SlideShare a Scribd company logo
1 of 31
1
To Be A World Class Maritime Academy
HV Course March 2007
HIGH VOLTAGE
TESTS
2
To Be A World Class Maritime Academy
HV Course March 2007
Objective
• Need for periodic testing to guarantee integrity
and reliability of HV system
• Need for diagnostic test for comparative
measurement and determination of fault serenity
• Need to simulate fault conditions for
verification of system components stability
3
To Be A World Class Maritime Academy
HV Course March 2007
Introduction
• The high voltage (e.g. 6.6 kV) installation
covers : the generation, main supply
• cables, switchgear, transformers, electric
propulsion (if fitted) and a few large motors e.g.
for side-thrusters and air conditioning
compressors.
4
To Be A World Class Maritime Academy
HV Course March 2007
Condition of HV insulation is governed by factors such as:
• Temperature, humidity, surface condition and
operating voltage level.
• Guide by the manufacturers recommendations
when testing and maintaining HV insulation.
• Before applying an IR test to HV equipment its
power supply must be switched off, isolated,
confirmed dead by an approved live-line tester
and then earthed for complete safety in
accordance with the current EPTW regulations.
5
To Be A World Class Maritime Academy
HV Course March 2007
HV Test type
• HV Test on board ship
1) -Insulation Resistance (IR) test
2) -Polarity Index (PI) Test
3) -Infrared Imaging test
4) - Circuit breaker test
5) Partial discharge test
6) BIL (Basic Insulation level) test
7) Life test
6
To Be A World Class Maritime Academy
HV Course March 2007
1.0 Insulation Resistance Test (IR) Test
• For all electrical equipment the key indicator to High Voltage
Equipment Testing are:
1. its safety and
2. general condition of its insulation resistance (IR) - The IR must be
tested periodically between phases and between phases and earth.
• HV equipment that is well designed and maintained, operated within
its power and temperature ratings should have a useful insulation life
of 20 years.
• An IR test is applied with a high d.c. voltage which applies a
reasonable stress to the dielectric material (insulation).
• For 6.6 kV rated equipment, a periodical 5000 V d.c. insulation
resistance (megger) test is recommended.
• The minimum IR value is usually recommended as (kV + 1) MO
where V is the equipment voltage rating. e.g. 7.6 MO would be an
acceptable IR value for a 6.6 kV machine.
7
To Be A World Class Maritime Academy
HV Course March 2007
Insulation tester
Motor
α
0
Control coil
Deflecting
coil
Permanent
magnet
Permanent
Magnet Rotor
8
To Be A World Class Maritime Academy
HV Course March 2007
Procedure of IR testing
• Isolate power, test and prove the conductors are dead by a proven live-line
tester.
• The circuit is earthed
• Issue EPTW.
• It is to be ensured that the operator never touches an unearthed
conductor.
• With the megger reader is connected between conductor and earth,
the safety earth is disconnected. [The safety earth must be
reconnected before the IR tester is disconnected]
• A 5000 V dc megger tester now be applied between phases and
earth, and between phases, and the values are recorded.
• The megger test should be applied for 1 minute.
• The recommended minimum value is (KV rating of the machine +
1) MΩ.
9
To Be A World Class Maritime Academy
HV Course March 2007
IR Test Procedure
• For machines with healthy insulation, an IR test result may indicate
a value up to 100 times greater than the recommended minimum.
• First the reading is checked for 1 minute and for a better test it is
checked for 10 minutes.
• The correct procedure is to connect the IR tester to the circuit under
test with the safety earth connection ON.
• The safety earth may be applied through a switch connection at the
supply circuit breaker or by a temporary earth connection local to
the test point.
• This is to ensure that the operator never touches a unearthed
conductor.
• With the IR tester now connected, the safety earth is disconnected
(using an insulated extension tool for the temporary earth).
• Now the IR test is applied and recorded.
• The safety earth is now reconnected before the IR tester is
disconnected.
• This safety routine must be applied for each separate IR test.
10
To Be A World Class Maritime Academy
HV Course March 2007
IR Test Procedure
• Large currents flowing through machine windings, cables, bus-bars
and main circuit breaker contacts will cause a temperature rise due to
I2R resistive heating.
• Where overheating is suspected, e.g. at a bolted bus-bar joint in the
main switchboard, the local continuity resistance may be measured
and checked against the manufacturers recommendations or compared
with similar equipment that is known to be satisfactory.
• A normal ohmmeter is not suitable- as it will only drive a few mA
through the test circuit.
• A special low resistance tester or micro-ohmmeter must be used which
drives a calibrated current (usually I=10 A) through the circuit while
measuring the volt-drop (V) across the circuit.
• The meter calculates R from V/I and displays the test result. For a
healthy bus-bar joint a continuity of a few megerOhm) would be
expected.
11
To Be A World Class Maritime Academy
HV Course March 2007
2.0 Polarity Index test (PI) Test
• A more involved IR test (the polarization index or P.I.)
is used when the insulation value may be suspect or
recorded during an annual survey.
• The P.I. value is the ratio of the IR result after 0 minutes
of testing to the value recorded after 1 minute of testing
• To apply a P.I. test over a ten minute period requires a
special IR tester that has a motor-driven generator or an
electronic converter powered from a local 220 V a.c.
supply.
• Experience shows that using polarity index method give
