Wind Power Turbines by alexzio
Vibration Measurements In Wind Power TurbinesVibration Measurements In Wind Power Turbines
Vibration Measurements In Wind Power Turbines
alexzio1.3K views
The Minnich Auto Vibe System by Jill Reeves
The Minnich Auto Vibe SystemThe Minnich Auto Vibe System
The Minnich Auto Vibe System
Jill Reeves476 views
Firelaser-datasheet-SenseTek Glasvezel detectie by Hans Bronkhorst
Firelaser-datasheet-SenseTek  Glasvezel detectieFirelaser-datasheet-SenseTek  Glasvezel detectie
Firelaser-datasheet-SenseTek Glasvezel detectie
Hans Bronkhorst183 views
Fire alarm 2_a_initiation basics by grantlerc
Fire alarm 2_a_initiation basicsFire alarm 2_a_initiation basics
Fire alarm 2_a_initiation basics
grantlerc1.5K views
Wind turbine vibration analysis by Martin Gascon
Wind turbine vibration analysisWind turbine vibration analysis
Wind turbine vibration analysis
Martin Gascon494 views
Fire alarm 3-e-public_emergency_alarm_reporting_systems by grantlerc
Fire alarm 3-e-public_emergency_alarm_reporting_systemsFire alarm 3-e-public_emergency_alarm_reporting_systems
Fire alarm 3-e-public_emergency_alarm_reporting_systems
grantlerc1K views
9041 Ultra II C trend 0714 by Stephen Hawes
9041 Ultra II C trend 07149041 Ultra II C trend 0714
9041 Ultra II C trend 0714
Stephen Hawes383 views
How the world gets its weather by Ravi Yadav
How the world gets its weather How the world gets its weather
How the world gets its weather
Ravi Yadav277 views
Heart Rate Variability Logger - Quick Start Guide by Marco Altini
Heart Rate Variability Logger - Quick Start GuideHeart Rate Variability Logger - Quick Start Guide
Heart Rate Variability Logger - Quick Start Guide
Marco Altini36.2K views
Digital Recorder Presentation- Draft 1 by Meshal Alawwad
Digital Recorder Presentation- Draft 1Digital Recorder Presentation- Draft 1
Digital Recorder Presentation- Draft 1
Meshal Alawwad1.3K views
Harsha s ipmi_tool_osi by suniltomar04
Harsha s ipmi_tool_osiHarsha s ipmi_tool_osi
Harsha s ipmi_tool_osi
suniltomar041.1K views
Fire alarm 3-d-supervising_station_alarm_system by grantlerc
Fire alarm 3-d-supervising_station_alarm_systemFire alarm 3-d-supervising_station_alarm_system
Fire alarm 3-d-supervising_station_alarm_system
grantlerc895 views

Similar to An Identification Method of IR Signals to Collect Control Logs of Home Appliances

Pin pointpresentation by
Pin pointpresentationPin pointpresentation
Pin pointpresentationLevan Huan
339 views31 slides
Heart rate monitor system by
Heart rate monitor systemHeart rate monitor system
Heart rate monitor systemSkyinthe Raw
718 views47 slides
ISLPED 2015 FreqLeak (Presentation Charts) by
ISLPED 2015 FreqLeak (Presentation Charts)ISLPED 2015 FreqLeak (Presentation Charts)
ISLPED 2015 FreqLeak (Presentation Charts)Anand Haridass
418 views22 slides
Snmp Opc Server from Transcend Automation by
Snmp Opc Server from Transcend AutomationSnmp Opc Server from Transcend Automation
Snmp Opc Server from Transcend Automationguestd1aebad0
886 views22 slides
7 8. emi - analog instruments and digital instruments by
7 8. emi - analog instruments and digital instruments7 8. emi - analog instruments and digital instruments
7 8. emi - analog instruments and digital instrumentsJawad Khan
184 views13 slides
Presentation03 27 03 by
Presentation03 27 03Presentation03 27 03
Presentation03 27 03utkarsh SRIVASTAV
502 views44 slides

Similar to An Identification Method of IR Signals to Collect Control Logs of Home Appliances(20)

