SlideShare a Scribd company logo
1 of 50
Download to read offline
Spring 2013
Synchronous Generators
Construction of synchronous machines
In a synchronous generator, a DC current is
applied to the rotor winding producing a rotor
magnetic field. The rotor is then turned by
external means producing a rotating magnetic
field, which induces a 3-phase voltage within
the stator winding.
• Field windings are the windings
producing the main magnetic field
(rotor windings
• armature windings are the windings
where the main voltage is induced
(stator windings)
Construction of synchronous machines
The rotor of a synchronous machine is a large electromagnet. The
magnetic poles can be either salient (sticking out of rotor surface) or non-
salient construction.
Non-salient-pole rotor: # of poles: 2 or 4. Salient-pole rotor: # of
poles: large number
Rotors are made laminated to reduce eddy current losses.
Construction of synchronous machines
Two common approaches are used to supply a DC current to the field
circuits on the rotating rotor:
1. Supply the DC power from an
external DC source to the rotor by
means of slip rings and brushes;
2. Supply the DC power from a
special DC power source mounted
directly on the shaft of the
machine.
Slip rings are metal rings completely encircling the shaft of a machine but
insulated from it. Graphite-like carbon brushes connected to DC terminals
ride on each slip ring supplying DC voltage to field windings.
Construction of synchronous machines
• On large generators and motors, brushless exciters are used.
• A brushless exciter is a small AC generator whose field
circuits are mounted on the stator and armature circuits are
mounted on the rotor shaft.
• The exciter generator’s 3-phase output is rectified to DC by
a 3-phase rectifier (mounted on the shaft) and fed into the
main DC field circuit.
• It is possible to adjust the field current on the main machine
by controlling the small DC field current of the exciter
generator (located on the stator).
Construction of synchronous machines
To make the excitation of
a generator completely
independent of any
external power source, a
small pilot exciter is often
added to the circuit.
The pilot exciter is an AC
generator with a
permanent magnet
mounted on the rotor
shaft and a 3-phase
winding on the stator
producing the power for
the field circuit of the
exciter.
Construction of synchronous machines
A rotor of large
synchronous
machine with a
brushless exciter
mounted on the
same shaft.
Construction of synchronous machines
Exciter
Rotor pole.
Rotation speed of synchronous generator
By the definition, synchronous generators produce electricity
whose frequency is synchronized with the mechanical rotational
speed.
Where fe is the electrical frequency, Hz;
nm is the rotor speed of the machine, rpm;
p is the number of poles.
• Steam turbines are most efficient when rotating at high speed;
therefore, to generate 60 Hz, they are usually rotating at 3600
rpm (2-pole).
• Water turbines are most efficient when rotating at low speeds
(200-300 rpm); therefore, they usually turn generators with many
poles.
me n
p
f
120

The induced voltage in a 3-phase set of coils
In three coils, each of NC turns, placed around the rotor magnetic field,
the induced in each coil will have the same magnitude and phases
differing by 1200:
 
 
'
'
'
( ) cos
( ) cos 120
( ) cos 240
aa C m m
bb C m m
cc C m m
e t N t
e t N t
e t N t
 
 
 

  
  
Peak voltage:
max C mE N  max 2 CE N f 
RMS voltage:
2
2
2CA CNE Nf f

  
Internal generated voltage of a synchronous
generator
The magnitude of internal generated voltage induced in a given stator is
2A CE N f K   
where K is a constant representing the construction of the machine,  is flux in it
and  is its rotation speed.
Since flux in the
machine depends
on the field current
through it, the
internal generated
voltage is a
function of the
rotor field current.
Magnetization curve (open-circuit characteristic) of a
synchronous machine
Equivalent circuit of a synchronous generator
The internally generated voltage in a single phase of a
synchronous machine EA is not usually the voltage appearing
at its terminals. It equals to the output voltage V only when
there is no armature current in the machine. The reasons
that the armature voltage EA is not equal to the output
voltage V are:
1. Distortion of the air-gap magnetic field caused by the
current flowing in the stator (armature reaction);
2. Self-inductance of the armature coils;
3. Resistance of the armature coils;
Equivalent circuit of a synchronous generator
Armature reaction:
• When the rotor of a
synchronous generator is
spinning, a voltage EA is
induced in its stator.
• When a load is connected,
a current starts flowing
creating a magnetic field in
machine’s stator.
• This stator magnetic field BS
adds to the rotor (main)
magnetic field BR affecting
the total magnetic field and,
therefore, the phase
voltage.
Lagging
load
Equivalent circuit of a synchronous generator
The load current IA will create a stator magnetic field BS, which will
produce the armature reaction voltage Estat. Therefore, the phase voltage
will be
A statV E E  
The net magnetic flux will be
net R SB B B 
Rotor field Stator field
Equivalent circuit of a synchronous generator
Since the armature reaction voltage lags the
current by 90 degrees, it can be modeled by
stat AE jXI 
The phase voltage is then
A AV E jXI  
However, in addition to armature reactance effect, the stator coil
has a self-inductance LA (XA is the corresponding reactance) and
the stator has resistance RA. The phase voltage is thus
A A A A AV E jXI jX I RI    
Equivalent circuit of a synchronous generator
Often, armature reactance and self-
inductance are combined into the
synchronous reactance of the machine:
S AX X X 
A S A AV E jX I RI   
Therefore, the phase voltage is
The equivalent circuit of a 3-phase
synchronous generator is shown.
The adjustable resistor Radj controls
the field current and, therefore, the
rotor magnetic field.
Equivalent circuit of a synchronous generator
A synchronous generator can be Y- or -connected:
The terminal voltage will be
3T TV V for Y V V for       
Equivalent circuit of a synchronous generator
Since – for balanced loads – the three phases of a synchronous
generator are identical except for phase angles, per-phase
equivalent circuits are often used.
Phasor diagram of a synchronous generator
(similar to that of a transformer)
Since the voltages in a synchronous generator are AC voltages, they are
usually expressed as phasors. A vector plot of voltages and currents within
one phase is called a phasor diagram.
A phasor diagram of a synchronous
generator with a unity power factor
(resistive load)
Lagging power factor (inductive load): a
larger than for leading PF internal
generated voltage EA is needed to form
the same phase voltage.
Leading power factor (capacitive load).
The Synchronous generator operating alone
The behavior of a synchronous generator varies greatly under
load depending on the power factor of the load and on
whether the generator is working alone or in parallel with other
synchronous generators.
Although most of the synchronous generators in the world
operate as parts of large power systems, we start our
discussion assuming that the synchronous generator works
alone.
Unless otherwise stated, the speed of the generator is
assumed constant.
The Synchronous generator operating alone
Effects of load changesA increase in the load is an
increase in the real and/or
reactive power drawn from the
generator.
Since the field resistor is unaffected, the field current is constant and, therefore, the
flux  is constant too. Since the speed is assumed as constant, the magnitude of
the internal generated voltage is constant also.
Assuming the same power factor of the load, change in load will change the
magnitude of the armature current IA. However, the angle will be the same (for a
constant PF). Thus, the armature reaction voltage jXSIA will be larger for the
increased load. Since the magnitude of the internal generated voltage is constant
A S AE V jX I 
Armature reaction voltage vector will “move parallel” to its initial position.
The Synchronous generator operating alone
Increase load effect on generators with
Lagging PF
Leading PF
Unity PF
The Synchronous generator operating alone
1. For lagging (inductive) loads, the phase (and terminal) voltage
decreases significantly.
2. For unity power factor (purely resistive) loads, the phase (and
terminal) voltage decreases slightly.
3. For leading (capacitive) loads, the phase (and terminal) voltage rises.
Generally, when a load on a synchronous generator is added, the following
changes can be observed:
Effects of adding loads can be described by the voltage regulation:
100%
nl fl
fl
V V
VR
V