far more reliable figure on the condition of insulation.
12
To Be A World Class Maritime Academy
HV Course March 2007
3.0 Infrared Imaging Tester
• Normally the safe testing of HV equipment requires that it is
disconnected from its power supply.
• Unfortunately, it is very difficult, impossible and unsafe to closely
observe the on-load operation of internal components within HV
enclosures.
• This is partly resolved by temperature measurement with an
recording infra-red camera.
• Electric Propulsion and High Voltage Practice Infrared image
testing. distance.
• The camera is used to scan an area and the recorded infra-red image
is then processed by a computer program to display hot-spots and a
thermal profile across the equipment.
• To examine internal components, e.g. busbar joints, a camera
recording can be made immediately after the equipment has been
switched off and isolated in accordance with an EPTW safety
procedure.
13
To Be A World Class Maritime Academy
HV Course March 2007
Infrared Imaging Tester
• Alternatively, some essential equipment, e.g. a main
switchboard, can be monitored on-line using specially
fitted and approved enclosure windows suitable for
infra-red testing.
• These windows arc small apertures with a permanently
fixed steel' mesh through which the camera can view the
internal temperature from a safe position.
• An outer steel plate fixed over the window mesh
maintains the overall enclosure performance during
normal operation.
14
To Be A World Class Maritime Academy
HV Course March 2007
Infrared imaging tester
• A conventional photograph of the equipment is taken
simultaneously to match the infra-red image and both
are used as part of a test report.
• Such testing is usually performed by a specialist
contractor who will prepare the test report and propose
recommendation / repair advice to the ship operator.
• Fig. 8.31 (unfortunately not in colour like the original)
gives typical results from an infra-red camera test on a
bus-bar connection.
15
To Be A World Class Maritime Academy
HV Course March 2007
Test for circuit breaker
IR Test of vacuum CB
• In this on-line test, the camera recorded hot-spot temperatures
and the report recommended that this copper connection is
checked for tightness as High Voltage Equipment Testing it is
running very hot compared to that on the neighboring copper-
work.
• To test the insulating integrity of an HV vacuum-type circuit
breaker requires a special high voltage impulse test - The tester
produces a short duration voltage pulse, of typically 10 kV for a
6.6 kV circuit, which is connected across the open breaker
contacts.
• Any weakness in the insulating strength of the vacuum in the
interrupter chamber will be detected as a current flow and the
tester will display the condition as a pass.
16
To Be A World Class Maritime Academy
HV Course March 2007
Test for circuit breaker
IR Test of vacuum sf6
• Gas (SF6) HV circuit breakers rely on the quality and pressure of
the gas acting as the insulation between the contacts.
• A falling gas pressure can be arranged to initiate an alarm from
pressure switches fitted to each switching chamber.
• Normal gas pressures are typically 500 kPa or 5 bar.
• Overall circuit protection of HV equipment is supervised by co-
ordinated protective relays -These must be periodically tested to
confirm their level settings (for current, voltage, frequency etc.) and
their tripping times.
• This requires the injection of calibrated values of current and
voltage into the protective relays which is usually performed by ^
specialist contractor during a main ship survey while in dry-dock
17
To Be A World Class Maritime Academy
HV Course March 2007
4. PARTIAL DISCHARGES
• Partial discharges are small electrical discharges that takes place
in a gas filled void or on the dielectric of a solid or liquid
insulation system.
• The discharges are basically small arcs that only partially bridge
the gap between phase to ground and phase to phase insulation.
• Partial discharge serves to provide an early warning of an
imminent equipment failure.
• The ultimate failure is the result of the heating effect caused by
the discharges.
• This leads to deeper pits and finally puncture the insulator
• Oil impregnated paper deteriorates very rapidly.
• Some epoxy resin insulators are moderately resistant.
• Porcelain, ceramics and glasses are practically immune to partial
discharges
18
To Be A World Class Maritime Academy
HV Course March 2007
ACCEPTABLE LIMIT OF PARTIAL DISCHARGES
• To except zero discharges is not practical and it
is generally acceptable to accept a maximum
limit for partial discharges.
• Experience has shown that a discharge of less
than 10 pico coulombs at 0.75% of line to
ground voltage is acceptable.
• [Ref: Page 252, High Voltage Circuit Breakers by Ruben D. Garzon]
19
To Be A World Class Maritime Academy
HV Course March 2007
Partial Discharge and Dielectric Strength
• The term ‘Dielectric Strength’ is used to describe the capacity of
an insulating material to withstand electrical stresses. It is not a
constant value.
• The dielectric strength of a material is considerably influenced by
numerous parameters- temperature, form and frequency of
voltage, field distribution, size of the stressed volume, duration
of stress, etc.
• If the dielectric strength of a cable insulation specified under
definite conditions is exceeded, discharge processes always
occur, and these can be divided into two categories; partial
discharges and complete break down.
• Dielectric Strength: The Potential gradient necessary to cause
breakdown of an insulating medium is termed its dielectric
strength and is usually expressed in MVs/meter of thickness.
20
To Be A World Class Maritime Academy
HV Course March 2007
Dielectric Strength of different insulation materials
If thickness of the insulation material is 1 mm.