Pin pointpresentation by Levan Huan
Pin pointpresentationPin pointpresentation
Pin pointpresentation
Levan Huan339 views
Heart rate monitor system by Skyinthe Raw
Heart rate monitor systemHeart rate monitor system
Heart rate monitor system
Skyinthe Raw718 views
ISLPED 2015 FreqLeak (Presentation Charts) by Anand Haridass
ISLPED 2015 FreqLeak (Presentation Charts)ISLPED 2015 FreqLeak (Presentation Charts)
ISLPED 2015 FreqLeak (Presentation Charts)
Anand Haridass418 views
Snmp Opc Server from Transcend Automation by guestd1aebad0
Snmp Opc Server from Transcend AutomationSnmp Opc Server from Transcend Automation
Snmp Opc Server from Transcend Automation
guestd1aebad0886 views
7 8. emi - analog instruments and digital instruments by Jawad Khan
7 8. emi - analog instruments and digital instruments7 8. emi - analog instruments and digital instruments
7 8. emi - analog instruments and digital instruments
Jawad Khan184 views
Instrumentation: Test and Measurement Methods and Solutions (Design Conferenc... by Analog Devices, Inc.
Instrumentation: Test and Measurement Methods and Solutions (Design Conferenc...Instrumentation: Test and Measurement Methods and Solutions (Design Conferenc...
Instrumentation: Test and Measurement Methods and Solutions (Design Conferenc...
Understanding and Improving Device Access Complexity by asimkadav
Understanding and Improving Device Access ComplexityUnderstanding and Improving Device Access Complexity
Understanding and Improving Device Access Complexity
asimkadav539 views
DTect-IT CNC Machine Monitoring System by Brianna Toulouse
DTect-IT CNC Machine Monitoring SystemDTect-IT CNC Machine Monitoring System
DTect-IT CNC Machine Monitoring System
Brianna Toulouse170 views
Acartool 250-450mhz car frequency counter by Jamie Jung
Acartool 250-450mhz car frequency counterAcartool 250-450mhz car frequency counter
Acartool 250-450mhz car frequency counter
Jamie Jung213 views
Hioki 3196 Power Quality Analyzer Datasheet Manual by Angus Sankaran
Hioki 3196 Power Quality Analyzer Datasheet ManualHioki 3196 Power Quality Analyzer Datasheet Manual
Hioki 3196 Power Quality Analyzer Datasheet Manual
Angus Sankaran1.1K views
Hioki 3196 power_quality_analyzer_datasheet by Angus Sankaran
Hioki 3196 power_quality_analyzer_datasheetHioki 3196 power_quality_analyzer_datasheet
Hioki 3196 power_quality_analyzer_datasheet
Angus Sankaran63 views
Looking out for anomalies by CSIRO
Looking out for anomaliesLooking out for anomalies
Looking out for anomalies
CSIRO50 views
Troubleshooting Your Network.pptx by ssusere578aa
Troubleshooting Your Network.pptxTroubleshooting Your Network.pptx
Troubleshooting Your Network.pptx
ssusere578aa318 views
Mca admission in india by Edhole.com
Mca admission in indiaMca admission in india
Mca admission in india
Edhole.com151 views
Introduction to National Instrument Data Logging Machine Monitoring and Pow... by slemoslideshare
Introduction to National Instrument Data Logging   Machine Monitoring and Pow...Introduction to National Instrument Data Logging   Machine Monitoring and Pow...
Introduction to National Instrument Data Logging Machine Monitoring and Pow...
slemoslideshare5.7K views

More from Yuta Takahashi

PikaBreak: 光で休憩を促してくれるスマートタイマー by
PikaBreak: 光で休憩を促してくれるスマートタイマーPikaBreak: 光で休憩を促してくれるスマートタイマー
PikaBreak: 光で休憩を促してくれるスマートタイマーYuta Takahashi
427 views8 slides
ライフログを軸としたユビキタスコンピューティング技術 by
ライフログを軸としたユビキタスコンピューティング技術ライフログを軸としたユビキタスコンピューティング技術
ライフログを軸としたユビキタスコンピューティング技術Yuta Takahashi
392 views11 slides
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測 by
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測Yuta Takahashi
409 views28 slides
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析 by
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析観光中の内的状態推定に向けた観光客の無意識的しぐさの分析
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析Yuta Takahashi
503 views17 slides
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測 by
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測生産性の低下抑止のためのウェアラブル機器による体調の推定と予測
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測Yuta Takahashi
257 views25 slides
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案 by
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案Yuta Takahashi
748 views17 slides

