SlideShare a Scribd company logo
1 of 8
Download to read offline
1
New Information on the Generalized Euler-Tricomi
Equation
1Lohans de Oliveira Miranda; 2Lossian Barbosa Bacelar Miranda
1Universidad Europea del Atlântico, Espanha, lohansmiranda@gmail.com
2IFPI, Brazil, lossianm@gmail.com
Date: 10/01/2022
Abstract. We disclose a simple and straightforward method of solving
ordinary or linear partial differential equations of any order and apply it
to solve the generalized Euler-Tricomi equation. The method is easier
than classical methods and also didactic.
1 Preliminaries
Next, we transcribe what was already established in [3].
“Consider:
1) 𝑥
⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐴, 𝐴 open set of ℝ𝑛
;
2) 𝑘 ∈ 𝐼𝑛 = {1, 2, 3, … , 𝑛};
3) 𝑢: 𝐴 → ℝ, differentiable function of order 𝑘, with continuous
derivatives (1)
Let us consider the “𝑘-dimensional Hessian matrix” given by
𝐻 = (
𝜕𝑘
𝑢(𝑥
⃗)
𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘
) (2)
From 𝐻, let us consider the following system, being 𝑏𝑖1𝑖2…𝑖𝑘
(𝑥
⃗) and
𝑓𝑖1𝑖2…𝑖𝑘
(𝑥
⃗) differentiable functions of order 𝑘, with continuous derivatives,
and
𝑓𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝑏𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
being well defined in 𝐴:
(𝑏𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝜕𝑘
𝑢(𝑥
⃗)
𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘
) = (𝑓𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)) (3)
Let us denote:
𝑔𝑖1𝑖2…𝑖𝑘
(𝑥
⃗) =
𝑓𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝑏𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
(4)
So (3) will be written as
(
𝜕𝑘
𝑢(𝑥
⃗)
𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘
) = (𝑔𝑖1…𝑖𝑘
(𝑥
⃗)) (5)
Observation 1. Repeated applications of the Fundamental Theorem of
Calculus for each of the 𝑛𝑘
partial differential equations
2
𝜕𝑘
𝑢(𝑥
⃗)
𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘
= 𝑔𝑖1…𝑖𝑘
(𝑥
⃗) (6)
give us the 𝑛𝑘
solutions
𝑢𝑖1𝑖2…𝑖𝑘
(𝑥
⃗) = ∭ … ∫ 𝑔𝑖1…𝑖𝑘
(𝑥
⃗)𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘−1
+
∑ 𝑐𝑠,𝑖1…𝑖𝑘
𝑘−1
𝑠=1
∏ 𝑥𝑖𝜃
𝑘−1
𝜃=𝑠+1
+ 𝑐𝑘−1,𝑖1𝑖2…𝑖𝑘
(7)
Here, the c (under indexed) are real or complex numbers. Obviously,
𝜕𝑘
𝑢𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝜕𝑥𝑗1
𝜕𝑥𝑗2
… 𝜕𝑥𝑗
= 𝑔𝑖1𝑖2…𝑖𝑘
(𝑥
⃗) (8)
if (𝑖1, 𝑖2, … , 𝑖𝑘) = (𝑗1, 𝑗2, … , 𝑗𝑘).
Now, consider the function
𝑢
̃(𝑥
⃗) = ∑ 𝑢𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝑖1,𝑖2,…,𝑖𝑘∈𝐼𝑛
(9)"
Now we can announce the main results.
2. Main results
Again, we transcribe what was done in [3]:
“Proposition 1. In the hypotheses established above, if for (𝑖1, 𝑖2, … , 𝑖𝑘) ≠
(𝑗1, 𝑗2, … , 𝑗𝑘) we have
𝜕𝑘
𝑢𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝜕𝑥𝑗1
𝜕𝑥𝑗2
… 𝜕𝑥𝑗
= 0, (10)
then 𝑢
̃(𝑥
⃗) = ∑ 𝑢𝑖1𝑖2…𝑖𝑘
(𝑥
⃗)
𝑖1,𝑖2,…,𝑖𝑘∈𝐼𝑛
defined in (9) will be the solution of 𝑛𝑘
partial differential equations defined in (3), or alternatively in (6). In
particular, 𝑢
̃(𝑥
⃗) will be a solution of the 2𝑛𝑘
− 1 differential equations
defined by the sums of the elements of all non-empty subsets of the set
𝐵 = {
𝜕𝑘
𝑢(𝑥
⃗)
𝜕𝑥𝑖1
𝜕𝑥𝑖2
… 𝜕𝑥𝑖𝑘
; 𝑖1,𝑖2, … , 𝑖𝑘 ∈ 𝐼𝑛 } (11)
Demonstration. It is an immediate consequence of the construction of
𝑢
̃(𝑥
⃗) and of the hypothesis (𝑖1, 𝑖2, … , 𝑖𝑘) ≠ (𝑗1, 𝑗2, … , 𝑗𝑘).
Observation 2. The thesis of Proposition 1 can still be obtained even if the
assumptions established in (10) are not satisfied. To do so, it is enough
to find the unknown functions involved that satisfy the required integral
equations”.
Theorem 1. Let:
3
∑ 𝑓𝑘
𝑛
𝑘=1
(𝑥)
𝑑𝑘
𝑦
𝑑𝑥𝑘
(𝑥) = ∑ ℎ𝑘
𝑛
𝑘=1
(𝑥) (12)
𝑑𝑘
𝑦
𝑑𝑥𝑘
(𝑥) =
ℎ𝑘(𝑥)
𝑓𝑘(𝑥)
≝ 𝑔𝑘(𝑥); 1 ≤ 𝑘 ≤ 𝑛 (13)
Consider
𝑦𝑘(𝑥) = ∫ ∫ … ∫ 𝑔𝑘(𝑥) 𝑑𝑥𝑑𝑥 … 𝑑𝑥 + (∑ 𝑎𝑘−1𝑥𝑘−1
𝑛
𝑘=1
) ; 1 ≤ 𝑘 ≤ 𝑛 (14)
𝑦
̃(𝑥) ≝ ∑ 𝑦𝑘
𝑛
𝑘=1
(𝑥); 1 ≤ 𝑘 ≤ 𝑛 (15 )
𝑑𝑖
𝑦𝑘
𝑑𝑥𝑖
(𝑥) = {
𝑦𝑘(𝑥), 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘
(16)
Then, 𝑦
̃(𝑥) is solution of ∑ 𝑓𝑘
𝑛
𝑘=1 (𝑥)
𝑑𝑘𝑦
𝑑𝑥𝑘
(𝑥) = ∑ ℎ𝑘
𝑛
𝑘=1 (𝑥) and of the 2𝑛
− 1
ordinary differential equations that we can form with their 𝑛 terms.