Air- 4.46 MV/m
Mica- 61 MV/m
Glass (density)- 28.5 MV/m
Ebonite- 50 MV/m
Paraffin-waxed paper- 40-60 MV/m
Transformer oil- 200 MV/m
Ceramics- 50 MV/m
Ref: Page 119, Hughes Electrical Techonology
SF6 = About twice of Air
21
To Be A World Class Maritime Academy
HV Course March 2007
PARTIAL DISCHARGE IN INSULATION OF THE HIGH VOLTAGE CABLES.
• The occurrence of partial discharge (PD) within a dielectric -means
that either the electric field or the dielectric strength or both are
distributed in a highly inhomogeneous manner.
Referring figure 1:
• Gases usually have a considerably lower dielectric strength than
solid, liquid or impregnated dielectrics.
• Field strength inside the void (εr=1) exceeds the stress in
surrounding dielectric by a factor of nearly εri, the permittivity of
the insulation material.
• As a result, discharges occur in the void above a definite voltage
that can be measured externally and can lead to a gradual erosion of
the surrounding material.
22
To Be A World Class Maritime Academy
HV Course March 2007
CONTINUED
• The figure below shows an example: a gas-filled cavity in the dielectric
that disturbs both the field pattern and the distribution of the dielectric
strength.
Field Strength in void increased
(doubled)
Fig: 1
23
To Be A World Class Maritime Academy
HV Course March 2007
Simplified relationship between Electric stress and relative permittivity or dielectric constant
In such an arrangement of this type, the electrical field strength E of
neighboring individual components behaves as inversely proportional to
the relative dielectric constants εr.
That is if relative permittivity is less Electrical Stress goes high (V/m).
Ref: Page 40, Cable Systems for High and Extra-High Voltage by E. Peschke, R. von
Olshausen.
Fig: 2
24
To Be A World Class Maritime Academy
HV Course March 2007
Partial discharge test on polymer-insulated cable
• The best way to explain the processes
taking place here is by using the simplified
equivalent circuit diagram comprising three
capacitances representing the void itself,
the dielectric connected in series with it
and the intact dielectric connected in
parallel with them both.
• Parallel to the void the equivalent circuit
diagram provides a spark gap which breaks
down when a specific voltage Uz, assumed
to be constant, is exceeded, and thus has
the effect of discharging the capacitor. This
results in repeated voltage collapses at
capacitor C1 as indicated in the
oscillogram.
C1
C2
C3
C1
C2
C3
Display
unit
25
To Be A World Class Maritime Academy
HV Course March 2007
Test on Cables for partial discharge
Test voltage
Voltage at void without
discharge
Voltage at void with
discharges
C1
C2
C3
Transform
er
Display
unit
Insulation under
test
26
To Be A World Class Maritime Academy
HV Course March 2007
On-site partial discharge monitoring
• It is available for the accessories,
particularly joints, and only where
they are equipped with sensors.
• Inductive Coupler: Pulses from
the joint that is being monitored
pass through Rogowiski coils in
opposite directions and, in
summation, produces a signal
with almost twice the amplitude
because the winding in the coil in
in opposite directions.
• For the same reason, pulses that
originate from the right or left of
the joint and are consequently
passing through the coils in the
same direction are largely
cancelled out during summation.
Signal
addition
Rogwisky Coil
+ -
Joint
27
To Be A World Class Maritime Academy
HV Course March 2007
5.0 Basic Impulse Insulation Level (BIL) TEST
• Insulation can withstand very high voltage, if it is applied for a
very brief period.
• If a 60 Hz sinusoidal voltage between the insulation and ground
is applied and if the voltage is slowly increased, a point will be
reached where break down occurs
• On the other hand if we apply a dc impulse voltage for a
extremely short period, it takes much higher voltage before
insulation breaks down.
• Same happens with other insulators, bushing, etc.
• In the interest of standardization, and to enable a comparison
between the impulse withstand capability of insulators, the
insulators are tested by a defined impulse wave as follows.
28
To Be A World Class Maritime Academy
HV Course March 2007
CONTINUED
0%
100%
50%
Time
1.2μs 50μs
1.2 X 50 μs BIL Puse
Peak voltage
29
To Be A World Class Maritime Academy
HV Course March 2007
CONTINUED
• The BIL of a device is usually several times higher than its normal ac
operating voltage.
• For example, the standards require that 69 kV distribution transformer
must have a BIL of 350 kV.
• The peak voltage at which a safety begins to conduct must always be
lower than the BIL of the apparatus it is intended to protect.
• A 3 phase, 69 kV transmission line having a BIL of 300 kV is
supported on steel towers and protected by a circuit breaker. The
ground resistance at each tower is 20Ω whereas the neutral of the
transmission line is solidly grounded at the transformer just ahead of
the circuit breaker. During an electric storm, one of the towers is hit
by a lightning stroke of 20 kA.
• Calculate the voltage across each insulator string under normal
conditions.
• Describe the sequence of events during and after the lightening stroke.
30
To Be A World Class Maritime Academy
HV Course March 2007
CONTINUED
• Under normal condition:
• Line to neutral voltage= 69/√3 = 40kV
• The insulator is therefore at the same potential to the
ground.
• When lightening strikes:
• Voltage across the insulator and the ground resistance
suddenly jumps to 20kA X 20 = 400kV
• Therefore insulator burns immediately causing short
circuit in all three phases.
31
To Be A World Class Maritime Academy
HV Course March 2007
6.0 Life Test
• A factory test to determine expected life.
Time to break down
Field
strength,
E
Impregnated paper
Polymer