Where Vnl is the no-load voltage of the generator and Vfl is its full-load voltage.
The Synchronous generator operating alone
• A synchronous generator operating at a lagging power factor has a fairly large
positive voltage regulation.
• A synchronous generator operating at a unity power factor has a small positive
voltage regulation.
• A synchronous generator operating at a leading power factor often has a
negative voltage regulation.
Normally, a constant terminal voltage supplied by a generator is desired. Since the
armature reactance cannot be controlled, an obvious approach to adjust the
terminal voltage is by controlling the internal generated voltage EA = K. This
may be done by changing flux in the machine while varying the value of the field
resistance RF, which is summarized:
1. Decreasing the field resistance increases the field current in the generator.
2. An increase in the field current increases the flux in the machine.
3. An increased flux leads to the increase in the internal generated voltage.
4. An increase in the internal generated voltage increases the terminal voltage of
the generator.
Power and torque in synchronous generators
A synchronous generator needs to be connected to a prime mover whose speed is
reasonably constant (to ensure constant frequency of the generated voltage) for
various loads.
The applied mechanical power
in app mP  
is partially converted to electricity
3 cosconv ind m A AP E I   
Where  is the angle between
EA and IA.
The power-flow diagram of a
synchronous generator.
Power and torque in synchronous generators
The real output power of the synchronous generator is
3 cos 3 cosout T L AP V I V I  
The reactive output power of the synchronous generator is
3 sin 3 sinout T L AQ V I V I  
Recall that the power factor angle  is the angle between V and IA and not the
angle between EA and IA.
In real synchronous machines of any size, the
armature resistance RA << XS and, therefore,
the armature resistance can be ignored. Thus,
a simplified phasor diagram indicates that
sin
cos A
A
S
E
I
X

 
Power and torque in synchronous generators
Then the real output power of the synchronous generator can be approximated as
3 sinA
out
S
V E
P
X
 

We observe that electrical losses are assumed to be zero since the resistance is
neglected. Therefore:
conv outP P
Here  is the power angle of the machine – the angle between V and EA. This is
Different from the power factor angle/
The maximum power can be supplied by the generator when  = 900:
max
3 A
S
V E
P
X


