SlideShare a Scribd company logo
1 of 90
UNIT 5:
TRIGONOMETRIC
IDENTITIES
LEARNING OBJECTIVES
1. Derive the identities for cosine, sine, and tangent of a sum
or difference of two real numbers or angles;
2. Derive double and half number identities;
3. Derive sum and product identities;
4. Solve problems involving identities;
5. Solve problems in reduction identities; and
6. Prove a given identity.
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
The first identity we shall establish involves cos(𝛼 − 𝛽)
which is the basis of the rest of the identities discussed in this
unit.
Given two points P1(𝑥1, 𝑦1) and P2(𝑥2, 𝑦2) in the rectangular
coordinate system, the distance between these points is
given by
2 +
𝑃1𝑃2 = 𝑥1 − 𝑥2 𝑦1 − 𝑦2
2
𝑃1𝑃2 = 𝑥2 − 𝑥1
2 +
or
𝑦2 − 𝑦1
ľíigo⭲omctíic Idc⭲titics
2
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
Consider the unit circle and the arcs of the unit circle of
lengths 𝛼 and 𝛽 starting from point 𝐴(1,0) as shown in
Figure 5.1a. The terminal point determined by the arc length
𝛼 will be
P1 𝛼 = 𝑥1, 𝑦1 = (𝑐𝑜𝑠𝛼, sin𝛼)
And the terminal point determined by 𝛽 will be
P2 𝛽 = 𝑥2, 𝑦2 = (𝑐𝑜𝑠𝛽, sin𝛽)
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
The distance between the terminal points can be obtained
using the distance formula where the coordinate of the
points are expressed in terms of the real numbers 𝛼 and 𝛽 .
Hence, we have
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
If we subtract the arc length 𝛼 from the arc length 𝛽, we get the
arc length (𝛽- 𝛼).
Next, we lay an arc starting from the point
𝐴(1,0) whose length is (𝛽- 𝛼) as shown in
Figure 5.2. The endpoint of this arc will
therefore have coordinates
[cos(𝛽- 𝛼), sin(𝛽- 𝛼)].
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
The length of the chord 𝑃𝐴 determined by the arc length (𝛽- 𝛼)
will be
Since equal arcs determine equal chords, we have 𝑃𝐴 = 𝑃1𝑃2 . It
follows that 2 − 2𝑐𝑜𝑠(𝛼 − 𝛽) = 2 − 2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽 .
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
Squaring both sides of the previous equation, we have
2 − 2𝑐𝑜𝑠 𝛼 − 𝛽
−2𝑐𝑜𝑠 𝛼 − 𝛽
−2𝑐𝑜𝑠 𝛼 − 𝛽
𝑐𝑜𝑠 𝛼 − 𝛽
= 2 − 2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽
= −2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽
= −2(cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)
= (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)
Hence, the identity for 𝑐𝑜𝑠 𝛼 − 𝛽 is given by
𝑐𝑜𝑠 𝛼 − 𝛽 = (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
To establish the identity for 𝑐𝑜𝑠 𝛼 + 𝛽 , we note that
𝑐𝑜𝑠 𝛼 + 𝛽 = cos[𝛼 − (−𝛽)]
= cos 𝛼 cos(−𝛽) + sin 𝛼 sin(−𝛽)
Note that, cos −𝛽 = cos 𝛽 and sin(−𝛽) = − sin 𝛽, thus
= cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽
Hence, the identity for 𝑐𝑜𝑠 𝛼 + 𝛽 is given by
𝑐𝑜𝑠 𝛼 + 𝛽 = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
To derive the identity for sin 𝛼 − 𝛽 , we note that
cos(
𝜋
2
− 𝛼) = cos
𝜋
2
cos 𝛼 + sin
𝜋
2
sin 𝛼
Hence, cos[
𝜋
2
sin 𝛼 − 𝛽 = cos[
= 0(cos 𝛼) +1(sin 𝛼)
= sin 𝛼
− ( 𝛼 − 𝛽)] =sin 𝛼 − 𝛽 or
𝜋
2
ľíigo⭲omctíic Idc⭲titics
− ( 𝛼 − 𝛽)]
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
Expanding the right hand side we have,
𝜋
2
sin 𝛼 − 𝛽 = cos[ − ( 𝛼 − 𝛽)]
𝜋
2
− 𝛼) + 𝛽]
= cos(
= cos[(
𝜋
2
− 𝛼) ⋅ cos 𝛽 − sin(
𝜋
2
− 𝛼) ⋅ sin 𝛽
= sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
Therefore, we have the following identity for sin 𝛼 − 𝛽 :
sin 𝛼 − 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
as follows,
Finally, we establish the identity for sin 𝛼 + 𝛽
sin 𝛼 + 𝛽 = sin[𝛼 − (−𝛽)]
= sin 𝛼 cos(−𝛽) − cos 𝛼 sin(−𝛽)
= sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
(Since cos −𝛽 = cos 𝛽 and sin −𝛽 = −sin 𝛽
Therefore, we have the following identity for sin 𝛼 + 𝛽 :
sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
For the identity of tangent of sum of two real numbers, we have
tan 𝛼 + 𝛽 = sin 𝛼+𝛽
= sin 𝛼 cos 𝛽+ cos 𝛼 sin 𝛽
𝑐𝑜𝑠 𝛼+𝛽 cos 𝛼 cos 𝛽− sin 𝛼 sin 𝛽
=
sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
cos 𝛼 cos 𝛽
cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽
cos 𝛼 cos 𝛽
=
tan 𝛼 + tan 𝛽
1 − tan 𝛼 tann 𝛽
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
For the identity of tangent of difference of two real numbers, we
have
tan 𝛼 − 𝛽 = sin 𝛼−𝛽
= sin 𝛼 cos 𝛽− cos 𝛼 sin 𝛽
𝑐𝑜𝑠 𝛼−𝛽 cos 𝛼 cos 𝛽+ sin 𝛼 sin 𝛽
=
sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
cos 𝛼 cos 𝛽
cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽
cos 𝛼 cos 𝛽
tan 𝛼 − tan 𝛽
=
1 + tan 𝛼 tann 𝛽
ľíigo⭲omctíic Idc⭲titics
IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A
SUM OR DIFFERENCE OF TWO REAL NUMBERS
ľíigo⭲omctíic Idc⭲titics
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
1. Find the exact value of cos
Solution:
𝜋
12
.
Rewrite the given angle as a sum or difference of two special
12 12 12
𝜋 4𝜋 3𝜋 𝜋 𝜋
3 4
= − = − .
angles, that is,
Thus,
𝜋
12
cos = cos
𝜋
− 𝜋
3 4 3 4 3 4
= (cos 𝜋
) (cos 𝜋
) + (𝑠𝑖𝑛 𝜋
) (𝑠𝑖𝑛 𝜋
)
=
1
2
2
2
+
3 2
=
2 2 4
2+ 6
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
2. Find the exact value of sin
Solution:
5𝜋
12
.
Rewrite the given angle as a sum of or difference of two
12 12 12
5𝜋 2𝜋 3𝜋 𝜋 𝜋
6 4
= + = + .
special angles, that is,
Thus,
5𝜋
12
sin = sin
𝜋
+ 𝜋
6 4 6 4 6
= (𝑠𝑖𝑛 𝜋
) (cos 𝜋
) + (𝑐𝑜𝑠 𝜋
)(𝑠𝑖𝑛 𝜋
)
=
1
2
2
2
+
3
=
4
2 2+ 6
2 2 4
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
3. Find the exact value of sin(15°).
Solution:
Rewrite the given angle as a sum of or difference of two
special angles, that is, 15° = 45° − 30°.
Thus,
sin 15° = sin 45° − 30° = (𝑠𝑖𝑛 45°) (cos 30°) − (𝑐𝑜𝑠 45°) (𝑠𝑖𝑛 30°)
=
2 3
−
2
2 1
2
=
2 2
6− 2
4
EXAMPLES
4. Find the exact value of sin 75° .
Solution:
Rewrite the given angle as a sum of or difference of two
special angles, that is, 75° = 45° + 30°.
Thus,
sin 75° = sin 45° + 30° = (𝑠𝑖𝑛 45°) (cos 30°) + (𝑐𝑜𝑠 45°) (𝑠𝑖𝑛 30°)
=
2 3
+
2
2 1
2
=
2 2
6+ 2
ľíigo⭲omctíic Idc⭲titics
4
EXAMPLES
5. Find the exact value of tan(105°).
Solution:
Rewrite the given angle as a sum of or difference of two
special angles, that is, 105° = 45° + 60°.
Thus,
tan 105° = tan 45° + 60° =
tan 45° +tan 60°
1−tan 45° tan 60°
=
1+ 3
1− 3
=
1+ 3 1+
1− 3 1+ 3
3
= 1+2 3+3
= 4+2
1−3 −2
3
= −2 − 3
ľíigo⭲omctíic Idc⭲titics
EXAMPLES
+
ľíigo⭲omctíic Idc⭲titics
6. Find the exact value of tan
Solution:
𝜋
12
.
Rewrite the given angle as a sum of or difference of two special
12 12 12
𝜋 4𝜋 3𝜋 𝜋 𝜋
3 4
= − = − .
angles, that is,
Thus,
tan
𝜋
12
= tan −
𝜋 𝜋
3 4
tan −tan
𝜋
𝜋
1+tan tan 𝜋
4
1
1+
3
1
−1 1− 3
3+1
3
= 3 4
= 3
= 3
= 1− 3
1+ 3
=
𝜋
3
1− 3 1− 3
= 1−2 3+3
= 4−2
1+ 3 1− 3 1−3 −2
3
= −2 + 3 = 3 − 2
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
7. Simplify the following expressions using the appropriate identity.
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
Solutions:
For a, we use this identity: 𝑐𝑜𝑠 𝛼 − 𝛽 = (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)