More Related Content

Similar to Testing and Maintaining High Voltage Systems on Ships

Presentation OutDoorSwithGear(AIS) .pptx
Presentation OutDoorSwithGear(AIS) .pptxPresentation OutDoorSwithGear(AIS) .pptx
Presentation OutDoorSwithGear(AIS) .pptxRAJKIRANR3
 
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...Ali Sepehri
 
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKER
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKERDIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKER
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKERRitesh Kumawat
 
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptx
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptxHVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptx
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptxMuthuKumar158260
 
Electrical Common Test Procedure.ppt
Electrical Common Test Procedure.pptElectrical Common Test Procedure.ppt
Electrical Common Test Procedure.pptM&E Engineer
 
Design, planning and layout of high voltage lab
Design, planning and layout of high voltage labDesign, planning and layout of high voltage lab
Design, planning and layout of high voltage labNidhi Maru
 
Testing of c.b.(hk & hr) nihal
Testing of c.b.(hk & hr) nihalTesting of c.b.(hk & hr) nihal
Testing of c.b.(hk & hr) nihalNihal Shiroya
 
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHHIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHShankar Singh
 
switchgearpresentation-151030171028-lva1-app6892.pptx
switchgearpresentation-151030171028-lva1-app6892.pptxswitchgearpresentation-151030171028-lva1-app6892.pptx
switchgearpresentation-151030171028-lva1-app6892.pptxDrNiveditaSingh3
 
Electrical Measurement Safety and Best Practices Webinar Presented by Fluke
Electrical Measurement Safety and Best Practices Webinar Presented by FlukeElectrical Measurement Safety and Best Practices Webinar Presented by Fluke
Electrical Measurement Safety and Best Practices Webinar Presented by FlukeTranscat
 
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...Thorne & Derrick International
 
Emc standards
Emc standardsEmc standards
Emc standardskandira
 
Switchgear presentation
Switchgear presentationSwitchgear presentation
Switchgear presentationNadir Baloch
 
Testing of Circuit Breakers.pptx
Testing of Circuit Breakers.pptxTesting of Circuit Breakers.pptx
Testing of Circuit Breakers.pptxTafhim Bin Nasir
 

Similar to Testing and Maintaining High Voltage Systems on Ships (20)

Insulation Resistance Test
Insulation Resistance TestInsulation Resistance Test
Insulation Resistance Test
 
Fusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity CircuitsFusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity Circuits
 
Time current curves
Time current curvesTime current curves
Time current curves
 
Presentation OutDoorSwithGear(AIS) .pptx
Presentation OutDoorSwithGear(AIS) .pptxPresentation OutDoorSwithGear(AIS) .pptx
Presentation OutDoorSwithGear(AIS) .pptx
 
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...
AC High voltage Air Break Disconnector Switch Routine Test According to IEC 6...
 
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKER
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKERDIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKER
DIGITAL TESTING OF HIGH VOLTAGE CIRCUIT BREAKER
 
EIT_Presentation
EIT_PresentationEIT_Presentation
EIT_Presentation
 
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptx
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptxHVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptx
HVE UNIT V HIGH VOLTAGES TESTING AND INSULATION COORDINATION.pptx
 
Electrical Common Test Procedure.ppt
Electrical Common Test Procedure.pptElectrical Common Test Procedure.ppt
Electrical Common Test Procedure.ppt
 
Design, planning and layout of high voltage lab
Design, planning and layout of high voltage labDesign, planning and layout of high voltage lab
Design, planning and layout of high voltage lab
 
Testing of c.b.(hk & hr) nihal
Testing of c.b.(hk & hr) nihalTesting of c.b.(hk & hr) nihal
Testing of c.b.(hk & hr) nihal
 
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGHHIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
HIGH VOL TAGE TESTING OF TRANSFORMER BY HARI SHANKAR SINGH
 
switchgearpresentation-151030171028-lva1-app6892.pptx
switchgearpresentation-151030171028-lva1-app6892.pptxswitchgearpresentation-151030171028-lva1-app6892.pptx
switchgearpresentation-151030171028-lva1-app6892.pptx
 
Electrical Measurement Safety and Best Practices Webinar Presented by Fluke
Electrical Measurement Safety and Best Practices Webinar Presented by FlukeElectrical Measurement Safety and Best Practices Webinar Presented by Fluke
Electrical Measurement Safety and Best Practices Webinar Presented by Fluke
 
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...
Adoption of Best Practices for Cable Testing and Condition Monitoring In The ...
 
Emc standards
Emc standardsEmc standards
Emc standards
 
Testing of transformer
Testing of transformerTesting of transformer
Testing of transformer
 
Switchgear presentation
Switchgear presentationSwitchgear presentation
Switchgear presentation
 
Testing of Circuit Breakers.pptx
Testing of Circuit Breakers.pptxTesting of Circuit Breakers.pptx
Testing of Circuit Breakers.pptx
 
tcee-161003100321.pptx
tcee-161003100321.pptxtcee-161003100321.pptx
tcee-161003100321.pptx
 

More from Thien Phan Bản

Breaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptBreaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptThien Phan Bản
 
megger-150210211712-conversion-gate01.ppt
megger-150210211712-conversion-gate01.pptmegger-150210211712-conversion-gate01.ppt
megger-150210211712-conversion-gate01.pptThien Phan Bản
 
Breaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptBreaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptThien Phan Bản
 
