SlideShare a Scribd company logo
1 of 20
FOURIER SERIES
Periodic Functions
A function 𝑓(π‘₯) is said to have a period T if for all π‘₯, 𝑓(π‘₯ + 𝑇) = 𝑓(π‘₯), where 𝑇 is a positive
constant. The least value of 𝑇 > 0 is called the period of 𝑓(π‘₯). Example: sinx, cosx, tanx etc.
Example:
1. What is the period of π’”π’Šπ’π’™?
Solution:
𝑓(π‘₯) = 𝑠𝑖𝑛π‘₯ = sin(π‘₯ + 2πœ‹) = 𝑠𝑖𝑛(π‘₯ + 4πœ‹) =. . .therefore the function has periods
2πœ‹, 4πœ‹, 6πœ‹, etc. However, 2πœ‹ is the least value and therefore is the period of 𝑓(π‘₯).
2. What is the period of 𝒕𝒂𝒏𝒙?
Solution:
π‘‘π‘Žπ‘›π‘₯ = π‘‘π‘Žπ‘›(πœ‹ + π‘₯)
Hence π‘‘π‘Žπ‘›π‘₯ is a periodic function with period πœ‹.
Piecewise Continuous Function:
A function 𝑓(π‘₯) is said to be piecewise continuous in an interval if
(i)the interval can be divided into a finite number of subintervals in each of which 𝑓(π‘₯) is
continuous.
(ii) the limits of 𝑓(π‘₯) as π‘₯ approaches the end point of each subinterval are finite.
Dirichlet’s conditions for the existence of Fourier series of 𝒇(𝒙) in the interval
(𝟎, πŸπ…):
A function 𝑓(π‘₯) can be expanded as a Fourier series of 𝑓(π‘₯) in the interval (0,2πœ‹) if the
following conditions are satisfied.
(i) 𝑓(π‘₯) is single valued and finite in (0, 2πœ‹)
(ii) 𝑓(π‘₯) is continuous or piecewise continues with finite number of finite discontinuities
in (0, 2πœ‹)
(iii) 𝑓(π‘₯) has a finite number of maxima or minima in (0, 2πœ‹).
Problems in the interval (βˆ’π…, 𝝅)
1. Find the Fourier series for 𝒇(𝒙) = |𝐬𝐒𝐧 𝒙| in βˆ’Ο€< 𝒙 < 𝝅.
Solution:
Given 𝑓(π‘₯) = |sin π‘₯|
Since 𝑓(π‘₯) is an even function 𝑏𝑛 = 0
π‘Ž0
∞
𝑓(π‘₯) = + βˆ‘ π‘Žπ‘› cos𝑛π‘₯
2
𝑛=1
… … … . . (1)
2
π‘Ž0 =
Ο€
∫ 𝑓(π‘₯) 𝑑π‘₯
Ο€
0
2
Ο€
= ∫ |sin π‘₯| 𝑑
π‘₯
Ο€
0
2
Ο€
= ∫ sin π‘₯ 𝑑
π‘₯
Ο€
0
2
Ο€ 0
= [βˆ’ cos π‘₯]Ο€
2
Ο€
= βˆ’ [cos Ο€ βˆ’ cos 0]
2
Ο€
= [βˆ’1 βˆ’ 1] =
4
Ο€
2
π‘Žπ‘› =
Ο€
∫ 𝑓(π‘₯) cos 𝑛π‘₯ 𝑑π‘₯
Ο€
0
=
2
Ο€
Ο€
∫ |sin π‘₯| cos𝑛π‘₯ 𝑑
π‘₯
0
=
2
Ο€
Ο€
∫ sin π‘₯ cos𝑛π‘₯ 𝑑
π‘₯
0
=
2 1
Ο€ 2
Ο€
∫ [sin(1 + 𝑛)π‘₯ + sin(1 βˆ’ 𝑛)π‘₯]𝑑π‘₯
0
=
1
Ο€
Ο€
∫ [sin(𝑛 + 1)π‘₯ βˆ’ sin(𝑛 βˆ’ 1)π‘₯]𝑑π‘₯
0
= [– +
𝑛 + 1 𝑛 βˆ’ 1
]
0
1 cos(𝑛 + 1)π‘₯ cos(𝑛 βˆ’ 1)π‘₯ Ο€
Ο€
= [–
1 cos(𝑛 + 1)Ο€
Ο€ 𝑛 + 1
+
cos(𝑛 βˆ’ 1)Ο€
𝑛 βˆ’ 1
+
1 1
𝑛 + 1 𝑛 βˆ’ 1
βˆ’ ]
= [–
1 (βˆ’1)𝑛+1
Ο€ 𝑛 + 1
+
(βˆ’1)π‘›βˆ’1
𝑛 βˆ’ 1
+ βˆ’
1 1
𝑛 + 1 𝑛 βˆ’ 1
]
= [
1 (βˆ’1)𝑛 (βˆ’1)𝑛
Ο€
1 1
𝑛 + 1 𝑛 βˆ’ 1 𝑛 + 1 𝑛 βˆ’ 1
βˆ’ + βˆ’ ]
=
1 (βˆ’1)𝑛 + 1 (βˆ’1)𝑛 + 1
Ο€ 𝑛 + 1 𝑛 βˆ’ 1
[ βˆ’ ]
=
Ο€
[ βˆ’
(βˆ’1)𝑛 + 1 1 1
𝑛 + 1 𝑛 βˆ’ 1
]
=
(βˆ’1)𝑛 + 1
Ο€
[
𝑛 βˆ’ 1 βˆ’ 𝑛 βˆ’ 1
𝑛2 βˆ’ 1
]
=
(βˆ’1)𝑛 + 1
[
βˆ’2
2
Ο€ 𝑛 βˆ’ 1
]
=
βˆ’2[(βˆ’1)𝑛 + 1]
(𝑛2 βˆ’ 1)Ο€
𝑖𝑓 𝑛 β‰  1
2
π‘Ž1 =
Ο€
∫ 𝑓(π‘₯) cos π‘₯ 𝑑π‘₯
Ο€
0
=
2
Ο€
Ο€
∫ |sin π‘₯| cosπ‘₯ 𝑑
π‘₯
0
=
2
Ο€
Ο€
∫ sin π‘₯ cosπ‘₯ 𝑑
π‘₯
0
=
2 1
Ο€ 2
Ο€
∫ sin 2π‘₯ 𝑑π‘₯
0
=
Ο€ 2
[ ]
0
1 βˆ’ cos2π‘₯ Ο€
=
1 1 1
Ο€ 2 2
[βˆ’ + ] = 0
Ο€
𝑛
(𝑛2βˆ’1)Ο€
βˆ’2[(βˆ’1) +1]
cos𝑛π‘₯
Substitute in equation (1) we get 𝑓(π‘₯) =
2
+ βˆ‘βˆž
𝑛 =1
2. Find the Fourier series for the function 𝒇(𝒙) = {
𝒙 βˆ’ 𝟏,
𝒙 + 𝟏,
βˆ’ 𝛑 < 𝒙 < 0
𝟎 < 𝒙 < 𝝅
Solution:
Given 𝑓(π‘₯) = {
π‘₯ βˆ’ 1, βˆ’ Ο€ < π‘₯ < 0
π‘₯ + 1, 0 < π‘₯ < πœ‹
𝑓(βˆ’π‘₯) = {
βˆ’π‘₯ βˆ’ 1,
βˆ’π‘₯ + 1,
0 < π‘₯ < πœ‹
βˆ’ Ο€ < π‘₯ < 0
= {βˆ’(π‘₯ + 1), 0 < π‘₯ < πœ‹
βˆ’ Ο€ < π‘₯ < 0
βˆ’(π‘₯ βˆ’ 1),
= βˆ’π‘“(π‘₯)
Therefore 𝑓(π‘₯) is an odd function. Therefore π‘Ž0 = 0, π‘Žπ‘› = 0
∞
𝐻𝑒𝑛𝑐𝑒 𝑓(π‘₯) = βˆ‘ 𝑏𝑛 sin 𝑛π‘₯
𝑛=1
… … … . . (1)
2
Ο€
= ∫ 𝑓(π‘₯) sin 𝑛π‘₯ 𝑑
π‘₯
Ο€
0
2
Ο€
= ∫ (π‘₯ + 1) sin 𝑛π‘₯ 𝑑
π‘₯
Ο€
0
= [(π‘₯ + 1) (βˆ’
2 cos 𝑛π‘₯
Ο€ 𝑛
) βˆ’ (1) (βˆ’
sin 𝑛π‘₯
𝑛2
)]
0
Ο€
= [βˆ’(Ο€ + 1) (
2 cos𝑛π 1
Ο€ 𝑛 𝑛
) + ]
2
nΟ€
= [βˆ’(Ο€ + 1)(βˆ’1)𝑛 + 1]
2
nΟ€
= [1 βˆ’ (1 + Ο€)(βˆ’1)𝑛]
Substitute in (1) we get
2
nΟ€
𝑓(π‘₯) = βˆ‘ [1 βˆ’ (1 + Ο€)(βˆ’1)𝑛 ] sin 𝑛π‘₯
∞
𝑛 =1
Problems in the interval (𝟎,πŸπ’)