cos 8𝑥 cos 𝑥 + sin 8𝑥 sin 𝑥 = cos 8𝑥 − 𝑥 = cos 7𝑥
For b, we use this identity: sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽
sin 5𝑥 cos 2𝑥 + cos 5𝑥 sin 2𝑥 = sin 5𝑥 + 2𝑥 = sin 7𝑥
For c, we use this identity: 𝑐𝑜𝑠 𝛼 + 𝛽 = (cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽)
sin 4𝑥 sin 6𝑥 − cos 4𝑥 cos 6𝑥 = −(cos 4𝑥 cos 6𝑥 − sin 4𝑥 sin 6𝑥)
= −cos 4𝑥 + 6𝑥 = −𝑐𝑜𝑠 (10𝑥)
EXAMPLES
Solutions:
For d, we use this identity:sin 𝛼 − 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
sin 3𝑥 cos 4𝑥 − cos 3𝑥 sin 4𝑥 = sin 3𝑥 − 4𝑥 = sin −𝑥 = − sin 𝑥
For e, we use this identity:tan 𝛼 + 𝛽 =
tan 𝛼+tan 𝛽
1−tan 𝛼 tan 𝛽
tan 8𝑥+tan 2x = tan 8𝑥 + 2𝑥 = tan(10𝑥)
1−tan 8𝑥 tan 2x
For f, we use this identity:tan 𝛼 − 𝛽 =
tan 𝛼−tan 𝛽
1+tan 𝛼 tan 𝛽
1+tan 4𝑥 tan 5x
tan 4𝑥−tan 5x = tan 4𝑥 − 5𝑥
ľíigo⭲omctíic Idc⭲titics
= tan(−𝑥) = − tan(𝑥)
EXAMPLES
8. (a) Prove that sin
Proof:
𝜋
2
− 𝑥 = cos 𝑥 and (b) Prove that tan
3𝜋
2
+ 𝑥 = −co𝑡 𝑥
(a) sin
𝜋
2
− 𝑥 = sin
𝜋
2
cos 𝑥 + cos
𝜋
2
sin 𝑥 = cos 𝑥
(b)
= − cos 𝑥+0
= − cot 𝑥
0+sin 𝑥
ľíigo⭲omctíic Idc⭲titics
EXAMPLES
ľíigo⭲omctíic Idc⭲titics
9. If tan 𝛼 =
4
3
, 𝛼 terminates in QIII and tan 𝛽 =
4
3
, 𝛽 terminates in QII, find
tan 𝛼 + 𝛽 and the quadrant where 𝛼 + 𝛽 terminates.
Solution:
EXAMPLES
which means that 𝛼 + 𝛽 is either in QI or QIV. Since 𝛼 + 𝛽 =
1
2
, a
positive real number, it follows that 𝛼 + 𝛽 terminates in QI.
ľíigo⭲omctíic Idc⭲titics
REDUCTION IDENTITIES
ľíigo⭲omctíic Idc⭲titics
Now, we will consider some identities which will help us find
values of trigonometric functions of angles greater than 90° or greater
than 360°.
1. cos (90° − 𝑥) = cos 90° cos 𝑥 + sin 90° sin 𝑥 = sin 𝑥 = cos (
𝜋
2
− 𝑥)
𝜋
2
2. sin (90° − 𝑥) = sin 90° cos 𝑥 − cos 90° sin 𝑥 = cos 𝑥 = sin ( − 𝑥)
cos (90°−𝑥)
𝜋
sin 𝑥 2
sin (90°−𝑥) cos 𝑥
3. tan (90° − 𝑥) = = = cot 𝑥 = tan ( − 𝑥)
These are called reduction identities.
REDUCTION IDENTITIES
ľíigo⭲omctíic Idc⭲titics
REDUCTION IDENTITIES Examples
Using only the reduction identities, find the exact values of the
trigonometric function of the given angle:
(a) cos 600°
Solution:
cos 600 ° = cos(630° − 30°) = cos(7(90°) − 30°)
= ± sin 30 °
= − sin 30 °
= − 1
ľíigo⭲omctíic Idc⭲titics
2
REDUCTION IDENTITIES Examples
Using only the reduction identities, find the exact values of the
trigonometric function of the given angle:
(b) sin 330 °
Solution:
sin 330 ° = sin(360° − 30°) = cos(4(90°) − 30°)
= ± sin 30 °
= − sin 30 °
= − 1
ľíigo⭲omctíic Idc⭲titics
2
DOUBLE ANGLE IDENTITIES
The sum and difference identities can be used to derive the
double angle identities. Consider the expression cos 2𝜃. Note that
cos 2𝜃 = cos 𝜃 + 𝜃 . Applying the sum identity, we have
cos 2𝜃 = cos (𝜃 + 𝜃) = cos 𝜃 cos 𝜃 − sin 𝜃 sin 𝜃 = cos2 𝜃 − sin2 𝜃.
Since sin2 𝜃 = 1 − cos2 𝜃 , we can write
cos 2𝜃 = cos2 𝜃 − (1 − cos2 𝜃) = 2cos2 𝜃 − 1.
Also, since cos2 𝜃 = 1 − sin2 𝜃 , we can write
cos 2𝜃 = 1 − sin2 𝜃 − sin2 𝜃 = 1 − 2 sin2 𝜃 .
ľíigo⭲omctíic Idc⭲titics
DOUBLE ANGLE IDENTITIES
ľíigo⭲omctíic Idc⭲titics
Similarly, sin 2𝜃 = sin 𝜃 + 𝜃 . Applying the sum identity, we
have
sin 2𝜃 = sin (𝜃 + 𝜃) = sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 = 2 sin 𝜃 cos 𝜃.
For the tangent function, we have
tan 2𝜃 = tan (𝜃 + 𝜃) =
tan 𝜃+tan 𝜃
1−tan 𝜃tan 𝜃
=
2tan 𝜃
1−tan2𝜃
.
DOUBLE ANGLE IDENTITIES Examples
Find the values of sin 2t, cos 2t and tan 2t if
(a) sin t =
4
5
and 0 < 𝑡 <
1
2
𝜋
ľíigo⭲omctíic Idc⭲titics
DOUBLE ANGLE IDENTITIES Examples
Find the values of sin 2t, cos 2t and tan 2t if
(b) cos t = −
5
13
and
1
2
𝜋 < 𝑡 < 𝜋
ľíigo⭲omctíic Idc⭲titics
DOUBLE ANGLE IDENTITIES Examples
Find the values of sin 2t, cos 2t and tan 2t if
(b) tan t =
8
15
and sin 𝑡 < 0
ľíigo⭲omctíic Idc⭲titics
HALF ANGLE IDENTITIES
ľíigo⭲omctíic Idc⭲titics
The double angle identities cos 2𝜃 = 2cos2 𝜃 − 1 and cos 2𝜃 =
1 − 2 sin2 𝜃 can be manipulated to give rise to the half angle
identities. Solving for cos 𝜃 and sin 𝜃 from these equations will yield
the equations
cos2 𝜃 = 1+cos 2𝜃
sin2 𝜃 = 1−cos 2𝜃
2 2
and .
Hence, 𝑐𝑜𝑠 𝜃 = ±
1+cos 2𝜃
2
and 𝑠𝑖𝑛 𝜃 = ±
1−cos 2𝜃
2
HALF ANGLE IDENTITIES
ľíigo⭲omctíic Idc⭲titics
Note that for these equations, the angle on the left-hand side is
half of the angle of the right-hand side. Hence, if we let 𝛼 = 2𝜃, then
𝜃 = 𝛼
. Using this value of 𝜃, we have the following half-angle or half-
2
number identities:
𝑐𝑜𝑠
𝛼
2
= ±
1+cos𝛼
2
, 𝑠𝑖𝑛
𝛼
2
= ±
1−cos𝛼
2
and 𝑡𝑎𝑛
𝛼
2
= ±
1−cos𝛼
1+cos𝛼
HALF ANGLE IDENTITIES
ľíigo⭲omctíic Idc⭲titics
Also, for tan
𝛼
2
, we can write it in another form as follows:
or
HALF ANGLE IDENTITIES Examples
Use the half-measure identities to find the exact value of the
following:
(a) sin (b) cos (c) tan
𝜋 7𝜋 𝜋
8 8 12
(d) cos 15 ° (e) tan 22.5 °
ľíigo⭲omctíic Idc⭲titics
HALF ANGLE IDENTITIES Examples
Use the half-measure identities to find the exact value of the
following:
(a) sin (b) cos (c) tan
𝜋 7𝜋 𝜋
8 8 12
(d) cos 15 ° (e) tan 22.5 °
ľíigo⭲omctíic Idc⭲titics
HALF ANGLE IDENTITIES Examples
Use the half-measure identities to find the exact value of the
following:
(a) sin (b) cos (c) tan
𝜋 7𝜋 𝜋
8 8 12
(d) cos 15 ° (e) tan 22.5 °
ľíigo⭲omctíic Idc⭲titics
HALF ANGLE IDENTITIES Examples
Use the half-measure identities to find the exact value of the
following:
(a) sin (b) cos (c) tan
𝜋 7𝜋 𝜋
8 8 12
(d) cos 15 ° (e) tan 22.5 °
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
The product identities can be derived using the identities
involving the sine and cosine of a sum or difference of two numbers.
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
The sum and product identities can be derived using the
identities involving the sine and cosine of a sum or difference of two
numbers.
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
The sum and product identities can be derived using the
identities involving the sine and cosine of a sum or difference of two
numbers.
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
The sum and product identities can be derived using the
identities involving the sine and cosine of a sum or difference of two
numbers.
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES Examples
Express the following products as a sum.
(a) cos 5x cos 2x
(b) sin 6x sin 2x
(c) sin 5x cos 3x
(d) cos 5x sin 7x
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
The sum identities can be derived using the identities involving
the sine and cosine of a sum or difference of two numbers. Consider
equations (5) to (8).
If we let 𝛼 + 𝛽 = 𝑥 and 𝛼 − 𝛽 = 𝑦, and solve for 𝛼 and 𝛽, we get the
equations
𝛼 = 𝑥+𝑦
and 𝛽 = 𝑥−𝑦
.
2 2
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES
Hence, we have the following sum identities:
ľíigo⭲omctíic Idc⭲titics
PRODUCT IDENTITIES Examples
Express the given sum or difference as a product:
(a) cos 4x + cos 2x
(b) cos 5x − cos 3x
(c) sin 6x + sin 2x
(d) sin 3x − sin x
ľíigo⭲omctíic Idc⭲titics
PROVING A GIVEN IDENTITY