21955068-High-Low-Impedance-BusBar-Protection.ppt
21955068-High-Low-Impedance-BusBar-Protection.ppt21955068-High-Low-Impedance-BusBar-Protection.ppt
21955068-High-Low-Impedance-BusBar-Protection.pptThien Phan Bản
 
basic-partial-discharge.pdf
basic-partial-discharge.pdfbasic-partial-discharge.pdf
basic-partial-discharge.pdfThien Phan Bản
 
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdf
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdfFUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdf
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdfThien Phan Bản
 
High_Low_Impedance_BusBar_Protection.ppt
High_Low_Impedance_BusBar_Protection.pptHigh_Low_Impedance_BusBar_Protection.ppt
High_Low_Impedance_BusBar_Protection.pptThien Phan Bản
 
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptbasicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptThien Phan Bản
 
47526172-DIFFERENTIAL-PROTECTION-8.pptx
47526172-DIFFERENTIAL-PROTECTION-8.pptx47526172-DIFFERENTIAL-PROTECTION-8.pptx
47526172-DIFFERENTIAL-PROTECTION-8.pptxThien Phan Bản
 
14009762-ABB-Protection-Book.pdf
14009762-ABB-Protection-Book.pdf14009762-ABB-Protection-Book.pdf
14009762-ABB-Protection-Book.pdfThien Phan Bản
 
ppt100-110425022440-phpapp02.ppt
ppt100-110425022440-phpapp02.pptppt100-110425022440-phpapp02.ppt
ppt100-110425022440-phpapp02.pptThien Phan Bản
 
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptbasicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptThien Phan Bản
 
Basic_Protection_Theory_2013_BW.pdf
Basic_Protection_Theory_2013_BW.pdfBasic_Protection_Theory_2013_BW.pdf
Basic_Protection_Theory_2013_BW.pdfThien Phan Bản
 
17648889-Introduction-to-Power-System-Protection-Relays.pdf
17648889-Introduction-to-Power-System-Protection-Relays.pdf17648889-Introduction-to-Power-System-Protection-Relays.pdf
17648889-Introduction-to-Power-System-Protection-Relays.pdfThien Phan Bản
 
pptpdf-131117235616-phpapp02.pdf
pptpdf-131117235616-phpapp02.pdfpptpdf-131117235616-phpapp02.pdf
pptpdf-131117235616-phpapp02.pdfThien Phan Bản
 
protectionprimer-121228115656-phpapp01.ppt
protectionprimer-121228115656-phpapp01.pptprotectionprimer-121228115656-phpapp01.ppt
protectionprimer-121228115656-phpapp01.pptThien Phan Bản
 

More from Thien Phan Bản (20)

Breaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptBreaker_Failure_Protection.ppt
Breaker_Failure_Protection.ppt
 
75181713.pdf
75181713.pdf75181713.pdf
75181713.pdf
 
megger-150210211712-conversion-gate01.ppt
megger-150210211712-conversion-gate01.pptmegger-150210211712-conversion-gate01.ppt
megger-150210211712-conversion-gate01.ppt
 
Breaker_Failure_Protection.ppt
Breaker_Failure_Protection.pptBreaker_Failure_Protection.ppt
Breaker_Failure_Protection.ppt
 
21955068-High-Low-Impedance-BusBar-Protection.ppt
21955068-High-Low-Impedance-BusBar-Protection.ppt21955068-High-Low-Impedance-BusBar-Protection.ppt
21955068-High-Low-Impedance-BusBar-Protection.ppt
 
basic-partial-discharge.pdf
basic-partial-discharge.pdfbasic-partial-discharge.pdf
basic-partial-discharge.pdf
 
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdf
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdfFUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdf
FUNDAMENTALS_OF_BUS_PROTECTION_Handouts.pdf
 
High_Low_Impedance_BusBar_Protection.ppt
High_Low_Impedance_BusBar_Protection.pptHigh_Low_Impedance_BusBar_Protection.ppt
High_Low_Impedance_BusBar_Protection.ppt
 
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptbasicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
 
11042019104945.pdf
11042019104945.pdf11042019104945.pdf
11042019104945.pdf
 
47526172-DIFFERENTIAL-PROTECTION-8.pptx
47526172-DIFFERENTIAL-PROTECTION-8.pptx47526172-DIFFERENTIAL-PROTECTION-8.pptx
47526172-DIFFERENTIAL-PROTECTION-8.pptx
 
14009762-ABB-Protection-Book.pdf
14009762-ABB-Protection-Book.pdf14009762-ABB-Protection-Book.pdf
14009762-ABB-Protection-Book.pdf
 
ppt100-110425022440-phpapp02.ppt
ppt100-110425022440-phpapp02.pptppt100-110425022440-phpapp02.ppt
ppt100-110425022440-phpapp02.ppt
 
chuong_1.ppt
chuong_1.pptchuong_1.ppt
chuong_1.ppt
 
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.pptbasicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
basicprotectionandrelayingbysomaliajaldas-121126030037-phpapp01.ppt
 
Basic_Protection_Theory_2013_BW.pdf
Basic_Protection_Theory_2013_BW.pdfBasic_Protection_Theory_2013_BW.pdf
Basic_Protection_Theory_2013_BW.pdf
 
