SlideShare a Scribd company logo
1 of 9
Paul J. Bleau
Dr. Brendan Sullivan
MATH 2103*01
12/13/15
1. History of the Basel Problem
a. 1644: Pietro Mengoli puts forth the challenge of finding the exact value (not
simply an estimate) of the precise summation of the reciprocals of the squares of
the natural numbers.
b. 1689: The Bernoulli Brothers, Jakob and Johann, face the infinite series. Jakob
particularly was interested in the divergence of infinite series (and of infinite
series in general) and coins the phrase “Basel Problem” in reference to their
hometown, which was also the home town of the problem’s eventual solver.
c. 1734: Leonhard Euler gains immediate fame by solving the Basel Problem at the
age of 28 and presenting it in The Saint Petersburg Academy of Science. Euler’s
proof uses Trigonometry and Factorials to find the exact sum to be
𝜋2
6
.
d. 2015: Paul Bleau aces his 2nd Calc III Project by following Euler’s discovery
using multivariable Calculus
2. 𝐼 = ∬
1
1−𝑥𝑦𝑅
𝑑𝐴 = ∬ 1 + (𝑥𝑦)1
+ (𝑥𝑦)2
+ (𝑥𝑦)3
+ (𝑥𝑦)4
+ ⋯ 𝑑𝐴𝑅
= ∬ 1 + 𝑥𝑦 + 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝐴
𝑅
3. ∫ ∫ 1 + 𝑥𝑦 + 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝑥𝑑𝑦
1
0
1
0
= ∫(𝑥 +
𝑦𝑥2
2
+
𝑦2
𝑥3
3
1
0
+
𝑦3
𝑥4
4
+
𝑦4
𝑥5
5
+ ⋯ |
1
0
𝑑𝑦
= ∫((1+
𝑦
2
+
𝑦2
3
+
𝑦3
4
+
𝑦4
5
1
0
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦
= ∫1 +
𝑦
2
+
𝑦2
3
+
𝑦3
4
+
𝑦4
5
+ ⋯ 𝑑𝑦 = (𝑦 +
𝑦2
4
+
𝑦3
9
+
𝑦4
16
+
𝑦5
25
+ ⋯ |
1
0
1
0
= ((1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯ )− (0 + 0 + 0 + 0 + 0 + ⋯ ))
= 1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯
We know that ∑
1
𝑛2 =
1
12 +
1
22 +
1
32 +
1
42 +
1
52 + ⋯ =∞
𝑛=1 1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯
∴ 𝐼 = ∑
1
𝑛2
∞
𝑛=1
4.
X vs. Y U vs. V
A: x = 0 v = u
B: y = 1 v = 1 - u
C: x = 1 v = u - 1
D: y = 0 v = -u
𝑥 = 𝑢 − 𝑣 𝑦 = 𝑢 + 𝑣
𝑑𝑥
𝑑𝑢
= 1
𝑑𝑥
𝑑𝑣
= −1
𝑑𝑦
𝑑𝑢
= 1
𝑑𝑦
𝑑𝑣
= 1
𝑦 − 𝑥 = ( 𝑢 + 𝑣) − ( 𝑢 − 𝑣) = 2𝑣 𝑣 =
𝑦 − 𝑥
2
𝑦 + 𝑥 = ( 𝑢 + 𝑣) + ( 𝑢 − 𝑣) = 2𝑢 𝑢 =
𝑦 + 𝑥
2
∬
1
1 − 𝑥𝑦
𝑅
𝑑𝑥𝑑𝑦 = ∬
1
1 − ( 𝑢2 − 𝑣2)
𝐽𝑑𝑣𝑑𝑢
𝐷
5. 𝐽 = |
𝑑𝑥
𝑑𝑢
𝑑𝑥
𝑑𝑣
𝑑𝑦
𝑑𝑢
𝑑𝑦
𝑑𝑣
| = ((
𝑑𝑥
𝑑𝑢
) (
𝑑𝑦
𝑑𝑣
)− (
𝑑𝑥
𝑑𝑣
) (
𝑑𝑦
𝑑𝑢
))
|
1 −1
1 1
| = (1𝑥1)− (−1𝑥1) = 1 − (−1) = 2
∴ ∬
1
1 − ( 𝑢2 − 𝑣2)
𝐽𝑑𝑣𝑑𝑢
𝑑
= ∬
1
1 − ( 𝑢2 − 𝑣2)
(2) 𝑑𝑣𝑑𝑢
𝑑
Due to the nature of our diamond, we have the ability to integrate the top half of
the domain, then multiply that value by 2 to find the area of the whole diamond. Also,
since our Jacobian is a constant, this can be pulled out of the integral. Due to this, our
final value will be multiplied by 4. These next steps will integrate the top half of the
diamond using two integrals.
∫ ∫