More from Yuta Takahashi(16)

PikaBreak: 光で休憩を促してくれるスマートタイマー by Yuta Takahashi
PikaBreak: 光で休憩を促してくれるスマートタイマーPikaBreak: 光で休憩を促してくれるスマートタイマー
PikaBreak: 光で休憩を促してくれるスマートタイマー
Yuta Takahashi427 views
ライフログを軸としたユビキタスコンピューティング技術 by Yuta Takahashi
ライフログを軸としたユビキタスコンピューティング技術ライフログを軸としたユビキタスコンピューティング技術
ライフログを軸としたユビキタスコンピューティング技術
Yuta Takahashi392 views
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測 by Yuta Takahashi
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
Yuta Takahashi409 views
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析 by Yuta Takahashi
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析観光中の内的状態推定に向けた観光客の無意識的しぐさの分析
観光中の内的状態推定に向けた観光客の無意識的しぐさの分析
Yuta Takahashi503 views
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測 by Yuta Takahashi
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測生産性の低下抑止のためのウェアラブル機器による体調の推定と予測
生産性の低下抑止のためのウェアラブル機器による体調の推定と予測
Yuta Takahashi257 views
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案 by Yuta Takahashi
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案
歩行リハビリ支援のためのセンサ装着杖を 介した歩行動作認識手法の提案
Yuta Takahashi748 views
TechUP Makersデモデイ - リハビリ支援のためのIoTデバイス『UbiCane』 by Yuta Takahashi
TechUP Makersデモデイ - リハビリ支援のためのIoTデバイス『UbiCane』TechUP Makersデモデイ - リハビリ支援のためのIoTデバイス『UbiCane』
TechUP Makersデモデイ - リハビリ支援のためのIoTデバイス『UbiCane』
Yuta Takahashi1.4K views
労働生産性改善に向けたウェアラブル機器を用いた体調推定法の検討 by Yuta Takahashi
労働生産性改善に向けたウェアラブル機器を用いた体調推定法の検討労働生産性改善に向けたウェアラブル機器を用いた体調推定法の検討
労働生産性改善に向けたウェアラブル機器を用いた体調推定法の検討
Yuta Takahashi1.1K views
茨城高専から九州と関西へ飛び出た話 by Yuta Takahashi
茨城高専から九州と関西へ飛び出た話茨城高専から九州と関西へ飛び出た話
茨城高専から九州と関西へ飛び出た話
Yuta Takahashi622 views
HASCとWekaを使って行動認識 by Yuta Takahashi
HASCとWekaを使って行動認識HASCとWekaを使って行動認識
HASCとWekaを使って行動認識
Yuta Takahashi1.4K views
Ubiquitous Tips - スキルウェンズデー by Yuta Takahashi
Ubiquitous Tips - スキルウェンズデーUbiquitous Tips - スキルウェンズデー
Ubiquitous Tips - スキルウェンズデー
Yuta Takahashi800 views
交通事故データへの頻出パターンマイニングの適用 by Yuta Takahashi
交通事故データへの頻出パターンマイニングの適用交通事故データへの頻出パターンマイニングの適用
交通事故データへの頻出パターンマイニングの適用
Yuta Takahashi691 views
筋電制御を支援するIoTプラットフォームと 把持戦略の構築 by Yuta Takahashi
筋電制御を支援するIoTプラットフォームと把持戦略の構築筋電制御を支援するIoTプラットフォームと把持戦略の構築
筋電制御を支援するIoTプラットフォームと 把持戦略の構築
Yuta Takahashi745 views
Arch linuxを試したお話 by Yuta Takahashi
Arch linuxを試したお話Arch linuxを試したお話
Arch linuxを試したお話
Yuta Takahashi4.9K views
超音波センサーを用いた4点杖の使用者のコンテキスト推定法の提案 by Yuta Takahashi
超音波センサーを用いた4点杖の使用者のコンテキスト推定法の提案超音波センサーを用いた4点杖の使用者のコンテキスト推定法の提案
超音波センサーを用いた4点杖の使用者のコンテキスト推定法の提案
Yuta Takahashi1.4K views

