SlideShare a Scribd company logo
1 of 20
Download to read offline
1
MATHEMATICS
E Content On
Algebra & Trignomentry
Vinay M. Raut
Shri Shivaji Science College, Amravati
2
Demoivre’s Theorem and its application
Content :
1) Introduction to complex number & compress plane.
2) Demoivre’s theorem (DMT)
3) Result on Demoivre’s theorem
4) Application of DMT Roots of complex number.
5) Relation between circular and hyperbolic method.
6) Logrithimic of complex number.
Question : State and prove Demoivre’s theorem. (DMT)
Statement : Whatever may be the value of n (positive or negative,
intergral or factional) the value or one of the values of
(cosθ + sinθ)n
is cos nθ + sin inθ where Rθ ∈
Proof : We consider there different cases
Case I : Let n is positive integer we prove this case by mathematical
induction method (Which is as follows)
1) Denote the given result by P(n)
2) The result is true for n = 1 i.e. P(1)
3) Assume the result is true for n = k
i.e. P(k) ⇒ the result is true for n = k + 1 i.e. P (k+1)
Then by mathematical Induction method the given result is true for all values of
n
Let demote P (n) :- ((cos sin ) cos sin )n
i n i nθ θ θ θ+ = + …….. (1)
Put n = 1 in eqn
(1)
∴ P (1) : (cos sin ) cos sini iθ θ θ θ+ = +
Hence P (1) is true for n = 1
Next Step
Assume P(n) for n = k i.e. P(k) is true
ie. (cos sin ) cos sinK
i k i kθ θ θ θ+ = + ……………………………………..(2)
To show that P(k+1) is true multiply eqn
(2) by cos sini nθ θ+ on both sides
3
1
(cos sin ) (cos sin )(cos sin )k
i k i k iθ θ θ θ θ θ+
+ = + +
(cos cos sin sin ) (sin .cos cos .sin )k k i k kθ θ θ θ θ θ θ θ= − + +
cos( 1) sin( 1)k i kθ θ= + + +
Thus P(k+1) is true
ie. P(k) is true ⇒ P (k+1) is true
∴ By mathematical induction method given result is true for all value of n∈N
This proves the DMT ∀ n∈N
Case II : Let n1
be negative integer demote n =−m where m = +ve integer
Now (cos sin ) (cos sin )n m
i iθ θ θ θ −
+ = +
1 1
(cos sin ) cos sinm
m mθ θ θ θ
= =
+ +
(by case I)
Multiply to Nr
& Dr
by cos sinm i mθ θ− (conjugate of Dr
)
1 cos sin
(cos sin ) .
cos sin cos sin
n m i m
i
m i m m i m
θ θ
θ θ
θ θ θ θ
−
+ =
+ −
2
2 2
cos sin
( 1)
cos sin
m i m
i
m m
θ θ
θ θ
−
= = −
+
cos sinm i mθ θ= −
cos( ) sin( )m i mθ θ= − + −
cos sinn i nθ θ= +
cos( ) cos
sin( ) sin
θ θ
θ θ
− =
− =
{ )as n m= −
⇒ Thus DMT is true for n = negative integer
Case III
Let n = fraction = P/q = +ve integer and P is integer which may be positive
and negative
(cos / sin / ) cos . sin .q Q Q
q q q i q
q q
θ θ
   
+ = +   
   
cos siniθ θ= + (by DMT)
⇒
1
cos sin (cos sin ) q
i i
q q
θ θ
θ θ+ = +
⇒ cos sini
q q
θθ + is one of the roof of cos sinθ θ+
Note :
1
( q
If w V w= ⇒ is one of the th
q roof of v)
4
i.e. one of the value of
1
(cos sin ) q
iθ θ+ is cos sin
Q Q
i
q q
+ Raising both sides
to the power P on both sides
(cos sin )
p
q
iθ θ+ is cos sin
P
Q Q
i
q q
 
+ 
 
⇒ (cos sin )
p
q
iθ θ+ is cos sin
pp i
q q
θ θ+ (by case II)
(Put P/q = k)
⇒ (cos sin )n
iθ θ+ is cos sinn iθ θ+
⇒ Thus DMT is proved for n is fraction
Different form of the DMT
1) (cos sin ) cos( ) sin( ) cos sinn
i n i n n i nθ θ θ θ θ θ+ = − + − = −
2) (cos sin ) cos sinn
i i nθ θ θ θ− = −
3) (cos sin ) cos sinn
i n i nθ θ θ θ−
− = +
Example 1 : Shown that
1 1 2 2(cos sin )(cos sin ).............(cos sin )n nx i x x i x x i x+ + +
1 2 1 2cos( ____ ) sin( ____ )n nx x x i x x x= + + + + + + +
Solution : LHS = 1 2
. .........ix ix ixn
e e e (by euler formula cos sin )i
e iθ
θ θ= +
1 2( ____ )i
ne x x x= + + +
1 2 1 2cos( ___ ) sin( ___ )n nx x x i x x x= + + +
= RHS
Example 2 : Simplify
5 3
4 2
(cos3 sin3 ) (cos2 sin2 )
(cos5 sin5 ) (cos sin )
x i x x i x
x i x x i x
+ −
− −
Solution : Let
5 3
4 2
(cos3 sin3 ) (cos2 sin2 )
( )
(cos5 sin5 ) (cos sin )
x i x x i x
A x
x i x x i x
+ −
=
− −
3 5 2 3 15 6
5 4 2 20 2
( ) ( ) .
( ) .( ) .
ix ix ix ix
ix ix ix ix
e e e e
e e e e
− −
− − − −
= =
31
(15 6 20 2) cos 31 sin 31ix ix
e e x i x= − + + = = +
5
Example 3: Express (1+7i) (2−i)-2
in the form (cos sin )r iθ θ+ prove that the
fourth power is real negative number.
Solution : Let 2
(1 7 )(2 1)Z i −
= + −
Then 2
1 7 1 7 1 7
(2 ) 4 4 1 3 4
i i i
Z
i i i
+ + +
= = =
− − − −
1 7 3 4
4 4 3 4
i i
i i
+ +
= ×
− +
(multiply and divided by 3+4i)
25 25
25
i− +
= 2 2
[ ( )( )]a b a b a b− = − +
1 i= − +
=
1 1 3 3
2 2 cos sin
4 42 2
i i
π π   
− + = +  
  
RHS is of the form (cos sin )r iθ θ+ where
3
2,
4
r
π
θ= =
⇒
4
4 3 3
2 cos sin 4(cos3 sin 3 )
4 4
z i i
π π
π π
  
= + = +  
  
= −4 [ cos 3 1, sin 3 0]π π= − =∵
= negative real number
Example 4 : Prove that
1 sin cos
sin cos
1 sin cos
i
i
i
θ θ
θ θ
θ θ
+ +
= +
+ −
Proof: Multiply and divided to LHS by (1 sin ) cosθ θ+ + we get
2 2
2 2
(1 sin ) 2 (1 sin )cos cos
(1 sin ) cos
iθ θ θ θ
θ θ
+ + + −
=
+ +
2sin (1 sin ) 2 (1 sin )cos
2(1 sin )
iθ θ θ θ
θ
+ + +
=
+
= RHS
Example 5: If α and β are the roots of equation 2
2 4 0x x− + = prove that
1
2 cos
3
n n n nπ
α β +
+ =
Solution : Solving the equation 3x i= ± we get
6
Let 1 3iα = + and 1 3iβ = −
⇒ /3
2 i
e π
α = and / 3
2 . i
e π
β −
=
/31 3
1 3 2 2 cos sin 2
32 2 3
i
i i i eπππ
    
