Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Introduction to National Instrument Data Logging Machine Monitoring and Power Monitoring


Published on

Presentation by Stephen Plumb about National Instruments' Data Logging Machine Monitoring and Power Monitoring during a seminar at the Ecole National Superieure Polytechnique de Yaounde.

Published in: Technology, Business
  • Be the first to comment

Introduction to National Instrument Data Logging Machine Monitoring and Power Monitoring

  1. 1. Data Acquisition and Logging with NI CompactDAQ and LabVIEWSignalExpress<br />Presented by Stephen Plumb<br />Branch Manager NI South Africa<br />
  2. 2. Seminar Overview<br />Data Logging with National Instruments.<br />Machine Condition Monitoring.<br />Electrical Power Monitoring.<br />Structural Monitoring<br />
  3. 3. Data-logging Application Elements<br />
  4. 4. Data Logging Defined <br />Using an electronic instrument to take measurements from sensors and storing them for future use<br />Common measurements: temperature, pressure, current, velocity, strain, displacement, etc.<br />
  5. 5. The Long Tail<br />Benchtop<br />In-Vehicle<br />Noise Vibration Harshness (NVH)<br />Machine Monitoring<br />Road Load Testing<br />Environmental Monitoring<br />Unattended Monitoring<br />Evapotranspiration Monitoring<br />Embedded<br />Ultrasonic Cement Analysis<br />Extreme Environments<br />Structural Fatigue Analysis<br />Wireless Sensor Networks<br />Railway Ride-Quality Testing<br />Helicopter Rotor Testing<br />…<br />
  6. 6. Simplicity vs. Flexibility<br />Stand-alone<br />Simplicity<br />PC-Based<br />Flexibility<br />
  7. 7. Processor<br />Display<br />RAM<br />Power<br />Supply<br />ROM<br />Hard Disk<br />Traditional Stand-alone Data Loggers<br />PC-Based Data Logger<br />What is PC-Based Data Logging?<br />
  8. 8. PC-Based Data Logging Checklist<br />EASY<br />POWERFUL<br />OPEN<br />Simple configuration and PC connectivity<br />Easy-to-use data-logging software<br />Real-time data transfer<br />Online analysis & processing capability<br />Ability to add channels or measurement types<br />Scalable solution for future application needs<br />
  9. 9. Simplicity vs. Flexibility<br />Simple & Flexible<br />Stand-alone<br />Simplicity<br />PC-Based<br />Flexibility<br />
  10. 10. EASY: Configuration-based software & true plug-and-play hardware<br />POWERFUL: Online analysis & high-speed data streaming<br />OPEN: Modular I/O & scalable software<br />POWERFUL<br />EASY<br />OPEN<br />
  11. 11. DEMO: True Plug & Play<br />Simple configuration and PC connectivity<br />Easy-to-use data-logging software<br />EASY<br />POWERFUL<br />OPEN<br />
  12. 12. NEW! LabVIEW SignalExpress<br />Easily log and analyze measurements without programming<br />Quickly set up and configure data logging systems with plug and play USB technology<br />Connect to250+ DAQ devices, 400+ instruments and 1,000s of sensors<br />
  13. 13. What is LabVIEW SignalExpress?<br />Configuration-based logging & analysis software<br />
  14. 14. What is LabVIEW SignalExpress?<br />Interactive, step-by-step data acquisition & configuration<br />
  15. 15. What is LabVIEW SignalExpress?<br />Always-on, customizable views display live data & analysis<br />
  16. 16. What is LabVIEW SignalExpress?<br />Stream data to disk<br />Open in Microsoft Excel & email results<br />
  17. 17. Stream Data at Over 5 MS/s<br />True Plug & Play USB Connectivity<br />Built-in Signal Conditioning for Sensors<br />Over 30 Hot-swappable Modules<br />Built-in Signal Conditioning<br />What is CompactDAQ?<br />
  18. 18. Data in Three Clicks<br />True plug & play USB<br />Automatic detection & configuration of hardware<br />Focus on measurements and tests vs. hardware/software setup<br />Reduced setup time<br />1<br />2<br />3<br />
  19. 19. DEMO: LabVIEW SignalExpress<br />Simple configuration and PC connectivity<br />Easy-to-use data-logging software<br />EASY<br />POWERFUL<br />OPEN<br />
  20. 20. Online & Historical Data Analysis<br />Built-in Analysis Functions<br />Signal processing<br />Time domain measurements<br />Frequency domain measurements<br />Statistics<br />Digital comparison and conversion<br />Many more…<br />POWERFUL<br />EASY<br />OPEN<br />
  21. 21. Set Alarms & Configure Events<br />Set custom conditions to start and stop logging<br />Start/Stop at specific date and time<br />Start/Stop based on data<br />Customize alarm/event actions<br />Display messages<br />Set analog levels<br />Set digital lines<br />Audible alerts<br />
  22. 22. Create Customized Reports<br />Reports show live view of data<br />Drag and drop graphs and indicators<br />Enter free form text<br />Send to printer<br />Export to HTML<br />
  23. 23. DEMO: Analysis & Reporting<br />Online analysis & processing capability<br />Real-time data transfer<br />EASY<br />POWERFUL<br />OPEN<br />