1. Obtain the Fourier series for 𝒇(𝒙) of period πŸπ’ and defined as follows
𝑓(π‘₯) = { 𝑙 βˆ’ π‘₯, 0 < π‘₯ ≀ 𝑙
0, 𝑙 ≀ π‘₯ < 2𝑙
Hence deduce that
1 1 1
3 5 7
(𝑖)1 βˆ’ + βˆ’ + β‹― =
πœ‹
4
1 1 1 πœ‹2
(𝑖𝑖) + + + β‹― =
12 32 52 8
Solution:
Given 𝑓(π‘₯) = { 𝑙 βˆ’ π‘₯, 0 < π‘₯ ≀ 𝑙
0, 𝑙 ≀ π‘₯ < 2𝑙
The Fourier series is
𝑓(π‘₯) =
π‘Ž0
+ βˆ‘βˆž (π‘Ž cos
π‘›πœ‹π‘₯
+ 𝑏 sin
π‘›πœ‹π‘₯
)
2 𝑛=1 𝑛 𝑙 𝑛 𝑙
2𝑙
1
π‘Ž0 =
𝑙
∫ 𝑓(π‘₯)𝑑π‘₯
0
𝑙 𝑙
1 1 (𝑙 βˆ’ π‘₯)2
= ∫(𝑙 βˆ’ π‘₯)𝑑π‘₯ = [ ]
𝑙 𝑙 βˆ’2
0 0
1 𝑙2 𝑙
= [ ] =
𝑙 2 2
2𝑙
1 π‘›πœ‹π‘₯
π‘Žπ‘› =
𝑙
∫ 𝑓(π‘₯) cos
𝑙
𝑑π‘₯
0
=
1
∫
𝑙
(𝑙 βˆ’ π‘₯) cos
π‘›πœ‹π‘₯
𝑑π‘₯
𝑙 0 𝑙
1 π‘›πœ‹π‘₯ 𝑙 π‘›πœ‹π‘₯ 𝑙2 𝑙
= [(𝑙 βˆ’ π‘₯) (sin ) βˆ’ (βˆ’1) (βˆ’ cos ) ]
𝑙 𝑙 π‘›πœ‹ 𝑙 𝑛2πœ‹2
0
1 𝑙2
= [βˆ’ (cosπ‘›πœ‹ βˆ’ 1)]
𝑙 𝑛2πœ‹2
𝑙 0, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
= βˆ’ [(βˆ’1)𝑛 βˆ’ 1] = { 2𝑙
𝑛2πœ‹2 , 𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘
𝑛2πœ‹2
1 π‘›πœ‹π‘₯
𝑙
𝑑π‘₯
2𝑙
𝑏𝑛 =
𝑙
∫ 𝑓(π‘₯) sin
0
1
𝑙
= ∫ (𝑙 βˆ’ π‘₯) sin
𝑙
0
π‘›πœ‹π‘₯
𝑙
𝑑π‘₯
1
= [(𝑙 βˆ’ π‘₯) (βˆ’ π‘π‘œπ‘ 
𝑙
π‘›πœ‹π‘₯ 𝑙
) βˆ’ (βˆ’1) (βˆ’ sin
𝑙 π‘›πœ‹
π‘›πœ‹π‘₯
𝑙
𝑙2
) ]
𝑛2πœ‹2
0
𝑙
𝑙
1 𝑙
= [𝑙 cos0 ] =
𝑙
π‘›πœ‹ π‘›πœ‹
π‘›πœ‹π‘₯
𝑙
∞
𝑙 2𝑙
𝑓(π‘₯) = + βˆ‘ [ cos
4 𝑛2πœ‹2
𝑛=1,3,5…
𝑙 π‘›πœ‹π‘₯
𝑙
∞
] + βˆ‘ sin
π‘›πœ‹
𝑛=1
Deduction (i)
Put π‘₯ =
𝑙
2
𝑓(π‘₯) =
𝑙
2
𝑙 𝑙 𝑙
= + βˆ‘ sin
𝑙 π‘›πœ‹
𝑙
2 4 πœ‹ 𝑛
𝑛=1
∞
π‘›πœ‹
2
[𝑠𝑖𝑛𝑐𝑒 cos = 0 𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘]
4 πœ‹
𝑙 𝑙 πœ‹ 1
2 2 3
1 3πœ‹
2
= [sin + sin πœ‹ + sin + β‹―]
𝑙 𝑙
4 πœ‹
1 1
3 5
β‡’ = [1 βˆ’ + + β‹― ]
1 1
3 5
1 βˆ’ + + β‹― =
πœ‹
4
Deduction (ii)
Put π‘₯ = 𝑙 𝑓(π‘₯) = 0
𝑙 2𝑙
0 = +
4 πœ‹2
∞
𝑙
βˆ‘ cos π‘›πœ‹
𝑛2
𝑛=1,3,5…
[𝑠𝑖𝑛𝑐𝑒 sin π‘›πœ‹ = 0 ]
4
βˆ’ = [
𝑙 2𝑙 cosπœ‹
+
cos3πœ‹
πœ‹2 12 32
+
cos 5πœ‹
52
+ β‹― ]
β‡’
βˆ’πœ‹2
8
1 1 1
12 32 52
= βˆ’ βˆ’ βˆ’ βˆ’ β‹―
1 1 1 πœ‹2
12 +
32 +
52 + β‹― =
8
Problems in the interval (βˆ’π’, 𝒍)
1. Expand 𝒇(𝒙) = π’†βˆ’π’™ as a Fourier series in the interval (– 𝒍, 𝒍)
Solution:
Given 𝑓(π‘₯) = π‘’βˆ’π‘₯
𝑓(π‘₯) is neither even nor odd
The Fourier series is
π‘Ž0 π‘›πœ‹π‘₯
𝑙
+ 𝑏𝑛 sin
π‘›πœ‹π‘₯
𝑙
)
∞
𝑓(π‘₯) = + βˆ‘ (π‘Žπ‘› cos
2
𝑛=1
… … … . (1)
1
𝑙
π‘Ž0 =
𝑙
∫ 𝑓(π‘₯)𝑑π‘₯
βˆ’π‘™
1
𝑙
1
𝑙 βˆ’π‘™
= ∫ π‘’βˆ’π‘₯𝑑π‘₯ = [βˆ’π‘’βˆ’π‘₯]𝑙
𝑙
βˆ’π‘™
1
𝑙
1
𝑙
2
𝑙
= [βˆ’π‘’βˆ’π‘™ + 𝑒𝑙 ] = [𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ] = sinh 𝑙
1 π‘›πœ‹π‘₯
𝑙
𝑑π‘₯
𝑙
π‘Žπ‘› =
𝑙
∫ 𝑓(π‘₯) cos
βˆ’π‘™
𝑙
βˆ’π‘™
𝑙 𝑙
1 π‘›πœ‹π‘₯
= ∫ π‘’βˆ’π‘₯ cos 𝑑π‘₯
= I
𝑙
1 π–₯
π‘’βˆ’π‘₯
I1 +
[ 𝑙2
𝑛2πœ‹2 [βˆ’ cos
π‘›πœ‹π‘₯
𝑙
+ sin
𝑙 𝑙
π‘›πœ‹ π‘›πœ‹π‘₯ 1
]I
I
]βˆ’π‘™
𝑙
=
𝑙2
𝑙(𝑙2 + 𝑛2πœ‹2)
[βˆ’π‘’βˆ’π‘™ cosπ‘›πœ‹ + 𝑒𝑙 cosπ‘›πœ‹]
=
𝑙(βˆ’1)𝑛
𝑙2 + 𝑛2πœ‹2
[𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ]
2𝑙(βˆ’1)𝑛
= sinh 𝑙
𝑙2 + 𝑛2πœ‹2
1 π‘›πœ‹π‘₯
𝑙
𝑑π‘₯
𝑙
𝑏𝑛 =
𝑙
∫ 𝑓(π‘₯) sin
βˆ’π‘™
𝑙
βˆ’π‘™
𝑙 𝑙
1 π‘›πœ‹π‘₯
= ∫ π‘’βˆ’π‘₯ sin 𝑑π‘₯
= I
𝑙
1 π–₯
π‘’βˆ’π‘₯
I1 +
[ 𝑙2
𝑛2πœ‹2 [βˆ’ sin
π‘›πœ‹π‘₯
𝑙
βˆ’ cos
𝑙 𝑙
π‘›πœ‹ π‘›πœ‹π‘₯ 1
]I
I
]βˆ’π‘™
𝑙
=
𝑙2
𝑙(𝑙2 + 𝑛2πœ‹2)
π‘›πœ‹
𝑙
π‘›πœ‹
𝑙
[βˆ’π‘’βˆ’π‘™ cosπ‘›πœ‹ + 𝑒𝑙 cos π‘›πœ‹]
𝑙(βˆ’1)𝑛 π‘›πœ‹
= 𝑙 [𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ]
𝑙2 + 𝑛2πœ‹2
2(βˆ’1)π‘›π‘›πœ‹
= sinh 𝑙
𝑙2 + 𝑛2πœ‹2
Substituting in (1), we get
𝑓(π‘₯) =
sinh 𝑙
𝑙
2𝑙(βˆ’1)𝑛
𝑙2 + 𝑛2πœ‹2
sinh 𝑙 cos
𝑙
+ sinh 𝑙 sin
π‘›πœ‹π‘₯ 2(βˆ’1)π‘›π‘›πœ‹ π‘›πœ‹π‘₯
𝑙2 + 𝑛2πœ‹2 𝑙
]
∞
+ βˆ‘ [
𝑛 =1
=
sinh 𝑙
𝑙
𝑙(βˆ’1)𝑛
𝑙2 + 𝑛2πœ‹2
cos
∞
+ 2 sinh 𝑙 βˆ‘ [
𝑛=1
π‘›πœ‹π‘₯
𝑙
+ sin
π‘›πœ‹(βˆ’1)𝑛 π‘›πœ‹π‘₯
𝑙2 + 𝑛2πœ‹2 𝑙
]
Half Range Expansions:
In many Engineering problems it is required to expand a function 𝑓(π‘₯) in the range (0, πœ‹)
In a Fourier series of period 2πœ‹ or in the range (0, 𝑙) in a Fourier series of period 2𝑙. If it is
required to expand 𝑓(π‘₯) in the interval (0, 𝑙), then it is immaterial what the function may be
outside the range 0 < π‘₯ < 𝑙.