ľíigo⭲omctíic Idc⭲titics
An identity is any equation which is true for all replacement
values of the argument of the circular functions. To prove an identity
means to make the left-hand and right-hand members of the equation
identical. This can be done by manipulating one side and transforming
it into an expression found on the other side of the equation. In
instances, when the two sides seem to be equally complicated, both
sides can be manipulated at the same time and reduced to simpler
expressions that are equal.
There is no single method that will help us establish identities.
We have to practice a lot for us to acquire the skill.
PROVING A GIVEN IDENTITY Examples
ľíigo⭲omctíic Idc⭲titics
PROVING A GIVEN IDENTITY Examples
ľíigo⭲omctíic Idc⭲titics
PROVING A GIVEN IDENTITY Examples
ľíigo⭲omctíic Idc⭲titics
UNIT 6: Inverse
Trigonometric
Functions
LEARNING OBJECTIVES
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
1. Define inverse circular relations;
2. Define inverse circular functions;
3. State the domain and range of inverse circular functions;
4. Evaluate values of inverse circular functions; and
5. Solve related problems involving inverse circular
functions.
INVERSE SINE FUNCTION
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
In the previous lessons, we were concerned about the function
values of the six trigonometric functions. The trigonometric function
of an angle or a real number, if it exists, is unique. Thus, if x is any
angle in standard position or if x is any real number, then
INVERSE SINE FUNCTION
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
Now, suppose y is any real number in the closed interval [-1, 1].
We want to find the value of x so that sin x = y. This value of x is
called the inverse sine value of y or arcsin(y). We can raise a similar
problem involving the cosine and the tangent functions.
INVERSE SINE FUNCTION
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
In this definition, it is important to note that the values of the
arcsine function are restricted to the numbers in the closed interval
1 1
2 2
− 𝜋, 𝜋 or angles in the closed interval [−90°, 90°]. These
intervals define angles whose terminal sides lie in either QI or QIV.
INVERSE SINE FUNCTION Examples
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
Evaluate the following expressions:
(a) sin−1(1)
1
2
3
(b)sin−1
(c)sin−1 −
(d)sin−1 −
2
2
2
INVERSE SINE FUNCTION Examples
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s
Solution:
INVERSE SINE FUNCTION Examples
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G«
Solution:
INVERSE COSINE FUNCTION
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G4
INVERSE COSINE FUNCTION Examples
Evaluate the following expressions:
(a) cos−1(1)
(b)cos−1
(c)cos−1
(d)cos−1
2
2
− 1
2
3
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G5
2
INVERSE COSINE FUNCTION Examples
Solution:
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc GG
INVERSE COSINE FUNCTION Examples
Solution:
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G7
INVERSE TANGENT FUNCTION
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G®
INVERSE TANGENT FUNCTION Examples
Evaluate the following expressions:
(a) tan−1(1)
− 1
3
(b)tan−1 3
(c)tan−1
(d)tan−1 −1
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G9
INVERSE TANGENT FUNCTION Examples
Solution:
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 70
INVERSE TANGENT FUNCTION Examples
Solution:
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 71
INVERSE TANGENT FUNCTION Examples
Solution:
I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 72
UNIT 7:
TRIGONOMETRIC
EQUATIONS
11/17/21
LEARNING OBJECTIVES
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 7«
1. Solve trigonometric equations involving linear trigonometric
expressions;
2. Solve trigonometric equations involving multiple angles; and
3. Solve trigonometric equations involving quadratic
trigonometric expressions.
CONDITIONAL TRIGONOMETRIC EQUATIONS
We learned about the different identities which are equations
satisfied by all permissible values of real numbers. Examples of these are
the Pythagorean Identities such as sin2 𝑥 + cos2 𝑥 = 1;
1 + tan2 𝑥 = sec2 𝑥; and 1 + 𝑐𝑜𝑡2 𝑥 = csc2 𝑥. In this section, we will
consider trigonometric equations which are satisfied only by some real
numbers. We call these equations conditional trigonometric equations.
Since the sine and cosine functions are periodic, if we can solve
equations involving these functions in the interval [0, 2 𝜋], we can make
use of the period of the function to obtain all solutions. We define the
solutions in the interval [0, 2 𝜋] as fundamental solutions of the
equation.
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 74
CONDITIONAL TRIGONOMETRIC EQUATIONS
We now give a series of examples to illustrate how to solve
other conditional trigonometric equations. The methods for solving
conditional trigonometric equations are the same as in ordinary
algebraic equations.
In the process of solving the equation, we use the same
principles of equality to obtain an equivalent equation. These
principles are the addition and multiplication principles of equality
which translate to the usual transportation rules for solving
equations.
Knowledge of the different identities will also be useful in
obtaining equivalent equations.
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 75
Example
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 7G
Solve the following equationns for 0 ≤ 𝑥 ≤
1
2
𝜋
(a) sin 𝑥 − 1 = 0
(b) sin 𝑥 cos 𝑥 = 0
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 77
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 7®
QUADRATIC TRIGONOMETRIC EQUATIONS
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 79
We now consider quadratic trigonometric equations. To solve
such an equation, we can use the square root method (when there is
no linear trigonometric term), or method of factoring or by using the
quadratic formula.
The following examples illustrate these ideas.
Example
Find the solution set of the given equation if t belongs to the half
open interval [0, 2𝜋).
(a) 4sin2 𝑡 − 1 = 0
(b) sec2 𝑡 − 2 tan 𝑡 = 0
(c) 2cos2 𝑡 + 3 cos 𝑡 = 0
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®0
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®1
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®2
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®«
Trigonometric Equations Involving Multiple
Angles Example
Find the fundamental solutions of the following equations.
(a) 𝑠𝑖𝑛 2𝑥 = 0
1
(b) 𝑐𝑜𝑠 𝑥 = −
1
2
(c) tan
2
2 1
2
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®4
𝑥 = 3
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®5
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®G
Solution
ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®7

