SlideShare a Scribd company logo
1 of 134
Download to read offline
CHAPTER-03
Matrices
PUC-II MATHEMATICS
1 M 2M 3M 4M 5M 6M TOTAL
1 - 1 - 1 _ 9
One Mark questions
1. Define a scalar matrix. (K)
Scalar Matrix is a diagonal matrix whose principal diagonal
elements are same
4 0 0
0 4 0
0 0 4
 
 
 
  
Examples
5 0 0
0 5 0
0 0 5
 
  
  
One Mark questions
2. Define an Identity matrix. (K)
Identity Matrix is a scalar matrix whose principal diagonal
elements are equal to 1
 
   
  
3
1 0 0
0 1 0
0 0 1
I IExamples 1 0
I
0 1
One Mark questions
3. Define a diagonal matrix.
Diagonal matrix is a square matrix whose non- principal diagonal
elements are zero irrespective of principal diagonal elements.
One Mark questions
4. In the matrix 2 5 19 7
5
35 2 12
2
3 1 5 17
Write: (i) the order of the matrix
(ii) The number of elements
(iii) Write the elements , , , ,
R1
R2
R3
C1 C2 C3 C4
=12
a13 a21 a33 a42a23
a13
a21
a33a42
a23
a24
3 4
a24
One Mark questions
5. If a matrix has 24 elements, what are
the possible orders it can have? What,
if it has 13 elements?
Soln: 1 24 24 1
2 12 12 2
3 8 8 3
4 6 6 4

 

 

Soln: 1 13 13 1
One Mark questions
6. If a matrix has 18 elements, what are
the possible orders it can have? What,
if it has 5 elements?
Soln: 1 18 18 1
2 9 9 2
3 6 6 3

 

 
Soln: 1 5 5 1
One Mark questions
8. If a matrix has 8 elements, what are the
possible orders it can have?
One Mark questions
7. Find the number of all possible matrices
of order 3 ×3 with each entry 0 or 1 ?
Solution: since order is 3 ×3
∴ matrices having 9 elements (entries)
Given that: Each entry is either 0 or 1
i.e. TWO ways to be filled an entry .
∴According to Fundamental Principle of counting
9 entries can be filled in 2 × 2×2 ×…….. 9 times
∴ No. of possible matrices =
9
2
One Mark questions
9. Construct a 2 × 2 matrix,
11 12
21 22
a a
a a
 
 
 
A =
whose elements are given by ija i j 
Solution : Let 2 × 2 matrix
ija i j 
11 1 1 2a   
12 1 2 3a   
21 2 1 3a   
22 2 2 4a   
∴Required matrix is
2 3
3 4
 
 
 
A =
11For , put 1& 1a i j 
Given
One Mark questions
9. Construct a 2 × 2 matrix,
11 12
21 22
a a
a a
 
 
 
A =
whose elements are given by
Solution : Let 2 × 2 matrix
   11
1
3 1 1 2
2
a   
   12
1 5
3 1 2
2 2
a   
   21
1 7
3 2 1
2 2
a   
   22
1
3 2 2 4
2
a   
∴Required matrix is
5
2
2
7
4
2
 
 
 
 
  
A =
11For , put 1& 1a i j 
Given
1
3
2
ija i j 
1
3
2
ija i j 
One Mark questions
9. Construct a 2 × 2 matrix,   ijA = a
whose elements are given by;
) ij
i
iii a
j
 ) ijiv a i j 
One Mark questions
9. Construct a 2 × 2 matrix,   ijA = a
whose elements are given by;
) 2ijv a i j 
 
2
) ijvi a i j   
2
)
2
ij
i j
viii a


 
2
2
)
2
ij
i j
vii a


One Mark questions
9. Construct a 3 × 3 matrix,
11 12 13
21 22 23
31 32 33
A =
a a a
a a a
a a a
 
 
 
  
whose elements are given by
Solution : Let 2 × 2 matrix
   11
1
1 3 1 1
2
a       12
1 5
1 3 2
2 2
a   
   21
1 1
2 3 1
2 2
a       22
1
2 3 2 2
2
a   
∴Required matrix is
Given
1
3
2
 ija i j
5
1 4
2
1 7
2
2 2
3
0 3
2
 
 
 
 
 
 
 
  
A =
   13
1
1 3 3 4
2
a   
   23
1 7
2 3 3
2 2
a   
   31
1
3 3 1 0
2
a       32
1 3
3 3 2
2 2
a       32
1
3 3 3 3
2
a   
1
3
2
 ija i j
One Mark questions
11. Construct a 3 × 4 matrix, whose elements
are given by:
1
) 3
2
iji a i j   ) 2ijii a i j 
One Mark questions
12. Find the values of x, y and z if
4 3 y z
x 5 1 5
Solution: By definition of Equality of Two matrices, we have corresponding elements are equal
4 y 3 z 1x 
∴ 1x  4y  3z 
One Mark questions
12. Find the values of x, y and z if
Solution: By definition of Equality of Two matrices, we have corresponding elements are equal
9x y z   5x z  7y z 
7 9x 
4y 
3z 
x y z 9
x z 5
y z 7
2x 
2 5z 
3 7y  
∴ 2x  4y  3z 
7
y z

One Mark questions
13. Find x and y, if
1 3 y 0 5 6
2
0 x 1 2 1 8
Solution: By definition of Scalar Multiplication of a Matrix, Addition & Equality of Two matrices, we
have
2x  2 1
3x 
2 8 5y 
3y 
One Mark questions
14. if
2 1 10
x y
3 1 5
Find the
values of x & y
   2 1 10 ........ 1x y  
   3 1 5.......... 2x y 
5 15
3x
x 
 
Adding (1) and (2),we get
Substitute x=3 in eqn (2),we get
 3 3 5
4
y
y
 
  
Solution:
One Mark questions
15. Find X, if &
3 2
Y
1 4
1 0
2X Y
3 2
1 0
2X Y
3 2
Solution:
By properties of Matrix addition
1 0
2X Y
3 2
∴
1 0 3 2
2X
3 2 1 4
2 2
2X
4 2
By Scalar Multiplication of a Matrix
1 1
X
2 1
Given
One Mark questions
16. Find the values of x and y from the following equation
x 5 3 4 7 6
2
7 y 3 1 2 15 16
Solution :
 2 3 7 2 3 2 16x y    
By definition of Scalar Multiplication of a Matrix, Addition & Equality of Two matrices,
we have
2 7 3 2 -6 2 16x y   
∴ 2 10x y 
One Mark questions
17. Find the value of a, b, c and d from the equation:
a b 2a c 1 5
2a b 3c d 0 13
Solution : By definition of Equality of Two matrices, we have
 1........ 1a b  
 2 0 .... 2a b 
 2 5....... 3a c 
 3 13....... 4c d 
From (2),  2 .... *b a
Substitute in (1),we get
2 1
1
a a
a
  
 
From (*) b = 2
From (3) c = 3
Substitute c=1 in (4)
4d
1, 2
3& 4
  
 
a b
c d
One Mark questions
18. Show that the matrix
1 1 5
A 1 2 1
5 1 3
is a symmetric matrix
Solution: Since A'
1 1 5
1 2 1 A
5 1 3
A is a symmetric matrix
∴
One Mark questions
19. Show that the matrix
0 1 1
A 1 0 1
1 1 0
is a skew symmetric matrix
Solution:
∴
'
0 1 1
Since A 1 0 1
1 1 0
A is a skew symmetric matrixA
One Mark questions
22. Given Find
1 2 3
A and
2 3 1
3 1 3
B
1 0 2 2A B
Solution:
1 2 3 3 1 3
2A B 2
2 3 1 1 0 2
2 4 6 3 1 3
4 6 2 1 0 2
2 3 4 1 6 3
4 1 6 0 2 2
1 5 3
5 6 0
One Mark questions
23. Given
3 1 1
A and
2 3 0
2 5 1
B 1
2 3
2
Find A B
One Mark questions
25.Find AB
6 9
A
2 3
and
2 6 0
B
7 9 8
If
Solution :
6 9 2 6 0
AB
2 3 7 9 8
6 2 9 7 6 6 9 9 6 0 9 8
2 2 3 7 2 6 3 9 2 0 3 8
75 117 72
25 39 24
One Mark questions
26. if
1 0
A
0 1
and
0 1
B
1 0
then prove that
0 1
i AB
1 0
0 1
ii BA
1 0
One Mark questions
27. Simplify cos sin sin cos
cos sin
sin cos cos sin
   
 
   
Solution:
cos sin sin cos
cos sin
sin cos cos sin
   
 
   
     
     
cos cos sin sin sin cos
cos sin cos sin cos sin
2 2
2 2
     
     
cos sin cos sin sin cos
cos sin sin cos cos sin
2 2
2 2
1 0
0 1
I
 
  
 
Addition of Matrices
Scalar Multiplication of a Matrix
2 2
cos sin 1  
One Mark questions
28. Find
1
P if it exists , given 10 2
P
5 1
Solution: 10 2
Since P 0
5 1
does not exist
Hence P is a Singular Matrix
1
P
One Mark questions
Solution:
30.If
3 3 2
A
4 2 0
2 1 2
B
1 2 4
Verify that ' 'i A A ' ' 'ii A B A B
'
3 4
3 3 2
A A 3 2
4 2 0
2 0
'
2 1
2 1 2
B B 1 2
1 2 4
2 4
'
3 4
i A 3 2
2 0
' '
3 3 2
A A
4 2 0
Clearly '
5 5
5 3 1 4
A B A B 3 1 4
5 4 4
4 4
Clearly ' '
3 54 2 1 5
A B 3 2 1 2 3 1 4
2 0 2 4 4 4
Solution:
31. Compute the following
2 2 2 2
2 2 2 2
a b b c 2ab 2bc
i
2ac 2aba c a b
2 2 2 2
2 2 2 2
a b b c 2ab 2bc
2ac 2aba c a b
2 2 2 2
2 2 2 2
a b 2ab b c 2bc
a c 2ac a b 2ab
2 2
2 2
a b b c
a c a b
31. Compute the following
a b a b
ii
b a b a
1 4 6 12 7 6
iii 8 5 16 8 0 5
2 8 5 3 2 4
cos sin sin cos
sin cos cos sin
2 2 2 2
2 2 2 2
x x x x
iv
x x x x
a b a b
i
b a b a
32. Compute the indicated products:
Solution:
a b a b
b a b a
2 2
2 2
2 2
2 2
2 2
2 2
a b ab ba
ba ab b a
a b 0
0 a b
1 0
a b
0 1
a b I
1
ii 2 2 3 4
3
32. Compute the indicated products:
Solution: 1
2 2 3 4
3
1 3Order 3 1 3 3
2 3 4
4 6 8
6 9 12
32. Compute the indicated products:
1 2 1 2 3
iii
2 3 2 3 1
2 3 4 1 3 5
iv 3 4 5 0 2 4
4 5 6 3 0 5
2 1
1 0 1
v 3 2
1 2 1
1 1
2 3
3 1 3
vi 1 0
1 0 2
3 1
Three Mark questions
1. Find the values of x, y and z from the following equations
x y 2 6 2
5 z xy 5 8
By definition of Equality of Two matrices, we have
   6..... 1 8..... 2x y xy  
Solution:
x y 2 6 2
5 z xy 5 8
Solution: Given
By definition of Equality of Two matrices, we have
   6..... 1 8..... 2x y xy  
 1 6From y x  
  