  24. 24. I/O Capabilities in LabVIEW SignalExpress<br />Analog Input<br />Analog Output<br />Static I/O <br />Counters<br />Correlated DIO<br />Synchronize Plug-In Boards<br />
  25. 25. High-Speed Parallel Signal Streaming<br />USB STC-2 Timing and Triggering<br />Module <br />Auto-Detection <br />and Control<br />NI CompactDAQ Chassis Backplane<br />National Instruments USB Technology<br />
  26. 26. Increased Device Intelligence<br />Module auto-detection & control<br />Device contains element of driver<br />DAQmx<br />9215<br />9211<br />9215<br />9472<br />9263<br />9233<br />9472<br />9481<br />9237<br />
  27. 27. ADC<br />ADC<br />ADC<br />ADC<br />ADC<br />DMM-Based Systems<br />Data to PC at 1.8 MB/s (GPIB)<br />&lt;500 S/s<br />ADC<br />Relays<br />NI CompactDAQ<br />Over 5 MS/s<br />Data to and from PC at 60 MB/s (USB 2.0)<br />ADC<br />Timing & Bus Controller (USB-STC2)<br />ADC<br />ADC<br />Simultaneous, Multi-ADC System<br />
  28. 28. USB<br />Controller<br />USB Multi-Stream with NI Signal Streaming Technology<br />PC<br />Processor<br />Buffer<br />USB Bus<br />USB<br />Input<br />USB<br />Output<br />
  29. 29. DEMO: NI Signal Streaming<br />Online analysis & processing capability<br />Real-time data transfer<br />EASY<br />POWERFUL<br />OPEN<br />
  30. 30. Breadth of Measurements: I/O Modules<br />Over 30 I/O modules available<br />Up to 256 analog/digital mixed channel count<br />Custom channel count &sensor support per system with 4ch to 32ch modules available<br />Compatible with 1000’s of sensors<br />POWERFUL<br />EASY<br />OPEN<br />
  31. 31. Integrated DAQ, Signal Conditioning & Connectivity<br />Guaranteed Accuracy<br />NIST traceable calibration<br />Built-in Signal Conditioning<br />Direct connection to<br />industrial sensors and actuators<br />Signal to Backplane <br />Isolation barrier<br />Safety, noise immunity,<br />common mode rejection<br />Available 24-bit <br />Delta-Sigma ADC<br />DSA signals, TEDS enabled,<br />built-in antialiasing filters<br />
  32. 32. Isolation for Improved Accuracy & Safety<br />Avoid ground loops<br />Protect System and user <br />Measure small signals on a large potential<br />Digital Isolation<br />
  33. 33. NEW! Isolated Modules<br />24-bit, ch-ch isolated, 50kS/s/ch<br />9229 = ±60 VDC<br />9239 = ±10 VDC<br />Screw Terminals<br />Industry standard certifications<br />
  34. 34. Broad Sensor Compatibility<br />Thermocouples<br />RTDs<br />Thermistors<br />Strain gauges<br />Photo sensors<br /><ul><li>Potentiometers
  35. 35. Load Cells
  36. 36. Optical Encoders
  37. 37. Microphones
  38. 38. Accelerometers
  39. 39. pH electrodes
  40. 40. Headmeters
  41. 41. Flowmeters
  42. 42. Pressure gauges
  43. 43. Many more…</li></li></ul><li>24-bit 100S/s/ch<br />Ch-ch isolated<br />11 measurement modes<br />Thermocouple (with 1 CJC per channel)<br />RTD (3 and 4 wire)<br />Resistance<br />Current<br />Digital<br />Voltage up to ±60V<br />¼, ½, and full bridge strain with built in excitation up to 2.7V<br />NEW! Universal Module (9219)<br />
  44. 44. Flexible & Scalable Data Logging<br />Scale your applications with automatic code generation<br />Add additional functionality<br />Custom user interface<br />Decision making<br />Additional analysis<br />Add new hardware<br />
  45. 45. DEMO: Scalability<br />Ability to add channels or measurement types<br />Scalable solution for future application needs<br />EASY<br />POWERFUL<br />OPEN<br />
  46. 46. Diversity of Data-Logging Applications<br />Benchtop<br />Industrial<br />In-Vehicle<br />
  47. 47. Benchtop Instrumentation<br />Measurements<br />Verify circuit prototypes<br />Characterize components<br />Troubleshooting circuits<br />Requirements<br />Fast time to measurement<br />Direct connectivity & benchtop accessories<br />Small size (25 x 6 x 9cm)<br />Standard time and frequency domain analysis<br />Reporting<br />
  48. 48. High-Voltage Isolation <br />Integrated signal conditioning<br />NI-DAQmx built-in OPC Server<br />High-speed data transfer<br />Rack mount and panel mount accessories<br />Industrial Data Acquisition and Control<br />
  49. 49. Halliburton Ultrasonic Cement Analyzer<br />“The small size of NI CompactDAQ helped us minimize the footprint of the analyzer, and the modularity of the platform gives us the ability to incorporate additional measurement types for special deployment requirements.”<br />- Rick Bradshaw, Technical Professional Leader, R&D<br /> Halliburton<br />
  50. 50. In-Vehicle Data Acquisition<br />DC Power <br />Lightweight, portable <br />Measurement support for <br />Suspension<br />Fuel system<br />Comfort control<br />Brakes<br />Many more…<br />
  51. 51. Honda In-Vehicle Suspension Test<br />“This system will revolutionize in-vehicle data acquisition for us. With the CompactDAQ system, we effectively transform a myriad of wires and equipment into a smaller, cleaner, cheaper and more intuitive package.&quot;<br />- Mike Dickinson, Transmission Research Engineer, Honda R&D Americas<br />