If we extend the function 𝑓(π‘₯) by reflecting it in the Y – axis so that 𝑓(βˆ’π‘₯) = 𝑓(π‘₯), then the
extended function is even for which 𝑏𝑛 = 0. The Fourier expansion of 𝑓(π‘₯) will contain only
cosine terms.
If we extend the function 𝑓(π‘₯) by reflecting it in the origin so that 𝑓(βˆ’π‘₯) = βˆ’π‘“(π‘₯), then the
extended function is odd for which π‘Ž0 = π‘Žπ‘› = 0. The Fourier expansion of 𝑓(π‘₯) will contain
only sine terms.
Here a function 𝑓(π‘₯) defined over the interval 0 < π‘₯ < 𝑙 is capable of two distinct half range
series.
(i) Sine Series
(ii) Cosine Series
Problems under Half Range Sine series and Cosine series
1. Expand 𝒇(𝒙) = 𝒙 as a cosine series in 𝟎 < 𝒙 < 𝒍 and deduce the value of
14 34 54
(𝑖) 1
+
1
+
1
+ β‹― =
πœ‹ 4
96 14 24 34
(𝑖𝑖) 1
+
1
+
1
+ β‹― =
πœ‹ 4
90
Solution:
Given 𝑓(π‘₯) = π‘₯
π‘Ž0
2
The cosine series is 𝑓(π‘₯) = + βˆ‘ π‘Ž cosπ‘›πœ‹π‘₯
𝑙
∞
𝑛=1 𝑛 … … . . (1)
2
𝑙
π‘Ž0 =
𝑙
∫ 𝑓(π‘₯)𝑑π‘₯
0
2
𝑙 𝑙 2
= ∫ π‘₯ 𝑑π‘₯ = [ ]
0
2 π‘₯2 𝑙
𝑙
0
1
𝑙
= [𝑙2] = 𝑙
2 π‘›πœ‹π‘₯
𝑙
𝑙
π‘Žπ‘› =
𝑙
∫ 𝑓(π‘₯) cos
0
2
𝑙
𝑑π‘₯ = ∫ π‘₯ cos
𝑙
0
π‘›πœ‹π‘₯
𝑙
𝑑π‘₯
𝑙
= [π‘₯ (sin
2 π‘›πœ‹π‘₯ 𝑙
𝑙 π‘›πœ‹
) βˆ’ (βˆ’ cos
π‘›πœ‹π‘₯
𝑙
)
𝑙2
𝑛2πœ‹2
𝑙
]
0
2
𝑙
= [
𝑙2
𝑛2πœ‹2
(βˆ’1)𝑛 βˆ’
𝑙2
𝑛2πœ‹2
]
=
2𝑙
𝑛2πœ‹2
[(βˆ’1)𝑛 βˆ’ 1]
= 0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
=
βˆ’4𝑙
𝑛2πœ‹2
𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘
Substituting in equation (1) we get
π‘›πœ‹π‘₯
𝑙
𝑙 4𝑙 1
𝑓(π‘₯) = βˆ’ βˆ‘ cos
2 πœ‹2 𝑛2
𝑛=π‘œπ‘‘π‘‘
… … . (2)
Deduction (i)
By Parseval’s identity
2
𝑙
𝑙
0
π‘Ž2
2 𝑛
∫[𝑓(π‘₯)]2 𝑑π‘₯ = 0
+ βˆ‘ π‘Ž2
∞
𝑛 =1
2
𝑙
β‡’ ∫ π‘₯2 𝑑π‘₯ =
𝑙
0
𝑙2
2
βˆ’4𝑙
𝑛2πœ‹2
)
2
+ βˆ‘ (
𝑛=π‘œπ‘‘π‘‘
0
2 π‘₯3 𝑙
𝑙2
𝑙 3 2
β‡’ [ ] = +
16 𝑙2
𝑛 πœ‹
4 4
βˆ‘
𝑛=π‘œπ‘‘π‘‘
2 𝑙3 𝑙2
𝑙 3 2
β‡’ [ ] = +
16 𝑙2
πœ‹4
1
𝑛4
βˆ‘
𝑛=π‘œπ‘‘π‘‘
β‡’
2𝑙2
3
𝑙2
= +
2
16 𝑙2
πœ‹4
1
𝑛4
βˆ‘
𝑛=π‘œπ‘‘π‘‘
β‡’
16 𝑙2
πœ‹4 𝑛4
βˆ‘
𝑛=π‘œπ‘‘π‘‘
1 2𝑙2 𝑙2
3 2
2 1
3 2
= βˆ’ = 𝑙2 [ βˆ’ ] =
𝑙2
6
1
𝑛 =π‘œπ‘‘
𝑑
𝑙2 πœ‹4
6 16 𝑙
βˆ‘ = [ ] =
𝑛4 2
πœ‹4
96
1 1 1 πœ‹4
(𝑖. 𝑒. ) + + + β‹― =
14 34 54 96
Deduction (ii)
1 1 1
𝐿𝑒𝑑 𝑆 = + + + β‹―
14 24 34
1 1 1 1 1 1
= [+ + + β‹― ] + [ + + + β‹― ]
14 34 54 24 44 64
=
πœ‹4
96
1 1 1 1
24 14 24 34
+ [ + + + β‹― ] 𝑏𝑦 (𝑖)
(𝑖.𝑒. ) 𝑆 =
πœ‹4
96
1
24
+ 𝑆 =
πœ‹4
1
96 16
+ 𝑆
1
16
𝑆 βˆ’ 𝑆 =
πœ‹4
96
1
16
𝑆 (1 βˆ’ ) =
πœ‹4
96
15
16
𝑆 ( ) =
πœ‹4
96
πœ‹4
16
96 15
𝑆 = ( ) =
πœ‹4
90
1 1 1
14 24 34
(𝑖. 𝑒. ) + + + β‹― =
πœ‹4
90
𝟏
= 𝝅 𝟐
2. Obtain the Sine series for 𝒇(𝒙) = 𝒙 in 𝟎 < 𝒙 < 𝝅 and hence deduce that βˆ‘βˆž
𝒏=𝟏 π’πŸ πŸ”
Solution:
Given 𝑓(π‘₯) = π‘₯
The Sine series is 𝑓(π‘₯) = βˆ‘βˆž 𝑏𝑛 sin 𝑛π‘₯
𝑛 =1 … … … . . (1)
2
πœ‹
𝑏𝑛 =
πœ‹
∫ 𝑓(π‘₯) sin 𝑛π‘₯ 𝑑π‘₯
0
2
πœ‹
= ∫ π‘₯ sin 𝑛π‘₯ 𝑑π‘₯
πœ‹
0
2
πœ‹
= [π‘₯ (
βˆ’ cos 𝑛π‘₯
𝑛
) βˆ’ (
βˆ’ sin 𝑛π‘₯
𝑛2
)]
0
πœ‹
2 βˆ’1 𝑛
= [βˆ’πœ‹ ( ) ] =
πœ‹ 𝑛 𝑛
βˆ’2(βˆ’1)𝑛
Substitute in equation (1) we get
βˆ’2(βˆ’1)𝑛
∞
𝑓(π‘₯) = βˆ‘
𝑛 =1
𝑛
sin 𝑛π‘₯
Deduction:
By Parseval’s identity
2
πœ‹
πœ‹
0
𝑛
∫[𝑓(π‘₯)]2 𝑑π‘₯ = βˆ‘ 𝑏2
∞
𝑛 =1
2
πœ‹
∫ π‘₯2 𝑑π‘₯ = βˆ‘ (
πœ‹
0
βˆ’2(βˆ’1)𝑛
𝑛
)
2
∞
𝑛 =1
2 π‘₯3
πœ‹ 3
( ) = βˆ‘
0
πœ‹
4
𝑛2
∞
𝑛 =1
πœ‹3
2 1
∞
β‡’ [ ] = 4 βˆ‘
πœ‹ 3 𝑛2
𝑛=1
β‡’
2πœ‹2
3
1
𝑛2
∞
= 4 βˆ‘
𝑛 =1
𝑛2
∞
𝑛 =1
(𝑖.𝑒. ) βˆ‘ =
1 2πœ‹2 1
3 4
( ) =
πœ‹2
6
Complex or Exponential Form of Fourier series:
1. Find the complex form of the Fourier series of 𝒇(𝒙) = π’†βˆ’π’™ in βˆ’πŸ ≀ 𝒙 ≀ 𝟏
Solution:
The complex form of the Fourier series in (βˆ’1,1) is given by
𝑐 π‘’π‘–π‘›πœ‹π‘₯
𝑓(π‘₯) = βˆ‘βˆž
𝑛=βˆ’βˆž 𝑛 … …. . (1)
Where 𝑐𝑛
=
1
∫
1
𝑓(π‘₯) π‘’βˆ’π‘–π‘›πœ‹π‘₯ 𝑑π‘₯
2 βˆ’1
1 1
1 1
= ∫ π‘’βˆ’π‘₯ π‘’βˆ’π‘–π‘›πœ‹π‘₯ 𝑑π‘₯ = ∫ π‘’βˆ’(1+π‘–π‘›πœ‹)π‘₯
𝑑π‘₯
2 2
βˆ’1 βˆ’1
1
= [
π‘’βˆ’(1+π‘–π‘›πœ‹)π‘₯
2 βˆ’(1 + π‘–π‘›πœ‹)]
βˆ’1
1
=
𝑒1+π‘–π‘›πœ‹ βˆ’ π‘’βˆ’(1+π‘–π‘›πœ‹)
2(1 + π‘–π‘›πœ‹)
=
𝑒(cosπ‘›πœ‹ + 𝑖 sin π‘›πœ‹) βˆ’ π‘’βˆ’1(cosπ‘›πœ‹ βˆ’ 𝑖 sin π‘›πœ‹)
2(1 + π‘–π‘›πœ‹)
=
𝑒(βˆ’1)𝑛 βˆ’ π‘’βˆ’1(βˆ’1)𝑛
2(1 + π‘–π‘›πœ‹)
𝑐𝑛 =
(𝑒 βˆ’ π‘’βˆ’1)(βˆ’1)𝑛
2
1 βˆ’ π‘–π‘›πœ‹
( )
1 + 𝑛2πœ‹2
=
(βˆ’1)𝑛(1 βˆ’ π‘–π‘›πœ‹)
1 + 𝑛2πœ‹2
sinh 1
Hence (1) becomes
π‘’βˆ’π‘₯ =
(βˆ’1)𝑛(1 βˆ’ π‘–π‘›πœ‹)
1 + 𝑛2πœ‹2
sinh 1 π‘’π‘–π‘›πœ‹π‘₯
∞
βˆ‘
𝑛=βˆ’βˆž
2. Find the complex form of the Fourier series of 𝒇(𝒙) = 𝐜𝐨𝐬 𝒂𝒙 in (– 𝝅, 𝝅) where β€˜a’ is
neither zero nor an integer.