+ = + = + =         
∴ /3 /3
2n n n ni ni
e eπ π
α β −
 + = + 
2 2cos
3
n nπ
= × 2cosi i
e eθ θ
θ−
 + = ∵
1
2 .cos
3
n nπ+
= Where cos sini
e iθ
θ θ= +
= RHS
Example 6 : If
1
2 cos y x
x
= + then show that
1
2cos n
n
ny x
x
= + and
1
2 sin n
n
i ny x
x
= −
Solution : Let
1
2 cos y x
x
= +
then 1iy iy
e e x
x
−
+ = + [as 2 cosiy iy
e e y−
+ = ]
is
1 1iy
iy
e x
e x−
+ = +
⇒ iy
x e= and iy
x e−
=
For iy
x e= ,
1
( ) ( )n iy n iy n
n
x e e
x
−
+ = +
And
1
2 sinn iny iny
n
x e e i ny
x
−
+ = − =
Similarly we can show the result for iy
x e−
=
Example 7 : If cos sin
2 2
r r r
x i n
π π
= + them show that 1 2 3 .......... cos 1x x x π= = −
Example 8 : If sin sin sin cos cos cos 0p q r p q r+ + = + + = then show that
cos 3 cos 3 cos 3 3cos( )p q r p q r+ + = + +
and sin 3 sin 3 sin 3 3sin( )p q r p q r+ + = + +
Example 10 : Show that
7
1 sin cos
(sin cos ) cos sin
1 sin cos 2 2
n
n x i x n n
x i x nx i nx
x i x
π π+ +     
+ = = − + −     
+ −     
Application of DMT (Demoivre’s Theorem)
Finding the nth
roots of complex number
Method 1 : Express the given z in a polar form (cos sin )Z r iθ θ= + when Z has
spetial forms it is convenient to write if by trial method.
For ex. 1)
1 1
, 2 2 cos sin
4 42 2
Z i i Z i i
π π   
= ± = + = ±  
  
2)
1 3
1 3 2 2 cos sin
2 2 3 3
Z i i i
π π   
= ± = ± = ±       
Put as cos cos(2 )kθ π θ= +
sin sin(2 )kθ π θ= +
(cos sin )Z r iθ θ∴ = +
1 1
{cos(2 ) sin(2 }n n
Z r k i kπ θ π θ= + + +
Then
1 1 1
{cos(2 ) sin(2 }n n n
Z r k i kπ θ π θ= + + +
1 2 2
cos sinn
k k
r i
n n
π θ π θ+ + 
= + 
 
(by DMT)
Denote
1 1 2 2
cos sinn n
k k
uk Z r i
n n
π θ π θ+ + 
= = + 
 
………….. (A)
2) Substitute K = o, 1, 2 …….. n-1 in equation (A) and n values u0, un-1 there will be
nth
roof of Z.
(Note : For K = n, n+1, ……..-1, -2 in equation (A) the values
un, un-1……. U-1, U-2..... are the repetitions of u0, un…….

un-1)
Note : 1) 1 cos0 sin0i= +
cos2 sin2k i kπ π= +
2) 1 cos siniπ π− = +
cos(2 1) sin(2 1)k i kπ π= + + +
3) cos sin cos 2 sin 2
2 2 2 2
i i k i k
π π π π
π π
   
± = ± = + ± +   
   
8
Note : 1) sin( ) sinπ θ θ− = 2) cos( ) cosπ θ θ− =
3) cos( ) cosπ θ θ+ = − 4) sin( ) sinπ θ θ+ = −
Example 1: Find all the value or roots (-1)1/6
Let
1
6
( 1)Z = −
Solution : Now we know that 1 cos siniπ π− = +
cos(2 ) sin(2 )n i nπ π π π= + + +
1 1
6 6
( 1) [cos(2 ) sin(2 )]n i nπ π π π∴ − = + + + (by DMT
Let the RHS of above equation in Uk
cos(2 1) (2 1)
sin
6 6
k
n n
U i
π π+
= + ………….. (A)
Putting K = 0, 1, 2, 3, 4, 5 we obtain required six roots.
1) for k = 0 0 cos sin
6 6
u i
π π
= +
3 1
2 2
e= +
2) for k = 1 : .
0 cos sin
2 2
u i e
π π
= + =
3) for k = 2 :
.
.
2
5 5 3 1
cos sin
6 6 2 2
u i e
π π
= + = +
4) for k = 3 :
.
.
3
7 7 3 1
cos sin
6 6 2 2
u i e
π π −
= + = −
5) for k = 4 : 4
9 9
cos sin
6 6
u i i
π π
= + = −
6) for k = 5 :
.
.
5
11 11 3 1
cos sin
6 6 2 2
u i i
π π
= + = −
∴ roots are
. 3 3
, ,
2 2
i i
e
± − ±
∴±
Example 2: Find all the values of
1
6
( )i−
Let Z =
1
6
( )i
Solution : cos sin
2 2
i i
ππ− = −
9
0
2 2
2 2
i k i k
π π
π π
   
− = + − +   
   
0
cos 4 sin 4
2 2
i k i k
π π
π π
   
− = + − +   
   
1
61
6
4 1 4 1
( 1) cos sin
2 2
k k
iπ π
+ + 
∴ − = − 
 
4 1 4 1
cos sin
12 12
k k
iπ π
+ +
= − (by DMT)
Let the RHS of above equation in Uk
4 1 4 1
sin
12 12
k k
uk iπ π
+ +
= − ………….. (A)
Putting K = 0, 1, 2, 3, 4, 5 we obtain required six roots which are as follows
for k = 0, 0 cos sin
12 12
u i
π π
= +
for k = 1 :
.
1
5 5
cos sin
12 2
u i
π π
= −
for k = 2 : 2
9 9
cos sin
12 12
u i
π π 
= −  
 
for k = 3 : 3
13 13
cos sin
12 12
u i
π π
= −
cos sin
12 12
π π
π π
   
= + − +   
   
(by note)
0cos sin
12 12
u
π π
= + = −
for k = 4 : 4
17 17
cos sin
12 12
u i
π π
= +
5 5
cos sin
12 12
π π
π π
   
= + − +   
   
5 5
cos sin
12 12
π π
= + (by note)
1u= −
for k = 5 : 5
21 21
cos sin
12
u i
π π
π
= −
9 9
cos sin
12 12
π π
π π
   
= + − +   
   
10
2
9 9
cos sin
12 12
u
π π
= − + = −
Hence the required roots are 0 2, ,u u u± ± ±
11
Example 3 : Find all the values or roots of
1
5
(32)
Solution : 32 32 1 32(cos sin )iθ θ= = +
32(cos 2 sin 2 )k i kπ π= +
1 1 1
55 5 5
(32) (2 ) (cos 2 sin 2 )k i kπ π⇒ = +
( )52 2
2 cos sin 32 2
5 5
k k
i
π π 
= + = 
 
∵
The five value of
1
5
(32) are given by
2 2
2 cos sin
5 5
k
k k
U i
π π 
= + 
 
Put k = 0, 1, 2, 3, 4 to get five roots
for k = 0, 0 2(cos sin 0) 2u i= + =
for k = 1,
.
1
2 2
2 cos sin
5 5
u i
π π 
= + 
 