  52. 52. Summary<br />Data Logging defined<br />LabVIEW SignalExpress & CompactDAQ<br />Easy: Configuration-based software and plug & play hardware<br />Powerful: Online analysis and high-speed data streaming<br />Open: Modular hardware and scalable software<br />Diversity of Applications<br />
  53. 53. Machine Condition MonitoringWhy monitor machinery?<br />Prevent catastrophic failure & significant damage<br />Avoid loss of life, environmental harm, economic loss<br />Stop unscheduled outages<br />Optimize machine performance (Reduce Energy Costs)<br />Reduce repair time and spare parts inventory<br />Lengthen maintenance cycle (extend equipment lifespan)<br />Reduce scrap and raw material consumption<br />Increase product quality<br />Safety<br />Reduce Outages and Energy Costs<br />Predictive Maintenance / Reduce Costs<br />Quality Control<br />
  54. 54. Maintenance Strategies<br /> (reactive) (active)<br />Issues addressed by machine monitoring:<br /><ul><li> Safety
  55. 55. Uptime (reliability, equipment effectiveness)
  56. 56. Quality</li></li></ul><li>Preventative Maintenance<br />Machine<br />Health<br />Predictive Maintenance<br />Acceptable Operating Zone<br />Run to-Failure<br />Time<br />Increasing Availability<br />
  57. 57. Economics of Planned Outages<br />Run-to-Fail<br />Unscheduled Shutdown<br />Production<br />Level<br />Preventative<br />Scheduled<br />Shutdown<br />Preventative<br />Scheduled<br />Shutdown<br />Traditional <br />Approach<br />Time<br />Production<br />Level<br />Condition-based<br />Shutdown<br />Predictive<br />Maintenance <br />Approach<br />Time<br />
  58. 58. Noise<br />Vibrations<br />Lead Time of Options – What to Monitor<br />Conditions start to change<br />Machine condition<br />Heat<br />Smoke<br />Emergency stop<br />Time<br />10 min<br />2 days<br />2 weeks<br />3 month<br />Courtesy of FAG Industrial Services<br />
  59. 59. Vibration Sources- Where to Monitor<br />Loose Mechanical<br /> Components<br />Blade Pass / <br />Bent Shaft<br />Fluid Related<br />Gears<br />Slot Frequency / <br />Unbalance<br />EM related<br />Alignment<br />Motor<br />Journal (Fluid Film) <br />Bearings<br />Mechanical<br />Rolling Element<br />Resonances<br />Couplings<br />Bearings<br />
  60. 60. Typical Sensing Data – A real machine<br />Gas Turbine<br />4 Accelerometer<br />4 Bearing RTD1 Gas Generator Speed<br />1 Power Turbine Speed<br />1 Fuel Flow<br />1 Ambient Temperature<br />1 Compressor Discharge Pressure<br />1 Compressor Discharge Temperature<br />1 Exhaust Gas Temperature<br />1 Power Turbine Exhaust Temperature<br />1 Power Turbine Exhaust Pressure<br />1 Air Mass Flow<br />4 Lube Oil Level Temp, Pressure,Level<br />Gearbox<br />8 Radial Vibration Proximeter Probe<br />2 Axial Positioner<br />6 Bearing RTD<br />1 High Speed Keyphasor<br />1 Low Speed Keyphasor<br />1 Gearbox Accelerometer<br />Compressor<br />4 Radial Vibration Proximeter Probe<br />2 Axial Positioner<br />4 RTD1 Suction Pressure<br />1 Discharge Pressure<br />1 Flow<br />1 Inlet Temperature<br />1 Discharge Temperature<br />Courtesy Dresser-Rand Corporation<br />
  61. 61. unbalance<br />0.0001 0.0010.01<br />misalignment<br />Velocity (ips)<br />gear mesh frequencies<br />bearing frequencies<br />100 1000 10000 100000<br />Frequency (Hz)<br />NI Advantages: <br />Advanced Measurements, Advanced Analysis<br />Typical Spectrum Showing Basic Faults<br />Courtesy of<br />
  62. 62. Who Uses Condition Monitoring?<br />Power Generation<br />Turbines (Gas, Steam, Hydro, Wind)<br />Boilers, pumps, motor<br />Oil, Gas, PetroChem<br />Pumps, Compressors, expanders, motor, fans<br />Pipelines<br />Compressor, Pumps, piping, motor<br />Paper<br />Rolllers, Press, Printing, pulp refiner, motor, fans<br />Water<br />Pumps, Compressor, motor<br />Food & Pharmaceuticals<br />Mixer, Pumps, Blowers, Fans, vessel, boiler, centrifuge<br />Marine Propulsion<br />Turbochargers, Gearbox, Bearings, motor<br />Metals and Mining<br />Kilns, crusher, pulverizer<br />Semiconductor<br />HVAC, Electrical Power, motor<br />
  63. 63. Who Can Use Machine Monitoring?<br />Rotating Equipment Engineer<br />Maintenance (Superintendent, Technician, Mgr)<br />Machinery Engineer<br />Reliability Engineer<br />Facilities Engineer<br />HVAC Engineer<br />Manufacturing Manager<br />
  64. 64. Nexjen Reactor Pump Vibration Monitor<br />Challenge<br />Provide a combined system for 32 vibration channels in four machinery locations<br />NI Tools<br />PXI-DSA, LabVIEW, <br />S&V Measurement Suite<br />Results<br />Real-Time Monitoring<br />Historical Data <br />Transient Data<br />Alarming<br />Expands to Process Variables<br />
  65. 65. Previous Hoover Dam Solution<br /><ul><li>400 Lbs.