Solution:
Here 2𝑐 = 2πœ‹ or 𝑐 = πœ‹
Let the complex form of the Fourier series be
𝑐𝑛𝑒𝑖𝑛π‘₯
∞
𝑓(π‘₯) = βˆ‘
𝑛=βˆ’βˆž
… … . . (1)
π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐𝑛 =
1
2πœ‹
πœ‹
∫ 𝑓(π‘₯) π‘’βˆ’π‘–π‘›π‘₯ 𝑑π‘₯
βˆ’πœ‹
𝑐𝑛 =
1
2πœ‹
πœ‹
∫ cos π‘Žπ‘₯ π‘’βˆ’π‘–π‘›π‘₯ 𝑑π‘₯
βˆ’πœ‹
1 π‘’βˆ’π‘–π‘›π‘₯
= [ (βˆ’π‘–π‘› cosπ‘Žπ‘₯ + π‘Ž sin π‘Žπ‘₯)]
2πœ‹ π‘Ž2 βˆ’ 𝑛2
βˆ’πœ‹
πœ‹
=
1
2πœ‹(π‘Ž2 βˆ’ 𝑛2)
[π‘’βˆ’π‘–π‘›πœ‹(βˆ’π‘–π‘› cosπ‘Žπœ‹ + π‘Ž sin π‘Žπœ‹) βˆ’ π‘’π‘–π‘›πœ‹(βˆ’π‘–π‘› cosπ‘Žπœ‹ + π‘Ž sin π‘Žπœ‹)]
=
1
2πœ‹(π‘Ž2 βˆ’ 𝑛2)
[𝑖𝑛 cos π‘Žπœ‹ ( π‘’π‘–π‘›πœ‹ βˆ’ π‘’βˆ’π‘–π‘›πœ‹) + π‘Ž sin π‘Žπœ‹( π‘’π‘–π‘›πœ‹ + π‘’βˆ’π‘–π‘›πœ‹) ]
=
1
2πœ‹(π‘Ž2 βˆ’ 𝑛2)
[𝑖𝑛 cos π‘Žπœ‹ (2𝑖 sin π‘›πœ‹) + π‘Ž sin π‘Žπœ‹(2cosπ‘›πœ‹) ]
𝑐𝑛 =
1
2πœ‹(π‘Ž2 βˆ’ 𝑛2)
(βˆ’1)𝑛 2 a sin π‘Žπœ‹
(βˆ’1)𝑛
Hence (1) becomes cosπ‘Žπ‘₯ =
π‘Ž sin π‘Žπœ‹
βˆ‘βˆž
πœ‹ 𝑛=βˆ’βˆž (π‘Ž2βˆ’π‘›2)
𝑒𝑖𝑛π‘₯
Harmonic Analysis:
The process of finding the Fourier series for a function given by numerical values is known as
harmonic analysis.
In harmonic analysis the Fourier coefficients π‘Ž0, π‘Žπ‘› and 𝑏𝑛 of the function 𝑦 = 𝑓(π‘₯) in
(0,2πœ‹) are given by
π‘Ž0 = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 𝑖𝑛(0,2πœ‹) ]
π‘Žπ‘› = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos 𝑛π‘₯ 𝑖𝑛(0,2πœ‹)]
𝑏𝑛 = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin 𝑛π‘₯ 𝑖𝑛(0, 2πœ‹)]
Problems under Harmonic Analysis:
1. The following table gives the variations of a periodic function over a period T
π‘₯ 0 𝑇⁄6 𝑇⁄3 𝑇⁄2 2𝑇⁄3 5𝑇⁄6 𝑇
𝑓(π‘₯) 1.98 1.3 1.05 1.3 –
0.88
–
0.25
1.98
Find 𝒇(𝒙) upto first harmonic.
Solution: 𝑃𝑒𝑑 πœƒ =
2πœ‹π‘₯
𝑇
When π‘₯ takes the values of 0,
𝑇
,
𝑇
,
𝑇
,
2𝑇
,
6 3 2 3 6
5𝑇
, 𝑇
then ΞΈ takes values 0,
πœ‹
,
2πœ‹
, πœ‹,
4πœ‹
,
5πœ‹
, 2πœ‹
3 3 3 3
The given data becomes
πœƒ 0 πœ‹
3
2πœ‹
3
πœ‹ 4πœ‹
3
5πœ‹
3
2πœ‹
𝑦 1.98 1.3 1.05 1.3 –
0.88
–
0.25
1.98
π‘Ž0
2 1 1
The Fourier series is 𝑓(π‘₯) = + π‘Ž cos πœƒ + 𝑏 sin πœƒ
[ ]
4.6
π‘Ž0 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 = 2 [ 6
] = 1.5
[ ]
1.12
π‘Ž1 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cosπœƒ = 2 [ 6
] = 0.373
[ ]
𝑏1 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin πœƒ = 2 [
3.013
6
] = 1.004
𝜽 π’š π’š 𝐜𝐨𝐬 𝜽 π’š 𝐬𝐒𝐧 𝜽
0 1.98 1.98 0
πœ‹
3
1.3 0.65 1.1258
2πœ‹
3
1.05 –0.525 0.9093
πœ‹ 1.3 –1.3 0
4πœ‹
3
– 0.88 0.44 0.762
5πœ‹
3
– 0.25 –
0.125
0.2165
Total 4.6 1.12 3.013
𝑓(π‘₯) = 0.75 + 0.373 cosπœƒ + 1.004 sin πœƒ
= 0.75 + 0.373 cos
2πœ‹π‘₯
+ 1.004 sin
2πœ‹π‘₯
𝑇 𝑇
2. Obtain the first three harmonic for the data
π‘₯ 0 1 2 3 4 5
𝑦 4 8 15 7 6 2
Solution:
Given that the length of the interval is 6.
i.e. 2𝑙 = 6, 𝑙 = 3
The Fourier series upto third harmonic is
2 3 3 3
1 2 3 1 3 3
𝑓(π‘₯) =
π‘Ž0
+ π‘Ž cos
πœ‹π‘₯
+ π‘Ž cos
2πœ‹π‘₯
+ π‘Ž cos
3πœ‹π‘₯
+ 𝑏 sin
πœ‹π‘₯
+ 𝑏 sin
2πœ‹π‘₯
+ 𝑏
2 3 sin 3πœ‹π‘₯
3
π‘₯ 𝑦 πœ‹
𝑦 cos
3
2πœ‹
𝑦 cos
3
3πœ‹
𝑦 cos
3
πœ‹
𝑦 sin
3
2πœ‹
𝑦 sin
3
3πœ‹
𝑦 sin
3
0 4 4 4 4 0 0 0
1 8 4 –4 –8 6.93 6.93 0
2 15 –7.5 –7.5 15 12.99 –12.99 0
3 7 –7 7 –7 0 0 0
4 6 –3 –3 6 –3.46 5.19 0
5 2 1 –1 –2 –4.33 –1.73 0
Total 42 –8.5 –4.5 8 12.13 –2.6 0
[ ]
42
π‘Ž0 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 = 2 [ 6
] = 14
1 3
π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos
πœ‹π‘₯
] = 2 [βˆ’
8.5] = βˆ’2.83
6
2 3
π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos
2πœ‹π‘₯
] = 2 [βˆ’
4.5
= βˆ’1.5
]
6
3
8
3 6
π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos
3πœ‹π‘₯
] = 2 [ ] = 2.67
1
12.13
𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin
πœ‹π‘₯
] = 2 [
3 6
] = 4.04
2 3
𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin
2πœ‹π‘₯
] = 2 [βˆ’
2.6] = βˆ’0.87
6
3 3
𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin
3πœ‹π‘₯
] = 0
𝑓(π‘₯) = 7 βˆ’ 2.83 cos βˆ’ 1.5 cos
πœ‹π‘₯ 2πœ‹π‘₯
3 3
+ 2.67 cos
3πœ‹π‘₯
3
πœ‹π‘₯
3
+ 4.04 sin βˆ’ 0.87 sin
2πœ‹π‘₯
3

More Related Content

Similar to FOURIER SERIES Presentation of given functions.pptx

Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
Β 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIESMANISH KUMAR
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
Β 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
Β 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralNurkhalifah Anwar
Β 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
Β 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdfAbhayRupareliya1
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdfnihaiqbal1
Β 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdfnihaiqbal1
Β 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
Β 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
Β 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03REYEMMANUELILUMBA
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
Β 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
Β 

Similar to FOURIER SERIES Presentation of given functions.pptx (20)

Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Β 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
Β 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
Β 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Β 
Fourier series
Fourier series Fourier series
Fourier series
Β 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Β 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
lec32.ppt
lec32.pptlec32.ppt
lec32.ppt
Β 
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Β 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
Β 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
Β 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
Β 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
Β 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
Β 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
Β 

More from jyotidighole2

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxjyotidighole2
Β 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
Β 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
Β 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxjyotidighole2
Β 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxjyotidighole2
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 

More from jyotidighole2 (6)

CHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docxCHEM NOTES Syllbus(20216-23)onwards.docx
CHEM NOTES Syllbus(20216-23)onwards.docx
Β 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
Β 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
Β 
Lagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptxLagranges method of undetermined multiplers.pptx
Lagranges method of undetermined multiplers.pptx
Β 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 

FOURIER SERIES Presentation of given functions.pptx

  • 1. FOURIER SERIES Periodic Functions A function 𝑓(π‘₯) is said to have a period T if for all π‘₯, 𝑓(π‘₯ + 𝑇) = 𝑓(π‘₯), where 𝑇 is a positive constant. The least value of 𝑇 > 0 is called the period of 𝑓(π‘₯). Example: sinx, cosx, tanx etc. Example: 1. What is the period of π’”π’Šπ’π’™? Solution: 𝑓(π‘₯) = 𝑠𝑖𝑛π‘₯ = sin(π‘₯ + 2πœ‹) = 𝑠𝑖𝑛(π‘₯ + 4πœ‹) =. . .therefore the function has periods 2πœ‹, 4πœ‹, 6πœ‹, etc. However, 2πœ‹ is the least value and therefore is the period of 𝑓(π‘₯). 2. What is the period of 𝒕𝒂𝒏𝒙? Solution: π‘‘π‘Žπ‘›π‘₯ = π‘‘π‘Žπ‘›(πœ‹ + π‘₯) Hence π‘‘π‘Žπ‘›π‘₯ is a periodic function with period πœ‹. Piecewise Continuous Function: A function 𝑓(π‘₯) is said to be piecewise continuous in an interval if (i)the interval can be divided into a finite number of subintervals in each of which 𝑓(π‘₯) is continuous. (ii) the limits of 𝑓(π‘₯) as π‘₯ approaches the end point of each subinterval are finite. Dirichlet’s conditions for the existence of Fourier series of 𝒇(𝒙) in the interval (𝟎, πŸπ…): A function 𝑓(π‘₯) can be expanded as a Fourier series of 𝑓(π‘₯) in the interval (0,2πœ‹) if the following conditions are satisfied.
