NN
135 WBA -
Koki Yasuda(@himanandayonaxa)
: (B4)
: , ,
: NLP
: nltk
235 WBA -
NN
▼ github
github.com/yasudadesu/nlp_analayze
335 WBA -
1. NLP NN
2. NLP
3.
4.
5.
NN
435 WBA -
NN
535 WBA -
1. NLP NN
2. NLP
3.
4.
5.
635 WBA -
NLP NN
NLP
ACL
2011-2018
www.aclweb.org/
EMNLP
2011-2017
emnlp2017.net/
NAACL HLT
2013, 15, 16, 18
naacl2018.org/
735 WBA -
▼
ACL (Association for Computational Linguistics)
year_w …
year_r … accepted paper
835 WBA -
935 WBA -
year_w …
year_r … accepted paper
ACL (Association for Computational Linguistics)
EMNLP (Empirical Methods in Natural Language Processing)
1035 WBA -
NAACL HLT (North American Chapter of the Association for Computational Linguistics:
Human Language Technologies)
1135 WBA -
1235 WBA -
NLP NN
’neural’
’model’
1335 WBA -
NLP NN
Recent Trends in Deep Learning Based Natural Language Processing
Tom et al. arxiv.org/pdf/1708.02709.pdf
NN
70%
1. NLP NN
2. NLP
3.
4.
5.
NN
1435 WBA -
1535 WBA -
Slideshare -
1635 WBA -
Slideshare -
1735 WBA -
1835 WBA -
N-gram
(Embedding)
RNN, CNNSVM
NN
NN
1935 WBA -
1. NLP NN
2. NLP
3.
4.
5.
2035 WBA -
NN
NN
▼
▼
▼ 100
▶︎▶︎
2135 WBA -
▼ ( )
▼ one-hot ( )
▶︎▶︎ ( )
NN
NN
2235 WBA -
N-gram
(Embedding)
NN
RNN, CNNSVM
-
2335 WBA -
MeCab, Janome
JUMAN++
:
:
/ / / / / / / / / /
/ / / / / /
/ / / / / / / /
/ / /
2435 WBA -
▼
Twitter UGC
▼
RNN
[ + DEIM2018]
- NN
2535 WBA -
▼ 20
(MT)
▼ ,
n-gram
)
- NN
- NN
2635 WBA -
▼
▼ 1/10
2735 WBA -
N-gram
(Embedding)
NN
RNN, CNNSVM
- one-hot
2835 WBA -
2935 WBA -
-
▼
▼
cf. Sense Embeddings
NN
3035 WBA -
arxiv.org/pdf/1605.07725.pdf
ADVERSARIAL
TRAINING METHODS FOR
SEMI-SUPERVISED TEXT CLASSIFICATION
NLP
Embedding
IMDB Embedding
3135 WBA -
arxiv.org/pdf/1804.08166.pdf
Embedding
Word Embedding Perturbation
for Sentence Classification
NLP
NN
3235 WBA -
1. NLP NN
2. NLP
3.
4.
5.
NN
3335 WBA -
NN
https://www.rinna.jp/
3435 WBA -
Ledge.ai -
ledge.ai/chatbot_market_size/
3535 WBA -
▶︎
▶︎▶︎ Human-like
BLEU, ROUGE, METEOR
3635 WBA -
-
BLEU ROUGE
(MT)
precision
MT
recall
, N-gram
3735 WBA -
www.anlp.jp/proceedings/annual_meeting/2012/pdf_dir/E2-8.pdf
N-gram
( )
-
3835 WBA -
How NOT To Evaluate Your Dialogue System:
An Empirical Study of Unsupervised Evaluation Metrics
for Dialogue Response Generation
arxiv.org/abs/1603.08023
-
BLEU
Embedding Based
3935 WBA -
Towards an Automatic Turing Test:
Learning to Evaluate Dialogue Responses
arxiv.org/abs/1708.07149
-
ADEM
RNN
hierarchicalRNN[El Hihi and Bengio, 1995;Sordoni+ 2015]
[shang+, 2016]
Human-like
4035 WBA -
-
Human-like
1. NLP NN
2. NLP
3.
4.
5.
NN
4135 WBA -
NLP
NN
NN
NN
4235 WBA -
4335 WBA -
datascience.stackexchange.com/questions/13138/what-is-the-
difference-between-word-based-and-char-based-text-generation-rnns
What is the difference between
word-based and char-based text generation RNNs?
Neural Machine Translation of Rare Words with Subword Units
arxiv.org/abs/1508.07909
NMT

NN時代の自然言語処理の設計と評価