SlideShare a Scribd company logo
1 of 33
1 Presented by :- SUSHANT MISHRA EC-2 Under the guidance of :- FinFETs: From Circuit to Architecture
Talk Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],2
Why Double-gate Transistors ? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],3 Non-Si nano devices Bulk CMOS Feature size 32 nm  10 nm  DG-FETs Gap
What are FinFETs? ,[object Object],[object Object],4 Si Fin
Independent-gate FinFETs ,[object Object],[object Object],[object Object],[object Object],5 Back Gate Oxide insulation
FinFET Width Quantization ,[object Object],[object Object],[object Object],[object Object],6 FinFET  structure  Ananthan, ISQED’05
Talk Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Motivation: Power Consumption ,[object Object],[object Object],[object Object],[object Object],[object Object],† J. Kao, S. Narendra and A. Chandrakasan, “Subthreshold leakage modeling and reduction techniques,”  in Proc. ICCAD, 2002.
Logic Styles: NAND Gates SG-mode NAND IG-mode NAND LP-mode NAND IG/LP-mode NAND pull up bias voltage pull down bias voltage IG-mode  pull up LP-mode pull down
Comparing Logic Styles † Average leakage current for two-input NAND gate (V dd  = 1.0V)   Design Mode  Advantages Disadvantages SG Fastest under all load conditions High leakage †   (1 μ A) LP Very low leakage  (85nA),  low switched capacitance Slowest, especially under load. Area overhead (routing) IG Low area and switched capacitance Unmatched pull-up and  pull-down delays.  High leakage  (772nA) IG/LP Low leakage  (337nA),  area and switched capacitance Almost as slow as LP mode
FinFET Circuit Power Optimization ,[object Object],[object Object],[object Object],† D. Chinnery and K. Keutzer, “Linear programming for sizing, V dd  and V t  assignment,”  in Proc. ISLPED , 2005. Benchmark Minimum-delay synthesis in  Design Compiler SG-mode  netlist Power-optimized mixed-mode netlists SG+ IG/LP SG+IG SG+LP  Linear programming based cell selection 32 nm PTM  FinFET models Delay/power  characterization in  SPICE  LP IG/LP IG  SG Synopsys   libraries   32 nm PTM  inFET models FinFET models (UFDG, PTM) Logic gate designs Logic gate designs
Power Consumption of Optimized Circuits ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Estimated total power consumption  for ISCAS’85 benchmarks V dd  = 1.0V,  α  = 0.1, 32nm FinFETs Available modes
Talk Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dual-V dd  FinFET Circuits ,[object Object],[object Object],[object Object],[object Object],[object Object],1.08V 1V Leakage current Vin Reverse bias V gs =+0.08V Overdriven inverter Higher V th
[object Object],[object Object],[object Object],V th  Control with Multiple V dd ’s (TCMS) V dd H V ss H V dd L V ss L TCMS buffer Symmetric threshold control for P and N V dd H 1.08V V dd L 1.0V V ss H -0.08V V ss L 0.0V
Exploratory Buffer Design ,[object Object],[object Object],[object Object],l opt S 1 S 2 V H dd V H ss V L ss V L dd S 1 S 2 V H dd V H ss V L ss V L dd i i’
Power Savings ,[object Object],[object Object],Power component Savings Dynamic power -29.8% Leakage power 57.9% Total power 50.4%
Fin-count Savings ,[object Object],[object Object]
TCMS Extension Delay-minimized netlist Power : 283.6uW Area: 538 fins Power-optimized netlist Power : 149.9uW Area: 216 fins
Power Reduction (ISCAS’85 Benchmarks)
Power-minimized vs Delay-minimized Netlists at 130% ATC TCMS TCMS (Single-Vth Dual-Vdd % reduction in dynamic power 53.3 49.8 51.4 % reduction in leakage power 95.8 95.7 95.8 % reduction in total power 67.6 65.3 66.3 % reduction in Fin-count 65.2 59.5 61.6
Talk Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Orion-FinFET ,[object Object],[object Object],[object Object],[object Object]
Router Microarchitecture & Pipeline Stages
Power Simulation Flow
Power Breakdown for SG/LP Modes ,[object Object],[object Object],[object Object],Router power breakdown Network power breakdown
Bulk CMOS vs. LP-mode FinFETs ,[object Object],[object Object]
Router Leakage Power vs. Temp.   ,[object Object],[object Object]
Talk Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
FinFET SRAM and Embedded DRAM Design ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Extension of CACTI for FinFETs ,[object Object],[object Object],[object Object],[object Object]
FPGA vs. ASICs NATURE CMOS fabrication compatible Nano RAM on-chip storage Run-time reconfiguration Temporal logic folding Design flexibility Logic density ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