2
2
6 - 8
- 6 8 0
4 2 =0
4 or 2
From (1) 2 or 4
x x
x x
x x
x x
y y

 
 
  
   
   2 6 8becomes x x 
2. Solve the equation for x, y, z and t, if
x z 1 1 3 5
2 3 3
y t 0 2 4 6
Solution: Given
x z 1 1 3 5
2 3 3
y t 0 2 4 6
By definition of Scalar Multiplication of a matrix & Addition ,we have
2 3 9x  2 3 15z   2 0 12y   2 6 18t  
3x  9z  6y  6t 
By definition of Equality of Two matrices, we have
2x 2z 3 3 9 15
2y 2t 0 6 12 18
2 3 2 3 9 15
2 0 2 6 12 18
x z
y t
    
       
3. Given x y x 6 4 x y
3
z w 1 2w z w 3
find the values of x, y, z and w
By definition of Scalar Multiplication of a matrix, Addition & Equality of Two matrices,
we have
Solution: Given
x y x 6 4 x y
3
z w 1 2w z w 3
3 4 2x x x   
   3 6 using 2 we get 4y x y x y     
3 2 3 3w w w   
   3 1 Using w=3 we get 1z z w z     
4. Find the values of a, b, c and d from the following equation
2a b a 2b 4 3
5c d 4c 3d 11 24
Solution: By definition of Equality of Two matrices, we have
......
....
2a b 4 1
a 2b 3 2
.....
.....
5c d 11 3
4c 3d 24 4
Consider 2(1)+(2), we get
4a 2b 8
a 2b 3
+
5 5 1a a  
From (1) we get 2b 
Consider 3(1)+(2), we get
15c 3d 33
4c 3d 24
+
19 57 3c c  
From (3) we get 4d 
5. If
x 3 z 4 2y 7 0 6 3y 2
6 a 1 0 6 3 2c 2
b 3 21 0 2b 4 21 0
Find the values of a, b, c, x, y and z.
Solution: By definition of Equality of Two matrices, we have
3, 2, 5 2, 1, 7x z y a c b          
6. Using elementary transformations, find the inverse of
1 1
2 3
Solution: Let given matrix be
1 1
A
2 3
Find , sing Elementary Row Operation(ERO)1
A U
Consider A IA
Apply '2 2 1
R R 2R
1 1 1 0
A
2 3 0 1
1 0
1 1
A2 1
0 1
5 5
1 1 1 0
A
0 5 2 1
Apply '2 2
1
R R
5
Apply '1 1 2
R R R
0
3 1
1 5 5
A
0 1 2 1
5 5
. .i e I BA
By definition of Invertible
Matrix, 1
B A

1
3 1
5 5
2 1
5 5
A
 
 
   
 
  
Using elementary transformations, find the inverse of
Solution: Let given matrix be
Find , sing Elementary Row Operation(ERO)1
A U
Consider A IA
Apply 1 2
R R
2 6 1 0
A
1 2 0 1
0 1
1 2
A1
0 1 1
2
1 2 0 1
A
2 6 1 0
Apply '2 2
1
R R
2
Apply '1 1 2
R R 2R
. .i e I BA
By definition of Invertible
Matrix, 1
B A

2 6
1 22 6
A
1 2
Apply '2 2 1
R R 2R
1 2 0 1
A
0 2 1 2
1 3
1 0
A1
0 1 1
2
1
1 3
A 1
1
2
Using elementary transformations, find the inverse of
Solution: Let given matrix be
Find , sing Elementary Row Operation(ERO)1
A U
Consider A IA
Apply '1 1 2
R R R
4 5 1 0
A
3 4 0 1
Apply '1 1 2
R R R
. .i e I BA
By definition of Invertible
Matrix, 1
B A

Apply '2 2 1
R R 3R
1
4 5
A
3 4
4 5
3 44 5
A
3 4
1 1 1 1
A
3 4 0 1
1 1 1 1
A
0 1 3 4
1 0 4 5
A
0 1 3 4
Using elementary transformations, find the inverse of
Solution: Let given matrix be
Find , sing Elementary Row Operation(ERO)1
A U
Consider A IA
Apply '1 1 2
R R R
2 3 1 0
A
1 2 0 1
Apply '1 1 2
R R R
. .i e I BA
By definition of Invertible
Matrix, 1
B A

Apply '2 2 1
R R R
1
2 3
A
1 2
2 3
1 22 3
A
1 2
1 1 1 1
A
1 2 0 1
1 1 1 1
A
0 1 1 2
1 0 2 3
A
0 1 1 2
Using elementary transformations, find the inverse of
Solution: Let given matrix be
Find , sing Elementary Row Operation(ERO)1
A U
Consider A IA
Apply '2 2 1
R R 2R
3 1 1 0
A
5 2 0 1
Apply '2 2 1
R R 3R
. .i e I BA
By definition of Invertible
Matrix, 1
B A

Apply '2 2
R 1 R
1
2 1
A
5 3
3 1
A
5 2
3 1
5 2
3 1 1 0
A
1 0 2 1
3 1 1 0
A
1 0 2 1
Apply 1 2
R R
1 0 2 1
A
3 1 1 0
1 0 2 1
A
0 1 5 3
8. Find X and Y, if
7 0
X Y
2 5
and
3 0
X Y
0 3
Solution: Given
.....
7 0
X Y 1
2 5
3 0
X Y
0 3
Adding (1) & (2),We get
7 0 3 0
X Y X Y
2 5 0 3
10 0
2X
2 8
5 0
X
1 4
From (1)
7 0
Y X
2 5
7 0 5 0
Y
2 5 1 4
2 0
Y
1 1
9. Find X and Y, if
2 3
2X 3Y
4 0
2 2
3X 2Y
1 5
Solution: Given that
......
2 3
2X 3Y 1
4 0
......
2 2
3X 2Y 2
1 5
Consider 3(1) – 2(2), We get
2 3
6X 9Y 3
4 0
2 2
6X 4Y 2
1 5
__
__
(--)(--)
-
6 9 4 4
5Y
12 0 2 10
2 13
5Y
14 10
2 13
5 5
Y
14
2
5
Consider 2(1) – 3(2), We get
4 6 6 6
5X
8 0 3 15
2 12
2 12 5 5
5X X
11 15 11
3
5
10. If
8 0
A 4 2
3 6
and
2 2
B 4 2
5 1
then find the matrix X, such that 2A 3X 5B
Solution : For Given
8 0
A 4 2
3 6
2 2
B 4 2
5 1
By properties of Matrix Addition & Scalar Multification of a matrix
2A 3X 5B
3X 5B 2A
2 2 8 0
3X 5 4 2 2 4 2
5 1 3 6
10 10 16 0
3X 20 10 8 4
25 5 6 12
6 10
3X 12 14
31 7
10
6
3
3
14
X 4
3
31
7
3
3
Three Mark questions
11. Find X and Y, if 5 2
X Y
0 9
and
3 6
X Y
0 1
12. If
2 5
1
3 3
1 2 4
A
3 3 3
7 2
2
3 3
and
2 3
1
5 5
1 2 4
B
5 5 5
7 6 2
5 5 5
Then compute
3A 5B
13. if
cos sin
( ) sin cos
x x 0
F x x x 0
0 0 1
Show that
F x F y F x y
Solution:
LHS= F x F y
cos sin cos sin
sin cos sin cos
x x 0 y y 0
x x 0 y y 0
0 0 1 0 0 1
cos cos sin sin cos siny sinxcosy
sin cos cos sin sin sin cos cos
cos sin
sin cos
x y x y x 0
x y x y x y x y 0
0 0 1
x y x y 0
x y x y 0
0 0 1
F x y RHS
15.(i) if
cos sin
sin cos
A
 
 
then verify that
'A A I
Solution: Given that
 
 
cos sin
sin cos
A
 
 
cos sin
'
sin cos
A
   
   
cos sin cos sin
'
sin cos sin cos
LHS A A
    
    
cos sin sin coscos sin
sin cossin cos cos sin
2 2
2 2
1 0
0 1
I RHS
14. Show that
5 1 2 1 2 1 5 1
6 7 3 4 3 4 6 7
(ii) if
sin cos
cos sin
A
 
 
then verify that
'A A I
16.Show that
1 2 3 1 1 0 1 1 0 1 2 3
0 1 0 0 1 1 0 1 1 0 1 0
1 1 0 2 3 4 2 3 4 1 1 0
Solution:
1 2 3 1 1 0
LHS 0 1 0 0 1 1
1 1 0 2 3 4
1 0 6 1 2 9 0 2 12
0 0 0 0 1 0 0 1 0
1 0 0 1 1 0 0 1 0
5 6 14
0 1 1
1 0 1
1 1 0 1 2 3
RHS 0 1 1 0 1 0
2 3 4 1 1 0
1 0 0 2 1 0 3 0 0
0 0 1 0 1 1 0 0 0
2 0 4 4 3 4 6 0 0
1 1 3
1 0 0
6 11 6
By Definition of equality of Two Matrices LHS RHS
17. if
1 2 3
A 5 7 9
2 1 1
and
4 1 5
B 1 2 0
1 3 1
then verify that
' ' 'i A B A B
' ' 'ii A B A B
18. if '
3 4
A 1 2
0 1
and
1 2 1
B
1 2 3
then verify that
' ' 'i A B A B
' ' 'ii A B A B
19. if '
2 3
A
1 2
and
1 0
B
1 2
then find 'A 2B
Solution: Given that
Consider
2 1 1 0
A 2B 2
1 2 1 2
2 1 2 0
1 2 2 4
2 2 1 0
1 2 2 4
A+2B
4 1
3 6
 
4 3
2 '
1 6
A B
 
    
 
20. if
1 2 3
A
4 2 5
and
2 3
B 4 5
2 1 AB BA
then find AB, BA
Show that
Solution: Given that
1 2 3
A
4 2 5
=
2 3
1 2 3
AB 4 5
4 2 5
2 1
2 8 6 3 10 3
8 8 10 12 10 5
0 4
10 3
2 3
B 4 5
2 1
=
2 3
1 2 3
BA 4 5
4 2 5
2 1
2 12 4 6 6 15
4 20 8 10 12 25
2 4 4 2 6 5
10 2 21
16 2 37
2 2 11By definition of Equality of Two matrices
AB ≠ BA
21. If A and B are symmetric matrices of the same order, then show that
AB is symmetric if and only if A and B are commutative, that is AB = BA.
Solution: A and B are symmetric matrices of the same order
First, We consider AB is symmetric
To Prove : AB = BA
 'AB AB
Now Consider
' and 'A A B  B
 '
' '
But ' & '
=
Hence proved
LHS AB AB
B A
A A B B
BA
 

 

Secondly,We consider AB BA
To Prove : AB is symmetric
Now Consider  
 
'
' '
But ' & '
=
'=
Hence AB is symmetric matrix
LHS AB
B A
A A B B
BA
AB AB


 