More Related Content

Similar to SodaPDF-converted-My-Report-on-Trigonometry.pptx

Trigonometry for class xi
Trigonometry for class xiTrigonometry for class xi
Trigonometry for class xiindu psthakur
 
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answersJashey Dee
 
class 10 chapter 1- real numbers
class 10 chapter 1- real numbersclass 10 chapter 1- real numbers
class 10 chapter 1- real numberskaran saini
 
Matematika - Persamaan Trigonometri Sederhana
Matematika - Persamaan Trigonometri SederhanaMatematika - Persamaan Trigonometri Sederhana
Matematika - Persamaan Trigonometri SederhanaRamadhani Sardiman
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...inventionjournals
 
三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)Masahiro Okano
 
MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)Dini H Nupus
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxTejedaGarcaAngelBala
 
Trigonometry[1]
Trigonometry[1]Trigonometry[1]
Trigonometry[1]daisyrock
 
Trigonometry part 1 and 2
Trigonometry part 1 and 2Trigonometry part 1 and 2
Trigonometry part 1 and 2swathiLakshmi17
 
MATHEMATICS XI TEST PAPER SOL.pdf
MATHEMATICS XI TEST PAPER SOL.pdfMATHEMATICS XI TEST PAPER SOL.pdf
MATHEMATICS XI TEST PAPER SOL.pdfAshwani Jha
 

Similar to SodaPDF-converted-My-Report-on-Trigonometry.pptx (20)

Unidad 2 paso 3
Unidad 2   paso 3Unidad 2   paso 3
Unidad 2 paso 3
 
Trigonometry for class xi
Trigonometry for class xiTrigonometry for class xi
Trigonometry for class xi
 
E content on algebra & trignomentry
E content on algebra & trignomentryE content on algebra & trignomentry
E content on algebra & trignomentry
 
Rmo 2010
Rmo 2010Rmo 2010
Rmo 2010
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answers
 
Maths project
Maths projectMaths project
Maths project
 
class 10 chapter 1- real numbers
class 10 chapter 1- real numbersclass 10 chapter 1- real numbers
class 10 chapter 1- real numbers
 
Maths project
Maths projectMaths project
Maths project
 
Maths project
Maths projectMaths project
Maths project
 
Matematika - Persamaan Trigonometri Sederhana
Matematika - Persamaan Trigonometri SederhanaMatematika - Persamaan Trigonometri Sederhana
Matematika - Persamaan Trigonometri Sederhana
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)
 
MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)MATERI TRIGONOMETRI (kelas X)
MATERI TRIGONOMETRI (kelas X)
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
 
Trigonometry[1]
Trigonometry[1]Trigonometry[1]
Trigonometry[1]
 
Trigonometry part 1 and 2
Trigonometry part 1 and 2Trigonometry part 1 and 2
Trigonometry part 1 and 2
 
MATHEMATICS XI TEST PAPER SOL.pdf
MATHEMATICS XI TEST PAPER SOL.pdfMATHEMATICS XI TEST PAPER SOL.pdf
MATHEMATICS XI TEST PAPER SOL.pdf
 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 

SodaPDF-converted-My-Report-on-Trigonometry.pptx

  • 2. LEARNING OBJECTIVES 1. Derive the identities for cosine, sine, and tangent of a sum or difference of two real numbers or angles; 2. Derive double and half number identities; 3. Derive sum and product identities; 4. Solve problems involving identities; 5. Solve problems in reduction identities; and 6. Prove a given identity. ľíigo⭲omctíic Idc⭲titics
  • 3. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS The first identity we shall establish involves cos(𝛼 − 𝛽) which is the basis of the rest of the identities discussed in this unit. Given two points P1(𝑥1, 𝑦1) and P2(𝑥2, 𝑦2) in the rectangular coordinate system, the distance between these points is given by 2 + 𝑃1𝑃2 = 𝑥1 − 𝑥2 𝑦1 − 𝑦2 2 𝑃1𝑃2 = 𝑥2 − 𝑥1 2 + or 𝑦2 − 𝑦1 ľíigo⭲omctíic Idc⭲titics 2
  • 4. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics
  • 5. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS Consider the unit circle and the arcs of the unit circle of lengths 𝛼 and 𝛽 starting from point 𝐴(1,0) as shown in Figure 5.1a. The terminal point determined by the arc length 𝛼 will be P1 𝛼 = 𝑥1, 𝑦1 = (𝑐𝑜𝑠𝛼, sin𝛼) And the terminal point determined by 𝛽 will be P2 𝛽 = 𝑥2, 𝑦2 = (𝑐𝑜𝑠𝛽, sin𝛽) ľíigo⭲omctíic Idc⭲titics
  • 6. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS The distance between the terminal points can be obtained using the distance formula where the coordinate of the points are expressed in terms of the real numbers 𝛼 and 𝛽 . Hence, we have ľíigo⭲omctíic Idc⭲titics
  • 7. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics If we subtract the arc length 𝛼 from the arc length 𝛽, we get the arc length (𝛽- 𝛼). Next, we lay an arc starting from the point 𝐴(1,0) whose length is (𝛽- 𝛼) as shown in Figure 5.2. The endpoint of this arc will therefore have coordinates [cos(𝛽- 𝛼), sin(𝛽- 𝛼)].
  • 8. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics The length of the chord 𝑃𝐴 determined by the arc length (𝛽- 𝛼) will be Since equal arcs determine equal chords, we have 𝑃𝐴 = 𝑃1𝑃2 . It follows that 2 − 2𝑐𝑜𝑠(𝛼 − 𝛽) = 2 − 2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽 .
  • 9. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics Squaring both sides of the previous equation, we have 2 − 2𝑐𝑜𝑠 𝛼 − 𝛽 −2𝑐𝑜𝑠 𝛼 − 𝛽 −2𝑐𝑜𝑠 𝛼 − 𝛽 𝑐𝑜𝑠 𝛼 − 𝛽 = 2 − 2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽 = −2 cos 𝛼 cos 𝛽 − 2 sin 𝛼 sin 𝛽 = −2(cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽) = (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽) Hence, the identity for 𝑐𝑜𝑠 𝛼 − 𝛽 is given by 𝑐𝑜𝑠 𝛼 − 𝛽 = (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽)
  • 10. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS To establish the identity for 𝑐𝑜𝑠 𝛼 + 𝛽 , we note that 𝑐𝑜𝑠 𝛼 + 𝛽 = cos[𝛼 − (−𝛽)] = cos 𝛼 cos(−𝛽) + sin 𝛼 sin(−𝛽) Note that, cos −𝛽 = cos 𝛽 and sin(−𝛽) = − sin 𝛽, thus = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 Hence, the identity for 𝑐𝑜𝑠 𝛼 + 𝛽 is given by 𝑐𝑜𝑠 𝛼 + 𝛽 = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 ľíigo⭲omctíic Idc⭲titics
  • 11. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS To derive the identity for sin 𝛼 − 𝛽 , we note that cos( 𝜋 2 − 𝛼) = cos 𝜋 2 cos 𝛼 + sin 𝜋 2 sin 𝛼 Hence, cos[ 𝜋 2 sin 𝛼 − 𝛽 = cos[ = 0(cos 𝛼) +1(sin 𝛼) = sin 𝛼 − ( 𝛼 − 𝛽)] =sin 𝛼 − 𝛽 or 𝜋 2 ľíigo⭲omctíic Idc⭲titics − ( 𝛼 − 𝛽)]
  • 12. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS Expanding the right hand side we have, 𝜋 2 sin 𝛼 − 𝛽 = cos[ − ( 𝛼 − 𝛽)] 𝜋 2 − 𝛼) + 𝛽] = cos( = cos[( 𝜋 2 − 𝛼) ⋅ cos 𝛽 − sin( 𝜋 2 − 𝛼) ⋅ sin 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 Therefore, we have the following identity for sin 𝛼 − 𝛽 : sin 𝛼 − 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 ľíigo⭲omctíic Idc⭲titics
  • 13. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS as follows, Finally, we establish the identity for sin 𝛼 + 𝛽 sin 𝛼 + 𝛽 = sin[𝛼 − (−𝛽)] = sin 𝛼 cos(−𝛽) − cos 𝛼 sin(−𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 (Since cos −𝛽 = cos 𝛽 and sin −𝛽 = −sin 𝛽 Therefore, we have the following identity for sin 𝛼 + 𝛽 : sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 ľíigo⭲omctíic Idc⭲titics
  • 14. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics For the identity of tangent of sum of two real numbers, we have tan 𝛼 + 𝛽 = sin 𝛼+𝛽 = sin 𝛼 cos 𝛽+ cos 𝛼 sin 𝛽 𝑐𝑜𝑠 𝛼+𝛽 cos 𝛼 cos 𝛽− sin 𝛼 sin 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 cos 𝛼 cos 𝛽 cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 cos 𝛼 cos 𝛽 = tan 𝛼 + tan 𝛽 1 − tan 𝛼 tann 𝛽
  • 15. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS For the identity of tangent of difference of two real numbers, we have tan 𝛼 − 𝛽 = sin 𝛼−𝛽 = sin 𝛼 cos 𝛽− cos 𝛼 sin 𝛽 𝑐𝑜𝑠 𝛼−𝛽 cos 𝛼 cos 𝛽+ sin 𝛼 sin 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 cos 𝛼 cos 𝛽 cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 cos 𝛼 cos 𝛽 tan 𝛼 − tan 𝛽 = 1 + tan 𝛼 tann 𝛽 ľíigo⭲omctíic Idc⭲titics