Finfet; My 3rd PPT in clg
Finfet; My 3rd PPT in clgFinfet; My 3rd PPT in clg
Finfet; My 3rd PPT in clg
ARUNASUJITHA
 
Trigate transistors and future processors
Trigate transistors and future processors Trigate transistors and future processors
Trigate transistors and future processors
Chinmay Chepurwar
 
Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes
Design World
 
junctionless transistors
junctionless transistorsjunctionless transistors
junctionless transistors
dipugovind
 
TRI GATE TRANSISTOR
TRI GATE TRANSISTORTRI GATE TRANSISTOR
TRI GATE TRANSISTOR
VINOD MAURYA
 

What's hot (20)

ICIECA 2014 Paper 23
ICIECA 2014 Paper 23ICIECA 2014 Paper 23
ICIECA 2014 Paper 23
 
Finfet; My 3rd PPT in clg
Finfet; My 3rd PPT in clgFinfet; My 3rd PPT in clg
Finfet; My 3rd PPT in clg
 
Nano devices- resonant tunneling diode, resonant tunneling transistor, SET, F...
Nano devices- resonant tunneling diode, resonant tunneling transistor, SET, F...Nano devices- resonant tunneling diode, resonant tunneling transistor, SET, F...
Nano devices- resonant tunneling diode, resonant tunneling transistor, SET, F...
 
Introduction to FinFET
Introduction to FinFETIntroduction to FinFET
Introduction to FinFET
 
Finfet tech
Finfet techFinfet tech
Finfet tech
 
3d transistor
3d transistor3d transistor
3d transistor
 
Bandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET DeviceBandgap Reference circuit Baased on FinFET Device
Bandgap Reference circuit Baased on FinFET Device
 
Trigate transistors and future processors
Trigate transistors and future processors Trigate transistors and future processors
Trigate transistors and future processors
 
Analysis of analog and RF behaviors in junctionless double gate vertical MOSFET
Analysis of analog and RF behaviors in junctionless double gate vertical MOSFETAnalysis of analog and RF behaviors in junctionless double gate vertical MOSFET
Analysis of analog and RF behaviors in junctionless double gate vertical MOSFET
 
Analysis of FinFET based Low Power SRAM Cell
Analysis of FinFET based Low Power SRAM CellAnalysis of FinFET based Low Power SRAM Cell
Analysis of FinFET based Low Power SRAM Cell
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes
 
junctionless transistors
junctionless transistorsjunctionless transistors
junctionless transistors
 
mosfet scaling_
mosfet scaling_mosfet scaling_
mosfet scaling_
 
TRI GATE TRANSISTOR
TRI GATE TRANSISTORTRI GATE TRANSISTOR
TRI GATE TRANSISTOR
 
22nm tri-gate technology
22nm tri-gate technology22nm tri-gate technology
22nm tri-gate technology
 
3D or Tri-gate transistors
3D or Tri-gate transistors3D or Tri-gate transistors
3D or Tri-gate transistors
 
Dissertation on lv pll by dhwani sametrya
Dissertation on lv pll by dhwani sametryaDissertation on lv pll by dhwani sametrya
Dissertation on lv pll by dhwani sametrya
 
MOSFET EVOLUTION
MOSFET EVOLUTIONMOSFET EVOLUTION
MOSFET EVOLUTION
 
Evaluation of Radiation-Induced Soft Error in Majority Voters Designed in 7nm...
Evaluation of Radiation-Induced Soft Error in Majority Voters Designed in 7nm...Evaluation of Radiation-Induced Soft Error in Majority Voters Designed in 7nm...
Evaluation of Radiation-Induced Soft Error in Majority Voters Designed in 7nm...
 