.
2 cos sin
5 5
i
π π 
= − + 
 
for k = 2,
.
2
4 4
2 cos sin
5 5
u i
π π 
= + 
 
.
2 cos sin
5 5
i
π π 
= − + 
 
Note
for k = 3,
.
3
6 6
2 cos sin
5 5
u i
π π 
= + 
 
2 cos sin
5 5
i
π π 
= − + 
 
for k = 4,
.
4
8 8
2 cos sin
5 5
u i
π π 
= + 
 
2 2
2 cos 2 sin 2
5 5
i
π π
π π
    
= + − +    
    
2 2
2 cos sin
5 5
i
π π 
= − 
 
12
Example 4 : By using DMT find all the fourth root of 81
Solution : ut 81x =
Now 81 = 81.1 = 81 (cos 2 sin 2 )k i kπ π+
⇒
1 1
4 4
(81) [81(cos2 sin 2 )]k i kπ π= +
1 1
4 4
(81) (cos 2 sin 2 )k i kπ π= +
2 2
3 cos sin
4 4
k k
i
π π 
= + 
 
3 cos sin
2 2
k k
i
π π 
= + 
 
…………………. (1)
The four values k=0, 1, 2, 3 are as follows.
for k = 0, 0 3(cos sin 0) 3u = + =
for k = 1, 1 3 cos sin 3
2 2
u i i
π π 
= + = 
 
for k = 2, ( )2 3 cos sin 3u iπ π= + = −
for k = 3,
.
3
3 3
3 cos sin
2 2
u i
π π 
= + 
 
3 cos sin 3
2 2
i i
π π 
= − − = − 
 
Hence the roots are 3, 3i± ±
Example 5 : Show that the continued product of the four values of
( )
3
4
cos sin
3 3
iπ π+
Solution : Let ( )
3
4
cos sin
3 3
u iπ π= +
Then ( )
3
4
cos sin
3 3
u iπ π= +
4
cos sinu iπ π= +
⇒ ( )
1
4
cos sinu iπ π= +
1
4
{cos(2 ) sin(2 }k i kπ π π π= + + +
13
2 1 2 1
cos sin
4 4
k k
iπ π
+ +
= + (by DMT)
Thus the four values of u are given by
2 1 2 1
cos sin
4 4
k
k k
u iπ π
+ +
= +
Put k = 0, 1, 2, 3
Then we get
4
0 cos / 4 sin
4
i
u i e
ππ
π= + =
3
4
1
3
cos 3 / 4 sin
4
i
u i e
ππ
π= + =
5
4
2
5 5
cos sin
4 4
i
u i e
ππ π −
= + =
7
4
3
7 7
cos sin
4 4
i
u i e
ππ π
= + =
3 5 7
4 4 4 4
0 1 2 3 . . .
i i i i
u u u u e e e
π π π π
∴ =
4
(1 3 5 7 ) / 4i i
e eπ π
= + + + =
cos 4 sin 4 1i unityπ π= + = =
Find the nth root of unity
If 1n
u = or
1
(1) n
u = then u is called nth
root of unity
Proof : Now cos2 sin 2l k i kπ π= +
Then
1 1
(1) (cos2 sin 2 )n n
u k i kπ π= = +
22 2
cos sin
k i
n
k k
i e
n n
ππ π
= + =
The number of the nth
roof are
2k i
n
kU e
π
= ……………….. (A)
Put k =0, 1, 2, _______n-1 to find the nth
root.
Now for k = 0 eqn
(1) 0 1u e⇒ = =
For k = 1, eqn
(1)
2 /
1
i n
u e sayπ
ω⇒ = = =
For k = 2, eqn
(1)
4 / 2
2
i n
u e π
ω⇒ = =
For k = 3, eqn
(1)
6 / 2
3
i n
u e π
ω⇒ = =
14
and so on
For k = n−1, eqn
(1)
2( 1) / 1
1
n i n n
nu e π
ω− −
−⇒ = =
Thus the nth
roots are 1, ω, ω2
…….. ωn-1
they form a geometric progression with
common ratio
2k i
n
w e
π
=
Example 6 : If
2
0 1 2(1 ) ........n
x P Px Px+ = + + +
Show that 2 4
0 2 4 ............ 2 .cos
n n
P P P
π
+ + − =
Solution : Let
2
0 1 2 4(1 ) ......n n
x P Px Px Px+ = + + +
Take x i=
2 3 4
0 1 2 3 4(1 ) ......n
x P Pi Pi Pi Pi∴ + = + + + + +
( )0 2 4 6 1 3 5 7....... ( ......)P P P P i P P P P= − + − + + − + − +
Now (1 ) ( 2) {cos sin }
4 4
n n nn
i i
π π
+ = + ………………(1)
/2
2 {cos sin }
4 4
n n n
i
π π
= + ………………(2)
Equation (1) and (2) ⇒
( )0 2 4 6 1 3 5 7....... ( ......)P P P P i P P P P= − + − + + − + − +
/2
2 {cos sin }
4 4
n n n
i
π π
= +
Equating real part only
/2
0 2 4 6 ....... 2 cos
4
n n
P P P P
π
− + − + =
Relation between complex circular and hyperbolic function
We know that complex circular function are sin , cos
2 2
iz iz iz iz
e e e e
z Z
i
− −
− −
= =
tan
( )
iz iz
iz iz
e e
z
i e e
−
−
−
=
−
……….……so on
15
Hyperbolic function :
1) The quantity
2
y y
e e−
− where y be real or complex is called the hyperbolic sine of y
and it is written as sin by similarly the quantity
2
y y
e e−
+ is called hyperbolic cosine of
y and is written as cos ny
sinh
2
y y
e e
y
−
−
∴ = and cos
2
y y
e e
y
−
+
=
By using this we can find tan hy, cos echy , cot hy etc.
Now relation between circular and hyperbolic function
Theorem 1 : Prove : sin( ) sinhyi y=
Proof : we have sin
2
yi y
e e i
y
i
−
−
= , cos
2
yi yi
e e
y
−
+
=
(1)
( ) ( )
1
sin
2 2 2
yi i yi i y y y y
i
e e e e e e
y
i i i
− − −
 − − −
= = = −  
 
2
2
y y
i e e
i
−
 −
=  
 
(Multiply divided by i)
2
sinh ( 1)
2
y y
e e
i i y i
−
 −
= = = − 
 
Similarly we can prove (2) cos coshyi y=
(3) cos cosiy i echy= −
(4) sec seciy iy=
(5) tan tanhiy i y=
Theorem 2 : Prove 2 2
sin cos 1z z+ =
Proof : LHS 2 2
sin cosz z= +
2 2
2 2
iz iz iz iz
e e e e
i
− −
   − +
= +   
   