  • 16. IDENTITIES INVOLVING COSINE, SINE, AND TANGENT OF A SUM OR DIFFERENCE OF TWO REAL NUMBERS ľíigo⭲omctíic Idc⭲titics
  • 17. EXAMPLES ľíigo⭲omctíic Idc⭲titics 1. Find the exact value of cos Solution: 𝜋 12 . Rewrite the given angle as a sum or difference of two special 12 12 12 𝜋 4𝜋 3𝜋 𝜋 𝜋 3 4 = − = − . angles, that is, Thus, 𝜋 12 cos = cos 𝜋 − 𝜋 3 4 3 4 3 4 = (cos 𝜋 ) (cos 𝜋 ) + (𝑠𝑖𝑛 𝜋 ) (𝑠𝑖𝑛 𝜋 ) = 1 2 2 2 + 3 2 = 2 2 4 2+ 6
  • 18. EXAMPLES ľíigo⭲omctíic Idc⭲titics 2. Find the exact value of sin Solution: 5𝜋 12 . Rewrite the given angle as a sum of or difference of two 12 12 12 5𝜋 2𝜋 3𝜋 𝜋 𝜋 6 4 = + = + . special angles, that is, Thus, 5𝜋 12 sin = sin 𝜋 + 𝜋 6 4 6 4 6 = (𝑠𝑖𝑛 𝜋 ) (cos 𝜋 ) + (𝑐𝑜𝑠 𝜋 )(𝑠𝑖𝑛 𝜋 ) = 1 2 2 2 + 3 = 4 2 2+ 6 2 2 4
  • 19. EXAMPLES ľíigo⭲omctíic Idc⭲titics 3. Find the exact value of sin(15°). Solution: Rewrite the given angle as a sum of or difference of two special angles, that is, 15° = 45° − 30°. Thus, sin 15° = sin 45° − 30° = (𝑠𝑖𝑛 45°) (cos 30°) − (𝑐𝑜𝑠 45°) (𝑠𝑖𝑛 30°) = 2 3 − 2 2 1 2 = 2 2 6− 2 4
  • 20. EXAMPLES 4. Find the exact value of sin 75° . Solution: Rewrite the given angle as a sum of or difference of two special angles, that is, 75° = 45° + 30°. Thus, sin 75° = sin 45° + 30° = (𝑠𝑖𝑛 45°) (cos 30°) + (𝑐𝑜𝑠 45°) (𝑠𝑖𝑛 30°) = 2 3 + 2 2 1 2 = 2 2 6+ 2 ľíigo⭲omctíic Idc⭲titics 4
  • 21. EXAMPLES 5. Find the exact value of tan(105°). Solution: Rewrite the given angle as a sum of or difference of two special angles, that is, 105° = 45° + 60°. Thus, tan 105° = tan 45° + 60° = tan 45° +tan 60° 1−tan 45° tan 60° = 1+ 3 1− 3 = 1+ 3 1+ 1− 3 1+ 3 3 = 1+2 3+3 = 4+2 1−3 −2 3 = −2 − 3 ľíigo⭲omctíic Idc⭲titics
  • 22. EXAMPLES + ľíigo⭲omctíic Idc⭲titics 6. Find the exact value of tan Solution: 𝜋 12 . Rewrite the given angle as a sum of or difference of two special 12 12 12 𝜋 4𝜋 3𝜋 𝜋 𝜋 3 4 = − = − . angles, that is, Thus, tan 𝜋 12 = tan − 𝜋 𝜋 3 4 tan −tan 𝜋 𝜋 1+tan tan 𝜋 4 1 1+ 3 1 −1 1− 3 3+1 3 = 3 4 = 3 = 3 = 1− 3 1+ 3 = 𝜋 3 1− 3 1− 3 = 1−2 3+3 = 4−2 1+ 3 1− 3 1−3 −2 3 = −2 + 3 = 3 − 2
  • 23. EXAMPLES ľíigo⭲omctíic Idc⭲titics 7. Simplify the following expressions using the appropriate identity.
  • 24. EXAMPLES ľíigo⭲omctíic Idc⭲titics Solutions: For a, we use this identity: 𝑐𝑜𝑠 𝛼 − 𝛽 = (cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽) cos 8𝑥 cos 𝑥 + sin 8𝑥 sin 𝑥 = cos 8𝑥 − 𝑥 = cos 7𝑥 For b, we use this identity: sin 𝛼 + 𝛽 = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 sin 5𝑥 cos 2𝑥 + cos 5𝑥 sin 2𝑥 = sin 5𝑥 + 2𝑥 = sin 7𝑥 For c, we use this identity: 𝑐𝑜𝑠 𝛼 + 𝛽 = (cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽) sin 4𝑥 sin 6𝑥 − cos 4𝑥 cos 6𝑥 = −(cos 4𝑥 cos 6𝑥 − sin 4𝑥 sin 6𝑥) = −cos 4𝑥 + 6𝑥 = −𝑐𝑜𝑠 (10𝑥)
  • 25. EXAMPLES Solutions: For d, we use this identity:sin 𝛼 − 𝛽 = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 sin 3𝑥 cos 4𝑥 − cos 3𝑥 sin 4𝑥 = sin 3𝑥 − 4𝑥 = sin −𝑥 = − sin 𝑥 For e, we use this identity:tan 𝛼 + 𝛽 = tan 𝛼+tan 𝛽 1−tan 𝛼 tan 𝛽 tan 8𝑥+tan 2x = tan 8𝑥 + 2𝑥 = tan(10𝑥) 1−tan 8𝑥 tan 2x For f, we use this identity:tan 𝛼 − 𝛽 = tan 𝛼−tan 𝛽 1+tan 𝛼 tan 𝛽 1+tan 4𝑥 tan 5x tan 4𝑥−tan 5x = tan 4𝑥 − 5𝑥 ľíigo⭲omctíic Idc⭲titics = tan(−𝑥) = − tan(𝑥)
  • 26. EXAMPLES 8. (a) Prove that sin Proof: 𝜋 2 − 𝑥 = cos 𝑥 and (b) Prove that tan 3𝜋 2 + 𝑥 = −co𝑡 𝑥 (a) sin 𝜋 2 − 𝑥 = sin 𝜋 2 cos 𝑥 + cos 𝜋 2 sin 𝑥 = cos 𝑥 (b) = − cos 𝑥+0 = − cot 𝑥 0+sin 𝑥 ľíigo⭲omctíic Idc⭲titics
  • 27. EXAMPLES ľíigo⭲omctíic Idc⭲titics 9. If tan 𝛼 = 4 3 , 𝛼 terminates in QIII and tan 𝛽 = 4 3 , 𝛽 terminates in QII, find tan 𝛼 + 𝛽 and the quadrant where 𝛼 + 𝛽 terminates. Solution:
  • 28. EXAMPLES which means that 𝛼 + 𝛽 is either in QI or QIV. Since 𝛼 + 𝛽 = 1 2 , a positive real number, it follows that 𝛼 + 𝛽 terminates in QI. ľíigo⭲omctíic Idc⭲titics
  • 29. REDUCTION IDENTITIES ľíigo⭲omctíic Idc⭲titics Now, we will consider some identities which will help us find values of trigonometric functions of angles greater than 90° or greater than 360°. 1. cos (90° − 𝑥) = cos 90° cos 𝑥 + sin 90° sin 𝑥 = sin 𝑥 = cos ( 𝜋 2 − 𝑥) 𝜋 2 2. sin (90° − 𝑥) = sin 90° cos 𝑥 − cos 90° sin 𝑥 = cos 𝑥 = sin ( − 𝑥) cos (90°−𝑥) 𝜋 sin 𝑥 2 sin (90°−𝑥) cos 𝑥 3. tan (90° − 𝑥) = = = cot 𝑥 = tan ( − 𝑥) These are called reduction identities.
  • 31. REDUCTION IDENTITIES Examples Using only the reduction identities, find the exact values of the trigonometric function of the given angle: (a) cos 600° Solution: cos 600 ° = cos(630° − 30°) = cos(7(90°) − 30°) = ± sin 30 ° = − sin 30 ° = − 1 ľíigo⭲omctíic Idc⭲titics 2
  • 32. REDUCTION IDENTITIES Examples Using only the reduction identities, find the exact values of the trigonometric function of the given angle: (b) sin 330 ° Solution: sin 330 ° = sin(360° − 30°) = cos(4(90°) − 30°) = ± sin 30 ° = − sin 30 ° = − 1 ľíigo⭲omctíic Idc⭲titics 2
  • 33. DOUBLE ANGLE IDENTITIES The sum and difference identities can be used to derive the double angle identities. Consider the expression cos 2𝜃. Note that cos 2𝜃 = cos 𝜃 + 𝜃 . Applying the sum identity, we have cos 2𝜃 = cos (𝜃 + 𝜃) = cos 𝜃 cos 𝜃 − sin 𝜃 sin 𝜃 = cos2 𝜃 − sin2 𝜃. Since sin2 𝜃 = 1 − cos2 𝜃 , we can write cos 2𝜃 = cos2 𝜃 − (1 − cos2 𝜃) = 2cos2 𝜃 − 1. Also, since cos2 𝜃 = 1 − sin2 𝜃 , we can write cos 2𝜃 = 1 − sin2 𝜃 − sin2 𝜃 = 1 − 2 sin2 𝜃 . ľíigo⭲omctíic Idc⭲titics