1
1 − ( 𝑢2 − 𝑣2)
(2) 𝑑𝑣𝑑𝑢
𝐷
= (2) ∫ ∫
1
1 − ( 𝑢2 − 𝑣2)
𝑑𝑣𝑑𝑢
𝐷
𝐼1 = ∫ ∫
1
(1 − 𝑢2) + 𝑣2
𝑢
0
𝑑𝑣𝑑𝑢
1
2⁄
0
, 𝐼2 = ∫ ∫
1
(1 − 𝑢2) + 𝑣2
1−𝑢
0
𝑑𝑣𝑑𝑢
1
1
2⁄
𝑠𝑜 𝑡ℎ𝑎𝑡 𝐼 = 4(𝐼1 + 𝐼2)
𝐼1 = ∫ (
1
√1− 𝑢2
tan−1
(
𝑣
√1− 𝑢2
)|
𝑢
0
𝑑𝑢
1
2⁄
0
= ∫ (((1 − 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2 )−1
2⁄
))
1
2⁄
0
− ((1 − 𝑢2)−1
2⁄
tan−1
(0(1 − 𝑢2)−1
2⁄
)))𝑑𝑢
= ∫ (((1− 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2)−1
2⁄
)) − (0))
1
2⁄
0
𝑑𝑢
= ∫ (1 − 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2)−1
2⁄
) 𝑑𝑢
1
2⁄
0
= ∫ 𝑡𝑎𝑛−1
(
𝑢
√1 − 𝑢2
) ∙
𝑑𝑢
√1 − 𝑢2
1
2⁄
0
Let’s use substitution to make this integrand more cooperative.
Let 𝑢 = 𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 𝑐𝑜𝑠𝜃𝑑𝜃
However, we must also adjust our bounds to account for the substitution.
Whereas 𝑢1 = 0 𝑎𝑛𝑑 𝑢2 = 1
2⁄ , 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 =
𝜋
6
Now, we can substitute
∫ 𝑡𝑎𝑛−1
(
𝑢
√1−𝑢2 ) ∙
𝑑𝑢
√1−𝑢2
1
2⁄
0
with ∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
√1−𝑠𝑖𝑛2 𝜃
)∙
𝑐𝑜𝑠𝜃
√1−𝑠𝑖𝑛2 𝜃
𝑑𝜃
𝜋
6⁄
0
Using trigonometric identities, we know that 𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
𝑎𝑛𝑑 ∴ √1 − 𝑠𝑖𝑛2 𝜃 = 𝑐𝑜𝑠𝜃
We can now substitute further to find that
∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
√1− 𝑠𝑖𝑛2 𝜃
) ∙
𝑐𝑜𝑠𝜃
√1 − 𝑠𝑖𝑛2 𝜃
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
) ∙
𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1( 𝑡𝑎𝑛𝜃) ∙ 1𝑑𝜃
𝜋
6⁄
0
= ∫ 𝜃𝑑𝜃
𝜋
6⁄
0
= (
𝜃2
2
|
𝜋
6⁄
0
= (
(
𝜋
6
)2
2
−
02
2
)
= (
𝜋2
36
2
) =
( 𝜋2)
72
𝐼1 =
𝜋2
72
𝐼2 = ∫ ∫
1
(1 − 𝑢2 ) + 𝑣2
1−𝑢
0
𝑑𝑣𝑑𝑢
1
1
2⁄
= ∫(
1
√1− 𝑢2
tan−1
(
𝑣
√1− 𝑢2
)|
1 − 𝑢
0
𝑑𝑢
1
1
2⁄
= ∫(((1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1 − 𝑢2)−1
2⁄
))
1
1
2⁄
− ((1 − 𝑢2)−1
2⁄
tan−1
(0(1 − 𝑢2)−1
2⁄
)))𝑑𝑢
= ∫(((1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1 − 𝑢2)−1
2⁄
)) − (0))
1
1
2⁄
𝑑𝑢
= ∫(1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1− 𝑢2 )−1
2⁄
)𝑑𝑢
1
1
2⁄
= ∫ 𝑡𝑎𝑛−1
(
1 − 𝑢
√1 − 𝑢2
) ∙
𝑑𝑢
√1 − 𝑢2
1
1
2⁄
Let’s again use substitution to make this integrand more cooperative as well.
Let 𝑢 = cos(2𝜃) 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 2sin(2𝜃)𝑑𝜃
However, we must also adjust our bounds to account for the substitution.
Whereas 𝑢1 = 1
2⁄ 𝑎𝑛𝑑 𝑢2 = 1, 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 =
𝜋
6
Now, we can substitute
∫ 𝑡𝑎𝑛−1
(
1−𝑢
√1−𝑢2 ) ∙
𝑑𝑢
√1−𝑢2
1
1
2⁄
with ∫ 𝑡𝑎𝑛−1
(
1−cos(2𝜃)
√1−𝑐𝑜𝑠2
(2𝜃)
) ∙
2sin(2𝜃)
√1−𝑐𝑜𝑠2
(2𝜃)
𝑑𝜃
𝜋
6⁄
0
Using trigonometric identities, we know that 𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
𝑎𝑛𝑑 ∴ √1 − 𝑐𝑜𝑠2(2𝜃) = sin(2𝜃)
We can now substitute further to find that
∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
2sin(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
2sin(2𝜃)
sin(2𝜃)
𝑑𝜃
𝜋
6⁄
0
We can move the constant 2 out of the integral, then multiply top and bottom
by
1
√1−cos(2𝜃)
to find
= 2 ∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
1
√1 − cos(2𝜃)
1
√1 − cos(2𝜃)
𝑑𝜃
𝜋
6⁄
0
= 2∫ 𝑡𝑎𝑛−1
(√
1 − cos(2𝜃)
1 + cos(2𝜃)
)𝑑𝜃
𝜋
6⁄
0
= 2 ∫ 𝑡𝑎𝑛−1
𝜋
6⁄
0
(√
2𝑠𝑖𝑛2 𝜃
2𝑐𝑜𝑠2 𝜃
) 𝑑𝜃 = 2 ∫ 𝑡𝑎𝑛−1
(√ 𝑡𝑎𝑛2 𝜃
𝜋
6⁄
0
)𝑑𝜃 = 2 ∫ 𝜃𝑑𝜃
𝜋
6⁄
0
= 2(
𝜃2
2
|
𝜋
6⁄
0
= 2(
(
𝜋
6
)2
2
−
02
2
)
= 2(
𝜋2
36
2
) =
2( 𝜋2)
72
=
𝜋2
36
𝐼2 =
𝜋2
36
Recall that 𝐼 = 4( 𝐼1 + 𝐼2) 𝑎𝑛𝑑 ∴ 𝐼 = 4 (
𝜋2
72
+
𝜋2
36
) = 4(
𝜋2
24
) =
𝜋2
6
Extra Credit
a. 𝑇 = ∫ ∫ ∫
1
1−𝑥𝑦𝑧
𝑑𝑥𝑑𝑦𝑑𝑧
1
0
1
0
1
0
= ∭ 1 + (𝑥𝑦𝑧)1
+ (𝑥𝑦𝑧)2
+ (𝑥𝑦𝑧)3
+ (𝑥𝑦𝑧)4
+ ⋯ 𝑑𝑉𝐸
= ∭1
𝐸
+ 𝑥𝑦𝑧 + 𝑥2
𝑦2
𝑧2
+ 𝑥3
𝑦3
𝑧3
+ 𝑥4
𝑦4
𝑧4
+ ⋯ 𝑑𝑉
= ∫∫ ∫1
1
0
+ 𝑥𝑦
1
0
1
0
+ 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝑥𝑑𝑦𝑑𝑧
= ∫∫(𝑥 +
𝑦𝑧𝑥2
2
+
1
0
1
0
𝑦2
𝑧2
𝑥3
3
+
𝑦3
𝑧3
𝑥4
4
+
𝑦4
𝑧4
𝑥5
5
+ ⋯ |
1
0
𝑑𝑦𝑑𝑧
= ∫ ∫((1 +
𝑦𝑧
2
+
1
0
1
0
𝑦2
𝑧2
3
+
𝑦3
𝑧3
4
+
𝑦4
𝑧4
5
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦𝑑𝑧
= ∫∫ 1 +
𝑦𝑧
2
+
1
0
1
0
𝑦2
𝑧2
3
+
𝑦3
𝑧3
4
+
𝑦4
𝑧4
5
+ ⋯ 𝑑𝑦𝑑𝑧
= ∫(𝑦 +
1
0
𝑧𝑦2
4
+
𝑧2
𝑦3
9
+
𝑧3
𝑦4
16
+
𝑧4
𝑦5
25
+ … |
1
0
𝑑𝑧
= ∫((1 +
𝑧
4
1
0
+
𝑧2
9
+
𝑧3
16
+
𝑧4
25
+ ⋯) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑧
= ∫ 1 +
𝑧
4
1
0
+
𝑧2
9
+
𝑧3
16
+
𝑧4
25
+ ⋯ 𝑑𝑧
= (𝑧 +
𝑧2
8
+
𝑧3
27
+
𝑧4
64
+
𝑧5
125
+ … |
1
0
= ((1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯ ))
= 1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯
We know that ∑
1
𝑛3 =
1
13 +
1
23 +
1
33 +
1
43 +
1
53 + ⋯ =∞
𝑛=1 1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯
∴ 𝑇 = ∑
1
𝑛3
∞
𝑛=1
Unfortunately, this value is not yet known. Leonhard Euler made an attempt but the
closest he got was determining ∑
(−1) 𝑘
(2𝑘+1)3
∞
𝑛=1 =
𝜋3
32
.
b. However, the value of ∑
1
𝑛 𝑘
∞
𝑛=1 can be determined for all real, even k values, thanks to
Euler and methods used in this project. The value of ∑
1
𝑛 𝑘
∞
𝑛=1 is given by
2(𝑘−2)
𝜋 𝑘
3(2𝑘−2)!
for all
real, even values of k.
c. Not a problem on the Project Page but I noticed that the amount of projects done in our
Calc classes is relative to n – 1 for all Calculus n…Def Eq’s doesn’t have 3, does it?!
Bibliography
- Bhand, Ajit. "The Basel Problem and Euler's Triumph." Talk Math. Wordpress, 8
Nov. 2010. Web. 7 Dec. 2015.
- Sangwin, C. J. "An Infinite Series of Surprises." Plus Math. Plus Magazine, 1 Dec.
2001. Web. 7 Dec. 2015.
- Sullivan, Brendan. "The Basel Problem: Numerous Proofs." Carnegie Melon
University, 11 Apr. 2013. Web. 7 Dec. 2015.