2 21
{ ( ) ( ) }
4
iz iz iz iz
e e e e− −
= − − + +
1
{4 . }
4
iz iz
e e−
= (as 2 2
( )( )a b a b a b− = − + )
16
Theorem 3 : 1 2 1 2 2 2sin ( ) sin .cos co s .sinz z z z z z+ = +
1 2 1 2 1 2cos( ) cos .cos sin .sinz z z z z z+ = +
Proof : be have 1 2 1 2( )
.i z z iz iz
e e e+
=
1 2 1 2 1 1cos( ) sin( ) (cos sin )z z i z z z i z⇒ + + + = + 2 2(cos sin )z i z+ (by Euler)
1 2 1 2 1 2 1 2(cos cos sin , sin ) (sin , cos cos sin )z z z z i z z z z= − + +
Equate the real and imaginary part we get the required result
Theorem 4 : Prove sin( ) sinz z− = −
cos( ) cosz z− =
Separate the real and imaginary part
Example 1: sin( )x iy+
Solution: sin( ) sin .cos cos sinx iy x iy x iy+ = +
sin cosh cos ( sinh )x y x i y= +
sin cosh cos sinhx y i x y= +
( sin sinh . cos cosh )iy i y iy i y= =∵
Example 2: tan( )x iy+
Solution: sin( ) 2 sin( ) cos( )
tan( )
cos( ) 2 cos( ).cos( )
x iy x iy x iy
x iy
x iy x iy x iy
+ + −
+ = =
+ + −
[multiply & divided by cos x iy− ]
sin[( ) ( )] sin[( ) ( )]
cos[( ) ( )] cos[( ) ( )]
x iy x iy x iy x iy
x iy x iy x iy x iy
+ + − + + − +
=
+ + + + + − −
(use 2sin cos & 2cos cosA B A B formula)
sin 2 sin(2 )
cos 2 cos(2 )
x iy
x iy
+
=
+
sin 2 sinh 2
cos 2 cosh 2
x i y
x y
+
=
+
(by hyperbolic relation)
sin sinh 2
cos 2 cosh 2 cos 2 cosh 2
x y
i
x y x y
= +
+ +
(Real Part) (Imaginar part)
Example 3 : 1
sec( )
cos( )
x iy
x iy
+ =
+
17
2 cos( )
2 cos( ).cos( )
x iy
x iy x iy
−
=
+ −
[Multiply & divided by 2 cos( )x iy−
2[cos cos sin sin ]
cos 2 cos 2
x iy x iy
x iy
+
=
+
2[cos cosh sin sinh ]
cos 2 cosh 2
x y i x y
x y
+
=
+
2 cos cosh 2 sin sinh
cos 2 cosh 2 cos 2 cosh 2
x y x y
i
x y x y
= +
+ +
(Real Part) (Imaginary part)
Example 4: cosh( )x iy+
Solution: cosh( ) cos ( )x iy i x iy+ = + as [cos cosh ]iy y=
cos( ).[cos cosh ]ix y iy y= − =
cos cos sin .sinix y ix y= +
cosh .cos sin sinx y ix y= + (by hyperbolic relation)
cosh .cos sinh .sinx y i x y= +
Example 5 : If ( ( )A B x iy+ = + prove that
Solution: 2 2
2
tan 2
1
x
A
x y
=
− −
and 2 2
2
tanh 2
1
y
B
x y
=
+ +
OR 2 2
2 cot 2 1x y x A+ + =
2 2
2 coth 2 1 0x y y B+ − + =
Solution : Let tan( )A iB x iy+ = +
Them tan( )A iB x iy− = −
tan 2 tan[( ) ( )]A A iB A iB∴ = + + −
2 2 2 2
( ) ( ) 2 2
1 ( )( ) 1 ( ) 1
x iy x iy x x
x iy x iy x y x y
+ + −
= = =
− + − − + − −
2 2
1 2 cot 2x y x A⇒ − − =
2 2
2 cot 1x y x A+ + =
Similarly tan(2 ) tan[( ) ( )]iB A iB A iB= + − −
tan( ) tan( )
1 tan( ) tan( )
A iB A iB
A iB A iB
+ − −
=
+ + −
2 2
( ) ( ) 2
tanh 2
1 ( )( ) 1 ( )
x iy x iy iy
i B
x iy x iy x y
+ − −
⇒ = =
+ + − + +
18
2 2
2
tanh 2
1
y
i B
x y
⇒ =
+ +
2 2
1 2 coth 2x y y B⇒ + + =
OR 2 2
2 coth 2 1 0x y y B+ − + =
Example 6 : If sin( )i x iyα β− + prove that
2 2
2 2
1
cosh sinh
x y
β β
+ = and
2 2
2 2
1
sin cos
x y
α α
− =
Solution : Let sin( )i x iyα β+ = +
Then sin .cos cos .sini i x iyα β α β+ = +
sin .cosh cos sinhi x iyα β α β⇒ + = + (by hyperbolic relations)
Equating real and imaginary part
sin cosh xα β = and cos .sinh yα β =
sin
cosh
x
α
β
⇒ = and cos
sinh
y
α
β
=
and cosh
sin
x
β
α
= and cosh
sin
y
β
α
=
squaring and adding the tems of eqn
(1)
2 2
2 2
2 2
sin cos 1
cosh sinh
x y
α α
β β
+ = + =
similarly squaring and substracting equation (2)
2 2
2 2
2 2
cosh sin 1
sin cos
x y
hβ β
α α
− = − =
Example 7 : prove that sin( ) cos sini iθ φ α α+ = +
also 2
cos sinθ α±
Example 8: Prove that
A) ( )1 2
sinh log 1x x x−
= + +
B) ( )1 2
cosh log 1x x x−
= + +
19
C)
1 1 1
tanh log
2 1
x
x
x
− + 
=  
− 
D) Prove that 1 1
2
tanh sinh
1
x
x
x
− −  
=  
− 
Solution (A): Let 1
sinh x y−
= ……… (1)
sinx ny⇒ =
2 2
1 sinh 1 coshx y y∴ + = + =
2
1 sinh coshx x y y⇒ + + = +
2 2
y y y y
e e e e− −
− +
= +
2
1 y
x x e∴ + + =
( )2
log 1x x y⇒ + + = ………. (2)
For eqn
(1) & (2) ( )1 2
sinh log 1x x x−
⇒ = + +
Similarly we can prove B, C & D
Logarithmic of complex number
Example 1 : Show that log( 5) log(5) (2 1)i nπ− = + +
Solution : log( 5) log( 5 ¯ 0)i− = − +
2 1 0
log ( 5) 2 tan
5
i nπ − 
= − + + − 
tan 5 (2 )i nπ π= + + [ tan 0]π =∵
log 5 (2 1)i nπ= + +
2) 2 2
log(1 ) log 1 1i+ = +
1 1
2 tan
1
i nπ − 
= +  
20
log 2 2
4
i n
π
π
 
= + +  
1
log 2 (8 1)
2 4
i n
π
= + +
3) log log( ) log( )
x iy
x iy x iy
x iy
+
= + − −
−
2 2 1 2 2 1
log tan log tany yx y i x y i
x x
− − = + + − + +
  
1 1
tan tani y x y x− −
 = + 
1
2 tani y x−
=
1 1
tan ( ) tanx x− −
 − = − ∵
Objective Question :
1) coshθ is equal to __________
2) The value i
e θ
is __________
3) The value of sinix is ___________
4) The value i
e π−
is __________
5) If i
e iθ
= − the value of θis ________
6) If 1 3Z i= − then z is _________
7) The period of coshz________ for all Z
8) DMT theorem is proved for n may be ________
9) The nth
root of unity are ________ when
2 i
n
e
π
ω=
10) (cos sin ) n
iθ θ −
− = ______________

More Related Content

What's hot

Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equation
Sayyad Shafi
 
Constant-Coefficient Linear Differential Equations
Constant-Coefficient Linear Differential  EquationsConstant-Coefficient Linear Differential  Equations
Constant-Coefficient Linear Differential Equations
ashikul akash
 
Unit iv complex integration
Unit iv complex integrationUnit iv complex integration
Unit iv complex integration
Babu Rao
 