Proof: It is an immediate consequence of the construction of 𝑦
̃(𝑥) and the
hypothesis (16).
Observation 1. As in Observation 2 of [3], if the hypotheses (16) are not
satisfied, we can still, in the present case, try to find a solution for the
ordinary differential equation from the search for some auxiliary
functions, solutions of integral equations in a single variable.
Observation 2. Imitating what was done in [3], we can note that the
method established there also applies to any linear partial differential
equations. In such a way that the method is applicable to any linear
differential equations, whether ordinary or partial.
3. Aplication: Generalized Euler-Tricomi equation (
𝝏𝟐𝒖
𝝏𝒙𝟐
+ 𝒈(𝒙)
𝝏𝟐𝒖
𝝏𝒚𝟐
= 𝟎)
In order 2, the method established above solves the main partial
differential equations of Physics and Technology. Here, we'll make a brief
application to the generalized Euler-Tricomi equation,
𝜕2
𝑢
𝜕𝑥2
+ 𝑔(𝑥)
𝜕2
𝑢
𝜕𝑦2
= 0 (17)
4
(
𝜕2
𝑢
𝜕𝑥2
0
0 𝑔(𝑥)
𝜕2
𝑢
𝜕𝑦2
)
= (
𝑓(𝑥, 𝑦) 0
0 −𝑓(𝑥, 𝑦)
) (18)
Here we have:
𝑢11(𝑥, 𝑦) = ∬ 𝑓 𝑑𝑥𝑑𝑥 + 𝑘1(𝑦)𝑥 + 𝑘2(𝑦) (19)
𝑢22(𝑥, 𝑦) = − ∬
𝑓
𝑔(𝑥)
𝑑𝑦𝑑𝑦 + 𝑣(𝑥)𝑦 + 𝑣2(𝑥) (20)
𝑢
̃ = ∬ 𝑓 𝑑𝑥𝑑𝑥 −
1
𝑔(𝑥)
∬ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑦 + 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 + 𝑑 (21)
𝜕2
𝑢
̃
𝜕𝑥2
= 𝑓 − 𝑔(𝑥)−3
∬ (𝑔2
𝜕2
𝑓
𝜕𝑥2
− 𝑓(𝑥, 𝑦)𝑔(𝑥)𝑔′′
(𝑥) − 2𝑔𝑔′
𝜕𝑓
𝜕𝑥
+ 2𝑓𝑔′𝑔′) 𝑑𝑦𝑑𝑦 (22)
𝜕2
𝑢
̃
𝜕𝑦2
= −𝑔−1
𝑓 + ∬
𝜕2
𝑓
𝜕𝑦2
𝑑𝑥𝑑𝑥 (23)
Logo,
Then,
𝜕2
𝑢
̃
𝜕𝑥2
+ 𝑔
𝜕2
𝑢
̃
𝜕𝑦2
=
−𝑔−3
∬ (𝑔2
𝜕2
𝑓
𝜕𝑥2
− 𝑓𝑔𝑔′′
− 2𝑔𝑔′
𝜕𝑓
𝜕𝑥
+ 2𝑓𝑔′
𝑔′
) 𝑑𝑦𝑑𝑦 + 𝑔 ∬
𝜕2
𝑓
𝜕𝑦2
𝑑𝑥𝑑𝑥 (24)
From this last equation, let us note that if
𝑔 ∬
𝜕2
𝑓
𝜕𝑦2
𝑑𝑥𝑑𝑥 = 𝑔−3
∬ (𝑔2
𝜕2
𝑓
𝜕𝑥2
− 𝑓𝑔𝑔′′
− 2𝑔𝑔′
𝜕𝑓
𝜕𝑥
+ 2𝑓𝑔′
𝑔′
) 𝑑𝑦𝑑𝑦 (25)
then we have
𝜕2𝑢
𝜕𝑥2
+ 𝑥
𝜕2𝑢
𝜕𝑦2
= 0.
Finding all pairs (𝑓(𝑥, 𝑦), 𝑔(𝑥)) satisfying this integral equation would give
the maximum the method could give.
Comment 3.1. (Looking for 𝑓 in the form 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)). Given a
function 𝑔(𝑥) in any domain, it does not seem an easy task to find the
corresponding function 𝑓(𝑥, 𝑦) that satisfies equation (25). Here, we will
look for them in the form of separable variables or also exponential.
Making 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) in (25) we have
5
𝐺′′(𝑦)
∬ 𝐺(𝑦) 𝑑𝑦𝑑𝑦
=
𝑔(𝑔𝐹′′
− 2𝑔′
𝐹′
) + (2𝑔′
𝑔′
− 𝑔𝑔′′)𝐹
𝑔4 ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥
= 𝑘 (26)
where 𝑘 is any constant.
With the notations
𝛼(𝑥) = ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥 (27)
𝛽(𝑦) = ∬ 𝐺(𝑦) 𝑑𝑦𝑑𝑦 (28)
we will have
𝑔(𝑔𝛼′′′′
− 2𝑔′
𝛼′′′) + (2𝑔′
𝑔′
− 𝑔𝑔′′)𝛼′′
− 𝑘𝑔4
𝛼 = 0 (29)
𝛽′′′′
− 𝑘𝛽 = 0 (30)
(29) reduces to
𝑔(𝑔𝛼′′′′
− 2𝑔′
𝛼′′′) − 𝑘𝑔4
𝛼 = 0 (31)
case
2𝑔′
𝑔′
− 𝑔𝑔′′
= 0 (32)
(32) is equivalent to
𝑔 =
𝑐2
𝑐1 + 𝑥
(33)
Replacing (33) in (31) we will have
𝑐2(𝑐1 + 𝑥)2
𝛼′′′′
+ 2(𝑐1 + 𝑥)𝛼′′′
− 𝑘𝑐2
3
𝛼 = 0 (34)
Let: 𝑐2 ≝ 𝑏; 𝑐1 + 𝑥 ≝ 𝑧; 𝑘𝑐2
3
≝ 𝑎; 𝑦(𝑧) = 𝛼(𝑥(𝑧)). Then, (34) becomes
𝑏𝑧2
𝑦′′′′(𝑧) + 2𝑧𝑦′′′(𝑧) − 𝑎𝑦(𝑧) = 0 (35)
The solution of (35) por Wolfram Alpha is:
𝑦(𝑧) = (
𝑖
4
)
3−2/𝑏
𝑏
1
𝑏
−3/2
𝑐̃1𝑎
3
2
−1/𝑏
𝑧3−2/𝑏
𝐹3
0 (;
3
2
−
1
𝑏
, 2 −
1
𝑏
,
5
2
−
1
𝑏
;
𝑎𝑧2
16𝑏
)+
𝑎𝑐̃3𝑧2
𝐹3
0 (;
3
2
, 2,
1
2
+
1
𝑏
;
𝑎𝑧2
16𝑏
)
𝑏
+
𝑖√𝑎𝑐̃2𝑧 𝐹3
0 (;
1
2
,
3
2
,
1
𝑏
;
𝑎𝑧2
16𝑏
)
4√𝑏
+
𝑐̃4𝐺0,4
2,0
(
𝑎𝑧2
16𝑏
|0,1,
1
2
,
3
2
−
1
𝑏
) (36)
where:
𝐹
𝑞
𝑝 (𝑎1, 𝑎2, … , 𝑎𝑝; 𝑏1, 𝑏2, … , 𝑏𝑞; 𝑧) is the “generalized hypergeometric
function”,
6
𝐺𝑝,𝑞
𝑚,𝑛
(𝑧 |𝑏1,𝑏2,…,𝑏𝑞
𝑎1,𝑎2,…,𝑎𝑝
) is the “Meijer G-function” and 𝑐̃𝑖, 𝑖 = 1,2,3,4, are
constant.
From 𝑧 = 𝑥 + 𝑐1, 𝛼(𝑥) = 𝑦(𝑥 + 𝑐1) and 𝛼(𝑥) = ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥 it is concluded
that 𝐹(𝑥) = 𝑦′′(𝑥 + 𝑐1). Then, 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) = 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦). The
solution of the generalized Euler-Tricomi equation will then be:
𝑢
̃ = ∬ 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦)𝑑𝑥𝑑𝑥 −
1
𝑔(𝑥)
∬ 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦) 𝑑𝑦𝑑𝑦 + 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 +
𝑑 = 𝛽′′(𝑦)𝑦(𝑥 + 𝑐1) −
1
𝑔(𝑥)
𝑦′′(𝑥 + 𝑐1)𝛽(𝑦) (37)
where
𝛽(𝑦) = 𝑑2𝑒− √𝑘