17649136-Relays.pdf
17649136-Relays.pdf17649136-Relays.pdf
17649136-Relays.pdf
 
17648889-Introduction-to-Power-System-Protection-Relays.pdf
17648889-Introduction-to-Power-System-Protection-Relays.pdf17648889-Introduction-to-Power-System-Protection-Relays.pdf
17648889-Introduction-to-Power-System-Protection-Relays.pdf
 
pptpdf-131117235616-phpapp02.pdf
pptpdf-131117235616-phpapp02.pdfpptpdf-131117235616-phpapp02.pdf
pptpdf-131117235616-phpapp02.pdf
 
protectionprimer-121228115656-phpapp01.ppt
protectionprimer-121228115656-phpapp01.pptprotectionprimer-121228115656-phpapp01.ppt
protectionprimer-121228115656-phpapp01.ppt
 

Recently uploaded

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 

Testing and Maintaining High Voltage Systems on Ships

  • 1. 1 To Be A World Class Maritime Academy HV Course March 2007 HIGH VOLTAGE TESTS
  • 2. 2 To Be A World Class Maritime Academy HV Course March 2007 Objective • Need for periodic testing to guarantee integrity and reliability of HV system • Need for diagnostic test for comparative measurement and determination of fault serenity • Need to simulate fault conditions for verification of system components stability
  • 3. 3 To Be A World Class Maritime Academy HV Course March 2007 Introduction • The high voltage (e.g. 6.6 kV) installation covers : the generation, main supply • cables, switchgear, transformers, electric propulsion (if fitted) and a few large motors e.g. for side-thrusters and air conditioning compressors.
  • 4. 4 To Be A World Class Maritime Academy HV Course March 2007 Condition of HV insulation is governed by factors such as: • Temperature, humidity, surface condition and operating voltage level. • Guide by the manufacturers recommendations when testing and maintaining HV insulation. • Before applying an IR test to HV equipment its power supply must be switched off, isolated, confirmed dead by an approved live-line tester and then earthed for complete safety in accordance with the current EPTW regulations.
  • 5. 5 To Be A World Class Maritime Academy HV Course March 2007 HV Test type • HV Test on board ship 1) -Insulation Resistance (IR) test 2) -Polarity Index (PI) Test 3) -Infrared Imaging test 4) - Circuit breaker test 5) Partial discharge test 6) BIL (Basic Insulation level) test 7) Life test
  • 6. 6 To Be A World Class Maritime Academy HV Course March 2007 1.0 Insulation Resistance Test (IR) Test • For all electrical equipment the key indicator to High Voltage Equipment Testing are: 1. its safety and 2. general condition of its insulation resistance (IR) - The IR must be tested periodically between phases and between phases and earth. • HV equipment that is well designed and maintained, operated within its power and temperature ratings should have a useful insulation life of 20 years. • An IR test is applied with a high d.c. voltage which applies a reasonable stress to the dielectric material (insulation). • For 6.6 kV rated equipment, a periodical 5000 V d.c. insulation resistance (megger) test is recommended. • The minimum IR value is usually recommended as (kV + 1) MO where V is the equipment voltage rating. e.g. 7.6 MO would be an acceptable IR value for a 6.6 kV machine.
  • 7. 7 To Be A World Class Maritime Academy HV Course March 2007 Insulation tester Motor α 0 Control coil Deflecting coil Permanent magnet Permanent Magnet Rotor
  • 8. 8 To Be A World Class Maritime Academy HV Course March 2007 Procedure of IR testing • Isolate power, test and prove the conductors are dead by a proven live-line tester. • The circuit is earthed • Issue EPTW. • It is to be ensured that the operator never touches an unearthed conductor. • With the megger reader is connected between conductor and earth, the safety earth is disconnected. [The safety earth must be reconnected before the IR tester is disconnected] • A 5000 V dc megger tester now be applied between phases and earth, and between phases, and the values are recorded. • The megger test should be applied for 1 minute. • The recommended minimum value is (KV rating of the machine + 1) MΩ.
  • 9. 9 To Be A World Class Maritime Academy HV Course March 2007 IR Test Procedure • For machines with healthy insulation, an IR test result may indicate a value up to 100 times greater than the recommended minimum. • First the reading is checked for 1 minute and for a better test it is checked for 10 minutes. • The correct procedure is to connect the IR tester to the circuit under test with the safety earth connection ON. • The safety earth may be applied through a switch connection at the supply circuit breaker or by a temporary earth connection local to the test point. • This is to ensure that the operator never touches a unearthed conductor. • With the IR tester now connected, the safety earth is disconnected (using an insulated extension tool for the temporary earth). • Now the IR test is applied and recorded. • The safety earth is now reconnected before the IR tester is disconnected. • This safety routine must be applied for each separate IR test.
  • 10. 10 To Be A World Class Maritime Academy HV Course March 2007 IR Test Procedure • Large currents flowing through machine windings, cables, bus-bars and main circuit breaker contacts will cause a temperature rise due to I2R resistive heating. • Where overheating is suspected, e.g. at a bolted bus-bar joint in the main switchboard, the local continuity resistance may be measured and checked against the manufacturers recommendations or compared with similar equipment that is known to be satisfactory. • A normal ohmmeter is not suitable- as it will only drive a few mA through the test circuit. • A special low resistance tester or micro-ohmmeter must be used which drives a calibrated current (usually I=10 A) through the circuit while measuring the volt-drop (V) across the circuit. • The meter calculates R from V/I and displays the test result. For a healthy bus-bar joint a continuity of a few megerOhm) would be expected.