Viewers also liked

High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
ayubimoak
 
45nm transistor properties
45nm transistor properties45nm transistor properties
45nm transistor properties
Deiptii Das
 

Viewers also liked (17)

Finfet
FinfetFinfet
Finfet
 
Finfets
FinfetsFinfets
Finfets
 
Minibug slidedeck
Minibug slidedeckMinibug slidedeck
Minibug slidedeck
 
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control ChallengesThe Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
 
High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power App...
 
Achieving Power Noise Reliability Sign-off for FinFET based Designs
Achieving Power Noise Reliability Sign-off for FinFET based DesignsAchieving Power Noise Reliability Sign-off for FinFET based Designs
Achieving Power Noise Reliability Sign-off for FinFET based Designs
 
Semiconductor overview
Semiconductor overviewSemiconductor overview
Semiconductor overview
 
45nm Product Press Briefing
45nm Product Press Briefing45nm Product Press Briefing
45nm Product Press Briefing
 
Intel 45nm high-k metal-gate press release
Intel 45nm high-k metal-gate press releaseIntel 45nm high-k metal-gate press release
Intel 45nm high-k metal-gate press release
 
Issm 2010-po-o-102 ppt-for_cdrom_final_revised
Issm 2010-po-o-102 ppt-for_cdrom_final_revisedIssm 2010-po-o-102 ppt-for_cdrom_final_revised
Issm 2010-po-o-102 ppt-for_cdrom_final_revised
 
Globalfoundries, DAC 2011 Update
Globalfoundries, DAC 2011 UpdateGlobalfoundries, DAC 2011 Update
Globalfoundries, DAC 2011 Update
 
45nm Summary Foils
45nm Summary Foils45nm Summary Foils
45nm Summary Foils
 
Paul Ahern - Copper/ low-K Interconnect Technology
Paul Ahern - Copper/ low-K Interconnect TechnologyPaul Ahern - Copper/ low-K Interconnect Technology
Paul Ahern - Copper/ low-K Interconnect Technology
 
HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS
HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONSHIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS
HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS
 
High k dielectric
High k dielectricHigh k dielectric
High k dielectric
 
45nm transistor properties
45nm transistor properties45nm transistor properties
45nm transistor properties
 
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate BlocksPhysical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
 

Similar to Sushant

Extremely Low Power FIR Filter for a Smart Dust Sensor Module
Extremely Low Power FIR Filter for a Smart Dust Sensor ModuleExtremely Low Power FIR Filter for a Smart Dust Sensor Module
Extremely Low Power FIR Filter for a Smart Dust Sensor Module
CSCJournals
 
DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1
Sergey Dickey
 
Segmentation of Overlapped and Touching Human Chromosome images
Segmentation of Overlapped and Touching Human Chromosome imagesSegmentation of Overlapped and Touching Human Chromosome images
Segmentation of Overlapped and Touching Human Chromosome images
IOSR Journals
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
E ER Yash nagaria
 

Similar to Sushant (20)

Harmonic current reduction by using the super lift boost converter for two st...
Harmonic current reduction by using the super lift boost converter for two st...Harmonic current reduction by using the super lift boost converter for two st...
Harmonic current reduction by using the super lift boost converter for two st...
 