4
𝑦
+ 𝑑4𝑒 √𝑘
4
𝑦
+ 𝑑3𝑠𝑒𝑛(√𝑘
4
𝑦) + 𝑑1𝑐𝑜𝑠(√𝑘
4
𝑦) (38)
is the solution of (30).
Comment 3.2. Equation (29) is atypical, as it is a “differential equation”
in two unknown functions α(x) and g(x), which must be searched coupled
in the same equation and with equal domains. Usual techniques do not
allow you to find your solutions easily. Next, we'll try one more specific
situation.
Comment 3.3. (Hypotheses 𝑔𝛼′′′′
− 2𝑔′
𝛼′′′
). From
𝑔𝛼′′′′
− 2𝑔′
𝛼′′′
(39)
results
𝛼′′′′
𝛼′′′
= 2
𝑔′
𝑔
(40)
Let
𝛼′′′
= 𝜃 (41)
Then, we have, from (40)
𝑑𝜃
𝑑𝑥
𝜃
= 2
𝑑𝑔
𝑑𝑥
𝑔
(42)
and of this,
∫
1
𝜃
𝑑𝜃 = ∫
1
𝑔
𝑑𝑔 (43)
𝜃 = 𝑔2
(44)
From this, from (29), (30) and (41) follow
(2𝑔′
𝑔′
− 𝑔𝑔′′)𝛼′′ − 𝑘𝑔4
𝛼 = 0 (45)
𝛼′′′(𝑥) = 𝑔2(𝑥) (46)
7
𝛼 = ∭ 𝑔2
(𝑥) 𝑑𝑥𝑑𝑥𝑑𝑥 + 𝑐1𝑥2
+ 𝑐2𝑥 + 𝑐3 (47)
Note that the solution to the generalized Euler-Tricomi equation, in this
case, is conditioned on finding the difficult solution of the nonlinear
equation (45).
The various cases presented above, plus the historical facts lead us to
formalize the following concept.
4. “Paraordinary” differential equations
The manuals define ordinary differential equations as follows: “An
equation with a function in one independent variable as unknown, containing not
only the unknown function itself, but also its derivatives of various orders” [1].
If in the equation there is more than one unknown function with the same
independent variable in the same domain (along with their respective
derivatives), we will use the name “paraordinary” differential equation.
The solutions of these “paraequations” are explicit or implicit functions
involving these unknown functions, which satisfy the “paraequation”,
that is, when substituted in the “paraequation” they transform it into a
true identity.
Example (Derivative of linear momentum).
Consider the linear momentum equation:
𝑑
𝑑𝑡
(𝑚(𝑡)𝑣(𝑡)) = 𝐹(𝑡); 𝑣(𝑡) =
𝑑𝑥
𝑑𝑡
(𝑡) = 𝑣(𝑡) (48)
with 𝑥(𝑡) position vector along the real line, 𝑚(𝑡) the variable mass and
𝑣(𝑡) the speed of the particle at the instant 𝑡.
By derivation of (48), we have
𝑚(𝑡)
𝑑2
𝑥
𝑑𝑡2
(𝑡) +
𝑑𝑚
𝑑𝑡
(𝑡)
𝑑𝑥
𝑑𝑡
(𝑡) = 2𝐹(𝑡) − 𝐹(𝑡) (49)
Consider 𝑚(𝑡) > 0, ∀𝑡 ∈ ℝ. We have: 2 ∬
𝐹(𝑡)
𝑚(𝑡)
𝑑𝑡𝑑𝑡 is solution of 𝑚(𝑡)
𝑑2𝑥
𝑑𝑡2
(𝑡) =
2𝐹(𝑡) and − ∫
𝐹(𝑡)
𝑑𝑚
𝑑𝑡
(𝑡)
𝑑𝑡 is solution of
𝑑𝑚
𝑑𝑡
(𝑡)
𝑑𝑥
𝑑𝑡
(𝑡) = −𝐹(𝑡).
𝑢
̃(𝑡) = − ∫
𝐹(𝑡)
𝑑𝑚
𝑑𝑡
(𝑡)
𝑑𝑡 + 2 ∬
𝐹(𝑡)
𝑚(𝑡)
𝑑𝑡𝑑𝑡 is solution of (49) if
𝑑𝑚
𝑑𝑡
(𝑡) ∫
2𝐹(𝑡)
𝑚(𝑡)
𝑑𝑡 −
𝑑𝐹
𝑑𝑡
(𝑡)𝑚(𝑡)
𝑑𝑚
𝑑𝑡
(𝑡) − 𝐹(𝑡)𝑚(𝑡)
𝑑2
𝑚
𝑑𝑡2 (𝑡)
𝑑𝑚
𝑑𝑡
(𝑡)
𝑑𝑚
𝑑𝑡
(𝑡)
= 0 (50)
From solutions for (50) results solutions for (49).
8
Conclusion
The presented method partially solves the generalized Euler-
Tricomi equation in a wide range, with the possibility of nine parameters.
The method complements the classic results of [2]. The exposition above
makes it clear that less restrictive conditions on the function 𝑓(𝑥, 𝑦), that
the separation of variables 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦), can generate other families
of solutions.
References
[1]. Differential equation, ordinary. Encyclopedia of Mathematics. URL:
http://encyclopediaofmath.org/index.php?title=Differential_equation,_o
rdinary&oldid=50981
[2]. GERALD B. FOLLAND. Introduction to Partial Differential Equations,
2nd ed. Princeton University Press, New Jersey, 1995.
[3]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. One Solution
for Many Linear Partial Differential Equations With Terms of Equal
Orders, Journal of Nepal Mathematical Society (JNMS), Vol. 4, Issue 2
(2021).
[4]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. Novas
Informações Sobre a Equação de Euler-Tricomi. pt.slideshare.net. Visto
em 04.01.2022.
[5]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. Novas
Informações Sobre a Equação Generalizada de Euler-Tricomi.
https://pt.slideshare.net/lossian/novas-informaes-sobre-a-equao-
generalizada-de-eulertricomi. Seen on 10.01.2022.
[6]. Tricomi equation. Encyclopedia of Mathematics. URL:
http://encyclopediaofmath.org/index.php?title=Tricomi_equation&oldid
=33467 . In Dec, 24, 2021.