22. If
3 2
A
4 2
and 1 0
I
0 1
Find k so that
2
A kA 2I
Solution: Given that
3 2
A
4 2
1 0
I
0 1
&
We have
2
=
A =
2
A AA
3 2 3 2
4 2 4 2
9 8 6 4
12 8 8 4
1 2
4 4
Given that 2
A kA 2I
1 2 3 2 1 0
k 2
4 4 4 2 0 1
1 2 3k 2 2k 0
4 4 4k 0 2k 2
3k 2 1
k 1
23. For the matrix
1 5
A
6 7
verify that
'i A A is a symmetric matrix
'ii A A is a skew symmetric matrix
Solution:Given that '
1 5 1 6
A A
6 7 5 7
'
'
1 5 1 6
i A A
6 7 5 7
2 11
A A X say
11 14
2 11
Since '
11 14
' is symmetric
X X
X A A
 
  
 
  
'
'
1 5 1 6
ii A A
6 7 5 7
0 1
A A X say
1 0
0 1
' -
-1 0
' is skew-symmetric
Since X X
X A A
 
  
 
  
Solution:Given that
24. Find '
1
A A
2
'
1
and A A
2
When
0 a b
A a 0 c
b c 0
Solution: Let A be the given matrix
25. Express the matrix as the sum of a symmetric and
skew symmetric matrix:
6 2 2
2 3 1
2 1 3
'
6 2 2 6 2 2
A 2 3 1 A 2 3 1
2 1 3 2 1 3
We have    
 
 
 
1 1
' '
2 2
= *
6 2 2
1
' = 2 3 1
2
2 1 3
0 0 0
1
& ' 0 0 0
2
0 0 0
A A A A A
P Q say
where P A A
Q A A
   

 
     
  
 
     
  
6 2 2
Clearly ' 2 3 1 =P
2 1 3
P is a symmetric matrix
P
 
    
  

0 0 0
' 0 0 0
0 0 0
is a skew-symmetric matrix
Clearly Q Q
Q
 
   
  

From * , matrix A sum of symmetric &
skew-symmetric matrices
is
Solution: Let A be the given matrix
25. Express the matrix as the sum of a symmetric and
skew symmetric matrix:
'
2 2 2 2 1 1
B 1 3 4 B 2 3 2
1 2 3 2 4 3
We have    
 
 
 
 
      
      
      
          
  
 
 
 
  
1 1
B = B + B' + B - B'
2 2
= P + Q say *
-3 32
2 22 -2 2 2 -1 1
1 1 -3where P = B + B' = -1 3 4 + -2 3 - 2 P = 3 1
22 2
1 -2 -3 2 4 - 3 3 1 - 3
2
2 -2 2 2 -1
1 1
& Q = B - B' = -1 3 4 -
2 2
1 -2 -3
1
1
 
    
    
    
      
 
10
2 21
-2 3 - 2 Q = 0 3
2
2 4 - 3 -1 -3 0
2
2 2 2
B 1 3 4
1 2 3
Clearly ' and ' is symmetric and is skew-symmetricP P Q Q P Q   
Therefore from * B= symmetric matrix +skew-symmetric matrix
25. Express the following matrix as the sum of a
symmetric and skew symmetric matrix: 3 5
1 1Solution:
30.If A and B are invertible matrices of the same order,
then prove that
1 1 1
AB B A
Proof: Given that A and B are invertible matrices
1 1
AA A A I 
  1 1
BB B B I 
 And
    
 
1 1 1 1
1 1
1
1
Consider
=
= is invertible.
=
=
AB B A A B B A
A BB A
A IA B
A A
I
   
 


   
 
 
  
  
    
 
1 1 1 1
1 1
1
1
Consider
matrix multiplication is associative
=
= B is invertible.
=
B A AB B A A B
B A A B
B I A
B
   
 


   
 
 
  

=
B
I

Therefore AB is invertible &
1 1 1
AB B A
31.Prove that for any square matrix A with real number entries,
A+ A’ is a symmetric matrix and A- A’ is a skew symmetric matrix.
Solution : Let A be a square matrix
To show : A+A’ is a symmetric matrix
Let 'X A A 
 
 
  
Consider ' ' '
= ' ' '
= ' ' '
= '
'=
' is symmetric matrix
X A A
A A
A A A A
A A
X X
X A A
 

 

  
'Y A A 
 
 
  
 
Consider ' ' '
= ' ' '
= ' ' '
= - '
'=
' is skew-symmetric matrix
Y A A
A A
A A A A
A A
Y Y
Y A A
 

 


  
To show : A-A’ is skew symmetric matrix
32. Prove that any square matrix can be expressed as
the sum of symmetric and skew symmetric matrix
Solution:
1
2
2
1
2
1
' '
2
1 1
' '
2 2
=
A A
A A
A A A
A A A A A
A A A A A
P Q
Let A be the square matrix
   
   
   
   
 
1 1
' and '
2 2
1 1
' ' ' ' ' '
2 2
1 1
= ' ' ' ' ' ' '
2 2
1 1
= ' ' '
2 2
1
' = ' '
2
where P A A Q A A
P A A Q A A
A A Q A A
A A Q A A
P P Q A A
   
   
        
  
  
'Q Q
Any Square matrix can be expressed as the sum of symmetric and skew -symmetric matrix
33.Prove inverse of a square matrix, if it exist, is unique
Solution: Let A be a square matrix
To prove : Uniqueness of the Inverse of a Matrix
This can be proved by Contradiction Method
Let us suppose that If possible matrix A has two inverses B & C
Since B is a inverse of A ..... *AB BA I
Since C is a inverse of A .... * *AC CA I
matrix multiplication is associative
Identity law
B BI
B AC AC I
IC BA I
C
BA C
Now , We have
This is the contrdiction to our suppose therefore Matrix A has only one inverse
Five Marks questions
1. If  
2
4 1 3 6
5
A and B
 
    
  
Verify that ( )AB B A  
Solution: Consider
 
2 2 6 12
4 1 3 6 4 12 24
5 5 15 30
AB
     
         
      
 
2 4 5
' 6 12 15
12 24 30
LHS AB
 
    
   
   
2 1
4 ' 2 4 5 and 1 3 6 ' 3
5 6
A A B B
   
             
      
 
1
' ' 3 2 4 5
6
2 4 5
= 6 12 15
12 24 30
RHS B A
 
    
  
 
  
   
LHS = RHS
( )AB B A  
2. If
1 2 3 3 1 2 4 1 2
5 0 2 , 4 2 5 0 3 2
1 1 1 2 0 3 1 2 3
A B and C
      
            
           
then compute that (A+B) & (B-C)Also verify that A+(B-C)=(A+B)-C
Solution:
1 2 3 3 1 2 4 1 1
5 0 2 4 2 5 9 2 7
1 1 1 2 0 3 3 1 4
A B
       
             
           
3 1 2 4 1 2 1 2 0
, 4 2 5 0 3 2 4 1 3
2 0 3 1 2 3 1 2 0
B C
       
              
          
 
1 2 3 1 2 0 0 0 3
5 0 2 4 1 3 9 1 5
1 1 1 1 2 0 2 1 1
LHS A B C
        
                 
          
 
4 1 1 4 1 2 0 0 3
9 2 7 0 3 2 9 1 5
3 1 4 1 2 3 2 1 1
A BRHS C
      
             
         
 


 
LHS RHS 
3. Find
2
A 5A 6I 2 0 1
if A 2 1 3
1 1 0
Solution:
2 0 1
A 2 1 3
1 1 0
2
3 3 2 2 0 1 1 0 0
A 5A 6I 9 2 5 5 2 1 3 6 0 1 0
0 1 2 1 1 0 0 0 1
=2
2 0 1 2 0 1 2 0 1 4 0 1 2 0 0 3 3 2
A AA 2 1 3 2 1 3 4 2 3 0 1 3 2 3 0 9 2 5
1 1 0 1 1 0 2 2 0 0 1 0 1 3 0 0 1 2
3 3 2 10 0 5 6 0 0 3 10 6 3 0 0 2 5 0
9 2 5 10 5 15 0 6 0 9 10 0 2 5 6 5 15 0
0 1 2 5 5 0 0 0 6 0 5 0 1 5 0 2 0 6
1 3 3
1 1 10
5 4 4
Five Mark questions
5.If
0 6 7
A 6 0 8
7 8 0
0 1 1
B 1 0 2
1 2 0
2
C 2
3
Calculate AC, BC and (A + B) C. Also,
verify that (A + B)C = AC + BC.
Five Mark questions
6. if
1 1 1
A 1 2 3
2 1 3
then show that
3
A 23A 40I O
Five Mark questions
7. If
1 0 2
A 0 2 1
2 0 3
then show that
3 2
A 6A 7A 2I O
8. Let
2 1
A
3 4
5 2
B
7 4
2 5
C
3 8
Find a matrix D such that CD AB 0
Solution: Since matrices A & B are of order 2×2
therefore AB is also a matrix of order 2×2
Since C is the matrix of order 2×2 therefore D must be the matrix of 2×2. Let
a b
D
c d
 
  
 
0CD AB 
2 5 2 1 5 2
0
3 8 3 4 7 4
a b
c d
       
        
       
2 5 2 5 10 7 4 4
0
3 8 3 8 15 28 6 16
a c b d
a c b d
      
          
2 5 3 2 5 0 0 0
3 8 43 3 8 22 0 0
a c b d
a c b d
      
         
2 5 3 0
2 5 0 0
3 8 43 0
3 8 22 0
a c
b d
a c
b d
  
  
  
  
Solving these
equations by
Cross
Multiplication
Method
9. If tan
tan
0
2A
02


and I is identity matrix of order 2, Show that
cos sin
sin cos
tan cos sin
tan sin cos
tan cos sin
sin costan
cos tan sin sin tan cos
tan cos
RHS I A
01 0
2
0 1 02
1
2
1
2
2 2
2
 
 
  
  

 
  
    
  sin tan sin os
sin sin
cos sin cos sin cos
cos cos
sin sin
cos sin sin cos cos
cos cos
sin sin
2
2
2 2
c
2
2 22 2 1
2 2 2
2 2
2 22 1 2
2 2 2
2 2
1 2 2
2
  
 
   
 
 
   
 
 
sin
sin sin cos
cos
sin
sin cos sin sin sin
cos
tan
tan
2 2
22
2 2 2
2
22 2 1 2
2 2 2 2
2
1
2
12

 


   



Solution:
0 tan1 0
2
tan0 1 02
1 tan
2
=
tan 1
2
LHS I A




  
     
    
 
 
 
 
 
 
cos sin
sin cos
RHS I A
2 2
Useful sults
2 2
2 2 1 1 2



  
  
Re
sin
tan
cos
sin sin cos
cos cos sin
  
  
tan cos sin
tan sin cos
01 0
2
0 1 02

 
  
tan cos sin
sin costan
1
2
1
2
    
    
cos tan sin sin tan cos
tan cos sin tan sin os
2 2
c
2 2
 
   
 
 
   
 
sin sin
cos sin cos sin cos
cos cos
sin sin
cos sin sin cos cos
cos cos
2
2
2 22 2 1
2 2 2
2 2
2 22 1 2
2 2 2
2 2