Recently uploaded

Organic Shopping in Google Analytics 4.pdf by
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdfGA4 Tutorials
11 views13 slides
SAP-TCodes.pdf by
SAP-TCodes.pdfSAP-TCodes.pdf
SAP-TCodes.pdfmustafaghulam8181
6 views285 slides
Survey on Factuality in LLM's.pptx by
Survey on Factuality in LLM's.pptxSurvey on Factuality in LLM's.pptx
Survey on Factuality in LLM's.pptxNeethaSherra1
5 views9 slides
Short Story Assignment by Kelly Nguyen by
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyenkellynguyen01
19 views17 slides
PROGRAMME.pdf by
PROGRAMME.pdfPROGRAMME.pdf
PROGRAMME.pdfHiNedHaJar
18 views13 slides
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf by
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfvikas12611618
8 views30 slides

Recently uploaded(20)

Organic Shopping in Google Analytics 4.pdf by GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials11 views
Survey on Factuality in LLM's.pptx by NeethaSherra1
Survey on Factuality in LLM's.pptxSurvey on Factuality in LLM's.pptx
Survey on Factuality in LLM's.pptx
NeethaSherra15 views
Short Story Assignment by Kelly Nguyen by kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 views
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf by vikas12611618
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf
vikas126116188 views
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... by DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
Cross-network in Google Analytics 4.pdf by GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
UNEP FI CRS Climate Risk Results.pptx by pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views
CRIJ4385_Death Penalty_F23.pptx by yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1006 views
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx by DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
Advanced_Recommendation_Systems_Presentation.pptx by neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
SUPER STORE SQL PROJECT.pptx by khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 views
3196 The Case of The East River by ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9011 views

An Identification Method of IR Signals to Collect Control Logs of Home Appliances