More Related Content

What's hot

3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-cFernandoDanielMamani1
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-eFernandoDanielMamani1
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsHazel Joy Chong
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and IntegrationMeenakshisundaram N
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullahAli Abdullah
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)FernandoDanielMamani1
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 

What's hot (20)

3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
 
Calculas
CalculasCalculas
Calculas
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
ED7008 AMFT_notes
ED7008 AMFT_notesED7008 AMFT_notes
ED7008 AMFT_notes
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
Dyadics
DyadicsDyadics
Dyadics
 
doc
docdoc
doc
 
MT102 Лекц 6
MT102 Лекц 6MT102 Лекц 6
MT102 Лекц 6
 
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
3 capitulo-iii-matriz-asociada-sem-11-t-l-a (1)
 
Fourier series
Fourier series Fourier series
Fourier series
 
MT102 Лекц 10
MT102 Лекц 10MT102 Лекц 10
MT102 Лекц 10
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Ch08 1
Ch08 1Ch08 1
Ch08 1
 

Similar to New Information on the Generalized Euler-Tricomi Equation

Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...IOSR Journals
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...IJERA Editor
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones linealesRokiFernandez1
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
 
A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsSara Alvarez
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model irjes
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionIJMERJOURNAL
 
Term paper inna_tarasyan
Term paper inna_tarasyanTerm paper inna_tarasyan
Term paper inna_tarasyanInna Таrasyan
 
A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...IOSR Journals
 

Similar to New Information on the Generalized Euler-Tricomi Equation (20)

Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
 
A0280106
A0280106A0280106
A0280106
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
 
C0560913
C0560913C0560913
C0560913
 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
.Chapter7&8.
.Chapter7&8..Chapter7&8.
.Chapter7&8.
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 
G05834551
G05834551G05834551
G05834551
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
 
A Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation ProblemsA Fast Numerical Method For Solving Calculus Of Variation Problems
A Fast Numerical Method For Solving Calculus Of Variation Problems
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
Term paper inna_tarasyan
Term paper inna_tarasyanTerm paper inna_tarasyan
Term paper inna_tarasyan
 
A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...
 

More from Lossian Barbosa Bacelar Miranda

Actions of Groups of Magic Squares and Hypercubes - Algebraic-geometry Theo...
Actions of Groups of Magic Squares and Hypercubes  -  Algebraic-geometry Theo...Actions of Groups of Magic Squares and Hypercubes  -  Algebraic-geometry Theo...
Actions of Groups of Magic Squares and Hypercubes - Algebraic-geometry Theo...Lossian Barbosa Bacelar Miranda
 
Construction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfConstruction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfLossian Barbosa Bacelar Miranda
 
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANS
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANSFOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANS
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANSLossian Barbosa Bacelar Miranda
 
Novas Informações Sobre a Equação Generalizada de Euler-Tricomi
Novas Informações Sobre a Equação Generalizada de Euler-TricomiNovas Informações Sobre a Equação Generalizada de Euler-Tricomi
Novas Informações Sobre a Equação Generalizada de Euler-TricomiLossian Barbosa Bacelar Miranda
 
Sequences of New Methods of Construction of Doubly Even Magic Squares
Sequences of New Methods of Construction of Doubly Even Magic SquaresSequences of New Methods of Construction of Doubly Even Magic Squares
Sequences of New Methods of Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...Lossian Barbosa Bacelar Miranda
 
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...Lossian Barbosa Bacelar Miranda
 
Lohans’ magic squares and the Gaussian elimination method
Lohans’ magic squares and the Gaussian elimination methodLohans’ magic squares and the Gaussian elimination method
Lohans’ magic squares and the Gaussian elimination methodLossian Barbosa Bacelar Miranda
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...Lossian Barbosa Bacelar Miranda
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Lossian Barbosa Bacelar Miranda
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
Especulações sobre o centro de massa e campos de corpos ilimitados em r3
Especulações sobre o centro de massa e campos de corpos ilimitados em r3Especulações sobre o centro de massa e campos de corpos ilimitados em r3
Especulações sobre o centro de massa e campos de corpos ilimitados em r3Lossian Barbosa Bacelar Miranda
 

More from Lossian Barbosa Bacelar Miranda (20)

Actions of Groups of Magic Squares and Hypercubes - Algebraic-geometry Theo...
Actions of Groups of Magic Squares and Hypercubes  -  Algebraic-geometry Theo...Actions of Groups of Magic Squares and Hypercubes  -  Algebraic-geometry Theo...
Actions of Groups of Magic Squares and Hypercubes - Algebraic-geometry Theo...
 