   


   

sin
sin sin sin sin cos
cos
sin
sin cos sin sin sin
cos
2 2
2 2
21 2 2 2
2 2 2 2
2
22 2 1 2
2 2 2 2
tan
tan
1
2 LHS
12


One Mark questions
10. Construct a 3 × 3 matrix whose
elements are given by
1
3
2
 ija i j
11. Construct a 3 × 4 matrix, whose elements
are given by:
1
) 3
2
iji a i j   ) 2ijii a i j 
One Mark questions
12. Find the values of x, y and z from the
following equations:
4 3 y z
i
x 5 1 5
x y z 9
ii x z 5
y z 7
One Mark questions
13. Find x and y, if
1 3 y 0 5 6
2
0 x 1 2 1 8
14. if
2 1 10
x y
3 1 5
Find the
values of x & y
One Mark questions
15. Find X, if &
3 2
Y
1 4
1 0
2X Y
3 2
16. Find the values of x and y from the following equation
x 5 3 4 7 6
2
7 y 3 1 2 15 16
One Mark questions
17. Find the value of a, b, c and d from the equation:
a b 2a c 1 5
2a b 3c d 0 13
18. Show that the matrix
1 1 5
A 1 2 1
5 1 3
is a symmetric matrix
One Mark questions
19. Show that the matrix
0 1 1
A 1 0 1
1 1 0
is a skew symmetric matrix
20. let , ,
2 4 1 3 2 5
A B C
3 2 2 5 3 4
Find each of the following
One Mark questions
22. Given
3 1 1
A and
2 3 0
2 5 1
B 1
2 3
2
Find A B
23. Given
Find
1 2 3
A and
2 3 1
3 1 3
B
1 0 2
2A B
One Mark questions
25.Find AB If
6 9
A
2 3
and
2 6 0
B
7 9 8
26. if
1 0
A
0 1
and
0 1
B
1 0
then prove that
0 1
i AB
1 0
0 1
ii BA
1 0
One Mark questions
27. Simplify cos sin sin cos
cos sin
sin cos cos sin
   
 
   
28. Find
1
P if it exists , given
10 2
P
5 1
One Mark questions
29. Find the transpose of each of the following matrices
3 3 2
A
4 2 0
and
2 1 2
B
1 2 4
30.If
3 3 2
A
4 2 0
2 1 2
B
1 2 4
Verify that ' 'i A A ' ' 'ii A B A B
One Mark questions
31. Compute the following
a b a b
i
b a b a
2 2 2 2
2 2 2 2
a b b c 2ab 2bc
ii
2ac 2aba c a b
1 4 6 12 7 6
iii 8 5 16 8 0 5
2 8 5 3 2 4
cos sin sin cos
sin cos cos sin
2 2 2 2
2 2 2 2
x x x x
iv
x x x x
One Mark questions
32. Compute the indicated products:
a b a b
i
b a b a
1
ii 2 2 3 4
3
1 2 1 2 3
iii
2 3 2 3 1
2 3 4 1 3 5
iv 3 4 5 0 2 4
4 5 6 3 0 5
One Mark questions
2 1
1 0 1
v 3 2
1 2 1
1 1
2 3
3 1 3
vi 1 0
1 0 2
3 1
32. Compute the indicated products:
Three Mark questions
1. Find the values of x, y and z from the following equations
x y 2 6 2
5 z xy 5 8
Three Mark questions
2. Solve the equation for x, y, z and t, if
x z 1 1 3 5
2 3 3
y t 0 2 4 6
Three Mark questions
3. Given
x y x 6 4 x y
3
z w 1 2w z w 3
find the values of x, y, z and w
Three Mark questions
4. Find the values of a, b, c and d from the following equation
2a b a 2b 4 3
5c d 4c 3d 11 24
Three Mark questions
5. If
x 3 z 4 2y 7 0 6 3y 2
6 a 1 0 6 3 2c 2
b 3 21 0 2b 4 21 0
Find the values of a, b, c, x, y and z.
Three Mark questions
6. Using elementary transformations, find the inverse of each of the matrices
1 1
i
2 3
2 1
ii
1 1
1 3
iii
2 7
2 3
iv
5 7
2 1
v
7 4
2 5
vi
1 3
Three Mark questions
3 1
vii
5 2
4 5
viii
3 4
3 10
ix
2 7
2 6
x
1 2
6 3
xi
2 1
2 3
xii
1 2
Using elementary transformations, find the inverse of each of the matrices
Three Mark questions
7. By using elementary operations,
find the inverse of the matrix
1 2
A
2 1
8. Find X and Y, if
7 0
X Y
2 5
and
3 0
X Y
0 3
Three Mark questions
9. Find X and Y, if
2 3
2X 3Y
4 0
and
2 2
3X 2Y
1 5
10. If
8 0
A 4 2
3 6
and
2 2
B 4 2
5 1
then find the matrix X, such that 2A 3X 5B
Three Mark questions
11. Find X and Y, if 5 2
X Y
0 9
and
3 6
X Y
0 1
12. If
2 5
1
3 3
1 2 4
A
3 3 3
7 2
2
3 3
and
2 3
1
5 5
1 2 4
B
5 5 5
7 6 2
5 5 5
Then compute
3A 5B
Three Mark questions
13. if
cos sin
( ) sin cos
x x 0
F x x x 0
0 0 1
Show that
F x F y F x y
14. Show that
5 1 2 1 2 1 5 1
6 7 3 4 3 4 6 7
Three Mark questions
16.Show that
1 2 3 1 1 0 1 1 0 1 2 3
0 1 0 0 1 1 0 1 1 0 1 0
1 1 0 2 3 4 2 3 4 1 1 0
17. if
1 2 3
A 5 7 9
2 1 1
and
4 1 5
B 1 2 0
1 3 1
then verify that
' ' 'i A B A B
' ' 'ii A B A B
Three Mark questions
18. if '
3 4
A 1 2
0 1
and
1 2 1
B
1 2 3
then verify that
' ' 'i A B A B
' ' 'ii A B A B
Three Mark questions
19. if '
2 3
A
1 2
and
1 0
B
1 2
then find
'A 2B
20. if
1 2 3
A
4 2 5
and
2 3
B 4 5
2 1
AB BAthen find AB, BA Show that
Three Mark questions
21. If A and B are symmetric matrices
of the same order, then show that
AB is symmetric if and only if A and
B are commutative,
that is AB = BA.
Three Mark questions
22. If
3 2
A
4 2
and
1 0
I
0 1
Find k so that
2
A kA 2I
Three Mark questions
23. For the matrix
1 5
A
6 7
verify that
'i A A is a symmetric matrix
'ii A A is a skew symmetric matrix
Three Mark questions
24. Find '
1
A A
2
'
1
and A A
2
When
0 a b
A a 0 c
b c 0
Three Mark questions
25. Express the following matrices as the sum of a
symmetric and skew symmetric matrix:
3 5
1 1
6 2 2
2 3 1
2 1 3
Three Mark questions
26. Express the matrix
2 2 2
B 1 3 4
1 2 3
as the sum of a symmetric and a
skew symmetric matrix.
Three Mark questions
27. If A and B are symmetric matrices of
the same order, then show that AB is
symmetric if and only if AB = BA.
28.If A and B are invertible matrices of the
same order, then prove that
1 1 1
AB B A
Three Mark questions
30.Prove that for any square matrix A
with real number entries, A+ A’ is
a symmetric matrix and A- A’ is a
skew symmetric matrix.
Three Mark questions
32. Prove that any square matrix can be
expressed as the sum of symmetric
and skew symmetric matrix
33.Prove inverse of a square matrix, if
it exist, is unique
Five Marks questions
1. If  
2
4 1 3 6
5
A and B
 
    
  
Verify that
( )AB B A  
Five Marks questions
2. If
1 2 3 3 1 2 4 1 2
5 0 2 , 4 2 5 0 3 2
1 1 1 2 0 3 1 2 3
A B and C
      
            
           
then compute that (A+B) & (B-C)
Also verify that A+(B-C)=(A+B)-C
Five Mark questions
3. Find 2
A 5A 6I
2 0 1
if A 2 1 3
1 1 0
Five Mark questions
5.If
0 6 7
A 6 0 8
7 8 0
0 1 1
B 1 0 2
1 2 0
2
C 2
3
Calculate AC, BC and (A + B) C. Also,
verify that (A + B)C = AC + BC.
Five Mark questions
6. if
1 1 1
A 1 2 3
2 1 3
then show that
3
A 23A 40I O
Five Mark questions
7. If
1 0 2
A 0 2 1
2 0 3
then show that
3 2
A 6A 7A 2I O
Five Mark questions
8. Let
2 1
A
3 4
5 2
B
7 4
2 5
C
3 8
Find a matrix D such that CD AB 0
Five Mark questions
9. If
tan
tan
0
2A
02


and I is identity matrix of order 2, Show that
cos sin
sin cos
I A I A
 
 
Five Marks questions
CET questions
(A) (B)
(C) 3 (D) 2
Mr. Santosh T. M.Sc
BasavaJyoti Science & Commerce P.U. College, Jamkhandi
E-mail: santa1.6180@gmail.com
Contact : 9591319967

More Related Content

What's hot

system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matricesAditya Vaishampayan
 
Pair of linear equations in 2 variables
Pair of linear equations in 2 variablesPair of linear equations in 2 variables
Pair of linear equations in 2 variablesgeet bajaj
 
Duality in Linear Programming Problem
Duality in Linear Programming ProblemDuality in Linear Programming Problem
Duality in Linear Programming ProblemRAVI PRASAD K.J.
 