What's hot (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Exact & non differential equation
Exact & non differential equationExact & non differential equation
Exact & non differential equation
 
MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial Differentiation
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
Integration
IntegrationIntegration
Integration
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 
Mcq differential and ordinary differential equation
Mcq differential and ordinary differential equationMcq differential and ordinary differential equation
Mcq differential and ordinary differential equation
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Sect1 6
Sect1 6Sect1 6
Sect1 6
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Constant-Coefficient Linear Differential Equations
Constant-Coefficient Linear Differential  EquationsConstant-Coefficient Linear Differential  Equations
Constant-Coefficient Linear Differential Equations
 
Unit iv complex integration
Unit iv complex integrationUnit iv complex integration
Unit iv complex integration
 
Calculus And Its Applications 10th Edition Bittinger Solutions Manual
Calculus And Its Applications 10th Edition Bittinger Solutions ManualCalculus And Its Applications 10th Edition Bittinger Solutions Manual
Calculus And Its Applications 10th Edition Bittinger Solutions Manual
 

Similar to E content on algebra & trignomentry

Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
Demetrio Ccesa Rayme
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Demetrio Ccesa Rayme
 
SodaPDF-converted-My-Report-on-Trigonometry.pptx
SodaPDF-converted-My-Report-on-Trigonometry.pptxSodaPDF-converted-My-Report-on-Trigonometry.pptx
SodaPDF-converted-My-Report-on-Trigonometry.pptx
GleanneMartinez2
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau
 

Similar to E content on algebra & trignomentry (20)

Integral calculus
  Integral calculus   Integral calculus
Integral calculus
 
Lesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptxLesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptx
 
Probability and Statistics
Probability and StatisticsProbability and Statistics
Probability and Statistics
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Notes 4-4
Notes 4-4Notes 4-4
Notes 4-4
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
SodaPDF-converted-My-Report-on-Trigonometry.pptx
SodaPDF-converted-My-Report-on-Trigonometry.pptxSodaPDF-converted-My-Report-on-Trigonometry.pptx
SodaPDF-converted-My-Report-on-Trigonometry.pptx
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
Equations.pptx
Equations.pptxEquations.pptx
Equations.pptx
 
GCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptxGCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptx
 
Introduction to probability solutions manual
Introduction to probability   solutions manualIntroduction to probability   solutions manual
Introduction to probability solutions manual
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
IGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptxIGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptx
 
Annie
AnnieAnnie
Annie
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
 
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
 

Recently uploaded

QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 

Recently uploaded (20)