  66. 66. Dedicated Instruments
  67. 67. Weak PC Integration</li></li></ul><li>vibDaq Solution<br /><ul><li>20 Lbs.
  68. 68. Virtual Instruments
  69. 69. PC based solution
  70. 70.</li></ul>Run-Up<br />Waterfall Plot<br />Cascade Plot<br />Polar Plot<br />Tabular List<br />Orbit Plot<br />
  71. 71. NI CompactDAQ<br />NI USB-9233<br />USB Machine Diagnostics<br />Portable Machinery Test and Condition Monitoring<br />Standard<br /><ul><li>Plug-and-play USB 2.0
  72. 72. Alias-free, simultaneous, 24-bit A/Ds
  73. 73. Time waveform, spectrum, and order analysis</li></ul>Nonstandard<br /><ul><li>Price… 4-channel USB-9233 + NI Sound and Vibration Assistant < $3,600</li></li></ul><li>Remote Monitoring Interface<br />Simple Web Interface<br />Pemex Compressor App<br />By Instituto de Investigationes Electric<br />
  74. 74. Demo Sound and Vibration<br />
  75. 75. Wind Energy: Needs Distributed Monitoring<br />Distributed Machinery<br />Hard to reach<br />Expensive to repair<br />Insurance requires machine condition monitoring<br />Wind Turbines already on “the network”<br />
  76. 76. Problems and Focus on Bearing <br />Journal Bearings<br />Varnishing - overheating due to metal to metal contact<br />Scoring of thrust bearings: shock loading contamination<br />
  77. 77. Effects of Bearing Failure<br />Rotor Damage<br />Impeller – Contact with casing and diffuser vanes<br />Bending failure of gear teeth- seized rotor<br />Bent Diffuser Vanes<br />
  78. 78. Machine Monitoring Benefits<br />
  79. 79. Connectivity<br />Signal Conditioning<br /><br />ADC<br />NI CompactRIO is ideal for machine monitoring<br /> CompactRIO Block Diagram<br />Real-Time Controller<br />LabVIEW RT<br />Reconfigurable RIO Chassis<br />LabVIEW FPGA<br /><ul><li>C Series I/O Modules
  80. 80. Real-Time Controllers
  81. 81. RIO Backplanes</li></ul>I/O Module<br />I/O Module<br />I/O Module<br />I/O Module<br />I/O Module<br />I/O Module<br />I/O Module<br />I/O Module<br />Ethernet<br />RS-232<br />
  82. 82. Case Study: FAG Industrial Services (FIS) <br />FAG ProCheck - simple, intelligent, reliable<br />FAG ProCheck is an intelligent online monitoring system of the latest generation that can measure, record and analyze data independently from other systems. Thanks to its very flexible configuration options, it can be used to monitor machines and components in nearly all industry sectors.<br />Herzogenrath, April 16, 2007. In April 2007, FAG Industrial Services GmbH (F’IS) announced FAG ProCheck, a new powerful and flexible condition monitoring system for preventing unexpected production disruptions. The system stands alone in the marketplace by integrating the National Instruments CompactRIO hardware platform with the proven F’IS Administrator software to offer the right list of functions at an attractive price. “Because the system, based on CompactRIO, breaks so many of the previous boundaries for machine condition monitoring, we foresee it playing an important role in the future of the industry,” said Preston Johnson, NI Segment Manager, Sound and Vibration. <br /><br />
  83. 83. Remote Service<br />ISDN- phone <br />Satellite <br />FIS Diagnosis-Center<br />Mobile phone<br />Customer benefit:<br /><ul><li>Automatic monitoring and early warning
  84. 84. Recommendation for action by a trained analyst</li></ul>Internet <br />
  85. 85. Summary<br />National Instruments provides<br />Machine Monitoring Solutions <br />Sound and Vibration Assistant, Partners<br />OEM Components for Equipment Manufacturers<br />Measurement technology partner<br />Economies of scale<br />Machine Monitoring <br />Saves time and money<br />Improves operational reliability<br />Bring on the opps (MCM, POWER, STRUCT, NVH)<br />
  86. 86. Machine and System OptimizationCase Studies<br />
  87. 87. Case Study: Enginuity LLC<br />Leading supplier of emissions reduction equipment in the oil and gas industry <br />Engineer and install advanced combustion control technology for direct-injected, natural gas-fired industrial engines<br />New controllers also monitor condition of engines<br />Green Benefit:<br />Reduced over 22,000 tons of NOx emissions with equipment tested and developed using NI technology<br />
  88. 88. Testing New Controllers<br />Large, older diesel engines are extremely expensive and unpredictable with how they will react to new controllers<br />Retrofit technology must be tested and validated before being deployed on engines<br />Enginuity used LabVIEW and PXI to simulate the engine inputs and outputs for their iFLEX engine monitoring and control system<br />