More Related Content

What's hot

Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Lossian Barbosa Bacelar Miranda
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 
Latihan soal (vektor)
Latihan soal (vektor)Latihan soal (vektor)
Latihan soal (vektor)DAYINTA1
 
Differential equations
Differential equationsDifferential equations
Differential equationsAMINULISLAM439
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
capstone magic squares
capstone magic squarescapstone magic squares
capstone magic squaresCara Colotti
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Vector calculus
Vector calculusVector calculus
Vector calculussujathavvv
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsQUESTJOURNAL
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODreach2arkaELECTRICAL
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
 

What's hot (17)

Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Latihan soal (vektor)
Latihan soal (vektor)Latihan soal (vektor)
Latihan soal (vektor)
 
Z transforms
Z transformsZ transforms
Z transforms
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
capstone magic squares
capstone magic squarescapstone magic squares
capstone magic squares
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
GAUSS ELIMINATION METHOD
 GAUSS ELIMINATION METHOD GAUSS ELIMINATION METHOD
GAUSS ELIMINATION METHOD
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
 
Tugas 2 turunan
Tugas 2 turunanTugas 2 turunan
Tugas 2 turunan
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 

Viewers also liked

Procesos de La Lectura y la Escritura
Procesos de La Lectura y la EscrituraProcesos de La Lectura y la Escritura
Procesos de La Lectura y la EscrituraCarlosZamudio10
 
I phone mainstream product
I phone mainstream productI phone mainstream product
I phone mainstream productqwerty571
 
Evaluacion de actitudes
Evaluacion de actitudesEvaluacion de actitudes
Evaluacion de actitudesGlenda Ch
 
2016 membership letter-final
2016 membership letter-final2016 membership letter-final
2016 membership letter-finalJerry Raehal
 
Projecto gestao de pequenas e medias empresas
Projecto   gestao de pequenas e medias empresasProjecto   gestao de pequenas e medias empresas
Projecto gestao de pequenas e medias empresasUniversidade Pedagogica
 