  • 34. DOUBLE ANGLE IDENTITIES ľíigo⭲omctíic Idc⭲titics Similarly, sin 2𝜃 = sin 𝜃 + 𝜃 . Applying the sum identity, we have sin 2𝜃 = sin (𝜃 + 𝜃) = sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 = 2 sin 𝜃 cos 𝜃. For the tangent function, we have tan 2𝜃 = tan (𝜃 + 𝜃) = tan 𝜃+tan 𝜃 1−tan 𝜃tan 𝜃 = 2tan 𝜃 1−tan2𝜃 .
  • 35. DOUBLE ANGLE IDENTITIES Examples Find the values of sin 2t, cos 2t and tan 2t if (a) sin t = 4 5 and 0 < 𝑡 < 1 2 𝜋 ľíigo⭲omctíic Idc⭲titics
  • 36. DOUBLE ANGLE IDENTITIES Examples Find the values of sin 2t, cos 2t and tan 2t if (b) cos t = − 5 13 and 1 2 𝜋 < 𝑡 < 𝜋 ľíigo⭲omctíic Idc⭲titics
  • 37. DOUBLE ANGLE IDENTITIES Examples Find the values of sin 2t, cos 2t and tan 2t if (b) tan t = 8 15 and sin 𝑡 < 0 ľíigo⭲omctíic Idc⭲titics
  • 38. HALF ANGLE IDENTITIES ľíigo⭲omctíic Idc⭲titics The double angle identities cos 2𝜃 = 2cos2 𝜃 − 1 and cos 2𝜃 = 1 − 2 sin2 𝜃 can be manipulated to give rise to the half angle identities. Solving for cos 𝜃 and sin 𝜃 from these equations will yield the equations cos2 𝜃 = 1+cos 2𝜃 sin2 𝜃 = 1−cos 2𝜃 2 2 and . Hence, 𝑐𝑜𝑠 𝜃 = ± 1+cos 2𝜃 2 and 𝑠𝑖𝑛 𝜃 = ± 1−cos 2𝜃 2
  • 39. HALF ANGLE IDENTITIES ľíigo⭲omctíic Idc⭲titics Note that for these equations, the angle on the left-hand side is half of the angle of the right-hand side. Hence, if we let 𝛼 = 2𝜃, then 𝜃 = 𝛼 . Using this value of 𝜃, we have the following half-angle or half- 2 number identities: 𝑐𝑜𝑠 𝛼 2 = ± 1+cos𝛼 2 , 𝑠𝑖𝑛 𝛼 2 = ± 1−cos𝛼 2 and 𝑡𝑎𝑛 𝛼 2 = ± 1−cos𝛼 1+cos𝛼
  • 40. HALF ANGLE IDENTITIES ľíigo⭲omctíic Idc⭲titics Also, for tan 𝛼 2 , we can write it in another form as follows: or
  • 41. HALF ANGLE IDENTITIES Examples Use the half-measure identities to find the exact value of the following: (a) sin (b) cos (c) tan 𝜋 7𝜋 𝜋 8 8 12 (d) cos 15 ° (e) tan 22.5 ° ľíigo⭲omctíic Idc⭲titics
  • 42. HALF ANGLE IDENTITIES Examples Use the half-measure identities to find the exact value of the following: (a) sin (b) cos (c) tan 𝜋 7𝜋 𝜋 8 8 12 (d) cos 15 ° (e) tan 22.5 ° ľíigo⭲omctíic Idc⭲titics
  • 43. HALF ANGLE IDENTITIES Examples Use the half-measure identities to find the exact value of the following: (a) sin (b) cos (c) tan 𝜋 7𝜋 𝜋 8 8 12 (d) cos 15 ° (e) tan 22.5 ° ľíigo⭲omctíic Idc⭲titics
  • 44. HALF ANGLE IDENTITIES Examples Use the half-measure identities to find the exact value of the following: (a) sin (b) cos (c) tan 𝜋 7𝜋 𝜋 8 8 12 (d) cos 15 ° (e) tan 22.5 ° ľíigo⭲omctíic Idc⭲titics
  • 45. PRODUCT IDENTITIES The product identities can be derived using the identities involving the sine and cosine of a sum or difference of two numbers. ľíigo⭲omctíic Idc⭲titics
  • 46. PRODUCT IDENTITIES The sum and product identities can be derived using the identities involving the sine and cosine of a sum or difference of two numbers. ľíigo⭲omctíic Idc⭲titics
  • 47. PRODUCT IDENTITIES The sum and product identities can be derived using the identities involving the sine and cosine of a sum or difference of two numbers. ľíigo⭲omctíic Idc⭲titics
  • 48. PRODUCT IDENTITIES The sum and product identities can be derived using the identities involving the sine and cosine of a sum or difference of two numbers. ľíigo⭲omctíic Idc⭲titics
  • 50. PRODUCT IDENTITIES Examples Express the following products as a sum. (a) cos 5x cos 2x (b) sin 6x sin 2x (c) sin 5x cos 3x (d) cos 5x sin 7x ľíigo⭲omctíic Idc⭲titics
  • 51. PRODUCT IDENTITIES The sum identities can be derived using the identities involving the sine and cosine of a sum or difference of two numbers. Consider equations (5) to (8). If we let 𝛼 + 𝛽 = 𝑥 and 𝛼 − 𝛽 = 𝑦, and solve for 𝛼 and 𝛽, we get the equations 𝛼 = 𝑥+𝑦 and 𝛽 = 𝑥−𝑦 . 2 2 ľíigo⭲omctíic Idc⭲titics
  • 52. PRODUCT IDENTITIES Hence, we have the following sum identities: ľíigo⭲omctíic Idc⭲titics
  • 53. PRODUCT IDENTITIES Examples Express the given sum or difference as a product: (a) cos 4x + cos 2x (b) cos 5x − cos 3x (c) sin 6x + sin 2x (d) sin 3x − sin x ľíigo⭲omctíic Idc⭲titics
  • 54. PROVING A GIVEN IDENTITY ľíigo⭲omctíic Idc⭲titics An identity is any equation which is true for all replacement values of the argument of the circular functions. To prove an identity means to make the left-hand and right-hand members of the equation identical. This can be done by manipulating one side and transforming it into an expression found on the other side of the equation. In instances, when the two sides seem to be equally complicated, both sides can be manipulated at the same time and reduced to simpler expressions that are equal. There is no single method that will help us establish identities. We have to practice a lot for us to acquire the skill.
  • 55. PROVING A GIVEN IDENTITY Examples ľíigo⭲omctíic Idc⭲titics
  • 56. PROVING A GIVEN IDENTITY Examples ľíigo⭲omctíic Idc⭲titics
  • 57. PROVING A GIVEN IDENTITY Examples ľíigo⭲omctíic Idc⭲titics
  • 59. LEARNING OBJECTIVES I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s 1. Define inverse circular relations; 2. Define inverse circular functions; 3. State the domain and range of inverse circular functions; 4. Evaluate values of inverse circular functions; and 5. Solve related problems involving inverse circular functions.