Construction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdfConstruction of Magic Squares by Swapping Rows and Columns.pdf
Construction of Magic Squares by Swapping Rows and Columns.pdf
 
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANS
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANSFOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANS
FOUR-CORNER TRIANGLE ROTATION METHOD AND MAGIC SQUARES FROM THOSE OF THE LOHANS
 
Novas Informações Sobre a Equação Generalizada de Euler-Tricomi
Novas Informações Sobre a Equação Generalizada de Euler-TricomiNovas Informações Sobre a Equação Generalizada de Euler-Tricomi
Novas Informações Sobre a Equação Generalizada de Euler-Tricomi
 
Novas Informações Sobre a Equação de Euler-Tricomi
Novas Informações Sobre a Equação de Euler-TricomiNovas Informações Sobre a Equação de Euler-Tricomi
Novas Informações Sobre a Equação de Euler-Tricomi
 
Functions and Methods of Construction of Magic Squares
Functions and Methods of Construction of Magic SquaresFunctions and Methods of Construction of Magic Squares
Functions and Methods of Construction of Magic Squares
 
Sequences of New Methods of Construction of Doubly Even Magic Squares
Sequences of New Methods of Construction of Doubly Even Magic SquaresSequences of New Methods of Construction of Doubly Even Magic Squares
Sequences of New Methods of Construction of Doubly Even Magic Squares
 
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...
Cota Inferior para o Número de Quadrados Mágicos Advindos dos Duais dos Quadr...
 
The Four Pandiagonal Magic Squares of Nagarjuna
 The Four Pandiagonal Magic Squares of Nagarjuna The Four Pandiagonal Magic Squares of Nagarjuna
The Four Pandiagonal Magic Squares of Nagarjuna
 
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...
Generalization of Dürer's Magic Square and New Methods for Doubly Even Magic ...
 
Lohans’ magic squares and the Gaussian elimination method
Lohans’ magic squares and the Gaussian elimination methodLohans’ magic squares and the Gaussian elimination method
Lohans’ magic squares and the Gaussian elimination method
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares and...
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
Arithmetic Progressions and the Construction of Doubly Even Magic Squares (Fo...
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
Princípios básicos da matemática do movimento - PDF
Princípios básicos da matemática do movimento - PDFPrincípios básicos da matemática do movimento - PDF
Princípios básicos da matemática do movimento - PDF
 
O pêndulo matemático e as funções elípticas copy
O pêndulo matemático e as funções elípticas copyO pêndulo matemático e as funções elípticas copy
O pêndulo matemático e as funções elípticas copy
 
Questionário de ads. 10. 2012
Questionário de ads. 10. 2012Questionário de ads. 10. 2012
Questionário de ads. 10. 2012
 
Princípios básicos da matemática do movimento
Princípios básicos da matemática do movimentoPrincípios básicos da matemática do movimento
Princípios básicos da matemática do movimento
 
Lei dos senos e o cálculo do raio da terra
Lei dos senos e o cálculo do raio da terraLei dos senos e o cálculo do raio da terra
Lei dos senos e o cálculo do raio da terra
 
Especulações sobre o centro de massa e campos de corpos ilimitados em r3
Especulações sobre o centro de massa e campos de corpos ilimitados em r3Especulações sobre o centro de massa e campos de corpos ilimitados em r3
Especulações sobre o centro de massa e campos de corpos ilimitados em r3
 

Recently uploaded

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 

Recently uploaded (20)