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)Kalas'nikov Muhanzule
 
Los medios de comunicación ii (franquismo)
Los medios de comunicación ii (franquismo)Los medios de comunicación ii (franquismo)
Los medios de comunicación ii (franquismo)Víctor Coto Ordás
 
04 clean techalps
04 clean techalps04 clean techalps
04 clean techalpsTechnoArk
 
Evangelización española de américa
Evangelización española de américaEvangelización española de américa
Evangelización española de américaPablo Molina Molina
 

Viewers also liked (13)

Procesos de La Lectura y la Escritura
Procesos de La Lectura y la EscrituraProcesos de La Lectura y la Escritura
Procesos de La Lectura y la Escritura
 
Presentacion aprendizaje autonomo.
Presentacion aprendizaje autonomo.Presentacion aprendizaje autonomo.
Presentacion aprendizaje autonomo.
 
I phone mainstream product
I phone mainstream productI phone mainstream product
I phone mainstream product
 
Evaluacion de actitudes
Evaluacion de actitudesEvaluacion de actitudes
Evaluacion de actitudes
 
2016 membership letter-final
2016 membership letter-final2016 membership letter-final
2016 membership letter-final
 
Projecto gestao de pequenas e medias empresas
Projecto   gestao de pequenas e medias empresasProjecto   gestao de pequenas e medias empresas
Projecto gestao de pequenas e medias empresas
 
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
 
El Islamismo
El IslamismoEl Islamismo
El Islamismo
 
Los medios de comunicación ii (franquismo)
Los medios de comunicación ii (franquismo)Los medios de comunicación ii (franquismo)
Los medios de comunicación ii (franquismo)
 
04 clean techalps
04 clean techalps04 clean techalps
04 clean techalps
 
Evangelización española de américa
Evangelización española de américaEvangelización española de américa
Evangelización española de américa
 
Open a Pre School
Open a Pre SchoolOpen a Pre School
Open a Pre School
 
Хімічна формула
Хімічна формулаХімічна формула
Хімічна формула
 

Similar to Paul Bleau Calc III Project 2 - Basel Problem

Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein PolynomialsIOSR Journals
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقيanasKhalaf4
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
 

Similar to Paul Bleau Calc III Project 2 - Basel Problem (20)

Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007
 
Interpolation
InterpolationInterpolation
Interpolation
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 