Generator P-f Curve
• All generators are driven by a prime mover, such as a
steam, gas, water, wind turbines, diesel engines, etc.
• Regardless the power source, most of prime movers tend to
slow down with increasing the load.
• The speed drop (SD) of a prime mover is defined as:
• Most prime movers have a speed drop from 2% to 4%.
Most governors have a mechanism to adjust the turbine’s
no-load speed (set-point adjustment).
Generator P-f Curve
Generator Q-V Curve
• A similar relationship can be derived for the reactive power Q and
terminal voltage VT.
– When supplying a lagging load to a synchronous generator, its
terminal voltage decreases.
– When adding a leading load to a synchronous generator, its terminal
voltage increases.
• Both the frequency-power and terminal voltage vs. reactive
power characteristics are important for parallel operations of
generators.
Example
A generator with no-load frequency of 61.0 Hz and a slope of 1 MW/Hz is
connected to Load 1 consuming 1 MW of real power at 0.8 PF lagging.
Load 2 (that to be connected to the generator) consumes a real power of
0.8 MW at 0.707 PF lagging.
1. Find the operating frequency of the system before the switch is
closed. (ans. 60 Hz)
2. Find the operating frequency of the system after the switch is closed.
(ans. 59.2 Hz)
3. What action could an operator take to restore the system frequency
to 60 Hz after both loads are connected to the generator? (ans.
increase the governor no-load set point by 0.8 Hz)
Generator Operating Alone
• When a generator is operating alone supplying
the load:
– The real and reactive powers are the amounts
demanded by the load.
– The governor of the generator controls the
operating frequency of the system.
– The field current controls the terminal voltage of
the power system.
Generators connected in parallel
• Most of synchronous generators are operating in parallel
with other synchronous generators to supply power to the
same power system.
• Obvious advantages of this arrangement are:
– Several generators can supply a bigger load;
– A failure of a single generator does not result in a total
power loss to the load, thus increasing reliability of the
power system;
– Individual generators may be removed from the power
system for maintenance without shutting down the load;
– A single generator not operating at near full load might
be quite inefficient. While having several generators in
parallel, it is possible to turn off some, and operate the
rest at near full-load condition.
Conditions required for paralleling generators
• Closing the switch arbitrarily can cause severe damage. If
voltages are not the same (magnitude, frequency, phase,
sequence) in both lines, a very large current will flow when the
switch is closed.
• To avoid this, the following conditions must be met:
– The rms line voltages of the two generators must be equal.
– The two generators must have the same phase sequence.
– The phase angles of two “a” phases must be equal.
– The frequency of the oncoming generator must be slightly higher
than the frequency of the running system.
Steps for paralleling generators (3-light bulb method)
1. Adjust the field current of the oncoming generator to make its terminal
voltage equal to the line voltage of the system (use a voltmeter).
2. Compare the phase sequences of the oncoming generator and the
running system by examining the three light bulbs. If all three bulbs get
bright and dark together, both generators have the same phase
sequences. If not, two of the conductors must be altered.
3. The frequency of the oncoming generator is adjusted to be slightly
higher than the system’s frequency.
4. When all three lights go out, the voltage across them is zero and,
therefore, machines are in phase. This is the time to close the switch.
Synchronizing a generator with the utility grid
• When a synchronous generator is added to a power system, that
system is so large that one additional generator does not cause
observable changes to the system.
• An infinite bus is a power system that is so large that its voltage
and frequency do not vary regardless of how much real and
reactive power is drawn from or supplied to it (i.e., the power-
frequency and reactive power-voltage characteristics are
horizontal:
Synchronizing a generator with the utility grid
• Consider adding a generator to an
infinite bus supplying a load.
• The frequency and terminal
voltage of all machines must be
the same.
• Therefore, their power-frequency
and reactive power-voltage
characteristics can be plotted
with a common vertical axis.
Synchronizing a generator with the utility grid
Parallel operation with the utility grid
• If an attempt is made to
increase the speed of the
generator after it is connected
to the infinite bus, the system
frequency cannot change and
the power supplied by the
generator increases.
• Note an increase in power
(with Vt and EA staying
constant), results in an
increase in the power angle δ.
Parallel operation with the utility grid
• Adjusting the field current of the machine, it is
possible to make it to make the generator supply or
consume reactive power Q.
• Summarizing, when the generator is operating in
parallel to an infinite bus:
– The frequency and terminal voltage of the generator
are controlled by the system to which it is connected.
– The governor set points of the generator control the
real power supplied by the generator to the system.
– The generator’s field current controls the reactive
power supplied by the generator to the system.
Parallel operation of generators of similar size
• Unlike the case of an infinite bus,
the slope of the frequency-power
curve of G1 is of the same order of
magnitude as that of G2.
• The power-frequency diagram
right after G2 is connected to the
system is shown to the right.
• As indicated previously, in order for
G2 to come in as a generator, its
frequency should be slightly higher
than that of G1.
Parallel operation of generators of similar size
• Note that the sum of the real and
reactive powers supplied by the two
generators must equal the real and
reactive powers demanded by the load:
• If the speed of G2 is increased, its
power-frequency diagram shifts
upwards. This will in turn
– increase the real power supplied by G2
– reduce the real power supplied by G1
– increase the system frequency.
– To bring the frequency down, the speed
of G2 must be reduced.
Example
Two generators are set to supply the same load. G1 has a no-load
frequency of 61.5 Hz and a slope sp1 of 1 MW/Hz. G2 has a no-load
frequency of 61.0 Hz and a slope sp2 of 1 MW/Hz. The two generators are
supplying a real load of 2.5 MW at 0.8 PF lagging.
a) System frequency? Ans. 60 Hz
b) Power generated by G1 and G2? Ans. 1.5 MW and 1 MW
c) An additional load of 1 MW is added, find the system frequency and the
generator powers? Ans. 59.5 Hz, 2 MW, and 1.5 MW
d) Repeat c) after the no-load frequency of G2 is increased by 0.5 Hz? Ans. 59.75
Hz, 1.75 MW and 1.75 MW.
Parallel operation of generators of similar size
• Similarly, an increase in the field
current of G1 will result in
– An increase of the reactive power
supplied G1,
– A reduction of the reactive power
supplied G2.
– An Increase of the system terminal
voltage.
– To bring the voltage down, the field
current of G1 must be reduced.
Synchronous Generator Rating
• The purpose of ratings is to protect the machine from damage.
Typical ratings of synchronous machines are voltage, speed,
apparent power (kVA), power factor, field current and service
factor.
– The rated frequency of a synchronous machine depends on the
power system to which it is connected. Once the operation
frequency is determined, only one rotational speed in possible for
the given number of poles.
– For a given design, the rated voltage is limited by the flux that is
capped by the field current. The rated voltage is also limited by
the windings insulation breakdown limit.
– The maximum acceptable armature current sets the apparent
power rating for a generator. The power factor of the armature
current is irrelevant for heating the armature windings.
Synchronous Generator Real and Reactive Power
}cos{
sin
sin
cos
ti
d
t
i
d
t
at
at
VE
X
V
Q
E
X
V
P
IVQ
IVP








Generator Loading Capability Diagram
Generator Loading Capability
Generator Loading Capability Curve
Problems (Chap 3)
• 3, 4, 5, 6, 7, 8, 12.