  • 1. An Identification Method of IR Signals to Collect Control Logs of Home Appliances 〇Yuta Takahashi1,Teruhiro Mizumoto1 1. Nara Institute of Science and Technology 2017 ACIS Conference Series BCD July 11, 2017
  • 2. Background & Motivation ❖Control logs of home appliance 2 ❖More intelligent smart home Log 18:00 Cold 24℃ - ON/OFF - Channel - Volume - Temperature … Home which can understand user’s preference - Automation - Energy efficient - Recommendation Smart home Goal
  • 3. Method for collecting control logs ❖Information appliance 3 ❖Estimation by electric consumption 〇 Accurate logs 〇 Remote control Products are not diverse 〇 Compatible with various products Need for attachments (smart mater) Difficult to estimate detail usage
  • 4. IR signal & Problems ❖Collecting IR signals 4 ❖Problems of identification ▪ Many protocols (NEC, AEHA…) ▪ Repeater functions ▪ Environmental noise - Various appliances are controlled by IR - Installing IR receiver to each room Difficult to identifying
  • 5. Proposed method ❖Process of IR signal 5 IR remote controller Preprocess Comparison IR Database Identification of appliance type Identification of command type Unknown signal No match Command type Appliance type IR receiver Identifying by statistical model
  • 6. Preprosess ❖Raw IR signal ▪ Consist of high/low pulses (PWM, Pulse Width Modulation) ▪ High memory-capacity for devices ▪ High computation for identifying 6 Raw IR Pulse width sequence ❖Pulse width sequence ▪ Consist of length of high/low pulses ▪ Range is 0 to 255 ▪ Easy to handle ▪ Low memory-capacity
  • 7. Comparison method of two signals 7 Two signals 𝑆1 0 𝑆1 1 𝑆1 2 𝑆1 3 𝑆1 4 𝑆1 5 𝑆1 6 𝑆1 7 𝑆1 0 𝑆1 1 𝑆1 2 𝑆1 1 𝑆1 2 𝑆1 3 𝑆1 2 𝑆1 3 𝑆1 4 𝑆1 𝑆𝑠𝑢𝑏 𝑆2 𝑆2 0 𝑆2 1 𝑆2 2 𝑆2 0 𝑆2 1 𝑆2 2 𝑆2 0 𝑆2 1 𝑆2 2 𝑀𝐴𝐸0, 𝑆𝐴𝐸0 𝑀𝐴𝐸1, 𝑆𝐴𝐸1 𝑀𝐴𝐸2, 𝑆𝐴𝐸2 𝑝 = arg min(𝑀𝐴𝐸 𝑛) 𝑴𝑨𝑬 𝒑, 𝑺𝑨𝑬 𝒑 A captured signal A referenced signal 𝑀𝑒𝑎𝑛 𝐴𝑏𝑢𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = 1 𝑁 ෍ 𝑖=0 𝑁 |𝑆𝑠𝑢𝑏 𝑖 − 𝑆2 𝑖 | Sum 𝐴𝑏𝑢𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = σ𝑖=0 𝑁 |𝑆𝑠𝑢𝑏 𝑖 − 𝑆2 𝑖 | (long) (short)
  • 8. Dataset 8 14 appliances ↓ 140 commands 10 signals ↓ 1,400 signals irMagician 1400 2 = 979,300 combinations
  • 9. Error frequency of same appliance and other appliance 9 Same appliance (any command) : Other appliance (any command) : A appliance A1 command A appliance A2 command A appliance A1 command B appliance B1 command Small overlapped Difficult to fit a model (over fitting) Constructing a model of “same appliance” of MAE
  • 10. Model for identifying appliance type ❖Fitting ▪ Inverse gaussian, Gamma, Inverse gamma, Weibull, Chi and F distributions ▪ Maximum likelihood estimation ▪ AIC (Akaike's Information Criterion) ▪ Inverse gamma (k=3) and F (k=4) are best fitting 10 ❖Decision ▪ 95% confidence interval ▪ 𝑒 ≤ 𝑒𝑡ℎ : same appliance ▪ 𝑒 > 𝑒𝑡ℎ : other appliance Bad fitting (Weibull) Inverse gamma 95% 5% 3.72 𝑒𝑡ℎ
  • 11. Error frequency of same command and other command 11 Same command (same appliance) : Other command (same appliance) : A appliance A1 command A appliance A1 command A appliance A1 command A appliance A2 command Good shape of histogram Constructing a model of “same & other command” of SAE
  • 12. Model for identifying command type ❖Fitting ▪ Inverse gaussian, Inverse gamma and F are better than other ▪ We chose Inverse gamma as well as model of appliance type 12 ❖Decision ▪ Bayes’ decision 𝑙𝑜𝑔 𝑝 𝑦 = "same"|𝑥 𝑝 𝑦 = "other" 𝑥 ▪ Positive : same command ▪ Negative : other command
  • 13. Evaluations 1. Accuracy of identifying appliance type ▪ Verifying by 10-fold cross validation 2. Accuracy of identifying command type ▪ Verifying by 10-fold cross validation 3. Simple simulation ▪ Identification depends on signals in database ▪ Constructing database randomly ▪ Check how many signals are needed in database 13
  • 14. Identification accuracy 14 ❖Accuracy of appliance type (total support : 199,778) ❖Accuracy of command type (total support : 12,636)
  • 15. Result of simple simulation ▪ Simulating 1,400 signals in each number of appliances ▪ Correct match rate is stable if 6 signals, or more, are included in the database 15 Stable
  • 16. Conclusions ❖Proposed method for identifying IR signal by statistical model ❖Identifying appliance accuracy is 95.5% ❖Identifying command accuracy is 92.0% ❖Identification stability is achieved when 6 signals, or more, of each appliance are included in database ❖We plan to collect and identify the IR signals in real environment 16
  • 17. Simple simulation Process 1. Construct database from signals of each appliance 2. Identifying the test signals 3. Increment the number of signals in database 17 ❖Matching method ▪ One appliance type most identified is selected ▪ No match : Several types are estimated or no types of identification Signal:TV Signal:TV Signal:TV Signal:Fan → TV → TV → Fan Signals identified as same appliance TV Test Compared signals Labeled appliance & command to signals Database Result