Paul Bleau Calc III Project 2 - Basel Problem

  • 1. Paul J. Bleau Dr. Brendan Sullivan MATH 2103*01 12/13/15 1. History of the Basel Problem a. 1644: Pietro Mengoli puts forth the challenge of finding the exact value (not simply an estimate) of the precise summation of the reciprocals of the squares of the natural numbers. b. 1689: The Bernoulli Brothers, Jakob and Johann, face the infinite series. Jakob particularly was interested in the divergence of infinite series (and of infinite series in general) and coins the phrase “Basel Problem” in reference to their hometown, which was also the home town of the problem’s eventual solver. c. 1734: Leonhard Euler gains immediate fame by solving the Basel Problem at the age of 28 and presenting it in The Saint Petersburg Academy of Science. Euler’s proof uses Trigonometry and Factorials to find the exact sum to be 𝜋2 6 . d. 2015: Paul Bleau aces his 2nd Calc III Project by following Euler’s discovery using multivariable Calculus 2. 𝐼 = ∬ 1 1−𝑥𝑦𝑅 𝑑𝐴 = ∬ 1 + (𝑥𝑦)1 + (𝑥𝑦)2 + (𝑥𝑦)3 + (𝑥𝑦)4 + ⋯ 𝑑𝐴𝑅 = ∬ 1 + 𝑥𝑦 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝐴 𝑅 3. ∫ ∫ 1 + 𝑥𝑦 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝑥𝑑𝑦 1 0 1 0
  • 2. = ∫(𝑥 + 𝑦𝑥2 2 + 𝑦2 𝑥3 3 1 0 + 𝑦3 𝑥4 4 + 𝑦4 𝑥5 5 + ⋯ | 1 0 𝑑𝑦 = ∫((1+ 𝑦 2 + 𝑦2 3 + 𝑦3 4 + 𝑦4 5 1 0 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦 = ∫1 + 𝑦 2 + 𝑦2 3 + 𝑦3 4 + 𝑦4 5 + ⋯ 𝑑𝑦 = (𝑦 + 𝑦2 4 + 𝑦3 9 + 𝑦4 16 + 𝑦5 25 + ⋯ | 1 0 1 0 = ((1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ )− (0 + 0 + 0 + 0 + 0 + ⋯ )) = 1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ We know that ∑ 1 𝑛2 = 1 12 + 1 22 + 1 32 + 1 42 + 1 52 + ⋯ =∞ 𝑛=1 1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ ∴ 𝐼 = ∑ 1 𝑛2 ∞ 𝑛=1 4. X vs. Y U vs. V A: x = 0 v = u B: y = 1 v = 1 - u C: x = 1 v = u - 1 D: y = 0 v = -u
  • 3. 𝑥 = 𝑢 − 𝑣 𝑦 = 𝑢 + 𝑣 𝑑𝑥 𝑑𝑢 = 1 𝑑𝑥 𝑑𝑣 = −1 𝑑𝑦 𝑑𝑢 = 1 𝑑𝑦 𝑑𝑣 = 1 𝑦 − 𝑥 = ( 𝑢 + 𝑣) − ( 𝑢 − 𝑣) = 2𝑣 𝑣 = 𝑦 − 𝑥 2 𝑦 + 𝑥 = ( 𝑢 + 𝑣) + ( 𝑢 − 𝑣) = 2𝑢 𝑢 = 𝑦 + 𝑥 2 ∬ 1 1 − 𝑥𝑦 𝑅 𝑑𝑥𝑑𝑦 = ∬ 1 1 − ( 𝑢2 − 𝑣2) 𝐽𝑑𝑣𝑑𝑢 𝐷 5. 𝐽 = | 𝑑𝑥 𝑑𝑢 𝑑𝑥 𝑑𝑣 𝑑𝑦 𝑑𝑢 𝑑𝑦 𝑑𝑣 | = (( 𝑑𝑥 𝑑𝑢 ) ( 𝑑𝑦 𝑑𝑣 )− ( 𝑑𝑥 𝑑𝑣 ) ( 𝑑𝑦 𝑑𝑢 )) | 1 −1 1 1 | = (1𝑥1)− (−1𝑥1) = 1 − (−1) = 2 ∴ ∬ 1 1 − ( 𝑢2 − 𝑣2) 𝐽𝑑𝑣𝑑𝑢 𝑑 = ∬ 1 1 − ( 𝑢2 − 𝑣2) (2) 𝑑𝑣𝑑𝑢 𝑑 Due to the nature of our diamond, we have the ability to integrate the top half of the domain, then multiply that value by 2 to find the area of the whole diamond. Also, since our Jacobian is a constant, this can be pulled out of the integral. Due to this, our final value will be multiplied by 4. These next steps will integrate the top half of the diamond using two integrals. ∫ ∫ 1 1 − ( 𝑢2 − 𝑣2) (2) 𝑑𝑣𝑑𝑢 𝐷 = (2) ∫ ∫ 1 1 − ( 𝑢2 − 𝑣2) 𝑑𝑣𝑑𝑢 𝐷 𝐼1 = ∫ ∫ 1 (1 − 𝑢2) + 𝑣2 𝑢 0 𝑑𝑣𝑑𝑢 1 2⁄ 0 , 𝐼2 = ∫ ∫ 1 (1 − 𝑢2) + 𝑣2 1−𝑢 0 𝑑𝑣𝑑𝑢 1 1 2⁄ 𝑠𝑜 𝑡ℎ𝑎𝑡 𝐼 = 4(𝐼1 + 𝐼2)