  • 11. 11 To Be A World Class Maritime Academy HV Course March 2007 2.0 Polarity Index test (PI) Test • A more involved IR test (the polarization index or P.I.) is used when the insulation value may be suspect or recorded during an annual survey. • The P.I. value is the ratio of the IR result after 0 minutes of testing to the value recorded after 1 minute of testing • To apply a P.I. test over a ten minute period requires a special IR tester that has a motor-driven generator or an electronic converter powered from a local 220 V a.c. supply. • Experience shows that using polarity index method give far more reliable figure on the condition of insulation.
  • 12. 12 To Be A World Class Maritime Academy HV Course March 2007 3.0 Infrared Imaging Tester • Normally the safe testing of HV equipment requires that it is disconnected from its power supply. • Unfortunately, it is very difficult, impossible and unsafe to closely observe the on-load operation of internal components within HV enclosures. • This is partly resolved by temperature measurement with an recording infra-red camera. • Electric Propulsion and High Voltage Practice Infrared image testing. distance. • The camera is used to scan an area and the recorded infra-red image is then processed by a computer program to display hot-spots and a thermal profile across the equipment. • To examine internal components, e.g. busbar joints, a camera recording can be made immediately after the equipment has been switched off and isolated in accordance with an EPTW safety procedure.
  • 13. 13 To Be A World Class Maritime Academy HV Course March 2007 Infrared Imaging Tester • Alternatively, some essential equipment, e.g. a main switchboard, can be monitored on-line using specially fitted and approved enclosure windows suitable for infra-red testing. • These windows arc small apertures with a permanently fixed steel' mesh through which the camera can view the internal temperature from a safe position. • An outer steel plate fixed over the window mesh maintains the overall enclosure performance during normal operation.
  • 14. 14 To Be A World Class Maritime Academy HV Course March 2007 Infrared imaging tester • A conventional photograph of the equipment is taken simultaneously to match the infra-red image and both are used as part of a test report. • Such testing is usually performed by a specialist contractor who will prepare the test report and propose recommendation / repair advice to the ship operator. • Fig. 8.31 (unfortunately not in colour like the original) gives typical results from an infra-red camera test on a bus-bar connection.
  • 15. 15 To Be A World Class Maritime Academy HV Course March 2007 Test for circuit breaker IR Test of vacuum CB • In this on-line test, the camera recorded hot-spot temperatures and the report recommended that this copper connection is checked for tightness as High Voltage Equipment Testing it is running very hot compared to that on the neighboring copper- work. • To test the insulating integrity of an HV vacuum-type circuit breaker requires a special high voltage impulse test - The tester produces a short duration voltage pulse, of typically 10 kV for a 6.6 kV circuit, which is connected across the open breaker contacts. • Any weakness in the insulating strength of the vacuum in the interrupter chamber will be detected as a current flow and the tester will display the condition as a pass.
  • 16. 16 To Be A World Class Maritime Academy HV Course March 2007 Test for circuit breaker IR Test of vacuum sf6 • Gas (SF6) HV circuit breakers rely on the quality and pressure of the gas acting as the insulation between the contacts. • A falling gas pressure can be arranged to initiate an alarm from pressure switches fitted to each switching chamber. • Normal gas pressures are typically 500 kPa or 5 bar. • Overall circuit protection of HV equipment is supervised by co- ordinated protective relays -These must be periodically tested to confirm their level settings (for current, voltage, frequency etc.) and their tripping times. • This requires the injection of calibrated values of current and voltage into the protective relays which is usually performed by ^ specialist contractor during a main ship survey while in dry-dock
  • 17. 17 To Be A World Class Maritime Academy HV Course March 2007 4. PARTIAL DISCHARGES • Partial discharges are small electrical discharges that takes place in a gas filled void or on the dielectric of a solid or liquid insulation system. • The discharges are basically small arcs that only partially bridge the gap between phase to ground and phase to phase insulation. • Partial discharge serves to provide an early warning of an imminent equipment failure. • The ultimate failure is the result of the heating effect caused by the discharges. • This leads to deeper pits and finally puncture the insulator • Oil impregnated paper deteriorates very rapidly. • Some epoxy resin insulators are moderately resistant. • Porcelain, ceramics and glasses are practically immune to partial discharges
  • 18. 18 To Be A World Class Maritime Academy HV Course March 2007 ACCEPTABLE LIMIT OF PARTIAL DISCHARGES • To except zero discharges is not practical and it is generally acceptable to accept a maximum limit for partial discharges. • Experience has shown that a discharge of less than 10 pico coulombs at 0.75% of line to ground voltage is acceptable. • [Ref: Page 252, High Voltage Circuit Breakers by Ruben D. Garzon]
  • 19. 19 To Be A World Class Maritime Academy HV Course March 2007 Partial Discharge and Dielectric Strength • The term ‘Dielectric Strength’ is used to describe the capacity of an insulating material to withstand electrical stresses. It is not a constant value. • The dielectric strength of a material is considerably influenced by numerous parameters- temperature, form and frequency of voltage, field distribution, size of the stressed volume, duration of stress, etc. • If the dielectric strength of a cable insulation specified under definite conditions is exceeded, discharge processes always occur, and these can be divided into two categories; partial discharges and complete break down. • Dielectric Strength: The Potential gradient necessary to cause breakdown of an insulating medium is termed its dielectric strength and is usually expressed in MVs/meter of thickness.