More Related Content

What's hot

Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlBirju Besra
 
V/F control of Induction Motor - Variable voltage and Variable frequency
V/F control of Induction Motor - Variable voltage and Variable frequencyV/F control of Induction Motor - Variable voltage and Variable frequency
V/F control of Induction Motor - Variable voltage and Variable frequencyCitharthan Durairaj
 
Breaking,Types of Electrical Braking system, Regenerative Braking, Plugging ...
Breaking,Types of Electrical Braking system, Regenerative Braking,  Plugging ...Breaking,Types of Electrical Braking system, Regenerative Braking,  Plugging ...
Breaking,Types of Electrical Braking system, Regenerative Braking, Plugging ...Waqas Afzal
 
Braking methods of induction motor
Braking methods of induction motorBraking methods of induction motor
Braking methods of induction motorraviarmugam
 
speed control of three phase induction motor
speed control of three phase induction motorspeed control of three phase induction motor
speed control of three phase induction motorAshvani Shukla
 
Fixed and variable speed turbine
Fixed and variable speed turbineFixed and variable speed turbine
Fixed and variable speed turbineSonuKumarBairwa
 
V and inverted v curves of synchronous motor
V and inverted v curves of synchronous motorV and inverted v curves of synchronous motor
V and inverted v curves of synchronous motorkarthi1017
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generatorHarshad Karmarkar
 
Hydrothermal scheduling
Hydrothermal schedulingHydrothermal scheduling
Hydrothermal schedulingASHIRBAD BARIK
 
Power electronics Introduction
Power electronics   IntroductionPower electronics   Introduction
Power electronics IntroductionBurdwan University
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatchDeepak John
 

What's hot (20)

Streamer theory
Streamer theoryStreamer theory
Streamer theory
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
Induction motor
Induction motorInduction motor
Induction motor
 
Induction machines
Induction machinesInduction machines
Induction machines
 
V/F control of Induction Motor - Variable voltage and Variable frequency
V/F control of Induction Motor - Variable voltage and Variable frequencyV/F control of Induction Motor - Variable voltage and Variable frequency
V/F control of Induction Motor - Variable voltage and Variable frequency
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
DFIG ppt.pptx
DFIG ppt.pptxDFIG ppt.pptx
DFIG ppt.pptx
 
COGGING & CRAWLING IN INDUCTION MOTOR
COGGING & CRAWLING IN INDUCTION MOTORCOGGING & CRAWLING IN INDUCTION MOTOR
COGGING & CRAWLING IN INDUCTION MOTOR
 
Breaking,Types of Electrical Braking system, Regenerative Braking, Plugging ...
Breaking,Types of Electrical Braking system, Regenerative Braking,  Plugging ...Breaking,Types of Electrical Braking system, Regenerative Braking,  Plugging ...
Breaking,Types of Electrical Braking system, Regenerative Braking, Plugging ...
 
Braking methods of induction motor
Braking methods of induction motorBraking methods of induction motor
Braking methods of induction motor
 
speed control of three phase induction motor
speed control of three phase induction motorspeed control of three phase induction motor
speed control of three phase induction motor
 
Fixed and variable speed turbine
Fixed and variable speed turbineFixed and variable speed turbine
Fixed and variable speed turbine
 
V and inverted v curves of synchronous motor
V and inverted v curves of synchronous motorV and inverted v curves of synchronous motor
V and inverted v curves of synchronous motor
 
Synchronous generator
Synchronous generatorSynchronous generator
Synchronous generator
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generator
 
Hydrothermal scheduling
Hydrothermal schedulingHydrothermal scheduling
Hydrothermal scheduling
 
Static var compensator
Static var compensatorStatic var compensator
Static var compensator
 
Power electronics Introduction
Power electronics   IntroductionPower electronics   Introduction
Power electronics Introduction
 
Synchronous motor
Synchronous motorSynchronous motor
Synchronous motor
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatch
 

Viewers also liked

Salient pole vs non-salient-pole
Salient pole vs non-salient-poleSalient pole vs non-salient-pole
Salient pole vs non-salient-polemebees36
 
steam turbine turbine interlocks for (KWU turbine)
steam turbine turbine interlocks for (KWU turbine)steam turbine turbine interlocks for (KWU turbine)
steam turbine turbine interlocks for (KWU turbine)Billa ParameswaraRao
 
Three Phase Synchonours Generator and AVR
Three Phase Synchonours Generator and AVR Three Phase Synchonours Generator and AVR
Three Phase Synchonours Generator and AVR Emre Öztoklu
 
Generator protection by bhushan kumbhalkar
Generator protection by bhushan kumbhalkarGenerator protection by bhushan kumbhalkar
Generator protection by bhushan kumbhalkarBhushan Kumbhalkar
 
ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)AB Amit
 
Generator Protection By - Er Rahul Sharma
Generator Protection By - Er Rahul Sharma Generator Protection By - Er Rahul Sharma
Generator Protection By - Er Rahul Sharma Rahul Ruddra
 
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...Tushar Sonawane
 
The Theory of Reverse Osmosis (RO)
The Theory of Reverse Osmosis (RO)The Theory of Reverse Osmosis (RO)
The Theory of Reverse Osmosis (RO)AAA Drafting
 
How Reverse Osmosis Water Purification Systems Work
How Reverse Osmosis Water Purification Systems WorkHow Reverse Osmosis Water Purification Systems Work
How Reverse Osmosis Water Purification Systems WorkAlisha Roy
 
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur indiamartsupplier
 
Impact of eams on ppm optimization
Impact of eams on ppm optimizationImpact of eams on ppm optimization
Impact of eams on ppm optimizationfxudegbu
 
Water treatment process by RO UF
Water treatment process by RO UFWater treatment process by RO UF
Water treatment process by RO UFceutics1315
 
Reverse osmosis (ro) plant an overview-saeed
Reverse osmosis (ro) plant  an overview-saeedReverse osmosis (ro) plant  an overview-saeed
Reverse osmosis (ro) plant an overview-saeedAHMED NADIM JILANI
 
Substation Training presentation
Substation Training presentationSubstation Training presentation
Substation Training presentationKamal Mittal
 

Viewers also liked (20)