Quadratic inequality
Quadratic inequalityQuadratic inequality
Quadratic inequalityBrian Mary
 
11.1 linear equations in two variables
11.1 linear equations in two variables11.1 linear equations in two variables
11.1 linear equations in two variablesGlenSchlee
 
Matrices
MatricesMatrices
Matriceskja29
 
Presentation on quadratic equation
Presentation on quadratic equationPresentation on quadratic equation
Presentation on quadratic equationSurajKumar1560
 
05 perfect square, difference of two squares
05   perfect square, difference of two squares05   perfect square, difference of two squares
05 perfect square, difference of two squaresmajapamaya
 
GATE Engineering Maths : System of Linear Equations
GATE Engineering Maths : System of Linear EquationsGATE Engineering Maths : System of Linear Equations
GATE Engineering Maths : System of Linear EquationsParthDave57
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variablesVivekNaithani3
 
Linear Programming Quiz Solution
Linear Programming Quiz SolutionLinear Programming Quiz Solution
Linear Programming Quiz SolutionEd Dansereau
 
Ch- 6 Linear inequalities of class 11
Ch- 6 Linear inequalities of class 11Ch- 6 Linear inequalities of class 11
Ch- 6 Linear inequalities of class 11Lokesh Choudhary
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoringhisema01
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and DeterminantsAarjavPinara
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 

What's hot (20)

system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
Arithmetic Progression
Arithmetic ProgressionArithmetic Progression
Arithmetic Progression
 
Pair of linear equations in 2 variables
Pair of linear equations in 2 variablesPair of linear equations in 2 variables
Pair of linear equations in 2 variables
 
Duality in Linear Programming Problem
Duality in Linear Programming ProblemDuality in Linear Programming Problem
Duality in Linear Programming Problem
 
Linear programming ppt
Linear programming pptLinear programming ppt
Linear programming ppt
 
Quadratic inequality
Quadratic inequalityQuadratic inequality
Quadratic inequality
 
Quadratics
QuadraticsQuadratics
Quadratics
 
11.1 linear equations in two variables
11.1 linear equations in two variables11.1 linear equations in two variables
11.1 linear equations in two variables
 
Matrices
MatricesMatrices
Matrices
 
Presentation on quadratic equation
Presentation on quadratic equationPresentation on quadratic equation
Presentation on quadratic equation
 
05 perfect square, difference of two squares
05   perfect square, difference of two squares05   perfect square, difference of two squares
05 perfect square, difference of two squares
 
GATE Engineering Maths : System of Linear Equations
GATE Engineering Maths : System of Linear EquationsGATE Engineering Maths : System of Linear Equations
GATE Engineering Maths : System of Linear Equations
 
Linear equations in two variables
Linear equations in two variablesLinear equations in two variables
Linear equations in two variables
 
Linear Programming Quiz Solution
Linear Programming Quiz SolutionLinear Programming Quiz Solution
Linear Programming Quiz Solution
 
Systems of 3 Equations in 3 Variables
Systems of 3 Equations in 3 VariablesSystems of 3 Equations in 3 Variables
Systems of 3 Equations in 3 Variables
 
Ch- 6 Linear inequalities of class 11
Ch- 6 Linear inequalities of class 11Ch- 6 Linear inequalities of class 11
Ch- 6 Linear inequalities of class 11
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
A1 ch03 06 blue
A1 ch03 06  blueA1 ch03 06  blue
A1 ch03 06 blue
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 

Similar to Matrices Questions & Answers

Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3Nazrin Nazdri
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
 
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007Demetrio Ccesa Rayme
 
Quadratic eq and discriminant
Quadratic eq and discriminantQuadratic eq and discriminant
Quadratic eq and discriminantswartzje
 
Exams in college algebra
Exams in college algebraExams in college algebra
Exams in college algebraRaymond Garcia
 
Algebra 2 Section 3-6
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6Jimbo Lamb
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...wafahop
 
quadratic-formula.ppt
quadratic-formula.pptquadratic-formula.ppt
quadratic-formula.pptSYEDAHTISHAM9
 

Similar to Matrices Questions & Answers (20)

Matrices
Matrices Matrices
Matrices
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Determinants. Cramer’s Rule
Determinants. Cramer’s RuleDeterminants. Cramer’s Rule
Determinants. Cramer’s Rule
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
 
Mathematics 1
Mathematics 1Mathematics 1
Mathematics 1
 
Mathematics 1
Mathematics 1Mathematics 1
Mathematics 1
 
Indices
IndicesIndices
Indices
 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic Equations
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Takue
TakueTakue
Takue
 
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
 
Matrix.pptx
Matrix.pptxMatrix.pptx
Matrix.pptx
 
Quadratic eq and discriminant
Quadratic eq and discriminantQuadratic eq and discriminant
Quadratic eq and discriminant
 
Exams in college algebra
Exams in college algebraExams in college algebra
Exams in college algebra
 
Algebra 2 Section 3-6
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6
 
determinants.ppt
determinants.pptdeterminants.ppt
determinants.ppt
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
 
quadratic-formula.ppt
quadratic-formula.pptquadratic-formula.ppt
quadratic-formula.ppt
 
Quadratic Formula Demo.ppt
Quadratic Formula Demo.pptQuadratic Formula Demo.ppt
Quadratic Formula Demo.ppt
 
quadratic-formula.ppt
quadratic-formula.pptquadratic-formula.ppt
quadratic-formula.ppt
 