  89. 89. Case Study: Nucor Steel Corporation<br />One of the largest steel producers in the US, and the largest recycler<br />Used LabVIEW and NI PACs to optimize their Marion, Ohio plant<br />Implemented 3 automation systems to greatly increase efficiency and safety<br />Green Benefits<br />Prevented the over-melting of scrap steel, which wastes electricity, and requires re-heats due to poor quality <br />Limits maximum power draw from city grid, avoiding costly penalties, and associated flicker and quality issues<br />
  90. 90. Nucor Scale and Weighing System<br /><ul><li>Accurately measures the amount of scrap steel to be melted in the furnace
  91. 91. Calculates the exact amount of electricity needed to heat the steel
  92. 92. Connects to existing machinery to communicate this information</li></li></ul><li>Nucor Power Monitoring Station<br />Monitors real-time power consumption from city grid<br />Performs power quality analysis on measured data<br />Connects to existing machinery to insure consumption does not exceed regulated limits<br />
  93. 93. “Once you start monitoring something in an automation system, you know you can fix things”<br /> - Dave Brandt Electrical Engineer<br />
  94. 94. Enabling Technologies<br />Power Monitoring<br />Power Quality Analysis<br />Connectivity to PLCs and Existing Systems<br />
  95. 95. Power Quality Monitoring<br />
  96. 96. What Is Power Quality?<br />Power Quality<br />The quality of the Voltage & current that is being supplied to any device<br />Requirements<br />The waveform of the voltage and current should be as sinusoidal as possible<br />Constant RMS/Frequency<br />There should be no transient features in the supply<br />
  97. 97. Why Monitor Power?<br />Machine fault detection<br />Eliminate monetary fines from power company<br />Manage generator/battery backups<br />Troubleshoot equipment<br />
  98. 98. Power Chain<br />Generation<br />Doorstop<br />Transmission<br />Distribution<br />Machines<br />
  99. 99. NI 9225<br />CompactRIO and CompactDAQ<br />3ch, 300V, 50kS/s, 24-bit<br />Same family as 9229/9239<br />Ch-Ch isolation<br />
  100. 100. Sensors<br />Current Transformers/Transducers<br />Waveform<br />RMS<br />AC/DC<br />
  101. 101. Analysis of Electrical Power<br />Harmonics <br />Voltage fluctuation<br />Sag(or “dip”)<br />Swell<br />Metering<br />Demand Side Management<br />Power Factor<br />
  102. 102. Voltage Sag<br />10% &lt; RMS Voltage &lt; 100%<br />
  103. 103. Voltage Swell<br />110% &lt; RMS Voltage<br />
  104. 104. Voltage Interruption<br />RMS Voltage &lt; 10%<br />
  105. 105. Power TriangleRequire only V and I measurements<br />[VA]<br />Reactive <br />Power [VAr]<br />(phi)<br />[Watts]<br />
  106. 106. PQ Events as categorized by IEEE<br />
  107. 107. Current Transformer<br />
  108. 108. Competition<br />NI VAR/Alliance member<br />National Instruments<br />Research Instruments<br />SBC<br />
  109. 109. “Next Generation Power Meter”<br />NI Platform Advantages<br />Ethernet and Internet connectivity<br />Open and standard communication protocol support<br />High-speed transient sampling<br />Statistical analysis for trending<br />Electronic notification of alarms<br />Memory for data storage<br />General Purpose User Interface<br />Frost & Sullivan: Power Quality Meters – Next Generation” Jan 9, 2007<br />
  110. 110. Power Quality 3rd Party Recourses<br />LEM sensors<br />CR Magnetics sensors<br />Elcom<br />
  111. 111. Why Monitor Power?<br />Power monitoring power can be important whether being consumed or generated<br />Protect expensive machines and equipment from failure or excessive wear<br />Eliminate monetary fines from power company <br />Poor power quality on your grid is subject to fines<br />Manage generator/battery backups<br />Troubleshoot equipment<br />Minimize energy waste<br />
  112. 112. Why Monitor Power?<br />
  113. 113. Power Quality Analysis<br />Common analysis functions performed in power monitoring systems<br />Defined by IEEE and derived from current and voltage waveform data<br />Harmonics/Frequency<br />Voltage fluctuation<br />Sag<br />Swell<br />Interruption<br />Metering<br />Demand Side Management<br />Power Triangle<br />
  114. 114. PQ Events as categorized by IEEE<br />
  115. 115. Harmonics/Frequency<br />
  116. 116. Voltage Sag<br />10% &lt; RMS Voltage &lt; 90%<br />
  117. 117. Voltage Swell<br />110% &lt; RMS Voltage<br />
  118. 118. Voltage Interruption<br />RMS Voltage &lt; 10%<br />
  119. 119. Power TriangleRequire only V and I measurements<br />[VA]<br />Reactive <br />Power [VAr]<br />(phi)<br />[Watts]<br />
  120. 120. Sensors<br />Current Transformers/Transducers<br />Waveform<br />RMS<br />AC/DC<br />PF calculation with RS-485 output<br />Industrially rated<br />