Salient pole vs non-salient-pole
Salient pole vs non-salient-poleSalient pole vs non-salient-pole
Salient pole vs non-salient-pole
 
Electronic governor
Electronic governorElectronic governor
Electronic governor
 
steam turbine turbine interlocks for (KWU turbine)
steam turbine turbine interlocks for (KWU turbine)steam turbine turbine interlocks for (KWU turbine)
steam turbine turbine interlocks for (KWU turbine)
 
Three Phase Synchonours Generator and AVR
Three Phase Synchonours Generator and AVR Three Phase Synchonours Generator and AVR
Three Phase Synchonours Generator and AVR
 
Generator protection by bhushan kumbhalkar
Generator protection by bhushan kumbhalkarGenerator protection by bhushan kumbhalkar
Generator protection by bhushan kumbhalkar
 
ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)ABCB(air blast circuit breaker)
ABCB(air blast circuit breaker)
 
Generator Protection By - Er Rahul Sharma
Generator Protection By - Er Rahul Sharma Generator Protection By - Er Rahul Sharma
Generator Protection By - Er Rahul Sharma
 
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...
Basic Civil and Environmental Engineering, Unit I [Based on First year Engine...
 
The Theory of Reverse Osmosis (RO)
The Theory of Reverse Osmosis (RO)The Theory of Reverse Osmosis (RO)
The Theory of Reverse Osmosis (RO)
 
How Reverse Osmosis Water Purification Systems Work
How Reverse Osmosis Water Purification Systems WorkHow Reverse Osmosis Water Purification Systems Work
How Reverse Osmosis Water Purification Systems Work
 
Ro plant training and research center
Ro plant training and research centerRo plant training and research center
Ro plant training and research center
 
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur
Water Purifiers and RO Plant By Valency Enterprises Pvt. Ltd, Nagpur
 
Impact of eams on ppm optimization
Impact of eams on ppm optimizationImpact of eams on ppm optimization
Impact of eams on ppm optimization
 
Water treatment process by RO UF
Water treatment process by RO UFWater treatment process by RO UF
Water treatment process by RO UF
 
Reverse osmosis (ro) plant an overview-saeed
Reverse osmosis (ro) plant  an overview-saeedReverse osmosis (ro) plant  an overview-saeed
Reverse osmosis (ro) plant an overview-saeed
 
HV Circuit Breaker Testing
HV Circuit Breaker TestingHV Circuit Breaker Testing
HV Circuit Breaker Testing
 
Haad height aware - eng
Haad   height aware - engHaad   height aware - eng
Haad height aware - eng
 
Ashwani kumar
Ashwani kumarAshwani kumar
Ashwani kumar
 
EMEC-II, unit 1
EMEC-II, unit 1EMEC-II, unit 1
EMEC-II, unit 1
 
Substation Training presentation
Substation Training presentationSubstation Training presentation
Substation Training presentation
 

Similar to Synchronous Generators Construction and Operation

synchronous generators
synchronous generatorssynchronous generators
synchronous generatorsSouvik Dutta
 
Synchronous Generator.pdf
Synchronous Generator.pdfSynchronous Generator.pdf
Synchronous Generator.pdfasmasharab1
 
1337683699.3104Lecture 07 - Synchronous machines.ppt
1337683699.3104Lecture 07 - Synchronous machines.ppt1337683699.3104Lecture 07 - Synchronous machines.ppt
1337683699.3104Lecture 07 - Synchronous machines.pptgulie
 
Presentation on Synchronous Machine.pptx
Presentation on Synchronous Machine.pptxPresentation on Synchronous Machine.pptx
Presentation on Synchronous Machine.pptxMaharAliHamzaHansla
 
Electrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorElectrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorMubarek Kurt
 
Synchronous generator
Synchronous generatorSynchronous generator
Synchronous generatorPrasant Kumar
 
Chapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxChapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxasmasharab1
 
4 the dc generator
4 the dc generator4 the dc generator
4 the dc generatorAngelic Sher
 
DC_Machines_week_4.ppt
DC_Machines_week_4.pptDC_Machines_week_4.ppt
DC_Machines_week_4.pptkiran93845
 
Lectures synchronous machines(1)
Lectures synchronous machines(1)Lectures synchronous machines(1)
Lectures synchronous machines(1)Leela Marigowda
 
Synchronous generator construction
Synchronous generator constructionSynchronous generator construction
Synchronous generator constructionAnilKumarJain19
 
Electrical Machines - II
Electrical Machines - IIElectrical Machines - II
Electrical Machines - IIkarthi1017
 
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...Waqas Afzal
 
DC Machines with explanation in detail of everything
DC Machines with explanation in detail of everythingDC Machines with explanation in detail of everything
DC Machines with explanation in detail of everythingOmer292805
 

Similar to Synchronous Generators Construction and Operation (20)

synchronous generators
synchronous generatorssynchronous generators
synchronous generators
 
Synchronous Generator.pdf
Synchronous Generator.pdfSynchronous Generator.pdf
Synchronous Generator.pdf
 
Lecture 07 synchronous machines
Lecture 07   synchronous machinesLecture 07   synchronous machines
Lecture 07 synchronous machines
 
1337683699.3104Lecture 07 - Synchronous machines.ppt
1337683699.3104Lecture 07 - Synchronous machines.ppt1337683699.3104Lecture 07 - Synchronous machines.ppt
1337683699.3104Lecture 07 - Synchronous machines.ppt
 
Presentation on Synchronous Machine.pptx
Presentation on Synchronous Machine.pptxPresentation on Synchronous Machine.pptx
Presentation on Synchronous Machine.pptx
 
16888242.ppt
16888242.ppt16888242.ppt
16888242.ppt
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Electrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorElectrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous Generator
 
Synchronous generator
Synchronous generatorSynchronous generator
Synchronous generator
 
Chapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptxChapter 1 - Experiment 1 slides.pptx
Chapter 1 - Experiment 1 slides.pptx
 
Asm exp.10
Asm exp.10Asm exp.10
Asm exp.10
 
DC_Machines.ppt
DC_Machines.pptDC_Machines.ppt
DC_Machines.ppt
 
4 the dc generator
4 the dc generator4 the dc generator
4 the dc generator
 
DC_Machines_week_4.ppt
DC_Machines_week_4.pptDC_Machines_week_4.ppt
DC_Machines_week_4.ppt
 
Lectures synchronous machines(1)
Lectures synchronous machines(1)Lectures synchronous machines(1)
Lectures synchronous machines(1)
 
5_Synchronous.pdf
5_Synchronous.pdf5_Synchronous.pdf
5_Synchronous.pdf
 
Synchronous generator construction
Synchronous generator constructionSynchronous generator construction
Synchronous generator construction
 
Electrical Machines - II
Electrical Machines - IIElectrical Machines - II
Electrical Machines - II
 
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
 
DC Machines with explanation in detail of everything
DC Machines with explanation in detail of everythingDC Machines with explanation in detail of everything
DC Machines with explanation in detail of everything
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 

Synchronous Generators Construction and Operation

  • 2. Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is then turned by external means producing a rotating magnetic field, which induces a 3-phase voltage within the stator winding. • Field windings are the windings producing the main magnetic field (rotor windings • armature windings are the windings where the main voltage is induced (stator windings)
  • 3. Construction of synchronous machines The rotor of a synchronous machine is a large electromagnet. The magnetic poles can be either salient (sticking out of rotor surface) or non- salient construction. Non-salient-pole rotor: # of poles: 2 or 4. Salient-pole rotor: # of poles: large number Rotors are made laminated to reduce eddy current losses.
  • 4. Construction of synchronous machines Two common approaches are used to supply a DC current to the field circuits on the rotating rotor: 1. Supply the DC power from an external DC source to the rotor by means of slip rings and brushes; 2. Supply the DC power from a special DC power source mounted directly on the shaft of the machine. Slip rings are metal rings completely encircling the shaft of a machine but insulated from it. Graphite-like carbon brushes connected to DC terminals ride on each slip ring supplying DC voltage to field windings.
  • 5. Construction of synchronous machines • On large generators and motors, brushless exciters are used. • A brushless exciter is a small AC generator whose field circuits are mounted on the stator and armature circuits are mounted on the rotor shaft. • The exciter generator’s 3-phase output is rectified to DC by a 3-phase rectifier (mounted on the shaft) and fed into the main DC field circuit. • It is possible to adjust the field current on the main machine by controlling the small DC field current of the exciter generator (located on the stator).
  • 6. Construction of synchronous machines To make the excitation of a generator completely independent of any external power source, a small pilot exciter is often added to the circuit. The pilot exciter is an AC generator with a permanent magnet mounted on the rotor shaft and a 3-phase winding on the stator producing the power for the field circuit of the exciter.
  • 7. Construction of synchronous machines A rotor of large synchronous machine with a brushless exciter mounted on the same shaft.
  • 8. Construction of synchronous machines Exciter Rotor pole.
  • 9. Rotation speed of synchronous generator By the definition, synchronous generators produce electricity whose frequency is synchronized with the mechanical rotational speed. Where fe is the electrical frequency, Hz; nm is the rotor speed of the machine, rpm; p is the number of poles. • Steam turbines are most efficient when rotating at high speed; therefore, to generate 60 Hz, they are usually rotating at 3600 rpm (2-pole). • Water turbines are most efficient when rotating at low speeds (200-300 rpm); therefore, they usually turn generators with many poles. me n p f 120 
  • 10. The induced voltage in a 3-phase set of coils In three coils, each of NC turns, placed around the rotor magnetic field, the induced in each coil will have the same magnitude and phases differing by 1200:     ' ' ' ( ) cos ( ) cos 120 ( ) cos 240 aa C m m bb C m m cc C m m e t N t e t N t e t N t              Peak voltage: max C mE N  max 2 CE N f  RMS voltage: 2 2 2CA CNE Nf f    
  • 11. Internal generated voltage of a synchronous generator The magnitude of internal generated voltage induced in a given stator is 2A CE N f K    where K is a constant representing the construction of the machine,  is flux in it and  is its rotation speed. Since flux in the machine depends on the field current through it, the internal generated voltage is a function of the rotor field current. Magnetization curve (open-circuit characteristic) of a synchronous machine
  • 12. Equivalent circuit of a synchronous generator The internally generated voltage in a single phase of a synchronous machine EA is not usually the voltage appearing at its terminals. It equals to the output voltage V only when there is no armature current in the machine. The reasons that the armature voltage EA is not equal to the output voltage V are: 1. Distortion of the air-gap magnetic field caused by the current flowing in the stator (armature reaction); 2. Self-inductance of the armature coils; 3. Resistance of the armature coils;
  • 13. Equivalent circuit of a synchronous generator Armature reaction: • When the rotor of a synchronous generator is spinning, a voltage EA is induced in its stator. • When a load is connected, a current starts flowing creating a magnetic field in machine’s stator. • This stator magnetic field BS adds to the rotor (main) magnetic field BR affecting the total magnetic field and, therefore, the phase voltage. Lagging load
  • 14. Equivalent circuit of a synchronous generator The load current IA will create a stator magnetic field BS, which will produce the armature reaction voltage Estat. Therefore, the phase voltage will be A statV E E   The net magnetic flux will be net R SB B B  Rotor field Stator field
  • 15. Equivalent circuit of a synchronous generator Since the armature reaction voltage lags the current by 90 degrees, it can be modeled by stat AE jXI  The phase voltage is then A AV E jXI   However, in addition to armature reactance effect, the stator coil has a self-inductance LA (XA is the corresponding reactance) and the stator has resistance RA. The phase voltage is thus A A A A AV E jXI jX I RI    
  • 16. Equivalent circuit of a synchronous generator Often, armature reactance and self- inductance are combined into the synchronous reactance of the machine: S AX X X  A S A AV E jX I RI    Therefore, the phase voltage is The equivalent circuit of a 3-phase synchronous generator is shown. The adjustable resistor Radj controls the field current and, therefore, the rotor magnetic field.