Recently uploaded

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 

Matrices Questions & Answers

  • 1. CHAPTER-03 Matrices PUC-II MATHEMATICS 1 M 2M 3M 4M 5M 6M TOTAL 1 - 1 - 1 _ 9
  • 2. One Mark questions 1. Define a scalar matrix. (K) Scalar Matrix is a diagonal matrix whose principal diagonal elements are same 4 0 0 0 4 0 0 0 4          Examples 5 0 0 0 5 0 0 0 5        
  • 3. One Mark questions 2. Define an Identity matrix. (K) Identity Matrix is a scalar matrix whose principal diagonal elements are equal to 1          3 1 0 0 0 1 0 0 0 1 I IExamples 1 0 I 0 1
  • 4. One Mark questions 3. Define a diagonal matrix. Diagonal matrix is a square matrix whose non- principal diagonal elements are zero irrespective of principal diagonal elements.
  • 5. One Mark questions 4. In the matrix 2 5 19 7 5 35 2 12 2 3 1 5 17 Write: (i) the order of the matrix (ii) The number of elements (iii) Write the elements , , , , R1 R2 R3 C1 C2 C3 C4 =12 a13 a21 a33 a42a23 a13 a21 a33a42 a23 a24 3 4 a24
  • 6. One Mark questions 5. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements? Soln: 1 24 24 1 2 12 12 2 3 8 8 3 4 6 6 4        Soln: 1 13 13 1
  • 7. One Mark questions 6. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements? Soln: 1 18 18 1 2 9 9 2 3 6 6 3       Soln: 1 5 5 1
  • 8. One Mark questions 8. If a matrix has 8 elements, what are the possible orders it can have?
  • 9. One Mark questions 7. Find the number of all possible matrices of order 3 ×3 with each entry 0 or 1 ? Solution: since order is 3 ×3 ∴ matrices having 9 elements (entries) Given that: Each entry is either 0 or 1 i.e. TWO ways to be filled an entry . ∴According to Fundamental Principle of counting 9 entries can be filled in 2 × 2×2 ×…….. 9 times ∴ No. of possible matrices = 9 2
  • 10. One Mark questions 9. Construct a 2 × 2 matrix, 11 12 21 22 a a a a       A = whose elements are given by ija i j  Solution : Let 2 × 2 matrix ija i j  11 1 1 2a    12 1 2 3a    21 2 1 3a    22 2 2 4a    ∴Required matrix is 2 3 3 4       A = 11For , put 1& 1a i j  Given
  • 11. One Mark questions 9. Construct a 2 × 2 matrix, 11 12 21 22 a a a a       A = whose elements are given by Solution : Let 2 × 2 matrix    11 1 3 1 1 2 2 a       12 1 5 3 1 2 2 2 a       21 1 7 3 2 1 2 2 a       22 1 3 2 2 4 2 a    ∴Required matrix is 5 2 2 7 4 2            A = 11For , put 1& 1a i j  Given 1 3 2 ija i j  1 3 2 ija i j 
  • 12. One Mark questions 9. Construct a 2 × 2 matrix,   ijA = a whose elements are given by; ) ij i iii a j  ) ijiv a i j 
  • 13. One Mark questions 9. Construct a 2 × 2 matrix,   ijA = a whose elements are given by; ) 2ijv a i j    2 ) ijvi a i j    2 ) 2 ij i j viii a     2 2 ) 2 ij i j vii a  
  • 14. One Mark questions 9. Construct a 3 × 3 matrix, 11 12 13 21 22 23 31 32 33 A = a a a a a a a a a          whose elements are given by Solution : Let 2 × 2 matrix    11 1 1 3 1 1 2 a       12 1 5 1 3 2 2 2 a       21 1 1 2 3 1 2 2 a       22 1 2 3 2 2 2 a    ∴Required matrix is Given 1 3 2  ija i j 5 1 4 2 1 7 2 2 2 3 0 3 2                  A =    13 1 1 3 3 4 2 a       23 1 7 2 3 3 2 2 a       31 1 3 3 1 0 2 a       32 1 3 3 3 2 2 2 a       32 1 3 3 3 3 2 a    1 3 2  ija i j
  • 15. One Mark questions 11. Construct a 3 × 4 matrix, whose elements are given by: 1 ) 3 2 iji a i j   ) 2ijii a i j 
  • 16. One Mark questions 12. Find the values of x, y and z if 4 3 y z x 5 1 5 Solution: By definition of Equality of Two matrices, we have corresponding elements are equal 4 y 3 z 1x  ∴ 1x  4y  3z 
  • 17. One Mark questions 12. Find the values of x, y and z if Solution: By definition of Equality of Two matrices, we have corresponding elements are equal 9x y z   5x z  7y z  7 9x  4y  3z  x y z 9 x z 5 y z 7 2x  2 5z  3 7y   ∴ 2x  4y  3z  7 y z 
  • 18. One Mark questions 13. Find x and y, if 1 3 y 0 5 6 2 0 x 1 2 1 8 Solution: By definition of Scalar Multiplication of a Matrix, Addition & Equality of Two matrices, we have 2x  2 1 3x  2 8 5y  3y 
  • 19. One Mark questions 14. if 2 1 10 x y 3 1 5 Find the values of x & y    2 1 10 ........ 1x y      3 1 5.......... 2x y  5 15 3x x    Adding (1) and (2),we get Substitute x=3 in eqn (2),we get  3 3 5 4 y y      Solution:
  • 20. One Mark questions 15. Find X, if & 3 2 Y 1 4 1 0 2X Y 3 2 1 0 2X Y 3 2 Solution: By properties of Matrix addition 1 0 2X Y 3 2 ∴ 1 0 3 2 2X 3 2 1 4 2 2 2X 4 2 By Scalar Multiplication of a Matrix 1 1 X 2 1 Given
  • 21. One Mark questions 16. Find the values of x and y from the following equation x 5 3 4 7 6 2 7 y 3 1 2 15 16 Solution :  2 3 7 2 3 2 16x y     By definition of Scalar Multiplication of a Matrix, Addition & Equality of Two matrices, we have 2 7 3 2 -6 2 16x y    ∴ 2 10x y 
  • 22. One Mark questions 17. Find the value of a, b, c and d from the equation: a b 2a c 1 5 2a b 3c d 0 13 Solution : By definition of Equality of Two matrices, we have  1........ 1a b    2 0 .... 2a b   2 5....... 3a c   3 13....... 4c d  From (2),  2 .... *b a Substitute in (1),we get 2 1 1 a a a      From (*) b = 2 From (3) c = 3 Substitute c=1 in (4) 4d 1, 2 3& 4      a b c d
  • 23. One Mark questions 18. Show that the matrix 1 1 5 A 1 2 1 5 1 3 is a symmetric matrix Solution: Since A' 1 1 5 1 2 1 A 5 1 3 A is a symmetric matrix ∴
  • 24. One Mark questions 19. Show that the matrix 0 1 1 A 1 0 1 1 1 0 is a skew symmetric matrix Solution: ∴ ' 0 1 1 Since A 1 0 1 1 1 0 A is a skew symmetric matrixA
  • 25. One Mark questions 22. Given Find 1 2 3 A and 2 3 1 3 1 3 B 1 0 2 2A B Solution: 1 2 3 3 1 3 2A B 2 2 3 1 1 0 2 2 4 6 3 1 3 4 6 2 1 0 2 2 3 4 1 6 3 4 1 6 0 2 2 1 5 3 5 6 0
  • 26. One Mark questions 23. Given 3 1 1 A and 2 3 0 2 5 1 B 1 2 3 2 Find A B
  • 27. One Mark questions 25.Find AB 6 9 A 2 3 and 2 6 0 B 7 9 8 If Solution : 6 9 2 6 0 AB 2 3 7 9 8 6 2 9 7 6 6 9 9 6 0 9 8 2 2 3 7 2 6 3 9 2 0 3 8 75 117 72 25 39 24
  • 28. One Mark questions 26. if 1 0 A 0 1 and 0 1 B 1 0 then prove that 0 1 i AB 1 0 0 1 ii BA 1 0
  • 29. One Mark questions 27. Simplify cos sin sin cos cos sin sin cos cos sin           Solution: cos sin sin cos cos sin sin cos cos sin                       cos cos sin sin sin cos cos sin cos sin cos sin 2 2 2 2             cos sin cos sin sin cos cos sin sin cos cos sin 2 2 2 2 1 0 0 1 I        Addition of Matrices Scalar Multiplication of a Matrix 2 2 cos sin 1  
  • 30. One Mark questions 28. Find 1 P if it exists , given 10 2 P 5 1 Solution: 10 2 Since P 0 5 1 does not exist Hence P is a Singular Matrix 1 P
  • 31. One Mark questions Solution: 30.If 3 3 2 A 4 2 0 2 1 2 B 1 2 4 Verify that ' 'i A A ' ' 'ii A B A B ' 3 4 3 3 2 A A 3 2 4 2 0 2 0 ' 2 1 2 1 2 B B 1 2 1 2 4 2 4 ' 3 4 i A 3 2 2 0 ' ' 3 3 2 A A 4 2 0 Clearly ' 5 5 5 3 1 4 A B A B 3 1 4 5 4 4 4 4 Clearly ' ' 3 54 2 1 5 A B 3 2 1 2 3 1 4 2 0 2 4 4 4
  • 32. Solution: 31. Compute the following 2 2 2 2 2 2 2 2 a b b c 2ab 2bc i 2ac 2aba c a b 2 2 2 2 2 2 2 2 a b b c 2ab 2bc 2ac 2aba c a b 2 2 2 2 2 2 2 2 a b 2ab b c 2bc a c 2ac a b 2ab 2 2 2 2 a b b c a c a b
  • 33. 31. Compute the following a b a b ii b a b a 1 4 6 12 7 6 iii 8 5 16 8 0 5 2 8 5 3 2 4 cos sin sin cos sin cos cos sin 2 2 2 2 2 2 2 2 x x x x iv x x x x
  • 34. a b a b i b a b a 32. Compute the indicated products: Solution: a b a b b a b a 2 2 2 2 2 2 2 2 2 2 2 2 a b ab ba ba ab b a a b 0 0 a b 1 0 a b 0 1 a b I
  • 35. 1 ii 2 2 3 4 3 32. Compute the indicated products: Solution: 1 2 2 3 4 3 1 3Order 3 1 3 3 2 3 4 4 6 8 6 9 12
  • 36. 32. Compute the indicated products: 1 2 1 2 3 iii 2 3 2 3 1 2 3 4 1 3 5 iv 3 4 5 0 2 4 4 5 6 3 0 5 2 1 1 0 1 v 3 2 1 2 1 1 1 2 3 3 1 3 vi 1 0 1 0 2 3 1
  • 37. Three Mark questions 1. Find the values of x, y and z from the following equations x y 2 6 2 5 z xy 5 8 By definition of Equality of Two matrices, we have    6..... 1 8..... 2x y xy   Solution:
  • 38. x y 2 6 2 5 z xy 5 8 Solution: Given By definition of Equality of Two matrices, we have    6..... 1 8..... 2x y xy    1 6From y x      2 2 6 - 8 - 6 8 0 4 2 =0 4 or 2 From (1) 2 or 4 x x x x x x x x y y                2 6 8becomes x x 
  • 39. 2. Solve the equation for x, y, z and t, if x z 1 1 3 5 2 3 3 y t 0 2 4 6 Solution: Given x z 1 1 3 5 2 3 3 y t 0 2 4 6 By definition of Scalar Multiplication of a matrix & Addition ,we have 2 3 9x  2 3 15z   2 0 12y   2 6 18t   3x  9z  6y  6t  By definition of Equality of Two matrices, we have 2x 2z 3 3 9 15 2y 2t 0 6 12 18 2 3 2 3 9 15 2 0 2 6 12 18 x z y t             
  • 40. 3. Given x y x 6 4 x y 3 z w 1 2w z w 3 find the values of x, y, z and w By definition of Scalar Multiplication of a matrix, Addition & Equality of Two matrices, we have Solution: Given x y x 6 4 x y 3 z w 1 2w z w 3 3 4 2x x x       3 6 using 2 we get 4y x y x y      3 2 3 3w w w       3 1 Using w=3 we get 1z z w z     
  • 41. 4. Find the values of a, b, c and d from the following equation 2a b a 2b 4 3 5c d 4c 3d 11 24 Solution: By definition of Equality of Two matrices, we have ...... .... 2a b 4 1 a 2b 3 2 ..... ..... 5c d 11 3 4c 3d 24 4 Consider 2(1)+(2), we get 4a 2b 8 a 2b 3 + 5 5 1a a   From (1) we get 2b  Consider 3(1)+(2), we get 15c 3d 33 4c 3d 24 + 19 57 3c c   From (3) we get 4d 
  • 42. 5. If x 3 z 4 2y 7 0 6 3y 2 6 a 1 0 6 3 2c 2 b 3 21 0 2b 4 21 0 Find the values of a, b, c, x, y and z. Solution: By definition of Equality of Two matrices, we have 3, 2, 5 2, 1, 7x z y a c b          