  121. 121. Power Quality Summary<br />Monitoring energy plays a key role in running an energy efficient machine, plant, or process<br />Power quality can effect durability of equipment<br />All power measurements stem from voltage and current waveform data<br />
  122. 122. Structural Health Monitoring<br />Continuous monitoring of the condition of a structure using built-in or autonomous sensory systems<br /><ul><li>Assess structural performance
  123. 123. Assess structural integrity following incident (earthquake)
  124. 124. Feedback loop in design (verify models, new materials, etc.)</li></li></ul><li>The SHM Market in the U.S.<br /><ul><li>Aging infrastructure
  125. 125. >590,000 bridges in U.S. (half were built before 1964)
  126. 126. 74,000 bridges are ‘structurally deficient’
  127. 127. American Society of Civil Engineers (ASCE) estimates that it would take $9B/year for 20 years to eliminate bridge deficiencies
  128. 128. Significant funding and research
  129. 129. Automated monitoring of infrastructure now readily available</li></li></ul><li>Structural Test/Monitoring Technologies<br />Fixed Installation<br />Portable<br />Short-Term Controlled Testing<br /> (apply controlled load)<br />Nondestructive Evaluation (NDE)<br />Long-Term (Life-Cycle) Monitoring of Structural Health <br />Static<br /><ul><li>Strain, tilt, displacement
  130. 130. Eval. behavior, load rating
  131. 131. Calibrate FE model</li></ul>Dynamic<br /><ul><li>Vibration analysis
  132. 132. Determine freq., mode shapes, damping, modal curvatures, etc.</li></ul>Material Characterization<br /><ul><li>Ultrasonic techniques
  133. 133. Acoustic emissions
  134. 134. Optical
  135. 135. TDR, NMR</li></ul>Slow-Speed<br /><ul><li>< 1 Hz
  136. 136. Deformations and displacements
  137. 137. Stresses
  138. 138. Environment</li></ul>High-Speed<br /><ul><li>25 Hz – 100 Hz
  139. 139. Vibrations
  140. 140. Earthquakes, incidents
  141. 141. Movements, stresses
  142. 142. Traffic</li></ul>Source: Development of a Model Health Monitoring Guide for Major Bridges, report submitted to FWHA, by Aktan, Catbas, Grimmelsman, Pervizpour<br />
  143. 143. Donghai Bridge - Structural Health Monitoring with PXI<br />Bridge Requirements<br /><ul><li>20-mile long, operating in harsh conditions
  144. 144. Long-term vibration monitoring with low-maintenance
  145. 145. High-level software to manage, analyze, and report on entire scale</li></ul>Solution<br /><ul><li>14 PXI systems synchronized over GPS
  146. 146. Continuous 24x7 operation for over 2-years</li></ul>Structural Health Monitoring of the Donghai Bridge with NI LabVIEW and PXI<br />
  147. 147. Rion-Antirion Bridge – Structural Monitoring<br />Bridge Requirements<br />3 km bridge spanning the Corinth Strait in Greece<br />Area of high seismic activity and strong winds<br />High-channel, mixed sensor measurements<br />Solution<br />Four PXI/SCXI systems<br />LabVIEW and LabVIEW Real-Time<br />System integrator: Advitam, subsidiary of Vinci Construction<br />Structural Health Monitoring of the Rion-Antirion Bridge<br />
  148. 148. Beijing Olympic Venues - Seismic Monitoring and Research<br />Continuously monitoring of seismic activity at the Beijing National Stadium and Aquatics Center<br />Structural model validation<br />Monitoring trigger events<br />Email notification<br />NI LabVIEW and CompactRIO synchronized via GPS<br />cRIO<br />. . .<br />Kinemetrics Seismic Sensors<br />
  149. 149. Vibration Monitoring of Meazza Stadium in Milan<br />Requirements<br />High-channel, distributed network monitoring system<br />Structural evaluations, modal analysis, static and dynamic measurements, and corrosion testing<br />Solution<br />14 CompactRIO chassis with mixed sensor connectivity<br />LabVIEW for flexibility and advanced analysis<br />Meazza Stadium Vibration Monitoring<br />
  150. 150. Naini-Allahabad Bridge – Cable Stayed Bridge in India<br />500 monitored parameters<br />Strain (vibrating wire), displacement, environment, GPS position<br />7 FieldPoint systems with LabVIEW RT<br />Continuous monitoring <br />High speed burst mode when threshold exceeded for vibration, wind, or GPS data <br />
  151. 151. Smart Bridge ResearchTestbed– UCSD Powell Laboratory<br />
  152. 152. HBM: Optical Technology for SHM<br />Opto-electric <br />Measurement Instrument<br />Software<br />Optical Strain Gages<br />− Great number of optical SG per fiber<br />− Light weight<br />− Insensitive to electromagnetic <br /> interference<br />− For use in potentially explosive <br /> atmospheres<br />− Installation similar to electrical <br /> strain gages (SG)<br />− catman® add-on module<br />− Parallel recording of data<br /> from optical and<br /> conventional strain gage<br /> amplifiers<br />− Real-time temperature<br /> compensation<br />− Static: one to four <br /> channels, 1 to 5 S/s<br />− Dynamic: one to four <br /> channels, 100 to 1000 S/s<br />