  • 17. Equivalent circuit of a synchronous generator A synchronous generator can be Y- or -connected: The terminal voltage will be 3T TV V for Y V V for       
  • 18. Equivalent circuit of a synchronous generator Since – for balanced loads – the three phases of a synchronous generator are identical except for phase angles, per-phase equivalent circuits are often used.
  • 19. Phasor diagram of a synchronous generator (similar to that of a transformer) Since the voltages in a synchronous generator are AC voltages, they are usually expressed as phasors. A vector plot of voltages and currents within one phase is called a phasor diagram. A phasor diagram of a synchronous generator with a unity power factor (resistive load) Lagging power factor (inductive load): a larger than for leading PF internal generated voltage EA is needed to form the same phase voltage. Leading power factor (capacitive load).
  • 20. The Synchronous generator operating alone The behavior of a synchronous generator varies greatly under load depending on the power factor of the load and on whether the generator is working alone or in parallel with other synchronous generators. Although most of the synchronous generators in the world operate as parts of large power systems, we start our discussion assuming that the synchronous generator works alone. Unless otherwise stated, the speed of the generator is assumed constant.
  • 21. The Synchronous generator operating alone Effects of load changesA increase in the load is an increase in the real and/or reactive power drawn from the generator. Since the field resistor is unaffected, the field current is constant and, therefore, the flux  is constant too. Since the speed is assumed as constant, the magnitude of the internal generated voltage is constant also. Assuming the same power factor of the load, change in load will change the magnitude of the armature current IA. However, the angle will be the same (for a constant PF). Thus, the armature reaction voltage jXSIA will be larger for the increased load. Since the magnitude of the internal generated voltage is constant A S AE V jX I  Armature reaction voltage vector will “move parallel” to its initial position.
  • 22. The Synchronous generator operating alone Increase load effect on generators with Lagging PF Leading PF Unity PF
  • 23. The Synchronous generator operating alone 1. For lagging (inductive) loads, the phase (and terminal) voltage decreases significantly. 2. For unity power factor (purely resistive) loads, the phase (and terminal) voltage decreases slightly. 3. For leading (capacitive) loads, the phase (and terminal) voltage rises. Generally, when a load on a synchronous generator is added, the following changes can be observed: Effects of adding loads can be described by the voltage regulation: 100% nl fl fl V V VR V   Where Vnl is the no-load voltage of the generator and Vfl is its full-load voltage.
  • 24. The Synchronous generator operating alone • A synchronous generator operating at a lagging power factor has a fairly large positive voltage regulation. • A synchronous generator operating at a unity power factor has a small positive voltage regulation. • A synchronous generator operating at a leading power factor often has a negative voltage regulation. Normally, a constant terminal voltage supplied by a generator is desired. Since the armature reactance cannot be controlled, an obvious approach to adjust the terminal voltage is by controlling the internal generated voltage EA = K. This may be done by changing flux in the machine while varying the value of the field resistance RF, which is summarized: 1. Decreasing the field resistance increases the field current in the generator. 2. An increase in the field current increases the flux in the machine. 3. An increased flux leads to the increase in the internal generated voltage. 4. An increase in the internal generated voltage increases the terminal voltage of the generator.
  • 25. Power and torque in synchronous generators A synchronous generator needs to be connected to a prime mover whose speed is reasonably constant (to ensure constant frequency of the generated voltage) for various loads. The applied mechanical power in app mP   is partially converted to electricity 3 cosconv ind m A AP E I    Where  is the angle between EA and IA. The power-flow diagram of a synchronous generator.
  • 26. Power and torque in synchronous generators The real output power of the synchronous generator is 3 cos 3 cosout T L AP V I V I   The reactive output power of the synchronous generator is 3 sin 3 sinout T L AQ V I V I   Recall that the power factor angle  is the angle between V and IA and not the angle between EA and IA. In real synchronous machines of any size, the armature resistance RA << XS and, therefore, the armature resistance can be ignored. Thus, a simplified phasor diagram indicates that sin cos A A S E I X   
  • 27. Power and torque in synchronous generators Then the real output power of the synchronous generator can be approximated as 3 sinA out S V E P X    We observe that electrical losses are assumed to be zero since the resistance is neglected. Therefore: conv outP P Here  is the power angle of the machine – the angle between V and EA. This is Different from the power factor angle/ The maximum power can be supplied by the generator when  = 900: max 3 A S V E P X  
  • 28. Generator P-f Curve • All generators are driven by a prime mover, such as a steam, gas, water, wind turbines, diesel engines, etc. • Regardless the power source, most of prime movers tend to slow down with increasing the load. • The speed drop (SD) of a prime mover is defined as: • Most prime movers have a speed drop from 2% to 4%. Most governors have a mechanism to adjust the turbine’s no-load speed (set-point adjustment).
  • 30. Generator Q-V Curve • A similar relationship can be derived for the reactive power Q and terminal voltage VT. – When supplying a lagging load to a synchronous generator, its terminal voltage decreases. – When adding a leading load to a synchronous generator, its terminal voltage increases. • Both the frequency-power and terminal voltage vs. reactive power characteristics are important for parallel operations of generators.
  • 31. Example A generator with no-load frequency of 61.0 Hz and a slope of 1 MW/Hz is connected to Load 1 consuming 1 MW of real power at 0.8 PF lagging. Load 2 (that to be connected to the generator) consumes a real power of 0.8 MW at 0.707 PF lagging. 1. Find the operating frequency of the system before the switch is closed. (ans. 60 Hz) 2. Find the operating frequency of the system after the switch is closed. (ans. 59.2 Hz) 3. What action could an operator take to restore the system frequency to 60 Hz after both loads are connected to the generator? (ans. increase the governor no-load set point by 0.8 Hz)