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
 

E content on algebra & trignomentry

  • 1. 1 MATHEMATICS E Content On Algebra & Trignomentry Vinay M. Raut Shri Shivaji Science College, Amravati
  • 2. 2 Demoivre’s Theorem and its application Content : 1) Introduction to complex number & compress plane. 2) Demoivre’s theorem (DMT) 3) Result on Demoivre’s theorem 4) Application of DMT Roots of complex number. 5) Relation between circular and hyperbolic method. 6) Logrithimic of complex number. Question : State and prove Demoivre’s theorem. (DMT) Statement : Whatever may be the value of n (positive or negative, intergral or factional) the value or one of the values of (cosθ + sinθ)n is cos nθ + sin inθ where Rθ ∈ Proof : We consider there different cases Case I : Let n is positive integer we prove this case by mathematical induction method (Which is as follows) 1) Denote the given result by P(n) 2) The result is true for n = 1 i.e. P(1) 3) Assume the result is true for n = k i.e. P(k) ⇒ the result is true for n = k + 1 i.e. P (k+1) Then by mathematical Induction method the given result is true for all values of n Let demote P (n) :- ((cos sin ) cos sin )n i n i nθ θ θ θ+ = + …….. (1) Put n = 1 in eqn (1) ∴ P (1) : (cos sin ) cos sini iθ θ θ θ+ = + Hence P (1) is true for n = 1 Next Step Assume P(n) for n = k i.e. P(k) is true ie. (cos sin ) cos sinK i k i kθ θ θ θ+ = + ……………………………………..(2) To show that P(k+1) is true multiply eqn (2) by cos sini nθ θ+ on both sides
  • 3. 3 1 (cos sin ) (cos sin )(cos sin )k i k i k iθ θ θ θ θ θ+ + = + + (cos cos sin sin ) (sin .cos cos .sin )k k i k kθ θ θ θ θ θ θ θ= − + + cos( 1) sin( 1)k i kθ θ= + + + Thus P(k+1) is true ie. P(k) is true ⇒ P (k+1) is true ∴ By mathematical induction method given result is true for all value of n∈N This proves the DMT ∀ n∈N Case II : Let n1 be negative integer demote n =−m where m = +ve integer Now (cos sin ) (cos sin )n m i iθ θ θ θ − + = + 1 1 (cos sin ) cos sinm m mθ θ θ θ = = + + (by case I) Multiply to Nr & Dr by cos sinm i mθ θ− (conjugate of Dr ) 1 cos sin (cos sin ) . cos sin cos sin n m i m i m i m m i m θ θ θ θ θ θ θ θ − + = + − 2 2 2 cos sin ( 1) cos sin m i m i m m θ θ θ θ − = = − + cos sinm i mθ θ= − cos( ) sin( )m i mθ θ= − + − cos sinn i nθ θ= + cos( ) cos sin( ) sin θ θ θ θ − = − = { )as n m= − ⇒ Thus DMT is true for n = negative integer Case III Let n = fraction = P/q = +ve integer and P is integer which may be positive and negative (cos / sin / ) cos . sin .q Q Q q q q i q q q θ θ     + = +        cos siniθ θ= + (by DMT) ⇒ 1 cos sin (cos sin ) q i i q q θ θ θ θ+ = + ⇒ cos sini q q θθ + is one of the roof of cos sinθ θ+ Note : 1 ( q If w V w= ⇒ is one of the th q roof of v)
  • 4. 4 i.e. one of the value of 1 (cos sin ) q iθ θ+ is cos sin Q Q i q q + Raising both sides to the power P on both sides (cos sin ) p q iθ θ+ is cos sin P Q Q i q q   +    ⇒ (cos sin ) p q iθ θ+ is cos sin pp i q q θ θ+ (by case II) (Put P/q = k) ⇒ (cos sin )n iθ θ+ is cos sinn iθ θ+ ⇒ Thus DMT is proved for n is fraction Different form of the DMT 1) (cos sin ) cos( ) sin( ) cos sinn i n i n n i nθ θ θ θ θ θ+ = − + − = − 2) (cos sin ) cos sinn i i nθ θ θ θ− = − 3) (cos sin ) cos sinn i n i nθ θ θ θ− − = + Example 1 : Shown that 1 1 2 2(cos sin )(cos sin ).............(cos sin )n nx i x x i x x i x+ + + 1 2 1 2cos( ____ ) sin( ____ )n nx x x i x x x= + + + + + + + Solution : LHS = 1 2 . .........ix ix ixn e e e (by euler formula cos sin )i e iθ θ θ= + 1 2( ____ )i ne x x x= + + + 1 2 1 2cos( ___ ) sin( ___ )n nx x x i x x x= + + + = RHS Example 2 : Simplify 5 3 4 2 (cos3 sin3 ) (cos2 sin2 ) (cos5 sin5 ) (cos sin ) x i x x i x x i x x i x + − − − Solution : Let 5 3 4 2 (cos3 sin3 ) (cos2 sin2 ) ( ) (cos5 sin5 ) (cos sin ) x i x x i x A x x i x x i x + − = − − 3 5 2 3 15 6 5 4 2 20 2 ( ) ( ) . ( ) .( ) . ix ix ix ix ix ix ix ix e e e e e e e e − − − − − − = = 31 (15 6 20 2) cos 31 sin 31ix ix e e x i x= − + + = = +
  • 5. 5 Example 3: Express (1+7i) (2−i)-2 in the form (cos sin )r iθ θ+ prove that the fourth power is real negative number. Solution : Let 2 (1 7 )(2 1)Z i − = + − Then 2 1 7 1 7 1 7 (2 ) 4 4 1 3 4 i i i Z i i i + + + = = = − − − − 1 7 3 4 4 4 3 4 i i i i + + = × − + (multiply and divided by 3+4i) 25 25 25 i− + = 2 2 [ ( )( )]a b a b a b− = − + 1 i= − + = 1 1 3 3 2 2 cos sin 4 42 2 i i π π    − + = +      RHS is of the form (cos sin )r iθ θ+ where 3 2, 4 r π θ= = ⇒ 4 4 3 3 2 cos sin 4(cos3 sin 3 ) 4 4 z i i π π π π    = + = +      = −4 [ cos 3 1, sin 3 0]π π= − =∵ = negative real number Example 4 : Prove that 1 sin cos sin cos 1 sin cos i i i θ θ θ θ θ θ + + = + + − Proof: Multiply and divided to LHS by (1 sin ) cosθ θ+ + we get 2 2 2 2 (1 sin ) 2 (1 sin )cos cos (1 sin ) cos iθ θ θ θ θ θ + + + − = + + 2sin (1 sin ) 2 (1 sin )cos 2(1 sin ) iθ θ θ θ θ + + + = + = RHS Example 5: If α and β are the roots of equation 2 2 4 0x x− + = prove that 1 2 cos 3 n n n nπ α β + + = Solution : Solving the equation 3x i= ± we get
  • 6. 6 Let 1 3iα = + and 1 3iβ = − ⇒ /3 2 i e π α = and / 3 2 . i e π β − = /31 3 1 3 2 2 cos sin 2 32 2 3 i i i i eπππ      + = + = + =          ∴ /3 /3 2n n n ni ni e eπ π α β −  + = +  2 2cos 3 n nπ = × 2cosi i e eθ θ θ−  + = ∵ 1 2 .cos 3 n nπ+ = Where cos sini e iθ θ θ= + = RHS Example 6 : If 1 2 cos y x x = + then show that 1 2cos n n ny x x = + and 1 2 sin n n i ny x x = − Solution : Let 1 2 cos y x x = + then 1iy iy e e x x − + = + [as 2 cosiy iy e e y− + = ] is 1 1iy iy e x e x− + = + ⇒ iy x e= and iy x e− = For iy x e= , 1 ( ) ( )n iy n iy n n x e e x − + = + And 1 2 sinn iny iny n x e e i ny x − + = − = Similarly we can show the result for iy x e− = Example 7 : If cos sin 2 2 r r r x i n π π = + them show that 1 2 3 .......... cos 1x x x π= = − Example 8 : If sin sin sin cos cos cos 0p q r p q r+ + = + + = then show that cos 3 cos 3 cos 3 3cos( )p q r p q r+ + = + + and sin 3 sin 3 sin 3 3sin( )p q r p q r+ + = + + Example 10 : Show that