  • 2. (i) 𝑓(π‘₯) is single valued and finite in (0, 2πœ‹) (ii) 𝑓(π‘₯) is continuous or piecewise continues with finite number of finite discontinuities in (0, 2πœ‹) (iii) 𝑓(π‘₯) has a finite number of maxima or minima in (0, 2πœ‹). Problems in the interval (βˆ’π…, 𝝅) 1. Find the Fourier series for 𝒇(𝒙) = |𝐬𝐒𝐧 𝒙| in βˆ’Ο€< 𝒙 < 𝝅. Solution: Given 𝑓(π‘₯) = |sin π‘₯| Since 𝑓(π‘₯) is an even function 𝑏𝑛 = 0 π‘Ž0 ∞ 𝑓(π‘₯) = + βˆ‘ π‘Žπ‘› cos𝑛π‘₯ 2 𝑛=1 … … … . . (1) 2 π‘Ž0 = Ο€ ∫ 𝑓(π‘₯) 𝑑π‘₯ Ο€ 0 2 Ο€ = ∫ |sin π‘₯| 𝑑 π‘₯ Ο€ 0 2 Ο€ = ∫ sin π‘₯ 𝑑 π‘₯ Ο€ 0 2 Ο€ 0 = [βˆ’ cos π‘₯]Ο€ 2 Ο€ = βˆ’ [cos Ο€ βˆ’ cos 0] 2 Ο€ = [βˆ’1 βˆ’ 1] = 4 Ο€
  • 3. 2 π‘Žπ‘› = Ο€ ∫ 𝑓(π‘₯) cos 𝑛π‘₯ 𝑑π‘₯ Ο€ 0 = 2 Ο€ Ο€ ∫ |sin π‘₯| cos𝑛π‘₯ 𝑑 π‘₯ 0 = 2 Ο€ Ο€ ∫ sin π‘₯ cos𝑛π‘₯ 𝑑 π‘₯ 0 = 2 1 Ο€ 2 Ο€ ∫ [sin(1 + 𝑛)π‘₯ + sin(1 βˆ’ 𝑛)π‘₯]𝑑π‘₯ 0 = 1 Ο€ Ο€ ∫ [sin(𝑛 + 1)π‘₯ βˆ’ sin(𝑛 βˆ’ 1)π‘₯]𝑑π‘₯ 0 = [– + 𝑛 + 1 𝑛 βˆ’ 1 ] 0 1 cos(𝑛 + 1)π‘₯ cos(𝑛 βˆ’ 1)π‘₯ Ο€ Ο€ = [– 1 cos(𝑛 + 1)Ο€ Ο€ 𝑛 + 1 + cos(𝑛 βˆ’ 1)Ο€ 𝑛 βˆ’ 1 + 1 1 𝑛 + 1 𝑛 βˆ’ 1 βˆ’ ] = [– 1 (βˆ’1)𝑛+1 Ο€ 𝑛 + 1 + (βˆ’1)π‘›βˆ’1 𝑛 βˆ’ 1 + βˆ’ 1 1 𝑛 + 1 𝑛 βˆ’ 1 ] = [ 1 (βˆ’1)𝑛 (βˆ’1)𝑛 Ο€ 1 1 𝑛 + 1 𝑛 βˆ’ 1 𝑛 + 1 𝑛 βˆ’ 1 βˆ’ + βˆ’ ] = 1 (βˆ’1)𝑛 + 1 (βˆ’1)𝑛 + 1 Ο€ 𝑛 + 1 𝑛 βˆ’ 1 [ βˆ’ ] = Ο€ [ βˆ’ (βˆ’1)𝑛 + 1 1 1 𝑛 + 1 𝑛 βˆ’ 1 ] = (βˆ’1)𝑛 + 1 Ο€ [ 𝑛 βˆ’ 1 βˆ’ 𝑛 βˆ’ 1 𝑛2 βˆ’ 1 ] = (βˆ’1)𝑛 + 1 [ βˆ’2 2 Ο€ 𝑛 βˆ’ 1 ] = βˆ’2[(βˆ’1)𝑛 + 1] (𝑛2 βˆ’ 1)Ο€ 𝑖𝑓 𝑛 β‰  1
  • 4. 2 π‘Ž1 = Ο€ ∫ 𝑓(π‘₯) cos π‘₯ 𝑑π‘₯ Ο€ 0 = 2 Ο€ Ο€ ∫ |sin π‘₯| cosπ‘₯ 𝑑 π‘₯ 0 = 2 Ο€ Ο€ ∫ sin π‘₯ cosπ‘₯ 𝑑 π‘₯ 0 = 2 1 Ο€ 2 Ο€ ∫ sin 2π‘₯ 𝑑π‘₯ 0 = Ο€ 2 [ ] 0 1 βˆ’ cos2π‘₯ Ο€ = 1 1 1 Ο€ 2 2 [βˆ’ + ] = 0 Ο€ 𝑛 (𝑛2βˆ’1)Ο€ βˆ’2[(βˆ’1) +1] cos𝑛π‘₯ Substitute in equation (1) we get 𝑓(π‘₯) = 2 + βˆ‘βˆž 𝑛 =1 2. Find the Fourier series for the function 𝒇(𝒙) = { 𝒙 βˆ’ 𝟏, 𝒙 + 𝟏, βˆ’ 𝛑 < 𝒙 < 0 𝟎 < 𝒙 < 𝝅 Solution: Given 𝑓(π‘₯) = { π‘₯ βˆ’ 1, βˆ’ Ο€ < π‘₯ < 0 π‘₯ + 1, 0 < π‘₯ < πœ‹ 𝑓(βˆ’π‘₯) = { βˆ’π‘₯ βˆ’ 1, βˆ’π‘₯ + 1, 0 < π‘₯ < πœ‹ βˆ’ Ο€ < π‘₯ < 0 = {βˆ’(π‘₯ + 1), 0 < π‘₯ < πœ‹ βˆ’ Ο€ < π‘₯ < 0 βˆ’(π‘₯ βˆ’ 1), = βˆ’π‘“(π‘₯) Therefore 𝑓(π‘₯) is an odd function. Therefore π‘Ž0 = 0, π‘Žπ‘› = 0
  • 5. ∞ 𝐻𝑒𝑛𝑐𝑒 𝑓(π‘₯) = βˆ‘ 𝑏𝑛 sin 𝑛π‘₯ 𝑛=1 … … … . . (1) 2 Ο€ = ∫ 𝑓(π‘₯) sin 𝑛π‘₯ 𝑑 π‘₯ Ο€ 0 2 Ο€ = ∫ (π‘₯ + 1) sin 𝑛π‘₯ 𝑑 π‘₯ Ο€ 0 = [(π‘₯ + 1) (βˆ’ 2 cos 𝑛π‘₯ Ο€ 𝑛 ) βˆ’ (1) (βˆ’ sin 𝑛π‘₯ 𝑛2 )] 0 Ο€ = [βˆ’(Ο€ + 1) ( 2 cos𝑛π 1 Ο€ 𝑛 𝑛 ) + ] 2 nΟ€ = [βˆ’(Ο€ + 1)(βˆ’1)𝑛 + 1] 2 nΟ€ = [1 βˆ’ (1 + Ο€)(βˆ’1)𝑛] Substitute in (1) we get 2 nΟ€ 𝑓(π‘₯) = βˆ‘ [1 βˆ’ (1 + Ο€)(βˆ’1)𝑛 ] sin 𝑛π‘₯ ∞ 𝑛 =1 Problems in the interval (𝟎,πŸπ’) 1. Obtain the Fourier series for 𝒇(𝒙) of period πŸπ’ and defined as follows 𝑓(π‘₯) = { 𝑙 βˆ’ π‘₯, 0 < π‘₯ ≀ 𝑙 0, 𝑙 ≀ π‘₯ < 2𝑙 Hence deduce that 1 1 1 3 5 7 (𝑖)1 βˆ’ + βˆ’ + β‹― = πœ‹ 4
  • 6. 1 1 1 πœ‹2 (𝑖𝑖) + + + β‹― = 12 32 52 8 Solution: Given 𝑓(π‘₯) = { 𝑙 βˆ’ π‘₯, 0 < π‘₯ ≀ 𝑙 0, 𝑙 ≀ π‘₯ < 2𝑙 The Fourier series is 𝑓(π‘₯) = π‘Ž0 + βˆ‘βˆž (π‘Ž cos π‘›πœ‹π‘₯ + 𝑏 sin π‘›πœ‹π‘₯ ) 2 𝑛=1 𝑛 𝑙 𝑛 𝑙 2𝑙 1 π‘Ž0 = 𝑙 ∫ 𝑓(π‘₯)𝑑π‘₯ 0 𝑙 𝑙 1 1 (𝑙 βˆ’ π‘₯)2 = ∫(𝑙 βˆ’ π‘₯)𝑑π‘₯ = [ ] 𝑙 𝑙 βˆ’2 0 0 1 𝑙2 𝑙 = [ ] = 𝑙 2 2 2𝑙 1 π‘›πœ‹π‘₯ π‘Žπ‘› = 𝑙 ∫ 𝑓(π‘₯) cos 𝑙 𝑑π‘₯ 0 = 1 ∫ 𝑙 (𝑙 βˆ’ π‘₯) cos π‘›πœ‹π‘₯ 𝑑π‘₯ 𝑙 0 𝑙 1 π‘›πœ‹π‘₯ 𝑙 π‘›πœ‹π‘₯ 𝑙2 𝑙 = [(𝑙 βˆ’ π‘₯) (sin ) βˆ’ (βˆ’1) (βˆ’ cos ) ] 𝑙 𝑙 π‘›πœ‹ 𝑙 𝑛2πœ‹2 0 1 𝑙2 = [βˆ’ (cosπ‘›πœ‹ βˆ’ 1)] 𝑙 𝑛2πœ‹2 𝑙 0, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 = βˆ’ [(βˆ’1)𝑛 βˆ’ 1] = { 2𝑙 𝑛2πœ‹2 , 𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘ 𝑛2πœ‹2