  • 32. Generator Operating Alone • When a generator is operating alone supplying the load: – The real and reactive powers are the amounts demanded by the load. – The governor of the generator controls the operating frequency of the system. – The field current controls the terminal voltage of the power system.
  • 33. Generators connected in parallel • Most of synchronous generators are operating in parallel with other synchronous generators to supply power to the same power system. • Obvious advantages of this arrangement are: – Several generators can supply a bigger load; – A failure of a single generator does not result in a total power loss to the load, thus increasing reliability of the power system; – Individual generators may be removed from the power system for maintenance without shutting down the load; – A single generator not operating at near full load might be quite inefficient. While having several generators in parallel, it is possible to turn off some, and operate the rest at near full-load condition.
  • 34. Conditions required for paralleling generators • Closing the switch arbitrarily can cause severe damage. If voltages are not the same (magnitude, frequency, phase, sequence) in both lines, a very large current will flow when the switch is closed. • To avoid this, the following conditions must be met: – The rms line voltages of the two generators must be equal. – The two generators must have the same phase sequence. – The phase angles of two “a” phases must be equal. – The frequency of the oncoming generator must be slightly higher than the frequency of the running system.
  • 35. Steps for paralleling generators (3-light bulb method) 1. Adjust the field current of the oncoming generator to make its terminal voltage equal to the line voltage of the system (use a voltmeter). 2. Compare the phase sequences of the oncoming generator and the running system by examining the three light bulbs. If all three bulbs get bright and dark together, both generators have the same phase sequences. If not, two of the conductors must be altered. 3. The frequency of the oncoming generator is adjusted to be slightly higher than the system’s frequency. 4. When all three lights go out, the voltage across them is zero and, therefore, machines are in phase. This is the time to close the switch.
  • 36. Synchronizing a generator with the utility grid • When a synchronous generator is added to a power system, that system is so large that one additional generator does not cause observable changes to the system. • An infinite bus is a power system that is so large that its voltage and frequency do not vary regardless of how much real and reactive power is drawn from or supplied to it (i.e., the power- frequency and reactive power-voltage characteristics are horizontal:
  • 37. Synchronizing a generator with the utility grid • Consider adding a generator to an infinite bus supplying a load. • The frequency and terminal voltage of all machines must be the same. • Therefore, their power-frequency and reactive power-voltage characteristics can be plotted with a common vertical axis.
  • 38. Synchronizing a generator with the utility grid
  • 39. Parallel operation with the utility grid • If an attempt is made to increase the speed of the generator after it is connected to the infinite bus, the system frequency cannot change and the power supplied by the generator increases. • Note an increase in power (with Vt and EA staying constant), results in an increase in the power angle δ.
  • 40. Parallel operation with the utility grid • Adjusting the field current of the machine, it is possible to make it to make the generator supply or consume reactive power Q. • Summarizing, when the generator is operating in parallel to an infinite bus: – The frequency and terminal voltage of the generator are controlled by the system to which it is connected. – The governor set points of the generator control the real power supplied by the generator to the system. – The generator’s field current controls the reactive power supplied by the generator to the system.
  • 41. Parallel operation of generators of similar size • Unlike the case of an infinite bus, the slope of the frequency-power curve of G1 is of the same order of magnitude as that of G2. • The power-frequency diagram right after G2 is connected to the system is shown to the right. • As indicated previously, in order for G2 to come in as a generator, its frequency should be slightly higher than that of G1.
  • 42. Parallel operation of generators of similar size • Note that the sum of the real and reactive powers supplied by the two generators must equal the real and reactive powers demanded by the load: • If the speed of G2 is increased, its power-frequency diagram shifts upwards. This will in turn – increase the real power supplied by G2 – reduce the real power supplied by G1 – increase the system frequency. – To bring the frequency down, the speed of G2 must be reduced.
  • 43. Example Two generators are set to supply the same load. G1 has a no-load frequency of 61.5 Hz and a slope sp1 of 1 MW/Hz. G2 has a no-load frequency of 61.0 Hz and a slope sp2 of 1 MW/Hz. The two generators are supplying a real load of 2.5 MW at 0.8 PF lagging. a) System frequency? Ans. 60 Hz b) Power generated by G1 and G2? Ans. 1.5 MW and 1 MW c) An additional load of 1 MW is added, find the system frequency and the generator powers? Ans. 59.5 Hz, 2 MW, and 1.5 MW d) Repeat c) after the no-load frequency of G2 is increased by 0.5 Hz? Ans. 59.75 Hz, 1.75 MW and 1.75 MW.
  • 44. Parallel operation of generators of similar size • Similarly, an increase in the field current of G1 will result in – An increase of the reactive power supplied G1, – A reduction of the reactive power supplied G2. – An Increase of the system terminal voltage. – To bring the voltage down, the field current of G1 must be reduced.
  • 45. Synchronous Generator Rating • The purpose of ratings is to protect the machine from damage. Typical ratings of synchronous machines are voltage, speed, apparent power (kVA), power factor, field current and service factor. – The rated frequency of a synchronous machine depends on the power system to which it is connected. Once the operation frequency is determined, only one rotational speed in possible for the given number of poles. – For a given design, the rated voltage is limited by the flux that is capped by the field current. The rated voltage is also limited by the windings insulation breakdown limit. – The maximum acceptable armature current sets the apparent power rating for a generator. The power factor of the armature current is irrelevant for heating the armature windings.
  • 46. Synchronous Generator Real and Reactive Power }cos{ sin sin cos ti d t i d t at at VE X V Q E X V P IVQ IVP        
  • 50. Problems (Chap 3) • 3, 4, 5, 6, 7, 8, 12.