  • 4. 𝐼1 = ∫ ( 1 √1− 𝑢2 tan−1 ( 𝑣 √1− 𝑢2 )| 𝑢 0 𝑑𝑢 1 2⁄ 0 = ∫ (((1 − 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2 )−1 2⁄ )) 1 2⁄ 0 − ((1 − 𝑢2)−1 2⁄ tan−1 (0(1 − 𝑢2)−1 2⁄ )))𝑑𝑢 = ∫ (((1− 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2)−1 2⁄ )) − (0)) 1 2⁄ 0 𝑑𝑢 = ∫ (1 − 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2)−1 2⁄ ) 𝑑𝑢 1 2⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 𝑢 √1 − 𝑢2 ) ∙ 𝑑𝑢 √1 − 𝑢2 1 2⁄ 0 Let’s use substitution to make this integrand more cooperative. Let 𝑢 = 𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 𝑐𝑜𝑠𝜃𝑑𝜃 However, we must also adjust our bounds to account for the substitution. Whereas 𝑢1 = 0 𝑎𝑛𝑑 𝑢2 = 1 2⁄ , 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 = 𝜋 6 Now, we can substitute ∫ 𝑡𝑎𝑛−1 ( 𝑢 √1−𝑢2 ) ∙ 𝑑𝑢 √1−𝑢2 1 2⁄ 0 with ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 √1−𝑠𝑖𝑛2 𝜃 )∙ 𝑐𝑜𝑠𝜃 √1−𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 6⁄ 0 Using trigonometric identities, we know that 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 𝑎𝑛𝑑 ∴ √1 − 𝑠𝑖𝑛2 𝜃 = 𝑐𝑜𝑠𝜃 We can now substitute further to find that
  • 5. ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 √1− 𝑠𝑖𝑛2 𝜃 ) ∙ 𝑐𝑜𝑠𝜃 √1 − 𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ) ∙ 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1( 𝑡𝑎𝑛𝜃) ∙ 1𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝜃𝑑𝜃 𝜋 6⁄ 0 = ( 𝜃2 2 | 𝜋 6⁄ 0 = ( ( 𝜋 6 )2 2 − 02 2 ) = ( 𝜋2 36 2 ) = ( 𝜋2) 72 𝐼1 = 𝜋2 72 𝐼2 = ∫ ∫ 1 (1 − 𝑢2 ) + 𝑣2 1−𝑢 0 𝑑𝑣𝑑𝑢 1 1 2⁄ = ∫( 1 √1− 𝑢2 tan−1 ( 𝑣 √1− 𝑢2 )| 1 − 𝑢 0 𝑑𝑢 1 1 2⁄ = ∫(((1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1 − 𝑢2)−1 2⁄ )) 1 1 2⁄ − ((1 − 𝑢2)−1 2⁄ tan−1 (0(1 − 𝑢2)−1 2⁄ )))𝑑𝑢 = ∫(((1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1 − 𝑢2)−1 2⁄ )) − (0)) 1 1 2⁄ 𝑑𝑢 = ∫(1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1− 𝑢2 )−1 2⁄ )𝑑𝑢 1 1 2⁄ = ∫ 𝑡𝑎𝑛−1 ( 1 − 𝑢 √1 − 𝑢2 ) ∙ 𝑑𝑢 √1 − 𝑢2 1 1 2⁄ Let’s again use substitution to make this integrand more cooperative as well. Let 𝑢 = cos(2𝜃) 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 2sin(2𝜃)𝑑𝜃
  • 6. However, we must also adjust our bounds to account for the substitution. Whereas 𝑢1 = 1 2⁄ 𝑎𝑛𝑑 𝑢2 = 1, 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 = 𝜋 6 Now, we can substitute ∫ 𝑡𝑎𝑛−1 ( 1−𝑢 √1−𝑢2 ) ∙ 𝑑𝑢 √1−𝑢2 1 1 2⁄ with ∫ 𝑡𝑎𝑛−1 ( 1−cos(2𝜃) √1−𝑐𝑜𝑠2 (2𝜃) ) ∙ 2sin(2𝜃) √1−𝑐𝑜𝑠2 (2𝜃) 𝑑𝜃 𝜋 6⁄ 0 Using trigonometric identities, we know that 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 𝑎𝑛𝑑 ∴ √1 − 𝑐𝑜𝑠2(2𝜃) = sin(2𝜃) We can now substitute further to find that ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 