  • 7. 1 π‘›πœ‹π‘₯ 𝑙 𝑑π‘₯ 2𝑙 𝑏𝑛 = 𝑙 ∫ 𝑓(π‘₯) sin 0 1 𝑙 = ∫ (𝑙 βˆ’ π‘₯) sin 𝑙 0 π‘›πœ‹π‘₯ 𝑙 𝑑π‘₯ 1 = [(𝑙 βˆ’ π‘₯) (βˆ’ π‘π‘œπ‘  𝑙 π‘›πœ‹π‘₯ 𝑙 ) βˆ’ (βˆ’1) (βˆ’ sin 𝑙 π‘›πœ‹ π‘›πœ‹π‘₯ 𝑙 𝑙2 ) ] 𝑛2πœ‹2 0 𝑙 𝑙 1 𝑙 = [𝑙 cos0 ] = 𝑙 π‘›πœ‹ π‘›πœ‹ π‘›πœ‹π‘₯ 𝑙 ∞ 𝑙 2𝑙 𝑓(π‘₯) = + βˆ‘ [ cos 4 𝑛2πœ‹2 𝑛=1,3,5… 𝑙 π‘›πœ‹π‘₯ 𝑙 ∞ ] + βˆ‘ sin π‘›πœ‹ 𝑛=1 Deduction (i) Put π‘₯ = 𝑙 2 𝑓(π‘₯) = 𝑙 2 𝑙 𝑙 𝑙 = + βˆ‘ sin 𝑙 π‘›πœ‹ 𝑙 2 4 πœ‹ 𝑛 𝑛=1 ∞ π‘›πœ‹ 2 [𝑠𝑖𝑛𝑐𝑒 cos = 0 𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘] 4 πœ‹ 𝑙 𝑙 πœ‹ 1 2 2 3 1 3πœ‹ 2 = [sin + sin πœ‹ + sin + β‹―] 𝑙 𝑙 4 πœ‹ 1 1 3 5 β‡’ = [1 βˆ’ + + β‹― ] 1 1 3 5 1 βˆ’ + + β‹― = πœ‹ 4 Deduction (ii) Put π‘₯ = 𝑙 𝑓(π‘₯) = 0 𝑙 2𝑙 0 = + 4 πœ‹2 ∞ 𝑙 βˆ‘ cos π‘›πœ‹ 𝑛2 𝑛=1,3,5… [𝑠𝑖𝑛𝑐𝑒 sin π‘›πœ‹ = 0 ]
  • 8. 4 βˆ’ = [ 𝑙 2𝑙 cosπœ‹ + cos3πœ‹ πœ‹2 12 32 + cos 5πœ‹ 52 + β‹― ] β‡’ βˆ’πœ‹2 8 1 1 1 12 32 52 = βˆ’ βˆ’ βˆ’ βˆ’ β‹― 1 1 1 πœ‹2 12 + 32 + 52 + β‹― = 8 Problems in the interval (βˆ’π’, 𝒍) 1. Expand 𝒇(𝒙) = π’†βˆ’π’™ as a Fourier series in the interval (– 𝒍, 𝒍) Solution: Given 𝑓(π‘₯) = π‘’βˆ’π‘₯ 𝑓(π‘₯) is neither even nor odd The Fourier series is π‘Ž0 π‘›πœ‹π‘₯ 𝑙 + 𝑏𝑛 sin π‘›πœ‹π‘₯ 𝑙 ) ∞ 𝑓(π‘₯) = + βˆ‘ (π‘Žπ‘› cos 2 𝑛=1 … … … . (1) 1 𝑙 π‘Ž0 = 𝑙 ∫ 𝑓(π‘₯)𝑑π‘₯ βˆ’π‘™ 1 𝑙 1 𝑙 βˆ’π‘™ = ∫ π‘’βˆ’π‘₯𝑑π‘₯ = [βˆ’π‘’βˆ’π‘₯]𝑙 𝑙 βˆ’π‘™ 1 𝑙 1 𝑙 2 𝑙 = [βˆ’π‘’βˆ’π‘™ + 𝑒𝑙 ] = [𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ] = sinh 𝑙 1 π‘›πœ‹π‘₯ 𝑙 𝑑π‘₯ 𝑙 π‘Žπ‘› = 𝑙 ∫ 𝑓(π‘₯) cos βˆ’π‘™
  • 9. 𝑙 βˆ’π‘™ 𝑙 𝑙 1 π‘›πœ‹π‘₯ = ∫ π‘’βˆ’π‘₯ cos 𝑑π‘₯ = I 𝑙 1 π–₯ π‘’βˆ’π‘₯ I1 + [ 𝑙2 𝑛2πœ‹2 [βˆ’ cos π‘›πœ‹π‘₯ 𝑙 + sin 𝑙 𝑙 π‘›πœ‹ π‘›πœ‹π‘₯ 1 ]I I ]βˆ’π‘™ 𝑙 = 𝑙2 𝑙(𝑙2 + 𝑛2πœ‹2) [βˆ’π‘’βˆ’π‘™ cosπ‘›πœ‹ + 𝑒𝑙 cosπ‘›πœ‹] = 𝑙(βˆ’1)𝑛 𝑙2 + 𝑛2πœ‹2 [𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ] 2𝑙(βˆ’1)𝑛 = sinh 𝑙 𝑙2 + 𝑛2πœ‹2 1 π‘›πœ‹π‘₯ 𝑙 𝑑π‘₯ 𝑙 𝑏𝑛 = 𝑙 ∫ 𝑓(π‘₯) sin βˆ’π‘™ 𝑙 βˆ’π‘™ 𝑙 𝑙 1 π‘›πœ‹π‘₯ = ∫ π‘’βˆ’π‘₯ sin 𝑑π‘₯ = I 𝑙 1 π–₯ π‘’βˆ’π‘₯ I1 + [ 𝑙2 𝑛2πœ‹2 [βˆ’ sin π‘›πœ‹π‘₯ 𝑙 βˆ’ cos 𝑙 𝑙 π‘›πœ‹ π‘›πœ‹π‘₯ 1 ]I I ]βˆ’π‘™ 𝑙 = 𝑙2 𝑙(𝑙2 + 𝑛2πœ‹2) π‘›πœ‹ 𝑙 π‘›πœ‹ 𝑙 [βˆ’π‘’βˆ’π‘™ cosπ‘›πœ‹ + 𝑒𝑙 cos π‘›πœ‹] 𝑙(βˆ’1)𝑛 π‘›πœ‹ = 𝑙 [𝑒𝑙 βˆ’ π‘’βˆ’π‘™ ] 𝑙2 + 𝑛2πœ‹2 2(βˆ’1)π‘›π‘›πœ‹ = sinh 𝑙 𝑙2 + 𝑛2πœ‹2 Substituting in (1), we get
  • 10. 𝑓(π‘₯) = sinh 𝑙 𝑙 2𝑙(βˆ’1)𝑛 𝑙2 + 𝑛2πœ‹2 sinh 𝑙 cos 𝑙 + sinh 𝑙 sin π‘›πœ‹π‘₯ 2(βˆ’1)π‘›π‘›πœ‹ π‘›πœ‹π‘₯ 𝑙2 + 𝑛2πœ‹2 𝑙 ] ∞ + βˆ‘ [ 𝑛 =1 = sinh 𝑙 𝑙 𝑙(βˆ’1)𝑛 𝑙2 + 𝑛2πœ‹2 cos ∞ + 2 sinh 𝑙 βˆ‘ [ 𝑛=1 π‘›πœ‹π‘₯ 𝑙 + sin π‘›πœ‹(βˆ’1)𝑛 π‘›πœ‹π‘₯ 𝑙2 + 𝑛2πœ‹2 𝑙 ] Half Range Expansions: In many Engineering problems it is required to expand a function 𝑓(π‘₯) in the range (0, πœ‹) In a Fourier series of period 2πœ‹ or in the range (0, 𝑙) in a Fourier series of period 2𝑙. If it is required to expand 𝑓(π‘₯) in the interval (0, 𝑙), then it is immaterial what the function may be outside the range 0 < π‘₯ < 𝑙. If we extend the function 𝑓(π‘₯) by reflecting it in the Y – axis so that 𝑓(βˆ’π‘₯) = 𝑓(π‘₯), then the extended function is even for which 𝑏𝑛 = 0. The Fourier expansion of 𝑓(π‘₯) will contain only cosine terms. If we extend the function 𝑓(π‘₯) by reflecting it in the origin so that 𝑓(βˆ’π‘₯) = βˆ’π‘“(π‘₯), then the extended function is odd for which π‘Ž0 = π‘Žπ‘› = 0. The Fourier expansion of 𝑓(π‘₯) will contain only sine terms. Here a function 𝑓(π‘₯) defined over the interval 0 < π‘₯ < 𝑙 is capable of two distinct half range series. (i) Sine Series (ii) Cosine Series Problems under Half Range Sine series and Cosine series