  153. 153. Sensor Technologies for SHM<br />
  154. 154. Structural Monitoring of an Overpass<br />Image courtesy of Campbell Scientific<br />
  155. 155. Strain Measurements in SHM<br />Resistive Foil<br />Vibrating Wire<br />Fiber Optic<br />Measures voltage across changing resistance of foil<br />Measures change in frequency of light reflected<br />Measures change in resonant frequency of wire<br />
  156. 156. C Series Strain Measurements<br />4 or 8 gauges per module, simultaneously sampled<br />Full, half, and quarter-bridge measurements<br />24-bit resolution<br />ADC per channel, simultaneously sampled<br />Anti-aliasing filtering<br />NIST-traceable calibration<br />NI 9237<br />4-ch full/half-bridge inputs<br /><ul><li>accessory for quarter-bridge
  157. 157. 50 kS/s</li></ul>100 dB dynamic range<br />Shunt cal, remote sense<br />Smart sensor (TEDS) compatible<br />NI 9235, NI 9236 <br />8-ch quarter-bridge inputs<br /><ul><li>120Ω (9235) and 350Ω (9236)</li></ul>10kS/s per channel<br />100 dB dynamic range<br />NI 9219<br />4-ch universal inputs, including quarter/half/full bridge inputs<br /><ul><li>100 S/s </li></ul>Smart sensor (TEDS) compatible<br />
  158. 158. Strain Measurements in SHM<br />Resistive Foil<br />Vibrating Wire<br />Fiber Optic<br />Measures voltage across changing resistance of foil<br />Measures change in frequency of light reflected<br />Measures change in resonant frequency of wire<br />
  159. 159. Vibrating Wire Sensor Technology<br />Frequency-based measurement and excitation of embedded steel wire under tension<br />Compares to nominal resonant frequency<br />Surface mount on steel or concrete,embedment in concrete or rebar<br />Typically 50 to 250 mm in length<br />Not intended for dynamic or rapidly changing strain<br />
  160. 160. Overview of Vibrating Wire<br />Electromagnetic Coil Assembly- Excites and measures wire<br />- Measures temp with thermistor<br />Sensor Cable<br />Vibrating Steel Wire<br />Mounting Block<br />Hermetically Sealed Stainless Steel Body<br />Surface of Component Being Tested<br />
  161. 161. “Pluck and Read”<br />Swept Frequency Pluck Excitation<br />5 V<br />0 V<br />150 ms<br />Measure Sine Wave Response<br />Changes with stress/strain<br />0.5 – 5 mV<br />20-40 ms delay<br />Measure 200-500 pulses<br />
  162. 162. Principal of Vibrating WireFrequency Measurement<br />ε = strain in wire<br />Gage Factor = sensitivity of sensor spec’d by mfg.<br />ƒ = measured frequency<br />ƒ0 = initial frequency<br />L = gage length<br />T = wire tension<br />m = mass per unit length of gage wire<br />
  163. 163. Principal of Vibrating WireTemperature Measurement<br />Thermistor (thermally sensitive resistor) included in vibrating wire sensors<br />Temperature measurement used to compensate for error caused by change in temperature<br />Current excited; extremely non-linear response<br />
  164. 164. Connecting Vibrating Wire Sensors to NI Hardware<br />Excitation<br />9474<br />DIO0COM<br />C+<br />Response<br />C-<br />9205<br />AI+AI-COM<br />G<br />Temperature<br />T+<br />9219<br />HI<br />LO<br />Can the 9217 measure thermistor of VW?<br />Ground<br />T-<br />
  165. 165. 3rd Party VW Signal Conditioners<br />Amplification and signal conditioning for vibrating wire and thermistor<br />Often 1 to 4 channel with easy expansion through multiplexer (16 or 32 channel)<br />For use with pressure, load, strain, and temperature<br />
  166. 166. Connecting NI Hardware to 3rd Party VW Signal Conditioners<br />Geokon F to V Convertor<br />Campbell Scientific Interface for VW<br />C-<br />C+<br />T-<br />T+<br />12 V<br />Temp<br />Freq<br />Ex<br />Analog GND<br />+12V<br />GND<br />T+<br />T-<br />C+<br />C-<br />Shield<br />Earth GND<br />DAQ<br />Under redesign to use “pluck and read” instead of auto resonance. Expected ship date in March.<br />US$ 170<br />-25 to 50 C+ US$ 17<br />-55 to 85 C<br />Vout<br />Sensor<br />EN<br />CLK<br />RDY<br />Appears to provide amp and sigcon, but still transmits freq to DAQ<br />Appears to provide all necessary conditioning and transmits 0-5 V or 4-20mA<br />
  167. 167. Vibrating Wire Sensors<br />Pros<br />Immunity to noisy environments<br />Frequency transmits well over long distances<br />Stable over long periods of time<br />Surface mount or embed<br />Cons<br />Long operation periods delay reading<br />Not for dynamic measurements<br />