  • 7. 7 1 sin cos (sin cos ) cos sin 1 sin cos 2 2 n n x i x n n x i x nx i nx x i x π π+ +      + = = − + −      + −      Application of DMT (Demoivre’s Theorem) Finding the nth roots of complex number Method 1 : Express the given z in a polar form (cos sin )Z r iθ θ= + when Z has spetial forms it is convenient to write if by trial method. For ex. 1) 1 1 , 2 2 cos sin 4 42 2 Z i i Z i i π π    = ± = + = ±      2) 1 3 1 3 2 2 cos sin 2 2 3 3 Z i i i π π    = ± = ± = ±        Put as cos cos(2 )kθ π θ= + sin sin(2 )kθ π θ= + (cos sin )Z r iθ θ∴ = + 1 1 {cos(2 ) sin(2 }n n Z r k i kπ θ π θ= + + + Then 1 1 1 {cos(2 ) sin(2 }n n n Z r k i kπ θ π θ= + + + 1 2 2 cos sinn k k r i n n π θ π θ+ +  = +    (by DMT) Denote 1 1 2 2 cos sinn n k k uk Z r i n n π θ π θ+ +  = = +    ………….. (A) 2) Substitute K = o, 1, 2 …….. n-1 in equation (A) and n values u0, un-1 there will be nth roof of Z. (Note : For K = n, n+1, ……..-1, -2 in equation (A) the values un, un-1……. U-1, U-2..... are the repetitions of u0, un……. un-1) Note : 1) 1 cos0 sin0i= + cos2 sin2k i kπ π= + 2) 1 cos siniπ π− = + cos(2 1) sin(2 1)k i kπ π= + + + 3) cos sin cos 2 sin 2 2 2 2 2 i i k i k π π π π π π     ± = ± = + ± +       
  • 8. 8 Note : 1) sin( ) sinπ θ θ− = 2) cos( ) cosπ θ θ− = 3) cos( ) cosπ θ θ+ = − 4) sin( ) sinπ θ θ+ = − Example 1: Find all the value or roots (-1)1/6 Let 1 6 ( 1)Z = − Solution : Now we know that 1 cos siniπ π− = + cos(2 ) sin(2 )n i nπ π π π= + + + 1 1 6 6 ( 1) [cos(2 ) sin(2 )]n i nπ π π π∴ − = + + + (by DMT Let the RHS of above equation in Uk cos(2 1) (2 1) sin 6 6 k n n U i π π+ = + ………….. (A) Putting K = 0, 1, 2, 3, 4, 5 we obtain required six roots. 1) for k = 0 0 cos sin 6 6 u i π π = + 3 1 2 2 e= + 2) for k = 1 : . 0 cos sin 2 2 u i e π π = + = 3) for k = 2 : . . 2 5 5 3 1 cos sin 6 6 2 2 u i e π π = + = + 4) for k = 3 : . . 3 7 7 3 1 cos sin 6 6 2 2 u i e π π − = + = − 5) for k = 4 : 4 9 9 cos sin 6 6 u i i π π = + = − 6) for k = 5 : . . 5 11 11 3 1 cos sin 6 6 2 2 u i i π π = + = − ∴ roots are . 3 3 , , 2 2 i i e ± − ± ∴± Example 2: Find all the values of 1 6 ( )i− Let Z = 1 6 ( )i Solution : cos sin 2 2 i i ππ− = −
  • 9. 9 0 2 2 2 2 i k i k π π π π     − = + − +        0 cos 4 sin 4 2 2 i k i k π π π π     − = + − +        1 61 6 4 1 4 1 ( 1) cos sin 2 2 k k iπ π + +  ∴ − = −    4 1 4 1 cos sin 12 12 k k iπ π + + = − (by DMT) Let the RHS of above equation in Uk 4 1 4 1 sin 12 12 k k uk iπ π + + = − ………….. (A) Putting K = 0, 1, 2, 3, 4, 5 we obtain required six roots which are as follows for k = 0, 0 cos sin 12 12 u i π π = + for k = 1 : . 1 5 5 cos sin 12 2 u i π π = − for k = 2 : 2 9 9 cos sin 12 12 u i π π  = −     for k = 3 : 3 13 13 cos sin 12 12 u i π π = − cos sin 12 12 π π π π     = + − +        (by note) 0cos sin 12 12 u π π = + = − for k = 4 : 4 17 17 cos sin 12 12 u i π π = + 5 5 cos sin 12 12 π π π π     = + − +        5 5 cos sin 12 12 π π = + (by note) 1u= − for k = 5 : 5 21 21 cos sin 12 u i π π π = − 9 9 cos sin 12 12 π π π π     = + − +       
  • 10. 10 2 9 9 cos sin 12 12 u π π = − + = − Hence the required roots are 0 2, ,u u u± ± ±
  • 11. 11 Example 3 : Find all the values or roots of 1 5 (32) Solution : 32 32 1 32(cos sin )iθ θ= = + 32(cos 2 sin 2 )k i kπ π= + 1 1 1 55 5 5 (32) (2 ) (cos 2 sin 2 )k i kπ π⇒ = + ( )52 2 2 cos sin 32 2 5 5 k k i π π  = + =    ∵ The five value of 1 5 (32) are given by 2 2 2 cos sin 5 5 k k k U i π π  = +    Put k = 0, 1, 2, 3, 4 to get five roots for k = 0, 0 2(cos sin 0) 2u i= + = for k = 1, . 1 2 2 2 cos sin 5 5 u i π π  = +    . 2 cos sin 5 5 i π π  = − +    for k = 2, . 2 4 4 2 cos sin 5 5 u i π π  = +    . 2 cos sin 5 5 i π π  = − +    Note for k = 3, . 3 6 6 2 cos sin 5 5 u i π π  = +    2 cos sin 5 5 i π π  = − +    for k = 4, . 4 8 8 2 cos sin 5 5 u i π π  = +    2 2 2 cos 2 sin 2 5 5 i π π π π      = + − +          2 2 2 cos sin 5 5 i π π  = −   
  • 12. 12 Example 4 : By using DMT find all the fourth root of 81 Solution : ut 81x = Now 81 = 81.1 = 81 (cos 2 sin 2 )k i kπ π+ ⇒ 1 1 4 4 (81) [81(cos2 sin 2 )]k i kπ π= + 1 1 4 4 (81) (cos 2 sin 2 )k i kπ π= + 2 2 3 cos sin 4 4 k k i π π  = +    3 cos sin 2 2 k k i π π  = +    …………………. (1) The four values k=0, 1, 2, 3 are as follows. for k = 0, 0 3(cos sin 0) 3u = + = for k = 1, 1 3 cos sin 3 2 2 u i i π π  = + =    for k = 2, ( )2 3 cos sin 3u iπ π= + = − for k = 3, . 3 3 3 3 cos sin 2 2 u i π π  = +    3 cos sin 3 2 2 i i π π  = − − = −    Hence the roots are 3, 3i± ± Example 5 : Show that the continued product of the four values of ( ) 3 4 cos sin 3 3 iπ π+ Solution : Let ( ) 3 4 cos sin 3 3 u iπ π= + Then ( ) 3 4 cos sin 3 3 u iπ π= + 4 cos sinu iπ π= + ⇒ ( ) 1 4 cos sinu iπ π= + 1 4 {cos(2 ) sin(2 }k i kπ π π π= + + +
  • 13. 13 2 1 2 1 cos sin 4 4 k k iπ π + + = + (by DMT) Thus the four values of u are given by 2 1 2 1 cos sin 4 4 k k k u iπ π + + = + Put k = 0, 1, 2, 3 Then we get 4 0 cos / 4 sin 4 i u i e ππ π= + = 3 4 1 3 cos 3 / 4 sin 4 i u i e ππ π= + = 5 4 2 5 5 cos sin 4 4 i u i e ππ π − = + = 7 4 3 7 7 cos sin 4 4 i u i e ππ π = + = 3 5 7 4 4 4 4 0 1 2 3 . . . i i i i u u u u e e e π π π π ∴ = 4 (1 3 5 7 ) / 4i i e eπ π = + + + = cos 4 sin 4 1i unityπ π= + = = Find the nth root of unity If 1n u = or 1 (1) n u = then u is called nth root of unity Proof : Now cos2 sin 2l k i kπ π= + Then 1 1 (1) (cos2 sin 2 )n n u k i kπ π= = + 22 2 cos sin k i n k k i e n n ππ π = + = The number of the nth roof are 2k i n kU e π = ……………….. (A) Put k =0, 1, 2, _______n-1 to find the nth root. Now for k = 0 eqn (1) 0 1u e⇒ = = For k = 1, eqn (1) 2 / 1 i n u e sayπ ω⇒ = = = For k = 2, eqn (1) 4 / 2 2 i n u e π ω⇒ = = For k = 3, eqn (1) 6 / 2 3 i n u e π ω⇒ = =
  • 14. 14 and so on For k = n−1, eqn (1) 2( 1) / 1 1 n i n n nu e π ω− − −⇒ = = Thus the nth roots are 1, ω, ω2 …….. ωn-1 they form a geometric progression with common ratio 2k i n w e π = Example 6 : If 2 0 1 2(1 ) ........n x P Px Px+ = + + + Show that 2 4 0 2 4 ............ 2 .cos n n P P P π + + − = Solution : Let 2 0 1 2 4(1 ) ......n n x P Px Px Px+ = + + + Take x i= 2 3 4 0 1 2 3 4(1 ) ......n x P Pi Pi Pi Pi∴ + = + + + + + ( )0 2 4 6 1 3 5 7....... ( ......)P P P P i P P P P= − + − + + − + − + Now (1 ) ( 2) {cos sin } 4 4 n n nn i i π π + = + ………………(1) /2 2 {cos sin } 4 4 n n n i π π = + ………………(2) Equation (1) and (2) ⇒ ( )0 2 4 6 1 3 5 7....... ( ......)P P P P i P P P P= − + − + + − + − + /2 2 {cos sin } 4 4 n n n i π π = + Equating real part only /2 0 2 4 6 ....... 2 cos 4 n n P P P P π − + − + = Relation between complex circular and hyperbolic function We know that complex circular function are sin , cos 2 2 iz iz iz iz e e e e z Z i − − − − = = tan ( ) iz iz iz iz e e z i e e − − − = − ……….……so on