  • 11. 1. Expand 𝒇(𝒙) = 𝒙 as a cosine series in 𝟎 < 𝒙 < 𝒍 and deduce the value of 14 34 54 (𝑖) 1 + 1 + 1 + β‹― = πœ‹ 4 96 14 24 34 (𝑖𝑖) 1 + 1 + 1 + β‹― = πœ‹ 4 90 Solution: Given 𝑓(π‘₯) = π‘₯ π‘Ž0 2 The cosine series is 𝑓(π‘₯) = + βˆ‘ π‘Ž cosπ‘›πœ‹π‘₯ 𝑙 ∞ 𝑛=1 𝑛 … … . . (1) 2 𝑙 π‘Ž0 = 𝑙 ∫ 𝑓(π‘₯)𝑑π‘₯ 0 2 𝑙 𝑙 2 = ∫ π‘₯ 𝑑π‘₯ = [ ] 0 2 π‘₯2 𝑙 𝑙 0 1 𝑙 = [𝑙2] = 𝑙 2 π‘›πœ‹π‘₯ 𝑙 𝑙 π‘Žπ‘› = 𝑙 ∫ 𝑓(π‘₯) cos 0 2 𝑙 𝑑π‘₯ = ∫ π‘₯ cos 𝑙 0 π‘›πœ‹π‘₯ 𝑙 𝑑π‘₯ 𝑙 = [π‘₯ (sin 2 π‘›πœ‹π‘₯ 𝑙 𝑙 π‘›πœ‹ ) βˆ’ (βˆ’ cos π‘›πœ‹π‘₯ 𝑙 ) 𝑙2 𝑛2πœ‹2 𝑙 ] 0 2 𝑙 = [ 𝑙2 𝑛2πœ‹2 (βˆ’1)𝑛 βˆ’ 𝑙2 𝑛2πœ‹2 ] = 2𝑙 𝑛2πœ‹2 [(βˆ’1)𝑛 βˆ’ 1] = 0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 = βˆ’4𝑙 𝑛2πœ‹2 𝑖𝑓 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘ Substituting in equation (1) we get
  • 12. π‘›πœ‹π‘₯ 𝑙 𝑙 4𝑙 1 𝑓(π‘₯) = βˆ’ βˆ‘ cos 2 πœ‹2 𝑛2 𝑛=π‘œπ‘‘π‘‘ … … . (2) Deduction (i) By Parseval’s identity 2 𝑙 𝑙 0 π‘Ž2 2 𝑛 ∫[𝑓(π‘₯)]2 𝑑π‘₯ = 0 + βˆ‘ π‘Ž2 ∞ 𝑛 =1 2 𝑙 β‡’ ∫ π‘₯2 𝑑π‘₯ = 𝑙 0 𝑙2 2 βˆ’4𝑙 𝑛2πœ‹2 ) 2 + βˆ‘ ( 𝑛=π‘œπ‘‘π‘‘ 0 2 π‘₯3 𝑙 𝑙2 𝑙 3 2 β‡’ [ ] = + 16 𝑙2 𝑛 πœ‹ 4 4 βˆ‘ 𝑛=π‘œπ‘‘π‘‘ 2 𝑙3 𝑙2 𝑙 3 2 β‡’ [ ] = + 16 𝑙2 πœ‹4 1 𝑛4 βˆ‘ 𝑛=π‘œπ‘‘π‘‘ β‡’ 2𝑙2 3 𝑙2 = + 2 16 𝑙2 πœ‹4 1 𝑛4 βˆ‘ 𝑛=π‘œπ‘‘π‘‘ β‡’ 16 𝑙2 πœ‹4 𝑛4 βˆ‘ 𝑛=π‘œπ‘‘π‘‘ 1 2𝑙2 𝑙2 3 2 2 1 3 2 = βˆ’ = 𝑙2 [ βˆ’ ] = 𝑙2 6 1 𝑛 =π‘œπ‘‘ 𝑑 𝑙2 πœ‹4 6 16 𝑙 βˆ‘ = [ ] = 𝑛4 2 πœ‹4 96 1 1 1 πœ‹4 (𝑖. 𝑒. ) + + + β‹― = 14 34 54 96 Deduction (ii) 1 1 1 𝐿𝑒𝑑 𝑆 = + + + β‹― 14 24 34 1 1 1 1 1 1 = [+ + + β‹― ] + [ + + + β‹― ] 14 34 54 24 44 64
  • 13. = πœ‹4 96 1 1 1 1 24 14 24 34 + [ + + + β‹― ] 𝑏𝑦 (𝑖) (𝑖.𝑒. ) 𝑆 = πœ‹4 96 1 24 + 𝑆 = πœ‹4 1 96 16 + 𝑆 1 16 𝑆 βˆ’ 𝑆 = πœ‹4 96 1 16 𝑆 (1 βˆ’ ) = πœ‹4 96 15 16 𝑆 ( ) = πœ‹4 96 πœ‹4 16 96 15 𝑆 = ( ) = πœ‹4 90 1 1 1 14 24 34 (𝑖. 𝑒. ) + + + β‹― = πœ‹4 90 𝟏 = 𝝅 𝟐 2. Obtain the Sine series for 𝒇(𝒙) = 𝒙 in 𝟎 < 𝒙 < 𝝅 and hence deduce that βˆ‘βˆž 𝒏=𝟏 π’πŸ πŸ” Solution: Given 𝑓(π‘₯) = π‘₯ The Sine series is 𝑓(π‘₯) = βˆ‘βˆž 𝑏𝑛 sin 𝑛π‘₯ 𝑛 =1 … … … . . (1) 2 πœ‹ 𝑏𝑛 = πœ‹ ∫ 𝑓(π‘₯) sin 𝑛π‘₯ 𝑑π‘₯ 0 2 πœ‹ = ∫ π‘₯ sin 𝑛π‘₯ 𝑑π‘₯ πœ‹ 0 2 πœ‹ = [π‘₯ ( βˆ’ cos 𝑛π‘₯ 𝑛 ) βˆ’ ( βˆ’ sin 𝑛π‘₯ 𝑛2 )] 0 πœ‹
  • 14. 2 βˆ’1 𝑛 = [βˆ’πœ‹ ( ) ] = πœ‹ 𝑛 𝑛 βˆ’2(βˆ’1)𝑛 Substitute in equation (1) we get βˆ’2(βˆ’1)𝑛 ∞ 𝑓(π‘₯) = βˆ‘ 𝑛 =1 𝑛 sin 𝑛π‘₯ Deduction: By Parseval’s identity 2 πœ‹ πœ‹ 0 𝑛 ∫[𝑓(π‘₯)]2 𝑑π‘₯ = βˆ‘ 𝑏2 ∞ 𝑛 =1 2 πœ‹ ∫ π‘₯2 𝑑π‘₯ = βˆ‘ ( πœ‹ 0 βˆ’2(βˆ’1)𝑛 𝑛 ) 2 ∞ 𝑛 =1 2 π‘₯3 πœ‹ 3 ( ) = βˆ‘ 0 πœ‹ 4 𝑛2 ∞ 𝑛 =1 πœ‹3 2 1 ∞ β‡’ [ ] = 4 βˆ‘ πœ‹ 3 𝑛2 𝑛=1 β‡’ 2πœ‹2 3 1 𝑛2 ∞ = 4 βˆ‘ 𝑛 =1 𝑛2 ∞ 𝑛 =1 (𝑖.𝑒. ) βˆ‘ = 1 2πœ‹2 1 3 4 ( ) = πœ‹2 6 Complex or Exponential Form of Fourier series: 1. Find the complex form of the Fourier series of 𝒇(𝒙) = π’†βˆ’π’™ in βˆ’πŸ ≀ 𝒙 ≀ 𝟏 Solution:
  • 15. The complex form of the Fourier series in (βˆ’1,1) is given by 𝑐 π‘’π‘–π‘›πœ‹π‘₯ 𝑓(π‘₯) = βˆ‘βˆž 𝑛=βˆ’βˆž 𝑛 … …. . (1) Where 𝑐𝑛 = 1 ∫ 1 𝑓(π‘₯) π‘’βˆ’π‘–π‘›πœ‹π‘₯ 𝑑π‘₯ 2 βˆ’1 1 1 1 1 = ∫ π‘’βˆ’π‘₯ π‘’βˆ’π‘–π‘›πœ‹π‘₯ 𝑑π‘₯ = ∫ π‘’βˆ’(1+π‘–π‘›πœ‹)π‘₯ 𝑑π‘₯ 2 2 βˆ’1 βˆ’1 1 = [ π‘’βˆ’(1+π‘–π‘›πœ‹)π‘₯ 2 βˆ’(1 + π‘–π‘›πœ‹)] βˆ’1 1 = 𝑒1+π‘–π‘›πœ‹ βˆ’ π‘’βˆ’(1+π‘–π‘›πœ‹) 2(1 + π‘–π‘›πœ‹) = 𝑒(cosπ‘›πœ‹ + 𝑖 sin π‘›πœ‹) βˆ’ π‘’βˆ’1(cosπ‘›πœ‹ βˆ’ 𝑖 sin π‘›πœ‹) 2(1 + π‘–π‘›πœ‹) = 𝑒(βˆ’1)𝑛 βˆ’ π‘’βˆ’1(βˆ’1)𝑛 2(1 + π‘–π‘›πœ‹) 𝑐𝑛 = (𝑒 βˆ’ π‘’βˆ’1)(βˆ’1)𝑛 2 1 βˆ’ π‘–π‘›πœ‹ ( ) 1 + 𝑛2πœ‹2 = (βˆ’1)𝑛(1 βˆ’ π‘–π‘›πœ‹) 1 + 𝑛2πœ‹2 sinh 1 Hence (1) becomes π‘’βˆ’π‘₯ = (βˆ’1)𝑛(1 βˆ’ π‘–π‘›πœ‹) 1 + 𝑛2πœ‹2 sinh 1 π‘’π‘–π‘›πœ‹π‘₯ ∞ βˆ‘ 𝑛=βˆ’βˆž