  • 43. 6. Using elementary transformations, find the inverse of 1 1 2 3 Solution: Let given matrix be 1 1 A 2 3 Find , sing Elementary Row Operation(ERO)1 A U Consider A IA Apply '2 2 1 R R 2R 1 1 1 0 A 2 3 0 1 1 0 1 1 A2 1 0 1 5 5 1 1 1 0 A 0 5 2 1 Apply '2 2 1 R R 5 Apply '1 1 2 R R R 0 3 1 1 5 5 A 0 1 2 1 5 5 . .i e I BA By definition of Invertible Matrix, 1 B A  1 3 1 5 5 2 1 5 5 A             
  • 44. Using elementary transformations, find the inverse of Solution: Let given matrix be Find , sing Elementary Row Operation(ERO)1 A U Consider A IA Apply 1 2 R R 2 6 1 0 A 1 2 0 1 0 1 1 2 A1 0 1 1 2 1 2 0 1 A 2 6 1 0 Apply '2 2 1 R R 2 Apply '1 1 2 R R 2R . .i e I BA By definition of Invertible Matrix, 1 B A  2 6 1 22 6 A 1 2 Apply '2 2 1 R R 2R 1 2 0 1 A 0 2 1 2 1 3 1 0 A1 0 1 1 2 1 1 3 A 1 1 2
  • 45. Using elementary transformations, find the inverse of Solution: Let given matrix be Find , sing Elementary Row Operation(ERO)1 A U Consider A IA Apply '1 1 2 R R R 4 5 1 0 A 3 4 0 1 Apply '1 1 2 R R R . .i e I BA By definition of Invertible Matrix, 1 B A  Apply '2 2 1 R R 3R 1 4 5 A 3 4 4 5 3 44 5 A 3 4 1 1 1 1 A 3 4 0 1 1 1 1 1 A 0 1 3 4 1 0 4 5 A 0 1 3 4
  • 46. Using elementary transformations, find the inverse of Solution: Let given matrix be Find , sing Elementary Row Operation(ERO)1 A U Consider A IA Apply '1 1 2 R R R 2 3 1 0 A 1 2 0 1 Apply '1 1 2 R R R . .i e I BA By definition of Invertible Matrix, 1 B A  Apply '2 2 1 R R R 1 2 3 A 1 2 2 3 1 22 3 A 1 2 1 1 1 1 A 1 2 0 1 1 1 1 1 A 0 1 1 2 1 0 2 3 A 0 1 1 2
  • 47. Using elementary transformations, find the inverse of Solution: Let given matrix be Find , sing Elementary Row Operation(ERO)1 A U Consider A IA Apply '2 2 1 R R 2R 3 1 1 0 A 5 2 0 1 Apply '2 2 1 R R 3R . .i e I BA By definition of Invertible Matrix, 1 B A  Apply '2 2 R 1 R 1 2 1 A 5 3 3 1 A 5 2 3 1 5 2 3 1 1 0 A 1 0 2 1 3 1 1 0 A 1 0 2 1 Apply 1 2 R R 1 0 2 1 A 3 1 1 0 1 0 2 1 A 0 1 5 3
  • 48. 8. Find X and Y, if 7 0 X Y 2 5 and 3 0 X Y 0 3 Solution: Given ..... 7 0 X Y 1 2 5 3 0 X Y 0 3 Adding (1) & (2),We get 7 0 3 0 X Y X Y 2 5 0 3 10 0 2X 2 8 5 0 X 1 4 From (1) 7 0 Y X 2 5 7 0 5 0 Y 2 5 1 4 2 0 Y 1 1
  • 49. 9. Find X and Y, if 2 3 2X 3Y 4 0 2 2 3X 2Y 1 5 Solution: Given that ...... 2 3 2X 3Y 1 4 0 ...... 2 2 3X 2Y 2 1 5 Consider 3(1) – 2(2), We get 2 3 6X 9Y 3 4 0 2 2 6X 4Y 2 1 5 __ __ (--)(--) - 6 9 4 4 5Y 12 0 2 10 2 13 5Y 14 10 2 13 5 5 Y 14 2 5 Consider 2(1) – 3(2), We get 4 6 6 6 5X 8 0 3 15 2 12 2 12 5 5 5X X 11 15 11 3 5
  • 50. 10. If 8 0 A 4 2 3 6 and 2 2 B 4 2 5 1 then find the matrix X, such that 2A 3X 5B Solution : For Given 8 0 A 4 2 3 6 2 2 B 4 2 5 1 By properties of Matrix Addition & Scalar Multification of a matrix 2A 3X 5B 3X 5B 2A 2 2 8 0 3X 5 4 2 2 4 2 5 1 3 6 10 10 16 0 3X 20 10 8 4 25 5 6 12 6 10 3X 12 14 31 7 10 6 3 3 14 X 4 3 31 7 3 3
  • 51. Three Mark questions 11. Find X and Y, if 5 2 X Y 0 9 and 3 6 X Y 0 1 12. If 2 5 1 3 3 1 2 4 A 3 3 3 7 2 2 3 3 and 2 3 1 5 5 1 2 4 B 5 5 5 7 6 2 5 5 5 Then compute 3A 5B
  • 52. 13. if cos sin ( ) sin cos x x 0 F x x x 0 0 0 1 Show that F x F y F x y Solution: LHS= F x F y cos sin cos sin sin cos sin cos x x 0 y y 0 x x 0 y y 0 0 0 1 0 0 1 cos cos sin sin cos siny sinxcosy sin cos cos sin sin sin cos cos cos sin sin cos x y x y x 0 x y x y x y x y 0 0 0 1 x y x y 0 x y x y 0 0 0 1 F x y RHS
  • 53. 15.(i) if cos sin sin cos A     then verify that 'A A I Solution: Given that     cos sin sin cos A     cos sin ' sin cos A         cos sin cos sin ' sin cos sin cos LHS A A           cos sin sin coscos sin sin cossin cos cos sin 2 2 2 2 1 0 0 1 I RHS
  • 54. 14. Show that 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7 (ii) if sin cos cos sin A     then verify that 'A A I
  • 55. 16.Show that 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 Solution: 1 2 3 1 1 0 LHS 0 1 0 0 1 1 1 1 0 2 3 4 1 0 6 1 2 9 0 2 12 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 5 6 14 0 1 1 1 0 1 1 1 0 1 2 3 RHS 0 1 1 0 1 0 2 3 4 1 1 0 1 0 0 2 1 0 3 0 0 0 0 1 0 1 1 0 0 0 2 0 4 4 3 4 6 0 0 1 1 3 1 0 0 6 11 6 By Definition of equality of Two Matrices LHS RHS
  • 56. 17. if 1 2 3 A 5 7 9 2 1 1 and 4 1 5 B 1 2 0 1 3 1 then verify that ' ' 'i A B A B ' ' 'ii A B A B
  • 57. 18. if ' 3 4 A 1 2 0 1 and 1 2 1 B 1 2 3 then verify that ' ' 'i A B A B ' ' 'ii A B A B
  • 58. 19. if ' 2 3 A 1 2 and 1 0 B 1 2 then find 'A 2B Solution: Given that Consider 2 1 1 0 A 2B 2 1 2 1 2 2 1 2 0 1 2 2 4 2 2 1 0 1 2 2 4 A+2B 4 1 3 6   4 3 2 ' 1 6 A B         
  • 59. 20. if 1 2 3 A 4 2 5 and 2 3 B 4 5 2 1 AB BA then find AB, BA Show that Solution: Given that 1 2 3 A 4 2 5 = 2 3 1 2 3 AB 4 5 4 2 5 2 1 2 8 6 3 10 3 8 8 10 12 10 5 0 4 10 3 2 3 B 4 5 2 1 = 2 3 1 2 3 BA 4 5 4 2 5 2 1 2 12 4 6 6 15 4 20 8 10 12 25 2 4 4 2 6 5 10 2 21 16 2 37 2 2 11By definition of Equality of Two matrices AB ≠ BA
  • 60. 21. If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if A and B are commutative, that is AB = BA. Solution: A and B are symmetric matrices of the same order First, We consider AB is symmetric To Prove : AB = BA  'AB AB Now Consider ' and 'A A B  B  ' ' ' But ' & ' = Hence proved LHS AB AB B A A A B B BA       Secondly,We consider AB BA To Prove : AB is symmetric Now Consider     ' ' ' But ' & ' = '= Hence AB is symmetric matrix LHS AB B A A A B B BA AB AB      
  • 61. 22. If 3 2 A 4 2 and 1 0 I 0 1 Find k so that 2 A kA 2I Solution: Given that 3 2 A 4 2 1 0 I 0 1 & We have 2 = A = 2 A AA 3 2 3 2 4 2 4 2 9 8 6 4 12 8 8 4 1 2 4 4 Given that 2 A kA 2I 1 2 3 2 1 0 k 2 4 4 4 2 0 1 1 2 3k 2 2k 0 4 4 4k 0 2k 2 3k 2 1 k 1
  • 62. 23. For the matrix 1 5 A 6 7 verify that 'i A A is a symmetric matrix 'ii A A is a skew symmetric matrix Solution:Given that ' 1 5 1 6 A A 6 7 5 7 ' ' 1 5 1 6 i A A 6 7 5 7 2 11 A A X say 11 14 2 11 Since ' 11 14 ' is symmetric X X X A A           ' ' 1 5 1 6 ii A A 6 7 5 7 0 1 A A X say 1 0 0 1 ' - -1 0 ' is skew-symmetric Since X X X A A          
  • 63. Solution:Given that 24. Find ' 1 A A 2 ' 1 and A A 2 When 0 a b A a 0 c b c 0
  • 64. Solution: Let A be the given matrix 25. Express the matrix as the sum of a symmetric and skew symmetric matrix: 6 2 2 2 3 1 2 1 3 ' 6 2 2 6 2 2 A 2 3 1 A 2 3 1 2 1 3 2 1 3 We have           1 1 ' ' 2 2 = * 6 2 2 1 ' = 2 3 1 2 2 1 3 0 0 0 1 & ' 0 0 0 2 0 0 0 A A A A A P Q say where P A A Q A A                            6 2 2 Clearly ' 2 3 1 =P 2 1 3 P is a symmetric matrix P            0 0 0 ' 0 0 0 0 0 0 is a skew-symmetric matrix Clearly Q Q Q           From * , matrix A sum of symmetric & skew-symmetric matrices is
  • 65. Solution: Let A be the given matrix 25. Express the matrix as the sum of a symmetric and skew symmetric matrix: ' 2 2 2 2 1 1 B 1 3 4 B 2 3 2 1 2 3 2 4 3 We have                                                         1 1 B = B + B' + B - B' 2 2 = P + Q say * -3 32 2 22 -2 2 2 -1 1 1 1 -3where P = B + B' = -1 3 4 + -2 3 - 2 P = 3 1 22 2 1 -2 -3 2 4 - 3 3 1 - 3 2 2 -2 2 2 -1 1 1 & Q = B - B' = -1 3 4 - 2 2 1 -2 -3 1 1                           10 2 21 -2 3 - 2 Q = 0 3 2 2 4 - 3 -1 -3 0 2 2 2 2 B 1 3 4 1 2 3 Clearly ' and ' is symmetric and is skew-symmetricP P Q Q P Q    Therefore from * B= symmetric matrix +skew-symmetric matrix
  • 66. 25. Express the following matrix as the sum of a symmetric and skew symmetric matrix: 3 5 1 1Solution:
  • 67. 30.If A and B are invertible matrices of the same order, then prove that 1 1 1 AB B A Proof: Given that A and B are invertible matrices 1 1 AA A A I    1 1 BB B B I   And        1 1 1 1 1 1 1 1 Consider = = is invertible. = = AB B A A B B A A BB A A IA B A A I                              1 1 1 1 1 1 1 1 Consider matrix multiplication is associative = = B is invertible. = B A AB B A A B B A A B B I A B                     = B I  Therefore AB is invertible & 1 1 1 AB B A
  • 68. 31.Prove that for any square matrix A with real number entries, A+ A’ is a symmetric matrix and A- A’ is a skew symmetric matrix. Solution : Let A be a square matrix To show : A+A’ is a symmetric matrix Let 'X A A         Consider ' ' ' = ' ' ' = ' ' ' = ' '= ' is symmetric matrix X A A A A A A A A A A X X X A A          'Y A A           Consider ' ' ' = ' ' ' = ' ' ' = - ' '= ' is skew-symmetric matrix Y A A A A A A A A A A Y Y Y A A           To show : A-A’ is skew symmetric matrix
  • 69. 32. Prove that any square matrix can be expressed as the sum of symmetric and skew symmetric matrix Solution: 1 2 2 1 2 1 ' ' 2 1 1 ' ' 2 2 = A A A A A A A A A A A A A A A A A P Q Let A be the square matrix                   1 1 ' and ' 2 2 1 1 ' ' ' ' ' ' 2 2 1 1 = ' ' ' ' ' ' ' 2 2 1 1 = ' ' ' 2 2 1 ' = ' ' 2 where P A A Q A A P A A Q A A A A Q A A A A Q A A P P Q A A                        'Q Q Any Square matrix can be expressed as the sum of symmetric and skew -symmetric matrix
  • 70. 33.Prove inverse of a square matrix, if it exist, is unique Solution: Let A be a square matrix To prove : Uniqueness of the Inverse of a Matrix This can be proved by Contradiction Method Let us suppose that If possible matrix A has two inverses B & C Since B is a inverse of A ..... *AB BA I Since C is a inverse of A .... * *AC CA I matrix multiplication is associative Identity law B BI B AC AC I IC BA I C BA C Now , We have This is the contrdiction to our suppose therefore Matrix A has only one inverse
  • 72. 1. If   2 4 1 3 6 5 A and B           Verify that ( )AB B A   Solution: Consider   2 2 6 12 4 1 3 6 4 12 24 5 5 15 30 AB                          2 4 5 ' 6 12 15 12 24 30 LHS AB                2 1 4 ' 2 4 5 and 1 3 6 ' 3 5 6 A A B B                            1 ' ' 3 2 4 5 6 2 4 5 = 6 12 15 12 24 30 RHS B A                    LHS = RHS ( )AB B A  