  • 20. 20 To Be A World Class Maritime Academy HV Course March 2007 Dielectric Strength of different insulation materials If thickness of the insulation material is 1 mm. Air- 4.46 MV/m Mica- 61 MV/m Glass (density)- 28.5 MV/m Ebonite- 50 MV/m Paraffin-waxed paper- 40-60 MV/m Transformer oil- 200 MV/m Ceramics- 50 MV/m Ref: Page 119, Hughes Electrical Techonology SF6 = About twice of Air
  • 21. 21 To Be A World Class Maritime Academy HV Course March 2007 PARTIAL DISCHARGE IN INSULATION OF THE HIGH VOLTAGE CABLES. • The occurrence of partial discharge (PD) within a dielectric -means that either the electric field or the dielectric strength or both are distributed in a highly inhomogeneous manner. Referring figure 1: • Gases usually have a considerably lower dielectric strength than solid, liquid or impregnated dielectrics. • Field strength inside the void (εr=1) exceeds the stress in surrounding dielectric by a factor of nearly εri, the permittivity of the insulation material. • As a result, discharges occur in the void above a definite voltage that can be measured externally and can lead to a gradual erosion of the surrounding material.
  • 22. 22 To Be A World Class Maritime Academy HV Course March 2007 CONTINUED • The figure below shows an example: a gas-filled cavity in the dielectric that disturbs both the field pattern and the distribution of the dielectric strength. Field Strength in void increased (doubled) Fig: 1
  • 23. 23 To Be A World Class Maritime Academy HV Course March 2007 Simplified relationship between Electric stress and relative permittivity or dielectric constant In such an arrangement of this type, the electrical field strength E of neighboring individual components behaves as inversely proportional to the relative dielectric constants εr. That is if relative permittivity is less Electrical Stress goes high (V/m). Ref: Page 40, Cable Systems for High and Extra-High Voltage by E. Peschke, R. von Olshausen. Fig: 2
  • 24. 24 To Be A World Class Maritime Academy HV Course March 2007 Partial discharge test on polymer-insulated cable • The best way to explain the processes taking place here is by using the simplified equivalent circuit diagram comprising three capacitances representing the void itself, the dielectric connected in series with it and the intact dielectric connected in parallel with them both. • Parallel to the void the equivalent circuit diagram provides a spark gap which breaks down when a specific voltage Uz, assumed to be constant, is exceeded, and thus has the effect of discharging the capacitor. This results in repeated voltage collapses at capacitor C1 as indicated in the oscillogram. C1 C2 C3 C1 C2 C3 Display unit
  • 25. 25 To Be A World Class Maritime Academy HV Course March 2007 Test on Cables for partial discharge Test voltage Voltage at void without discharge Voltage at void with discharges C1 C2 C3 Transform er Display unit Insulation under test
  • 26. 26 To Be A World Class Maritime Academy HV Course March 2007 On-site partial discharge monitoring • It is available for the accessories, particularly joints, and only where they are equipped with sensors. • Inductive Coupler: Pulses from the joint that is being monitored pass through Rogowiski coils in opposite directions and, in summation, produces a signal with almost twice the amplitude because the winding in the coil in in opposite directions. • For the same reason, pulses that originate from the right or left of the joint and are consequently passing through the coils in the same direction are largely cancelled out during summation. Signal addition Rogwisky Coil + - Joint
  • 27. 27 To Be A World Class Maritime Academy HV Course March 2007 5.0 Basic Impulse Insulation Level (BIL) TEST • Insulation can withstand very high voltage, if it is applied for a very brief period. • If a 60 Hz sinusoidal voltage between the insulation and ground is applied and if the voltage is slowly increased, a point will be reached where break down occurs • On the other hand if we apply a dc impulse voltage for a extremely short period, it takes much higher voltage before insulation breaks down. • Same happens with other insulators, bushing, etc. • In the interest of standardization, and to enable a comparison between the impulse withstand capability of insulators, the insulators are tested by a defined impulse wave as follows.
  • 28. 28 To Be A World Class Maritime Academy HV Course March 2007 CONTINUED 0% 100% 50% Time 1.2μs 50μs 1.2 X 50 μs BIL Puse Peak voltage
  • 29. 29 To Be A World Class Maritime Academy HV Course March 2007 CONTINUED • The BIL of a device is usually several times higher than its normal ac operating voltage. • For example, the standards require that 69 kV distribution transformer must have a BIL of 350 kV. • The peak voltage at which a safety begins to conduct must always be lower than the BIL of the apparatus it is intended to protect. • A 3 phase, 69 kV transmission line having a BIL of 300 kV is supported on steel towers and protected by a circuit breaker. The ground resistance at each tower is 20Ω whereas the neutral of the transmission line is solidly grounded at the transformer just ahead of the circuit breaker. During an electric storm, one of the towers is hit by a lightning stroke of 20 kA. • Calculate the voltage across each insulator string under normal conditions. • Describe the sequence of events during and after the lightening stroke.
  • 30. 30 To Be A World Class Maritime Academy HV Course March 2007 CONTINUED • Under normal condition: • Line to neutral voltage= 69/√3 = 40kV • The insulator is therefore at the same potential to the ground. • When lightening strikes: • Voltage across the insulator and the ground resistance suddenly jumps to 20kA X 20 = 400kV • Therefore insulator burns immediately causing short circuit in all three phases.
  • 31. 31 To Be A World Class Maritime Academy HV Course March 2007 6.0 Life Test • A factory test to determine expected life. Time to break down Field strength, E Impregnated paper Polymer