Presentation finfet - SAGAR GURUNG.pptx.pdf
Presentation finfet - SAGAR GURUNG.pptx.pdfPresentation finfet - SAGAR GURUNG.pptx.pdf
Presentation finfet - SAGAR GURUNG.pptx.pdf
 
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
CMOS Analog IC design by Dr GS Javed - Refresher Course - Batch 1
 
Extremely Low Power FIR Filter for a Smart Dust Sensor Module
Extremely Low Power FIR Filter for a Smart Dust Sensor ModuleExtremely Low Power FIR Filter for a Smart Dust Sensor Module
Extremely Low Power FIR Filter for a Smart Dust Sensor Module
 
DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1DickeyS_presentation_2015_3_26_2_1
DickeyS_presentation_2015_3_26_2_1
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
embedded system introduction to microcontrollers
embedded system introduction to microcontrollersembedded system introduction to microcontrollers
embedded system introduction to microcontrollers
 
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
 
Group 1_FinFET Final.pptx
Group 1_FinFET Final.pptxGroup 1_FinFET Final.pptx
Group 1_FinFET Final.pptx
 
Segmentation of Overlapped and Touching Human Chromosome images
Segmentation of Overlapped and Touching Human Chromosome imagesSegmentation of Overlapped and Touching Human Chromosome images
Segmentation of Overlapped and Touching Human Chromosome images
 
A0160106
A0160106A0160106
A0160106
 
ENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency ApplicationsENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency Applications
 
Low Power Design of Standard Digital Gate Design Using Novel Sleep Transisto...
Low Power Design of Standard Digital Gate Design Using Novel  Sleep Transisto...Low Power Design of Standard Digital Gate Design Using Novel  Sleep Transisto...
Low Power Design of Standard Digital Gate Design Using Novel Sleep Transisto...
 
A0210106
A0210106A0210106
A0210106
 
Linkmeup v23-compass-eos
Linkmeup v23-compass-eosLinkmeup v23-compass-eos
Linkmeup v23-compass-eos
 
Chapter 10.pptx
Chapter 10.pptxChapter 10.pptx
Chapter 10.pptx
 
Chip Multiprocessing and the Cell Broadband Engine.pdf
Chip Multiprocessing and the Cell Broadband Engine.pdfChip Multiprocessing and the Cell Broadband Engine.pdf
Chip Multiprocessing and the Cell Broadband Engine.pdf
 
Michael Gschwind, Chip Multiprocessing and the Cell Broadband Engine
Michael Gschwind, Chip Multiprocessing and the Cell Broadband EngineMichael Gschwind, Chip Multiprocessing and the Cell Broadband Engine
Michael Gschwind, Chip Multiprocessing and the Cell Broadband Engine
 
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
 
underground cable fault location using aruino,gsm&gps
underground cable fault location using aruino,gsm&gps underground cable fault location using aruino,gsm&gps
underground cable fault location using aruino,gsm&gps
 

Sushant

  • 1. 1 Presented by :- SUSHANT MISHRA EC-2 Under the guidance of :- FinFETs: From Circuit to Architecture
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. Logic Styles: NAND Gates SG-mode NAND IG-mode NAND LP-mode NAND IG/LP-mode NAND pull up bias voltage pull down bias voltage IG-mode pull up LP-mode pull down
  • 10. Comparing Logic Styles † Average leakage current for two-input NAND gate (V dd = 1.0V) Design Mode Advantages Disadvantages SG Fastest under all load conditions High leakage † (1 μ A) LP Very low leakage (85nA), low switched capacitance Slowest, especially under load. Area overhead (routing) IG Low area and switched capacitance Unmatched pull-up and pull-down delays. High leakage (772nA) IG/LP Low leakage (337nA), area and switched capacitance Almost as slow as LP mode
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. TCMS Extension Delay-minimized netlist Power : 283.6uW Area: 538 fins Power-optimized netlist Power : 149.9uW Area: 216 fins
  • 21. Power-minimized vs Delay-minimized Netlists at 130% ATC TCMS TCMS (Single-Vth Dual-Vdd % reduction in dynamic power 53.3 49.8 51.4 % reduction in leakage power 95.8 95.7 95.8 % reduction in total power 67.6 65.3 66.3 % reduction in Fin-count 65.2 59.5 61.6
  • 22.
  • 23.
  • 24. Router Microarchitecture & Pipeline Stages
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.