Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Writing your Article Introduction

6,616 views

Published on

Some typical coherence/logic problems in Introduction, and how to fix them.

Published in: Education
  • Be the first to comment

  • Be the first to like this

Writing your Article Introduction

  1. 1. Writing your introduction Prof. Dr. Ron Martinez PRPPG7000 - Academic Writing in English
  2. 2. Syllabus outline • 15/08 - Introduction • 22/08 - IMRaD, Most common errors, electronic tools • 29/08 - Strategic planning for your article: CARS and other approaches • 05/09 - Title, Abstract e Introduction • 12/09 - Writing your Introduction • 19/09 - Coherence, cohesion and clarity, and use of authorial voice • 26/09 - (Introduction due) The Results section • 03/10- The Discussion section • 10/10 - Discussing and Concluding • 17/10 - Writing (no class) • 24/10 - Students exchange articles (no class) • 31/10 - (peer feedback due) Plagiarism, the submission process • 07/11 - Special guest speaker on journal trends
  3. 3. Today... • your Introduction writing process • importance of “They Say/I Say” in shaping the Introduction • typical problems in the Introduction • peer feedback
  4. 4. From a student (“Albert”) “O mentor text está sendo o principal recurso, seguido do Google Tradutor. Ainda estou transitando entre escrever em português e traduzir, e escrever diretamente em inglês. Está sendo uma tarefa difícil organizar as ideias em forma de texto. Ainda estou insatisfeito com as linhas escritas. Por ora, preferi não envolver o orientador.”
  5. 5. From a student (“Albert”) “O mentor text está sendo o principal recurso, seguido do Google Tradutor. Ainda estou transitando entre escrever em português e traduzir, e escrever diretamente em inglês. Está sendo uma tarefa difícil organizar as ideias em forma de texto. Ainda estou insatisfeito com as linhas escritas. Por ora, preferi não envolver o orientador.”
  6. 6. From “Linda” “Escolhi tentar escrever meu artigo em inglês e descobri que tenho mais dificuldade do que eu imaginava com a escrita na língua. No momento, estou me perguntando se devo mesmo escrever o artigo em inglês. Utilizei o "texto mentor", o Google Translate, o site "Skell" e o site "Linguee". Terei reunião com minha orientadora amanhã para conversar a respeito do artigo.”
  7. 7. From “Natalie” “A experiência está sendo bastante positiva. Estou aplicando o método CARS e Problema-Solução. Além disso, como orientado pelo professor na aula anterior, estou utilizando modelos de trabalhos no assunto em questão para utilizar as expressões mais comuns. Estou ficando satisfeita com o resultado apesar de ainda estar no início dessa etapa. E o envolvimento com o orientador está sendo satisfatório, com muita troca de experiência, principalmente do orientador.”
  8. 8. From “Iara” “As I don't have results yet, just a research proposal, I'm still on the early steps of writing the Introduction of my paper. The hardest part, I think, is to decide how to "sell" this story, and make it interesting for the reviewers.”
  9. 9. "They Say, I Say" • "(A) writer needs to indicate not only what his or her thesis is, but also what larger conversation that thesis is responding to." (p. 20) • "(W)hen is comes to constructing an argument […], remember that you are entering a conversation and therefore need to start with 'what others are saying'…" (p. 20)
  10. 10. “THEY SAY”
  11. 11. “THEY SAY” “I SAY”
  12. 12. INTRODUCTION
  13. 13. Good introduction? Much was written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  14. 14. Good introduction? Much was written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  15. 15. Good introduction? Much was written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  16. 16. Good introduction? Much was written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  17. 17. Much was written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  18. 18. Much has been written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  19. 19. Much has been written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts were made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  20. 20. Much has been written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts have been made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  21. 21. Much has been written on interaction in electroacoustic mixed works. Several analytical strategies have been published, such as Menezes (2002), Bachratá(2012), O'Callaghan; Eigenfeldt (2010), as well as on the techniques (CAMPOS 2005; ROWE, 1993), and on aesthetics aspects (BREIBJBERG, 2011; GARNETT, 2001, ROWE, 1999) of this kind of interaction. However, until now, few efforts have been made to relate these actions. In this research, we intend to contribute with some of this proposes in order to delineate aspects of the interaction in this repertoire. Our attention will be in aesthetics issues, but, for this, we will also refer to the mentioned fields.
  22. 22. I live in Curitiba., where it rains a lot. I have many umbrellas.
  23. 23. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  24. 24. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data.Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  25. 25. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data.Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  26. 26. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data.Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  27. 27. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  28. 28. Be careful with “extraneous information” in your Introduction!
  29. 29. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  30. 30. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  31. 31. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  32. 32. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data.Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  33. 33. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  34. 34. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data.Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research.A comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. Mainly the plotted networks and the results given by each software will be analyzed, showing what each one shows or does not show and its best application.
  35. 35. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit your research better, and sometimes do not even know if using the software will help something in your research. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the timeA comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. ...
  36. 36. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit their research better, and sometimes do not even know if using the software will help at all in their research. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the timeA comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. ...
  37. 37. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit their research better, and sometimes do not even know if using the software will help at all in their research. After all, many who enter bioinformatics have only one side of training, biology or computer science,and this leads to a larger learning curve most of the timeA comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. ...
  38. 38. In biology we have a lot of data to analyze and bioinformatics has emerged to aid in the analysis of large amounts of data. Some of the forms used today are graphical representations of biological networks, so it is possible to make a more efficient analysis of certain data. Many tools have already been produced in order to provide better visualization and understanding of the data. Many who enter bioinformatics have only one side of training, biology or computer science, this leads to a larger learning curve most of the time and although there are several software to aid in research and analysis, people do not always know the which is better or which is going to fit their research better, and sometimes do not even know if using the software will help at all in their research. After all, many who enter bioinformatics have only one side of training, biology or computer science,and this leads to a larger learning curve most of the time Therefore, a comparison between the existing software will be done demonstrating the ups and downs of each software and the best application for each one, verifying the attributes such as speed, complexity, accuracy, ergonomics, among others. The interfaces will also be analyzed, how the interaction between the software and the user and what are the purposes of each software. ...
  39. 39. 1) Identify problems. 2) How to improve? There were three little pigs, of different ages. There was a wolf nearby. They needed to build a home. The first pig decided to build a house of straw. The second built a house of sticks. Its name was Porky. The third pig took longer to build his house. His house was made of bricks. Bricks are a more expensive material. A hungry wolf came to eat the pigs. The pigs hid inside their homes. The wolf easily blew down the first house. It took longer to blow down the second house, but the wolf did it. The third house was made of bricks. It was impossible to blow down.
  40. 40. Now talk about your Introduction 1. If you have a printed Introduction today… a. First talk about your research to your partner/group b. Then ask for feedback (e.g. identifiable CARS) 2. If you don’t have a printed Introduction today… a. Talk about how you are currently “conceptualizing” your Introduction b. Give feedback to others 3. If you are in the “virtual” group, and you are alone… i. Re-read your Introduction considering today’s points
  41. 41. On our site... 1. Download an Introduction (choose Portuguese or English). 2. Identify any problems (for example, extraneous information). 3. Try to “fix” the problems. Consult with another person.
  42. 42. Homework • Task on Go Formative • Write, write, write!

×