  • 15. 15 Hyperbolic function : 1) The quantity 2 y y e e− − where y be real or complex is called the hyperbolic sine of y and it is written as sin by similarly the quantity 2 y y e e− + is called hyperbolic cosine of y and is written as cos ny sinh 2 y y e e y − − ∴ = and cos 2 y y e e y − + = By using this we can find tan hy, cos echy , cot hy etc. Now relation between circular and hyperbolic function Theorem 1 : Prove : sin( ) sinhyi y= Proof : we have sin 2 yi y e e i y i − − = , cos 2 yi yi e e y − + = (1) ( ) ( ) 1 sin 2 2 2 yi i yi i y y y y i e e e e e e y i i i − − −  − − − = = = −     2 2 y y i e e i −  − =     (Multiply divided by i) 2 sinh ( 1) 2 y y e e i i y i −  − = = = −    Similarly we can prove (2) cos coshyi y= (3) cos cosiy i echy= − (4) sec seciy iy= (5) tan tanhiy i y= Theorem 2 : Prove 2 2 sin cos 1z z+ = Proof : LHS 2 2 sin cosz z= + 2 2 2 2 iz iz iz iz e e e e i − −    − + = +        2 21 { ( ) ( ) } 4 iz iz iz iz e e e e− − = − − + + 1 {4 . } 4 iz iz e e− = (as 2 2 ( )( )a b a b a b− = − + )
  • 16. 16 Theorem 3 : 1 2 1 2 2 2sin ( ) sin .cos co s .sinz z z z z z+ = + 1 2 1 2 1 2cos( ) cos .cos sin .sinz z z z z z+ = + Proof : be have 1 2 1 2( ) .i z z iz iz e e e+ = 1 2 1 2 1 1cos( ) sin( ) (cos sin )z z i z z z i z⇒ + + + = + 2 2(cos sin )z i z+ (by Euler) 1 2 1 2 1 2 1 2(cos cos sin , sin ) (sin , cos cos sin )z z z z i z z z z= − + + Equate the real and imaginary part we get the required result Theorem 4 : Prove sin( ) sinz z− = − cos( ) cosz z− = Separate the real and imaginary part Example 1: sin( )x iy+ Solution: sin( ) sin .cos cos sinx iy x iy x iy+ = + sin cosh cos ( sinh )x y x i y= + sin cosh cos sinhx y i x y= + ( sin sinh . cos cosh )iy i y iy i y= =∵ Example 2: tan( )x iy+ Solution: sin( ) 2 sin( ) cos( ) tan( ) cos( ) 2 cos( ).cos( ) x iy x iy x iy x iy x iy x iy x iy + + − + = = + + − [multiply & divided by cos x iy− ] sin[( ) ( )] sin[( ) ( )] cos[( ) ( )] cos[( ) ( )] x iy x iy x iy x iy x iy x iy x iy x iy + + − + + − + = + + + + + − − (use 2sin cos & 2cos cosA B A B formula) sin 2 sin(2 ) cos 2 cos(2 ) x iy x iy + = + sin 2 sinh 2 cos 2 cosh 2 x i y x y + = + (by hyperbolic relation) sin sinh 2 cos 2 cosh 2 cos 2 cosh 2 x y i x y x y = + + + (Real Part) (Imaginar part) Example 3 : 1 sec( ) cos( ) x iy x iy + = +
  • 17. 17 2 cos( ) 2 cos( ).cos( ) x iy x iy x iy − = + − [Multiply & divided by 2 cos( )x iy− 2[cos cos sin sin ] cos 2 cos 2 x iy x iy x iy + = + 2[cos cosh sin sinh ] cos 2 cosh 2 x y i x y x y + = + 2 cos cosh 2 sin sinh cos 2 cosh 2 cos 2 cosh 2 x y x y i x y x y = + + + (Real Part) (Imaginary part) Example 4: cosh( )x iy+ Solution: cosh( ) cos ( )x iy i x iy+ = + as [cos cosh ]iy y= cos( ).[cos cosh ]ix y iy y= − = cos cos sin .sinix y ix y= + cosh .cos sin sinx y ix y= + (by hyperbolic relation) cosh .cos sinh .sinx y i x y= + Example 5 : If ( ( )A B x iy+ = + prove that Solution: 2 2 2 tan 2 1 x A x y = − − and 2 2 2 tanh 2 1 y B x y = + + OR 2 2 2 cot 2 1x y x A+ + = 2 2 2 coth 2 1 0x y y B+ − + = Solution : Let tan( )A iB x iy+ = + Them tan( )A iB x iy− = − tan 2 tan[( ) ( )]A A iB A iB∴ = + + − 2 2 2 2 ( ) ( ) 2 2 1 ( )( ) 1 ( ) 1 x iy x iy x x x iy x iy x y x y + + − = = = − + − − + − − 2 2 1 2 cot 2x y x A⇒ − − = 2 2 2 cot 1x y x A+ + = Similarly tan(2 ) tan[( ) ( )]iB A iB A iB= + − − tan( ) tan( ) 1 tan( ) tan( ) A iB A iB A iB A iB + − − = + + − 2 2 ( ) ( ) 2 tanh 2 1 ( )( ) 1 ( ) x iy x iy iy i B x iy x iy x y + − − ⇒ = = + + − + +
  • 18. 18 2 2 2 tanh 2 1 y i B x y ⇒ = + + 2 2 1 2 coth 2x y y B⇒ + + = OR 2 2 2 coth 2 1 0x y y B+ − + = Example 6 : If sin( )i x iyα β− + prove that 2 2 2 2 1 cosh sinh x y β β + = and 2 2 2 2 1 sin cos x y α α − = Solution : Let sin( )i x iyα β+ = + Then sin .cos cos .sini i x iyα β α β+ = + sin .cosh cos sinhi x iyα β α β⇒ + = + (by hyperbolic relations) Equating real and imaginary part sin cosh xα β = and cos .sinh yα β = sin cosh x α β ⇒ = and cos sinh y α β = and cosh sin x β α = and cosh sin y β α = squaring and adding the tems of eqn (1) 2 2 2 2 2 2 sin cos 1 cosh sinh x y α α β β + = + = similarly squaring and substracting equation (2) 2 2 2 2 2 2 cosh sin 1 sin cos x y hβ β α α − = − = Example 7 : prove that sin( ) cos sini iθ φ α α+ = + also 2 cos sinθ α± Example 8: Prove that A) ( )1 2 sinh log 1x x x− = + + B) ( )1 2 cosh log 1x x x− = + +
  • 19. 19 C) 1 1 1 tanh log 2 1 x x x − +  =   −  D) Prove that 1 1 2 tanh sinh 1 x x x − −   =   −  Solution (A): Let 1 sinh x y− = ……… (1) sinx ny⇒ = 2 2 1 sinh 1 coshx y y∴ + = + = 2 1 sinh coshx x y y⇒ + + = + 2 2 y y y y e e e e− − − + = + 2 1 y x x e∴ + + = ( )2 log 1x x y⇒ + + = ………. (2) For eqn (1) & (2) ( )1 2 sinh log 1x x x− ⇒ = + + Similarly we can prove B, C & D Logarithmic of complex number Example 1 : Show that log( 5) log(5) (2 1)i nπ− = + + Solution : log( 5) log( 5 ¯ 0)i− = − + 2 1 0 log ( 5) 2 tan 5 i nπ −  = − + + −  tan 5 (2 )i nπ π= + + [ tan 0]π =∵ log 5 (2 1)i nπ= + + 2) 2 2 log(1 ) log 1 1i+ = + 1 1 2 tan 1 i nπ −  = +  
  • 20. 20 log 2 2 4 i n π π   = + +   1 log 2 (8 1) 2 4 i n π = + + 3) log log( ) log( ) x iy x iy x iy x iy + = + − − − 2 2 1 2 2 1 log tan log tany yx y i x y i x x − − = + + − + +    1 1 tan tani y x y x− −  = +  1 2 tani y x− = 1 1 tan ( ) tanx x− −  − = − ∵ Objective Question : 1) coshθ is equal to __________ 2) The value i e θ is __________ 3) The value of sinix is ___________ 4) The value i e π− is __________ 5) If i e iθ = − the value of θis ________ 6) If 1 3Z i= − then z is _________ 7) The period of coshz________ for all Z 8) DMT theorem is proved for n may be ________ 9) The nth root of unity are ________ when 2 i n e π ω= 10) (cos sin ) n iθ θ − − = ______________