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 

New Information on the Generalized Euler-Tricomi Equation

  • 1. 1 New Information on the Generalized Euler-Tricomi Equation 1Lohans de Oliveira Miranda; 2Lossian Barbosa Bacelar Miranda 1Universidad Europea del Atlântico, Espanha, lohansmiranda@gmail.com 2IFPI, Brazil, lossianm@gmail.com Date: 10/01/2022 Abstract. We disclose a simple and straightforward method of solving ordinary or linear partial differential equations of any order and apply it to solve the generalized Euler-Tricomi equation. The method is easier than classical methods and also didactic. 1 Preliminaries Next, we transcribe what was already established in [3]. “Consider: 1) 𝑥 ⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐴, 𝐴 open set of ℝ𝑛 ; 2) 𝑘 ∈ 𝐼𝑛 = {1, 2, 3, … , 𝑛}; 3) 𝑢: 𝐴 → ℝ, differentiable function of order 𝑘, with continuous derivatives (1) Let us consider the “𝑘-dimensional Hessian matrix” given by 𝐻 = ( 𝜕𝑘 𝑢(𝑥 ⃗) 𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘 ) (2) From 𝐻, let us consider the following system, being 𝑏𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) and 𝑓𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) differentiable functions of order 𝑘, with continuous derivatives, and 𝑓𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝑏𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) being well defined in 𝐴: (𝑏𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝜕𝑘 𝑢(𝑥 ⃗) 𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘 ) = (𝑓𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗)) (3) Let us denote: 𝑔𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) = 𝑓𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝑏𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) (4) So (3) will be written as ( 𝜕𝑘 𝑢(𝑥 ⃗) 𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘 ) = (𝑔𝑖1…𝑖𝑘 (𝑥 ⃗)) (5) Observation 1. Repeated applications of the Fundamental Theorem of Calculus for each of the 𝑛𝑘 partial differential equations
  • 2. 2 𝜕𝑘 𝑢(𝑥 ⃗) 𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘 = 𝑔𝑖1…𝑖𝑘 (𝑥 ⃗) (6) give us the 𝑛𝑘 solutions 𝑢𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) = ∭ … ∫ 𝑔𝑖1…𝑖𝑘 (𝑥 ⃗)𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘−1 + ∑ 𝑐𝑠,𝑖1…𝑖𝑘 𝑘−1 𝑠=1 ∏ 𝑥𝑖𝜃 𝑘−1 𝜃=𝑠+1 + 𝑐𝑘−1,𝑖1𝑖2…𝑖𝑘 (7) Here, the c (under indexed) are real or complex numbers. Obviously, 𝜕𝑘 𝑢𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝜕𝑥𝑗1 𝜕𝑥𝑗2 … 𝜕𝑥𝑗 = 𝑔𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) (8) if (𝑖1, 𝑖2, … , 𝑖𝑘) = (𝑗1, 𝑗2, … , 𝑗𝑘). Now, consider the function 𝑢 ̃(𝑥 ⃗) = ∑ 𝑢𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝑖1,𝑖2,…,𝑖𝑘∈𝐼𝑛 (9)" Now we can announce the main results. 2. Main results Again, we transcribe what was done in [3]: “Proposition 1. In the hypotheses established above, if for (𝑖1, 𝑖2, … , 𝑖𝑘) ≠ (𝑗1, 𝑗2, … , 𝑗𝑘) we have 𝜕𝑘 𝑢𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝜕𝑥𝑗1 𝜕𝑥𝑗2 … 𝜕𝑥𝑗 = 0, (10) then 𝑢 ̃(𝑥 ⃗) = ∑ 𝑢𝑖1𝑖2…𝑖𝑘 (𝑥 ⃗) 𝑖1,𝑖2,…,𝑖𝑘∈𝐼𝑛 defined in (9) will be the solution of 𝑛𝑘 partial differential equations defined in (3), or alternatively in (6). In particular, 𝑢 ̃(𝑥 ⃗) will be a solution of the 2𝑛𝑘 − 1 differential equations defined by the sums of the elements of all non-empty subsets of the set 𝐵 = { 𝜕𝑘 𝑢(𝑥 ⃗) 𝜕𝑥𝑖1 𝜕𝑥𝑖2 … 𝜕𝑥𝑖𝑘 ; 𝑖1,𝑖2, … , 𝑖𝑘 ∈ 𝐼𝑛 } (11) Demonstration. It is an immediate consequence of the construction of 𝑢 ̃(𝑥 ⃗) and of the hypothesis (𝑖1, 𝑖2, … , 𝑖𝑘) ≠ (𝑗1, 𝑗2, … , 𝑗𝑘). Observation 2. The thesis of Proposition 1 can still be obtained even if the assumptions established in (10) are not satisfied. To do so, it is enough to find the unknown functions involved that satisfy the required integral equations”. Theorem 1. Let:
  • 3. 3 ∑ 𝑓𝑘 𝑛 𝑘=1 (𝑥) 𝑑𝑘 𝑦 𝑑𝑥𝑘 (𝑥) = ∑ ℎ𝑘 𝑛 𝑘=1 (𝑥) (12) 𝑑𝑘 𝑦 𝑑𝑥𝑘 (𝑥) = ℎ𝑘(𝑥) 𝑓𝑘(𝑥) ≝ 𝑔𝑘(𝑥); 1 ≤ 𝑘 ≤ 𝑛 (13) Consider 𝑦𝑘(𝑥) = ∫ ∫ … ∫ 𝑔𝑘(𝑥) 𝑑𝑥𝑑𝑥 … 𝑑𝑥 + (∑ 𝑎𝑘−1𝑥𝑘−1 𝑛 𝑘=1 ) ; 1 ≤ 𝑘 ≤ 𝑛 (14) 𝑦 ̃(𝑥) ≝ ∑ 𝑦𝑘 𝑛 𝑘=1 (𝑥); 1 ≤ 𝑘 ≤ 𝑛 (15 ) 𝑑𝑖 𝑦𝑘 𝑑𝑥𝑖 (𝑥) = { 𝑦𝑘(𝑥), 𝑖 = 𝑘 0, 𝑖 ≠ 𝑘 (16) Then, 𝑦 ̃(𝑥) is solution of ∑ 𝑓𝑘 𝑛 𝑘=1 (𝑥) 𝑑𝑘𝑦 𝑑𝑥𝑘 (𝑥) = ∑ ℎ𝑘 𝑛 𝑘=1 (𝑥) and of the 2𝑛 − 1 ordinary differential equations that we can form with their 𝑛 terms. Proof: It is an immediate consequence of the construction of 𝑦 ̃(𝑥) and the hypothesis (16). Observation 1. As in Observation 2 of [3], if the hypotheses (16) are not satisfied, we can still, in the present case, try to find a solution for the ordinary differential equation from the search for some auxiliary functions, solutions of integral equations in a single variable. Observation 2. Imitating what was done in [3], we can note that the method established there also applies to any linear partial differential equations. In such a way that the method is applicable to any linear differential equations, whether ordinary or partial. 3. Aplication: Generalized Euler-Tricomi equation ( 𝝏𝟐𝒖 𝝏𝒙𝟐 + 𝒈(𝒙) 𝝏𝟐𝒖 𝝏𝒚𝟐 = 𝟎) In order 2, the method established above solves the main partial differential equations of Physics and Technology. Here, we'll make a brief application to the generalized Euler-Tricomi equation, 𝜕2 𝑢 𝜕𝑥2 + 𝑔(𝑥) 𝜕2 𝑢 𝜕𝑦2 = 0 (17)
  • 4. 4 ( 𝜕2 𝑢 𝜕𝑥2 0 0 𝑔(𝑥) 𝜕2 𝑢 𝜕𝑦2 ) = ( 𝑓(𝑥, 𝑦) 0 0 −𝑓(𝑥, 𝑦) ) (18) Here we have: 𝑢11(𝑥, 𝑦) = ∬ 𝑓 𝑑𝑥𝑑𝑥 + 𝑘1(𝑦)𝑥 + 𝑘2(𝑦) (19) 𝑢22(𝑥, 𝑦) = − ∬ 𝑓 𝑔(𝑥) 𝑑𝑦𝑑𝑦 + 𝑣(𝑥)𝑦 + 𝑣2(𝑥) (20) 𝑢 ̃ = ∬ 𝑓 𝑑𝑥𝑑𝑥 − 1 𝑔(𝑥) ∬ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑦 + 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 + 𝑑 (21) 𝜕2 𝑢 ̃ 𝜕𝑥2 = 𝑓 − 𝑔(𝑥)−3 ∬ (𝑔2 𝜕2 𝑓 𝜕𝑥2 − 𝑓(𝑥, 𝑦)𝑔(𝑥)𝑔′′ (𝑥) − 2𝑔𝑔′ 𝜕𝑓 𝜕𝑥 + 2𝑓𝑔′𝑔′) 𝑑𝑦𝑑𝑦 (22) 𝜕2 𝑢 ̃ 𝜕𝑦2 = −𝑔−1 𝑓 + ∬ 𝜕2 𝑓 𝜕𝑦2 𝑑𝑥𝑑𝑥 (23) Logo, Then, 𝜕2 𝑢 ̃ 𝜕𝑥2 + 𝑔 𝜕2 𝑢 ̃ 𝜕𝑦2 = −𝑔−3 ∬ (𝑔2 𝜕2 𝑓 𝜕𝑥2 − 𝑓𝑔𝑔′′ − 2𝑔𝑔′ 𝜕𝑓 𝜕𝑥 + 2𝑓𝑔′ 𝑔′ ) 𝑑𝑦𝑑𝑦 + 𝑔 ∬ 𝜕2 𝑓 𝜕𝑦2 𝑑𝑥𝑑𝑥 (24) From this last equation, let us note that if 𝑔 ∬ 𝜕2 𝑓 𝜕𝑦2 𝑑𝑥𝑑𝑥 = 𝑔−3 ∬ (𝑔2 𝜕2 𝑓 𝜕𝑥2 − 𝑓𝑔𝑔′′ − 2𝑔𝑔′ 𝜕𝑓 𝜕𝑥 + 2𝑓𝑔′ 𝑔′ ) 𝑑𝑦𝑑𝑦 (25) then we have 𝜕2𝑢 𝜕𝑥2 + 𝑥 𝜕2𝑢 𝜕𝑦2 = 0. Finding all pairs (𝑓(𝑥, 𝑦), 𝑔(𝑥)) satisfying this integral equation would give the maximum the method could give. Comment 3.1. (Looking for 𝑓 in the form 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)). Given a function 𝑔(𝑥) in any domain, it does not seem an easy task to find the corresponding function 𝑓(𝑥, 𝑦) that satisfies equation (25). Here, we will look for them in the form of separable variables or also exponential. Making 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) in (25) we have
  • 5. 5 𝐺′′(𝑦) ∬ 𝐺(𝑦) 𝑑𝑦𝑑𝑦 = 𝑔(𝑔𝐹′′ − 2𝑔′ 𝐹′ ) + (2𝑔′ 𝑔′ − 𝑔𝑔′′)𝐹 𝑔4 ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥 = 𝑘 (26) where 𝑘 is any constant. With the notations 𝛼(𝑥) = ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥 (27) 𝛽(𝑦) = ∬ 𝐺(𝑦) 𝑑𝑦𝑑𝑦 (28) we will have 𝑔(𝑔𝛼′′′′ − 2𝑔′ 𝛼′′′) + (2𝑔′ 𝑔′ − 𝑔𝑔′′)𝛼′′ − 𝑘𝑔4 𝛼 = 0 (29) 𝛽′′′′ − 𝑘𝛽 = 0 (30) (29) reduces to 𝑔(𝑔𝛼′′′′ − 2𝑔′ 𝛼′′′) − 𝑘𝑔4 𝛼 = 0 (31) case 2𝑔′ 𝑔′ − 𝑔𝑔′′ = 0 (32) (32) is equivalent to 𝑔 = 𝑐2 𝑐1 + 𝑥 (33) Replacing (33) in (31) we will have 𝑐2(𝑐1 + 𝑥)2 𝛼′′′′ + 2(𝑐1 + 𝑥)𝛼′′′ − 𝑘𝑐2 3 𝛼 = 0 (34) Let: 𝑐2 ≝ 𝑏; 𝑐1 + 𝑥 ≝ 𝑧; 𝑘𝑐2 3 ≝ 𝑎; 𝑦(𝑧) = 𝛼(𝑥(𝑧)). Then, (34) becomes 𝑏𝑧2 𝑦′′′′(𝑧) + 2𝑧𝑦′′′(𝑧) − 𝑎𝑦(𝑧) = 0 (35) The solution of (35) por Wolfram Alpha is: 𝑦(𝑧) = ( 𝑖 4 ) 3−2/𝑏 𝑏 1 𝑏 −3/2 𝑐̃1𝑎 3 2 −1/𝑏 𝑧3−2/𝑏 𝐹3 0 (; 3 2 − 1 𝑏 , 2 − 1 𝑏 , 5 2 − 1 𝑏 ; 𝑎𝑧2 16𝑏 )+ 𝑎𝑐̃3𝑧2 𝐹3 0 (; 3 2 , 2, 1 2 + 1 𝑏 ; 𝑎𝑧2 16𝑏 ) 𝑏 + 𝑖√𝑎𝑐̃2𝑧 𝐹3 0 (; 1 2 , 3 2 , 1 𝑏 ; 𝑎𝑧2 16𝑏 ) 4√𝑏 + 𝑐̃4𝐺0,4 2,0 ( 𝑎𝑧2 16𝑏 |0,1, 1 2 , 3 2 − 1 𝑏 ) (36) where: 𝐹 𝑞 𝑝 (𝑎1, 𝑎2, … , 𝑎𝑝; 𝑏1, 𝑏2, … , 𝑏𝑞; 𝑧) is the “generalized hypergeometric function”,