2sin(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 2sin(2𝜃) sin(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 We can move the constant 2 out of the integral, then multiply top and bottom by 1 √1−cos(2𝜃) to find = 2 ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 1 √1 − cos(2𝜃) 1 √1 − cos(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 = 2∫ 𝑡𝑎𝑛−1 (√ 1 − cos(2𝜃) 1 + cos(2𝜃) )𝑑𝜃 𝜋 6⁄ 0 = 2 ∫ 𝑡𝑎𝑛−1 𝜋 6⁄ 0 (√ 2𝑠𝑖𝑛2 𝜃 2𝑐𝑜𝑠2 𝜃 ) 𝑑𝜃 = 2 ∫ 𝑡𝑎𝑛−1 (√ 𝑡𝑎𝑛2 𝜃 𝜋 6⁄ 0 )𝑑𝜃 = 2 ∫ 𝜃𝑑𝜃 𝜋 6⁄ 0 = 2( 𝜃2 2 | 𝜋 6⁄ 0 = 2( ( 𝜋 6 )2 2 − 02 2 )
  • 7. = 2( 𝜋2 36 2 ) = 2( 𝜋2) 72 = 𝜋2 36 𝐼2 = 𝜋2 36 Recall that 𝐼 = 4( 𝐼1 + 𝐼2) 𝑎𝑛𝑑 ∴ 𝐼 = 4 ( 𝜋2 72 + 𝜋2 36 ) = 4( 𝜋2 24 ) = 𝜋2 6 Extra Credit a. 𝑇 = ∫ ∫ ∫ 1 1−𝑥𝑦𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 1 0 1 0 1 0 = ∭ 1 + (𝑥𝑦𝑧)1 + (𝑥𝑦𝑧)2 + (𝑥𝑦𝑧)3 + (𝑥𝑦𝑧)4 + ⋯ 𝑑𝑉𝐸 = ∭1 𝐸 + 𝑥𝑦𝑧 + 𝑥2 𝑦2 𝑧2 + 𝑥3 𝑦3 𝑧3 + 𝑥4 𝑦4 𝑧4 + ⋯ 𝑑𝑉 = ∫∫ ∫1 1 0 + 𝑥𝑦 1 0 1 0 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝑥𝑑𝑦𝑑𝑧 = ∫∫(𝑥 + 𝑦𝑧𝑥2 2 + 1 0 1 0 𝑦2 𝑧2 𝑥3 3 + 𝑦3 𝑧3 𝑥4 4 + 𝑦4 𝑧4 𝑥5 5 + ⋯ | 1 0 𝑑𝑦𝑑𝑧 = ∫ ∫((1 + 𝑦𝑧 2 + 1 0 1 0 𝑦2 𝑧2 3 + 𝑦3 𝑧3 4 + 𝑦4 𝑧4 5 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦𝑑𝑧 = ∫∫ 1 + 𝑦𝑧 2 + 1 0 1 0 𝑦2 𝑧2 3 + 𝑦3 𝑧3 4 + 𝑦4 𝑧4 5 + ⋯ 𝑑𝑦𝑑𝑧 = ∫(𝑦 + 1 0 𝑧𝑦2 4 + 𝑧2 𝑦3 9 + 𝑧3 𝑦4 16 + 𝑧4 𝑦5 25 + … | 1 0 𝑑𝑧 = ∫((1 + 𝑧 4 1 0 + 𝑧2 9 + 𝑧3 16 + 𝑧4 25 + ⋯) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑧 = ∫ 1 + 𝑧 4 1 0 + 𝑧2 9 + 𝑧3 16 + 𝑧4 25 + ⋯ 𝑑𝑧
  • 8. = (𝑧 + 𝑧2 8 + 𝑧3 27 + 𝑧4 64 + 𝑧5 125 + … | 1 0 = ((1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯ )) = 1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ We know that ∑ 1 𝑛3 = 1 13 + 1 23 + 1 33 + 1 43 + 1 53 + ⋯ =∞ 𝑛=1 1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ ∴ 𝑇 = ∑ 1 𝑛3 ∞ 𝑛=1 Unfortunately, this value is not yet known. Leonhard Euler made an attempt but the closest he got was determining ∑ (−1) 𝑘 (2𝑘+1)3 ∞ 𝑛=1 = 𝜋3 32 . b. However, the value of ∑ 1 𝑛 𝑘 ∞ 𝑛=1 can be determined for all real, even k values, thanks to Euler and methods used in this project. The value of ∑ 1 𝑛 𝑘 ∞ 𝑛=1 is given by 2(𝑘−2) 𝜋 𝑘 3(2𝑘−2)! for all real, even values of k. c. Not a problem on the Project Page but I noticed that the amount of projects done in our Calc classes is relative to n – 1 for all Calculus n…Def Eq’s doesn’t have 3, does it?!
  • 9. Bibliography - Bhand, Ajit. "The Basel Problem and Euler's Triumph." Talk Math. Wordpress, 8 Nov. 2010. Web. 7 Dec. 2015. - Sangwin, C. J. "An Infinite Series of Surprises." Plus Math. Plus Magazine, 1 Dec. 2001. Web. 7 Dec. 2015. - Sullivan, Brendan. "The Basel Problem: Numerous Proofs." Carnegie Melon University, 11 Apr. 2013. Web. 7 Dec. 2015.