  168. 168. Fiber Optic Sensors<br />Grating Period<br />Λ<br />Strain changes the frequency of light reflected by the FBG<br />Fiber Bragg Grating(FBG)<br />Input Light<br />Reflected Light<br />Transmitted Light<br />λB<br />
  169. 169. Fiber Bragg Grating Sensor Interface HW<br />Micron Optics<br />FiberSensing<br />FiberSensing<br />HBM<br />Gavea Sensors<br />Prime Photonics<br />Micron Optics<br />Smart Fibres<br />
  170. 170. Fiber Optic Bragg Grating Sensors<br />Pros<br />Multipoint in-line measurement capability<br />Easy to integrate in hard to reach areas<br />High sensitivity<br />Small / lightweight<br />Linear response<br />Cons<br />Sensitive to more than one parameter<br />Cost of sensors<br />Require expensive processing equipment<br />
  171. 171. Distributed Measurement Synchronization<br />Structural signals of interest are typically ≤10 Hz<br />cRIO, cDAQ, and PXI deliver synchronized solutions <br />Two general classes of synchronization strategy:<br />Signal-Based<br />Clocks and triggers physically connected between systems<br />Highest-precision synchronization<br />Time-Based<br />System components have a common reference of what time it is<br />Events, Triggers and Clocks can be generated based on this time<br />Examples: NTP, IEEE 1588, and GPS<br />
  172. 172. Comparing Synchronization Technologies<br />On-chip<br />Precision<br />10-12 sec<br />Backplane<br />PXI <br />Multichassis<br />10-9 sec<br />GPS<br />IRIG-B<br />Signal-Based<br />IEEE-1588 <br />10-6 sec<br />Time-Based<br />10-3 sec<br />NTP<br />sec<br />TCP/IP Messages<br />10-2m<br />100m<br />101m<br />102m<br />103m<br />104m<br />105m<br />Global<br />&lt;10-4m<br />Proximity<br />
  173. 173. Distributed Synchronization Capabilities<br /> PXI<br />0.1 deg<br />Structural Monitoring<br />CompactRIO<br />Ch-Ch Phase Mismatch<br />1 deg<br />CompactRIOw/923x modules <br />10 deg<br />NTP<br />10 Hz<br />100 Hz<br />1 kHz<br />10 kHz<br />1 Hz<br />Signal Bandwidth<br /><ul><li>Plot represents conservative approximations
  174. 174. Many application-specific variables</li></li></ul><li>Distributed Synchronization with CompactRIO<br />Signal-Based Synchronization<br />Synchronization via GPS<br />Share sample clock and start trigger<br />Similar approach: generate IRIG-B signal and share time reference<br />For longer distances (&gt; few meters), transmit trigger (not high freq clock)<br />9401/2 modules for timing signal I/O<br />New: 9402 20MHz TTL with BNC (Mar ‘08)<br />GPS receiver – external or C Series<br />Two signaling options<br />Pulse-per-second (PPS) to DIO module (9401/2), accompanied with serial read of absolute time<br />IRIG-B signal to DIO module (9401/2)<br />9401/2 modules for connection to GPS receiver<br />FPGA<br />FPGA<br />FPGA<br />FPGA<br />RT<br />RT<br />RT<br />RT<br />940x<br />92xx<br />92xx<br />92xx<br />940x<br />92xx<br />92xx<br />92xx<br />940x<br />92xx<br />92xx<br />92xx<br />940x<br />GPS<br />92xx<br />92xx<br />External GPS Receiver<br />PPS (or IRIG-B)<br />S.E.A. Module<br />Clock/trigger signal<br />(or IRIG-B)<br />
  175. 175. New: C Series High-Speed DIO for Timing/Triggering<br />NI 9402<br />4 channel DIO with BNC <br />3.3V TTL; 5V input tolerant <br />2 mA/line current drive<br />Propagation delay &lt; 20 ns<br /><ul><li>for comparison, 9401 delay = 100 ns</li></ul>Line configurable direction control <br />20MHz target (w/ 3 m cable)<br /><ul><li>Longer cables with lower frequency or trigger pulses</li></ul>cRIO and cDAQ<br />Shipping target: Mar/Apr 2008<br />
  176. 176. Current DevZone Resources<br />NTP (PXI and cRIO)<br />Set Date and Time on Local Computer using NTP Server<br /><ul><li></li></ul>Set Date and Time on PC, PXI, and PXI-RT using DAYTIME protocol<br /><ul><li></li></ul>Getting/Setting the System Date/Time on CVS and PXI RT Targets<br /><ul><li></li></ul>PXI Time Setting<br /><ul><li></li></ul>IEEE- 1588<br />Introduction to Distributed Clock Synchronization and the IEEE 1588 Precision Time Protocol<br /><ul><li></li></ul>Special Focus: Understanding the IEEE 1588 Precision Time Protocol<br /><ul><li></li></ul>Multi-ChassisSynchronization<br /><ul><li>Synchronizing Multiple CompactRIO Chassis
  177. 177.
  178. 178. High Channel High Performance (PXI) Multi-Chassis System
  179. 179.
  180. 180. Distributed TimebaseComponent
  181. 181.</li></ul>GPS and IRIG-B<br /><ul><li>GPS Synchronization Architecture for DSA Devices
  182. 182.
  183. 183. Read GPS Time, Position, Velocity, and Course Heading – parsing NMEA-0183
  184. 184.
  185. 185. IRIG-B Implementation in LabVIEW FPGA
  186. 186.</li>