  • 16. 2. Find the complex form of the Fourier series of 𝒇(𝒙) = 𝐜𝐨𝐬 𝒂𝒙 in (– 𝝅, 𝝅) where β€˜a’ is neither zero nor an integer. Solution: Here 2𝑐 = 2πœ‹ or 𝑐 = πœ‹ Let the complex form of the Fourier series be 𝑐𝑛𝑒𝑖𝑛π‘₯ ∞ 𝑓(π‘₯) = βˆ‘ 𝑛=βˆ’βˆž … … . . (1) π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐𝑛 = 1 2πœ‹ πœ‹ ∫ 𝑓(π‘₯) π‘’βˆ’π‘–π‘›π‘₯ 𝑑π‘₯ βˆ’πœ‹ 𝑐𝑛 = 1 2πœ‹ πœ‹ ∫ cos π‘Žπ‘₯ π‘’βˆ’π‘–π‘›π‘₯ 𝑑π‘₯ βˆ’πœ‹ 1 π‘’βˆ’π‘–π‘›π‘₯ = [ (βˆ’π‘–π‘› cosπ‘Žπ‘₯ + π‘Ž sin π‘Žπ‘₯)] 2πœ‹ π‘Ž2 βˆ’ 𝑛2 βˆ’πœ‹ πœ‹ = 1 2πœ‹(π‘Ž2 βˆ’ 𝑛2) [π‘’βˆ’π‘–π‘›πœ‹(βˆ’π‘–π‘› cosπ‘Žπœ‹ + π‘Ž sin π‘Žπœ‹) βˆ’ π‘’π‘–π‘›πœ‹(βˆ’π‘–π‘› cosπ‘Žπœ‹ + π‘Ž sin π‘Žπœ‹)] = 1 2πœ‹(π‘Ž2 βˆ’ 𝑛2) [𝑖𝑛 cos π‘Žπœ‹ ( π‘’π‘–π‘›πœ‹ βˆ’ π‘’βˆ’π‘–π‘›πœ‹) + π‘Ž sin π‘Žπœ‹( π‘’π‘–π‘›πœ‹ + π‘’βˆ’π‘–π‘›πœ‹) ] = 1 2πœ‹(π‘Ž2 βˆ’ 𝑛2) [𝑖𝑛 cos π‘Žπœ‹ (2𝑖 sin π‘›πœ‹) + π‘Ž sin π‘Žπœ‹(2cosπ‘›πœ‹) ] 𝑐𝑛 = 1 2πœ‹(π‘Ž2 βˆ’ 𝑛2) (βˆ’1)𝑛 2 a sin π‘Žπœ‹
  • 17. (βˆ’1)𝑛 Hence (1) becomes cosπ‘Žπ‘₯ = π‘Ž sin π‘Žπœ‹ βˆ‘βˆž πœ‹ 𝑛=βˆ’βˆž (π‘Ž2βˆ’π‘›2) 𝑒𝑖𝑛π‘₯ Harmonic Analysis: The process of finding the Fourier series for a function given by numerical values is known as harmonic analysis. In harmonic analysis the Fourier coefficients π‘Ž0, π‘Žπ‘› and 𝑏𝑛 of the function 𝑦 = 𝑓(π‘₯) in (0,2πœ‹) are given by π‘Ž0 = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 𝑖𝑛(0,2πœ‹) ] π‘Žπ‘› = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos 𝑛π‘₯ 𝑖𝑛(0,2πœ‹)] 𝑏𝑛 = 2[π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin 𝑛π‘₯ 𝑖𝑛(0, 2πœ‹)] Problems under Harmonic Analysis: 1. The following table gives the variations of a periodic function over a period T π‘₯ 0 𝑇⁄6 𝑇⁄3 𝑇⁄2 2𝑇⁄3 5𝑇⁄6 𝑇 𝑓(π‘₯) 1.98 1.3 1.05 1.3 – 0.88 – 0.25 1.98 Find 𝒇(𝒙) upto first harmonic. Solution: 𝑃𝑒𝑑 πœƒ = 2πœ‹π‘₯ 𝑇 When π‘₯ takes the values of 0, 𝑇 , 𝑇 , 𝑇 , 2𝑇 , 6 3 2 3 6 5𝑇 , 𝑇 then ΞΈ takes values 0, πœ‹ , 2πœ‹ , πœ‹, 4πœ‹ , 5πœ‹ , 2πœ‹ 3 3 3 3
  • 18. The given data becomes πœƒ 0 πœ‹ 3 2πœ‹ 3 πœ‹ 4πœ‹ 3 5πœ‹ 3 2πœ‹ 𝑦 1.98 1.3 1.05 1.3 – 0.88 – 0.25 1.98 π‘Ž0 2 1 1 The Fourier series is 𝑓(π‘₯) = + π‘Ž cos πœƒ + 𝑏 sin πœƒ [ ] 4.6 π‘Ž0 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 = 2 [ 6 ] = 1.5 [ ] 1.12 π‘Ž1 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cosπœƒ = 2 [ 6 ] = 0.373 [ ] 𝑏1 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin πœƒ = 2 [ 3.013 6 ] = 1.004 𝜽 π’š π’š 𝐜𝐨𝐬 𝜽 π’š 𝐬𝐒𝐧 𝜽 0 1.98 1.98 0 πœ‹ 3 1.3 0.65 1.1258 2πœ‹ 3 1.05 –0.525 0.9093 πœ‹ 1.3 –1.3 0 4πœ‹ 3 – 0.88 0.44 0.762 5πœ‹ 3 – 0.25 – 0.125 0.2165 Total 4.6 1.12 3.013
  • 19. 𝑓(π‘₯) = 0.75 + 0.373 cosπœƒ + 1.004 sin πœƒ = 0.75 + 0.373 cos 2πœ‹π‘₯ + 1.004 sin 2πœ‹π‘₯ 𝑇 𝑇 2. Obtain the first three harmonic for the data π‘₯ 0 1 2 3 4 5 𝑦 4 8 15 7 6 2 Solution: Given that the length of the interval is 6. i.e. 2𝑙 = 6, 𝑙 = 3 The Fourier series upto third harmonic is 2 3 3 3 1 2 3 1 3 3 𝑓(π‘₯) = π‘Ž0 + π‘Ž cos πœ‹π‘₯ + π‘Ž cos 2πœ‹π‘₯ + π‘Ž cos 3πœ‹π‘₯ + 𝑏 sin πœ‹π‘₯ + 𝑏 sin 2πœ‹π‘₯ + 𝑏 2 3 sin 3πœ‹π‘₯ 3 π‘₯ 𝑦 πœ‹ 𝑦 cos 3 2πœ‹ 𝑦 cos 3 3πœ‹ 𝑦 cos 3 πœ‹ 𝑦 sin 3 2πœ‹ 𝑦 sin 3 3πœ‹ 𝑦 sin 3 0 4 4 4 4 0 0 0 1 8 4 –4 –8 6.93 6.93 0 2 15 –7.5 –7.5 15 12.99 –12.99 0 3 7 –7 7 –7 0 0 0 4 6 –3 –3 6 –3.46 5.19 0 5 2 1 –1 –2 –4.33 –1.73 0 Total 42 –8.5 –4.5 8 12.13 –2.6 0 [ ] 42 π‘Ž0 = 2 π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 = 2 [ 6 ] = 14
  • 20. 1 3 π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos πœ‹π‘₯ ] = 2 [βˆ’ 8.5] = βˆ’2.83 6 2 3 π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos 2πœ‹π‘₯ ] = 2 [βˆ’ 4.5 = βˆ’1.5 ] 6 3 8 3 6 π‘Ž = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 cos 3πœ‹π‘₯ ] = 2 [ ] = 2.67 1 12.13 𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin πœ‹π‘₯ ] = 2 [ 3 6 ] = 4.04 2 3 𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin 2πœ‹π‘₯ ] = 2 [βˆ’ 2.6] = βˆ’0.87 6 3 3 𝑏 = 2 [π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝑦 sin 3πœ‹π‘₯ ] = 0 𝑓(π‘₯) = 7 βˆ’ 2.83 cos βˆ’ 1.5 cos πœ‹π‘₯ 2πœ‹π‘₯ 3 3 + 2.67 cos 3πœ‹π‘₯ 3 πœ‹π‘₯ 3 + 4.04 sin βˆ’ 0.87 sin 2πœ‹π‘₯ 3