  • 73. 2. If 1 2 3 3 1 2 4 1 2 5 0 2 , 4 2 5 0 3 2 1 1 1 2 0 3 1 2 3 A B and C                                 then compute that (A+B) & (B-C)Also verify that A+(B-C)=(A+B)-C Solution: 1 2 3 3 1 2 4 1 1 5 0 2 4 2 5 9 2 7 1 1 1 2 0 3 3 1 4 A B                                   3 1 2 4 1 2 1 2 0 , 4 2 5 0 3 2 4 1 3 2 0 3 1 2 3 1 2 0 B C                                     1 2 3 1 2 0 0 0 3 5 0 2 4 1 3 9 1 5 1 1 1 1 2 0 2 1 1 LHS A B C                                         4 1 1 4 1 2 0 0 3 9 2 7 0 3 2 9 1 5 3 1 4 1 2 3 2 1 1 A BRHS C                                      LHS RHS 
  • 74. 3. Find 2 A 5A 6I 2 0 1 if A 2 1 3 1 1 0 Solution: 2 0 1 A 2 1 3 1 1 0 2 3 3 2 2 0 1 1 0 0 A 5A 6I 9 2 5 5 2 1 3 6 0 1 0 0 1 2 1 1 0 0 0 1 =2 2 0 1 2 0 1 2 0 1 4 0 1 2 0 0 3 3 2 A AA 2 1 3 2 1 3 4 2 3 0 1 3 2 3 0 9 2 5 1 1 0 1 1 0 2 2 0 0 1 0 1 3 0 0 1 2 3 3 2 10 0 5 6 0 0 3 10 6 3 0 0 2 5 0 9 2 5 10 5 15 0 6 0 9 10 0 2 5 6 5 15 0 0 1 2 5 5 0 0 0 6 0 5 0 1 5 0 2 0 6 1 3 3 1 1 10 5 4 4
  • 75. Five Mark questions 5.If 0 6 7 A 6 0 8 7 8 0 0 1 1 B 1 0 2 1 2 0 2 C 2 3 Calculate AC, BC and (A + B) C. Also, verify that (A + B)C = AC + BC.
  • 76. Five Mark questions 6. if 1 1 1 A 1 2 3 2 1 3 then show that 3 A 23A 40I O
  • 77. Five Mark questions 7. If 1 0 2 A 0 2 1 2 0 3 then show that 3 2 A 6A 7A 2I O
  • 78. 8. Let 2 1 A 3 4 5 2 B 7 4 2 5 C 3 8 Find a matrix D such that CD AB 0 Solution: Since matrices A & B are of order 2×2 therefore AB is also a matrix of order 2×2 Since C is the matrix of order 2×2 therefore D must be the matrix of 2×2. Let a b D c d        0CD AB  2 5 2 1 5 2 0 3 8 3 4 7 4 a b c d                          2 5 2 5 10 7 4 4 0 3 8 3 8 15 28 6 16 a c b d a c b d                   2 5 3 2 5 0 0 0 3 8 43 3 8 22 0 0 a c b d a c b d                  2 5 3 0 2 5 0 0 3 8 43 0 3 8 22 0 a c b d a c b d             Solving these equations by Cross Multiplication Method
  • 79. 9. If tan tan 0 2A 02   and I is identity matrix of order 2, Show that cos sin sin cos tan cos sin tan sin cos tan cos sin sin costan cos tan sin sin tan cos tan cos RHS I A 01 0 2 0 1 02 1 2 1 2 2 2 2                        sin tan sin os sin sin cos sin cos sin cos cos cos sin sin cos sin sin cos cos cos cos sin sin 2 2 2 2 c 2 2 22 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2 1 2 2 2                      sin sin sin cos cos sin sin cos sin sin sin cos tan tan 2 2 22 2 2 2 2 22 2 1 2 2 2 2 2 2 1 2 12             Solution: 0 tan1 0 2 tan0 1 02 1 tan 2 = tan 1 2 LHS I A                          
  • 80.     cos sin sin cos RHS I A 2 2 Useful sults 2 2 2 2 1 1 2          Re sin tan cos sin sin cos cos cos sin       tan cos sin tan sin cos 01 0 2 0 1 02       tan cos sin sin costan 1 2 1 2           cos tan sin sin tan cos tan cos sin tan sin os 2 2 c 2 2                 sin sin cos sin cos sin cos cos cos sin sin cos sin sin cos cos cos cos 2 2 2 22 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2             sin sin sin sin sin cos cos sin sin cos sin sin sin cos 2 2 2 2 21 2 2 2 2 2 2 2 2 22 2 1 2 2 2 2 2 tan tan 1 2 LHS 12  
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86. One Mark questions 10. Construct a 3 × 3 matrix whose elements are given by 1 3 2  ija i j 11. Construct a 3 × 4 matrix, whose elements are given by: 1 ) 3 2 iji a i j   ) 2ijii a i j 
  • 87. One Mark questions 12. Find the values of x, y and z from the following equations: 4 3 y z i x 5 1 5 x y z 9 ii x z 5 y z 7
  • 88. One Mark questions 13. Find x and y, if 1 3 y 0 5 6 2 0 x 1 2 1 8 14. if 2 1 10 x y 3 1 5 Find the values of x & y
  • 89. One Mark questions 15. Find X, if & 3 2 Y 1 4 1 0 2X Y 3 2 16. Find the values of x and y from the following equation x 5 3 4 7 6 2 7 y 3 1 2 15 16
  • 90. One Mark questions 17. Find the value of a, b, c and d from the equation: a b 2a c 1 5 2a b 3c d 0 13 18. Show that the matrix 1 1 5 A 1 2 1 5 1 3 is a symmetric matrix
  • 91. One Mark questions 19. Show that the matrix 0 1 1 A 1 0 1 1 1 0 is a skew symmetric matrix 20. let , , 2 4 1 3 2 5 A B C 3 2 2 5 3 4 Find each of the following
  • 92. One Mark questions 22. Given 3 1 1 A and 2 3 0 2 5 1 B 1 2 3 2 Find A B 23. Given Find 1 2 3 A and 2 3 1 3 1 3 B 1 0 2 2A B
  • 93. One Mark questions 25.Find AB If 6 9 A 2 3 and 2 6 0 B 7 9 8 26. if 1 0 A 0 1 and 0 1 B 1 0 then prove that 0 1 i AB 1 0 0 1 ii BA 1 0
  • 94. One Mark questions 27. Simplify cos sin sin cos cos sin sin cos cos sin           28. Find 1 P if it exists , given 10 2 P 5 1
  • 95. One Mark questions 29. Find the transpose of each of the following matrices 3 3 2 A 4 2 0 and 2 1 2 B 1 2 4 30.If 3 3 2 A 4 2 0 2 1 2 B 1 2 4 Verify that ' 'i A A ' ' 'ii A B A B
  • 96. One Mark questions 31. Compute the following a b a b i b a b a 2 2 2 2 2 2 2 2 a b b c 2ab 2bc ii 2ac 2aba c a b 1 4 6 12 7 6 iii 8 5 16 8 0 5 2 8 5 3 2 4 cos sin sin cos sin cos cos sin 2 2 2 2 2 2 2 2 x x x x iv x x x x
  • 97. One Mark questions 32. Compute the indicated products: a b a b i b a b a 1 ii 2 2 3 4 3 1 2 1 2 3 iii 2 3 2 3 1 2 3 4 1 3 5 iv 3 4 5 0 2 4 4 5 6 3 0 5
  • 98. One Mark questions 2 1 1 0 1 v 3 2 1 2 1 1 1 2 3 3 1 3 vi 1 0 1 0 2 3 1 32. Compute the indicated products:
  • 99. Three Mark questions 1. Find the values of x, y and z from the following equations x y 2 6 2 5 z xy 5 8
  • 100. Three Mark questions 2. Solve the equation for x, y, z and t, if x z 1 1 3 5 2 3 3 y t 0 2 4 6
  • 101. Three Mark questions 3. Given x y x 6 4 x y 3 z w 1 2w z w 3 find the values of x, y, z and w
  • 102. Three Mark questions 4. Find the values of a, b, c and d from the following equation 2a b a 2b 4 3 5c d 4c 3d 11 24
  • 103. Three Mark questions 5. If x 3 z 4 2y 7 0 6 3y 2 6 a 1 0 6 3 2c 2 b 3 21 0 2b 4 21 0 Find the values of a, b, c, x, y and z.
  • 104. Three Mark questions 6. Using elementary transformations, find the inverse of each of the matrices 1 1 i 2 3 2 1 ii 1 1 1 3 iii 2 7 2 3 iv 5 7 2 1 v 7 4 2 5 vi 1 3
  • 105. Three Mark questions 3 1 vii 5 2 4 5 viii 3 4 3 10 ix 2 7 2 6 x 1 2 6 3 xi 2 1 2 3 xii 1 2 Using elementary transformations, find the inverse of each of the matrices
  • 106. Three Mark questions 7. By using elementary operations, find the inverse of the matrix 1 2 A 2 1 8. Find X and Y, if 7 0 X Y 2 5 and 3 0 X Y 0 3
  • 107. Three Mark questions 9. Find X and Y, if 2 3 2X 3Y 4 0 and 2 2 3X 2Y 1 5 10. If 8 0 A 4 2 3 6 and 2 2 B 4 2 5 1 then find the matrix X, such that 2A 3X 5B
  • 108. Three Mark questions 11. Find X and Y, if 5 2 X Y 0 9 and 3 6 X Y 0 1 12. If 2 5 1 3 3 1 2 4 A 3 3 3 7 2 2 3 3 and 2 3 1 5 5 1 2 4 B 5 5 5 7 6 2 5 5 5 Then compute 3A 5B
  • 109. Three Mark questions 13. if cos sin ( ) sin cos x x 0 F x x x 0 0 0 1 Show that F x F y F x y 14. Show that 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7
  • 110.
  • 111. Three Mark questions 16.Show that 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 17. if 1 2 3 A 5 7 9 2 1 1 and 4 1 5 B 1 2 0 1 3 1 then verify that ' ' 'i A B A B ' ' 'ii A B A B
  • 112. Three Mark questions 18. if ' 3 4 A 1 2 0 1 and 1 2 1 B 1 2 3 then verify that ' ' 'i A B A B ' ' 'ii A B A B
  • 113. Three Mark questions 19. if ' 2 3 A 1 2 and 1 0 B 1 2 then find 'A 2B 20. if 1 2 3 A 4 2 5 and 2 3 B 4 5 2 1 AB BAthen find AB, BA Show that
  • 114. Three Mark questions 21. If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if A and B are commutative, that is AB = BA.
  • 115. Three Mark questions 22. If 3 2 A 4 2 and 1 0 I 0 1 Find k so that 2 A kA 2I
  • 116. Three Mark questions 23. For the matrix 1 5 A 6 7 verify that 'i A A is a symmetric matrix 'ii A A is a skew symmetric matrix
  • 117. Three Mark questions 24. Find ' 1 A A 2 ' 1 and A A 2 When 0 a b A a 0 c b c 0
  • 118. Three Mark questions 25. Express the following matrices as the sum of a symmetric and skew symmetric matrix: 3 5 1 1 6 2 2 2 3 1 2 1 3
  • 119. Three Mark questions 26. Express the matrix 2 2 2 B 1 3 4 1 2 3 as the sum of a symmetric and a skew symmetric matrix.
  • 120. Three Mark questions 27. If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if AB = BA. 28.If A and B are invertible matrices of the same order, then prove that 1 1 1 AB B A
  • 121. Three Mark questions 30.Prove that for any square matrix A with real number entries, A+ A’ is a symmetric matrix and A- A’ is a skew symmetric matrix.
  • 122. Three Mark questions 32. Prove that any square matrix can be expressed as the sum of symmetric and skew symmetric matrix 33.Prove inverse of a square matrix, if it exist, is unique
  • 123. Five Marks questions 1. If   2 4 1 3 6 5 A and B           Verify that ( )AB B A  
  • 124. Five Marks questions 2. If 1 2 3 3 1 2 4 1 2 5 0 2 , 4 2 5 0 3 2 1 1 1 2 0 3 1 2 3 A B and C                                 then compute that (A+B) & (B-C) Also verify that A+(B-C)=(A+B)-C
  • 125. Five Mark questions 3. Find 2 A 5A 6I 2 0 1 if A 2 1 3 1 1 0
  • 126. Five Mark questions 5.If 0 6 7 A 6 0 8 7 8 0 0 1 1 B 1 0 2 1 2 0 2 C 2 3 Calculate AC, BC and (A + B) C. Also, verify that (A + B)C = AC + BC.
  • 127. Five Mark questions 6. if 1 1 1 A 1 2 3 2 1 3 then show that 3 A 23A 40I O
  • 128. Five Mark questions 7. If 1 0 2 A 0 2 1 2 0 3 then show that 3 2 A 6A 7A 2I O
  • 129. Five Mark questions 8. Let 2 1 A 3 4 5 2 B 7 4 2 5 C 3 8 Find a matrix D such that CD AB 0
  • 130. Five Mark questions 9. If tan tan 0 2A 02   and I is identity matrix of order 2, Show that cos sin sin cos I A I A    
  • 132.
  • 134. Mr. Santosh T. M.Sc BasavaJyoti Science & Commerce P.U. College, Jamkhandi E-mail: santa1.6180@gmail.com Contact : 9591319967