  • 6. 6 𝐺𝑝,𝑞 𝑚,𝑛 (𝑧 |𝑏1,𝑏2,…,𝑏𝑞 𝑎1,𝑎2,…,𝑎𝑝 ) is the “Meijer G-function” and 𝑐̃𝑖, 𝑖 = 1,2,3,4, are constant. From 𝑧 = 𝑥 + 𝑐1, 𝛼(𝑥) = 𝑦(𝑥 + 𝑐1) and 𝛼(𝑥) = ∬ 𝐹(𝑥) 𝑑𝑥𝑑𝑥 it is concluded that 𝐹(𝑥) = 𝑦′′(𝑥 + 𝑐1). Then, 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) = 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦). The solution of the generalized Euler-Tricomi equation will then be: 𝑢 ̃ = ∬ 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦)𝑑𝑥𝑑𝑥 − 1 𝑔(𝑥) ∬ 𝑦′′(𝑥 + 𝑐1)𝛽′′(𝑦) 𝑑𝑦𝑑𝑦 + 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 + 𝑑 = 𝛽′′(𝑦)𝑦(𝑥 + 𝑐1) − 1 𝑔(𝑥) 𝑦′′(𝑥 + 𝑐1)𝛽(𝑦) (37) where 𝛽(𝑦) = 𝑑2𝑒− √𝑘 4 𝑦 + 𝑑4𝑒 √𝑘 4 𝑦 + 𝑑3𝑠𝑒𝑛(√𝑘 4 𝑦) + 𝑑1𝑐𝑜𝑠(√𝑘 4 𝑦) (38) is the solution of (30). Comment 3.2. Equation (29) is atypical, as it is a “differential equation” in two unknown functions α(x) and g(x), which must be searched coupled in the same equation and with equal domains. Usual techniques do not allow you to find your solutions easily. Next, we'll try one more specific situation. Comment 3.3. (Hypotheses 𝑔𝛼′′′′ − 2𝑔′ 𝛼′′′ ). From 𝑔𝛼′′′′ − 2𝑔′ 𝛼′′′ (39) results 𝛼′′′′ 𝛼′′′ = 2 𝑔′ 𝑔 (40) Let 𝛼′′′ = 𝜃 (41) Then, we have, from (40) 𝑑𝜃 𝑑𝑥 𝜃 = 2 𝑑𝑔 𝑑𝑥 𝑔 (42) and of this, ∫ 1 𝜃 𝑑𝜃 = ∫ 1 𝑔 𝑑𝑔 (43) 𝜃 = 𝑔2 (44) From this, from (29), (30) and (41) follow (2𝑔′ 𝑔′ − 𝑔𝑔′′)𝛼′′ − 𝑘𝑔4 𝛼 = 0 (45) 𝛼′′′(𝑥) = 𝑔2(𝑥) (46)
  • 7. 7 𝛼 = ∭ 𝑔2 (𝑥) 𝑑𝑥𝑑𝑥𝑑𝑥 + 𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3 (47) Note that the solution to the generalized Euler-Tricomi equation, in this case, is conditioned on finding the difficult solution of the nonlinear equation (45). The various cases presented above, plus the historical facts lead us to formalize the following concept. 4. “Paraordinary” differential equations The manuals define ordinary differential equations as follows: “An equation with a function in one independent variable as unknown, containing not only the unknown function itself, but also its derivatives of various orders” [1]. If in the equation there is more than one unknown function with the same independent variable in the same domain (along with their respective derivatives), we will use the name “paraordinary” differential equation. The solutions of these “paraequations” are explicit or implicit functions involving these unknown functions, which satisfy the “paraequation”, that is, when substituted in the “paraequation” they transform it into a true identity. Example (Derivative of linear momentum). Consider the linear momentum equation: 𝑑 𝑑𝑡 (𝑚(𝑡)𝑣(𝑡)) = 𝐹(𝑡); 𝑣(𝑡) = 𝑑𝑥 𝑑𝑡 (𝑡) = 𝑣(𝑡) (48) with 𝑥(𝑡) position vector along the real line, 𝑚(𝑡) the variable mass and 𝑣(𝑡) the speed of the particle at the instant 𝑡. By derivation of (48), we have 𝑚(𝑡) 𝑑2 𝑥 𝑑𝑡2 (𝑡) + 𝑑𝑚 𝑑𝑡 (𝑡) 𝑑𝑥 𝑑𝑡 (𝑡) = 2𝐹(𝑡) − 𝐹(𝑡) (49) Consider 𝑚(𝑡) > 0, ∀𝑡 ∈ ℝ. We have: 2 ∬ 𝐹(𝑡) 𝑚(𝑡) 𝑑𝑡𝑑𝑡 is solution of 𝑚(𝑡) 𝑑2𝑥 𝑑𝑡2 (𝑡) = 2𝐹(𝑡) and − ∫ 𝐹(𝑡) 𝑑𝑚 𝑑𝑡 (𝑡) 𝑑𝑡 is solution of 𝑑𝑚 𝑑𝑡 (𝑡) 𝑑𝑥 𝑑𝑡 (𝑡) = −𝐹(𝑡). 𝑢 ̃(𝑡) = − ∫ 𝐹(𝑡) 𝑑𝑚 𝑑𝑡 (𝑡) 𝑑𝑡 + 2 ∬ 𝐹(𝑡) 𝑚(𝑡) 𝑑𝑡𝑑𝑡 is solution of (49) if 𝑑𝑚 𝑑𝑡 (𝑡) ∫ 2𝐹(𝑡) 𝑚(𝑡) 𝑑𝑡 − 𝑑𝐹 𝑑𝑡 (𝑡)𝑚(𝑡) 𝑑𝑚 𝑑𝑡 (𝑡) − 𝐹(𝑡)𝑚(𝑡) 𝑑2 𝑚 𝑑𝑡2 (𝑡) 𝑑𝑚 𝑑𝑡 (𝑡) 𝑑𝑚 𝑑𝑡 (𝑡) = 0 (50) From solutions for (50) results solutions for (49).
  • 8. 8 Conclusion The presented method partially solves the generalized Euler- Tricomi equation in a wide range, with the possibility of nine parameters. The method complements the classic results of [2]. The exposition above makes it clear that less restrictive conditions on the function 𝑓(𝑥, 𝑦), that the separation of variables 𝑓(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦), can generate other families of solutions. References [1]. Differential equation, ordinary. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_equation,_o rdinary&oldid=50981 [2]. GERALD B. FOLLAND. Introduction to Partial Differential Equations, 2nd ed. Princeton University Press, New Jersey, 1995. [3]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. One Solution for Many Linear Partial Differential Equations With Terms of Equal Orders, Journal of Nepal Mathematical Society (JNMS), Vol. 4, Issue 2 (2021). [4]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. Novas Informações Sobre a Equação de Euler-Tricomi. pt.slideshare.net. Visto em 04.01.2022. [5]. MIRANDA, Lohans de O. and MIRANDA, Lossian B. B. Novas Informações Sobre a Equação Generalizada de Euler-Tricomi. https://pt.slideshare.net/lossian/novas-informaes-sobre-a-equao- generalizada-de-eulertricomi. Seen on 10.01.2022. [6]. Tricomi equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tricomi_equation&oldid =33467 . In Dec, 24, 2021.