  • 60. INVERSE SINE FUNCTION I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s In the previous lessons, we were concerned about the function values of the six trigonometric functions. The trigonometric function of an angle or a real number, if it exists, is unique. Thus, if x is any angle in standard position or if x is any real number, then
  • 61. INVERSE SINE FUNCTION I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Now, suppose y is any real number in the closed interval [-1, 1]. We want to find the value of x so that sin x = y. This value of x is called the inverse sine value of y or arcsin(y). We can raise a similar problem involving the cosine and the tangent functions.
  • 62. INVERSE SINE FUNCTION I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s In this definition, it is important to note that the values of the arcsine function are restricted to the numbers in the closed interval 1 1 2 2 − 𝜋, 𝜋 or angles in the closed interval [−90°, 90°]. These intervals define angles whose terminal sides lie in either QI or QIV.
  • 63. INVERSE SINE FUNCTION Examples I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Evaluate the following expressions: (a) sin−1(1) 1 2 3 (b)sin−1 (c)sin−1 − (d)sin−1 − 2 2 2
  • 64. INVERSE SINE FUNCTION Examples I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Solution:
  • 65. INVERSE SINE FUNCTION Examples I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G« Solution:
  • 66. INVERSE COSINE FUNCTION I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G4
  • 67. INVERSE COSINE FUNCTION Examples Evaluate the following expressions: (a) cos−1(1) (b)cos−1 (c)cos−1 (d)cos−1 2 2 − 1 2 3 I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G5 2
  • 68. INVERSE COSINE FUNCTION Examples Solution: I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc GG
  • 69. INVERSE COSINE FUNCTION Examples Solution: I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G7
  • 70. INVERSE TANGENT FUNCTION I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G®
  • 71. INVERSE TANGENT FUNCTION Examples Evaluate the following expressions: (a) tan−1(1) − 1 3 (b)tan−1 3 (c)tan−1 (d)tan−1 −1 I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc G9
  • 72. INVERSE TANGENT FUNCTION Examples Solution: I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 70
  • 73. INVERSE TANGENT FUNCTION Examples Solution: I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 71
  • 74. INVERSE TANGENT FUNCTION Examples Solution: I⭲:císc ľíigo⭲omctíic Ïu⭲ctio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 72
  • 76. LEARNING OBJECTIVES ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 7« 1. Solve trigonometric equations involving linear trigonometric expressions; 2. Solve trigonometric equations involving multiple angles; and 3. Solve trigonometric equations involving quadratic trigonometric expressions.
  • 77. CONDITIONAL TRIGONOMETRIC EQUATIONS We learned about the different identities which are equations satisfied by all permissible values of real numbers. Examples of these are the Pythagorean Identities such as sin2 𝑥 + cos2 𝑥 = 1; 1 + tan2 𝑥 = sec2 𝑥; and 1 + 𝑐𝑜𝑡2 𝑥 = csc2 𝑥. In this section, we will consider trigonometric equations which are satisfied only by some real numbers. We call these equations conditional trigonometric equations. Since the sine and cosine functions are periodic, if we can solve equations involving these functions in the interval [0, 2 𝜋], we can make use of the period of the function to obtain all solutions. We define the solutions in the interval [0, 2 𝜋] as fundamental solutions of the equation. ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 74
  • 78. CONDITIONAL TRIGONOMETRIC EQUATIONS We now give a series of examples to illustrate how to solve other conditional trigonometric equations. The methods for solving conditional trigonometric equations are the same as in ordinary algebraic equations. In the process of solving the equation, we use the same principles of equality to obtain an equivalent equation. These principles are the addition and multiplication principles of equality which translate to the usual transportation rules for solving equations. Knowledge of the different identities will also be useful in obtaining equivalent equations. ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 75
  • 79. Example ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 7G Solve the following equationns for 0 ≤ 𝑥 ≤ 1 2 𝜋 (a) sin 𝑥 − 1 = 0 (b) sin 𝑥 cos 𝑥 = 0
  • 82. QUADRATIC TRIGONOMETRIC EQUATIONS ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc 79 We now consider quadratic trigonometric equations. To solve such an equation, we can use the square root method (when there is no linear trigonometric term), or method of factoring or by using the quadratic formula. The following examples illustrate these ideas.
  • 83. Example Find the solution set of the given equation if t belongs to the half open interval [0, 2𝜋). (a) 4sin2 𝑡 − 1 = 0 (b) sec2 𝑡 − 2 tan 𝑡 = 0 (c) 2cos2 𝑡 + 3 cos 𝑡 = 0 ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®0
  • 87. Trigonometric Equations Involving Multiple Angles Example Find the fundamental solutions of the following equations. (a) 𝑠𝑖𝑛 2𝑥 = 0 1 (b) 𝑐𝑜𝑠 𝑥 = − 1 2 (c) tan 2 2 1 2 ľíigo⭲omctíic Equatio⭲s Hepolito,Remaík O.,11/24/2021 |Pagc ®4 𝑥 = 3